
Electronic Notes in Theoretical Computer Science 80 (2003)
URL: http://www.elsevier.nl/locate/entcs/volume80.html 16 pages

Development of Safety-Critical Reconfigurable
Hardware with Esterel

Jerker Hammarberg

Department of Computer and Information Science
Linköping University
Linköping, Sweden

Simin Nadjm-Tehrani 1

Department of Computer and Information Science
Linköping University
Linköping, Sweden

Abstract

Demands for higher flexibility in aerospace applications has led to increasing deploy-
ment of FPGAs. Clearly, analysis of safety-related properties of such components
is essential for their use in safety-critical subsystems. The contributions of this pa-
per are twofold. First, we illustrate a development process, using a language with
formal semantics (Esterel) for design, formal verification of high-level design and
automatic code generation down to VHDL. We argue that this process reduces the
likelihood of systematic (permanent) faults in the design, and still produces VHDL
code that is of acceptable quality (size of FPGA, delay). Secondly, we show how the
design model can be modularly extended with fault models that represent random
faults (e.g. radiation) leading to bit flips in the component under design (resembling
FMEA), and transient or permanent faults in the rest of the environment (corrupt-
ing inputs to the component or jeopardising the effect of output signals that control
the environment). The set-up is then used to formally determine which (single or
multiple) fault modes cause violation of the top-level safety-related property, much
in the spirit of fault-tree analyses. An aerospace hydraulic monitoring system is
used to illustrate the results.

Key words: Safety Analysis, Formal Verification, FPGA, Esterel

1 Email: simin@ida.liu.se

c©2003 Published by Elsevier Science B. V.

Hammarberg and Nadjm-Tehrani

1 Introduction

The drive for producing faster, cheaper, and better systems in the last decade
has made the need for reuse of models in development cycles of safety-critical
systems a reality. Contrary to current life cycle processes in which several
teams use various partially overlapping models and documents in almost in-
dependent activities, one now looks for ways to reuse the same component
(model) in different activities using different views. An important example
of such component-based reuse is when a formal design model captures the
functions of a component to be integrated into a system. In this paper we pro-
pose that the same (mathematical) functional model is used when analysing
the safety-related analysis at the system level. This opens up for reuse of the
component both in different parallel processes in the same development cycle,
and with respect to reuse in future generations.

This paper argues for such a reuse methodology in the context of a spe-
cific example: design of reconfigurable and safety-critical hardware. The re-
sults thus build on languages and tools that promote flexible and dependable
hardware. However, the generic message of the paper is the merger between
the functional and safety-related analyses that are by no means language or
application-dependent.

The combination of flexibility and efficiency requirements in development
of digital components has made the use of Field Programmable Gate Arrays
(FPGAs) prevalent, not only in space electronics [11], but also in more tradi-
tional avionic systems. In a recent study of an Air Intercept missile system,
FPGAs were used at design stage to provide flexibility, but were carried over
to the tactical system due to cost considerations as compared with the more
prohibitive Application Specific Integrated Circuits (ASICs) [9]. This trend
necessitates development of techniques for evaluation of the safety risks asso-
ciated with FPGAs.

When considering traditional safety evaluation techniques, FPGAs lie some-
where in between hardware and software. Although traditional quantitative
safety/reliability analysis favours the use of hardware in safety-critical appli-
cations, recent results show that this may be a changing reality. Shivakumar
et. al. estimate that soft error rates per chip (bit flips in hardware as a result
of cosmic radiation) of logic circuits will increase nine orders of magnitude in
a ten year perspective by 2011, at which point they will be comparable to the
soft error rate per chip of unprotected memory units [16].

The above considerations motivate a serious study of system development
processes that facilitate efficient integration of FPGAs and other software or
hardware components in systems design, with improved levels of safety. In this
paper we study the integration of FPGA designs in safety-critical aerospace
applications by illustrating two aspects of fault-management. First, we con-
sider techniques that help the developer to remove or prevent systematic (per-
manent) design faults. Second, we put forward an analysis method that helps

2

Hammarberg and Nadjm-Tehrani

the system safety engineer to concentrate on combinations of external and
random faults that should be the focus of the fault tolerance and containment
techniques. The suggested method combines elements of analysis normally
performed to concentrate on faults that lead to system level hazards, much in
the spirit of fault-tree analysis (FTA) and failure modes and effects analysis
(FMEA) techniques [8]. The novelty of our approach is the combination of
this type of safety-related analysis with the model-driven development of a
design, early formal verification, and automatic code generation. The contri-
butions of the paper are therefore not in development of core techniques, but in
bringing together a number of ingredients that have so far existed as isolated
activities, by providing a systematic approach for introduction of engineer-
ing knowledge in a formal development process. This approach is illustrated
on a real aerospace case study, and the resulting design justified in terms of
efficiency and performance characteristics.

The remainder of the paper is structured as follows: Section 2 presents
the system that was used for the case study. Section 3 introduces some of
the necessary concepts and techniques involved in the development and safety
analysis of the system. Section 4 describes our approach to a combined devel-
opment of reusable design models and safety-related analyses. Finally, section
5 summarises the paper and presents the future work.

2 Aerospace Application

The ideas presented in this paper were motivated by the needs for safety
analysis of a subsystem inside the JAS 39 Gripen multi-role aircraft, obtained
from Saab Aerospace AB in Linköping, Sweden. The purpose of the system
is to detect and stop leakages in the two hydraulic systems, which feed the
moving parts, including the flight control surfaces, with mechanical power.
Leakages in the hydraulic systems could in the worst case result in such low
hydraulic pressure that the airplane becomes uncontrollable. To avoid this,
some of the branching oil pipes are protected by shut-off valves. These valves
can be used to isolate a branch in which a leakage has been detected. Then,
although the leaking branch will no longer function, the other branches will
still keep the pressure and be able to supply the moving parts with power.

The reading of oil level sensors and the controlling of the four shut-off
valves are handled by three electronic components, as depicted in figure 1.
The H-ECU is a software component that continually reads the oil reservoir
levels of the two hydraulic systems, and determines which shut-off valve to
close accordingly. However, it would be very dangerous if some fault caused
more than one valve to close at the same time — this could result in the
locking of the flight control surfaces. For this reason, two programmable logic
devices, here called PLD1 and PLD2, continually read the signals to and the
statuses of the valves, and if the readings indicate closing of more than one
valve, they will disallow further closing. Thus, PLD1 and PLD2 add fault

3

Hammarberg and Nadjm-Tehrani

HS1
&

HS2
H-ECU

PLD1

PLD2

Valve
blocks

HS1 Sensors

HS2 Sensors

Shut-off
signals

Check
result

Shut-off
high side

Shut-off
low side

Sensors
low side

Sensors
high side

Valve
sensors

1B

1C

2C

2B

Fig. 1. Hydraulic leakage detection subsystem. White boxes indicate electronic
components and patterned boxes indicate physical parts. Arrows indicate signal
flows; double arrows are collections of several signals.

tolerance to the shut-off subsystem. PLD2 only accepts a request from the
H-ECU of closing a particular valve if the check, which is partly done in PLD1,
indicates that everything is OK. A valve will only close when both the low
side signal, which is the shut-off signal directly from the H-ECU, and the high
side signal, which is the checked signal from PLD2, are present.

Design for fault tolerance is an inherent part of satisfying safety require-
ments for a system. Although quantification of dependability using selected
metrics is well-studied in electromechanical systems, satisfaction of safety re-
quirements in presence of software or software-like hardware is still a major
challenge. In this particular example, one wants to verify that no single fault,
be it in the components, in the wires or in the valves, can cause more than one
valve to close at the same time. Moreover, the safety engineer is interested in
combinations of faults that might lead to violation of top safety requirements.
In the following, we will show how a design model of the system can be used
to formally verify that it is tolerant to single faults. The proofs also pinpoint
the significant combinations of double faults. Since model-based development
down to code generation and formal verification is supported by the Esterel
language and tools, these will be used to illustrate the ideas.

3 Background

This section introduces some concepts and earlier work that will be used for
the analysis described in section 4. An introduction to the properties of Esterel
is followed by a short description of fault tree analysis and how formal analysis
can be applied in this context.

4

Hammarberg and Nadjm-Tehrani

3.1 Esterel

Esterel [1] is a synchronous language with formal semantics, making it ideal
for analyses with formal methods. In addition, a large subset of Esterel can be
directly compiled to synthesizable VHDL or Verilog, and thus synthesized to
FPGA configuration data without any need for manual rewriting. This means
that if systems are designed in Esterel, efficient formal verification is available
directly on the actual design code.

Esterel is tailored for designing reactive systems [13], which continually
read inputs and produce outputs. In Esterel, time is modelled as a discrete
sequence of instants. Each instant, new outputs are computed from the inputs
and from the internal state (control state, latched signals and variables) ac-
cording to the imperative statements of the Esterel program. Figure 2 shows
some of the Esterel code for PLD2 in the aerospace example. Every instant,
the code inside the loop...each tick construct is executed. The output signal
ShutOff 1B will be emitted only if there is an incoming request to close valve
1B, all input seems to be OK and the CheckOK signal was present at the
previous instant.

module PLD2:
input CheckOK;
input ShutOffRequest_1B;
% more inputs
output ShutOff_1B;
% more outputs
loop

signal InputNotOK in
% some code emitting InputNotOK if something is wrong with the input
present ShutOffRequest_1B and not InputNotOK and pre(CheckOK) then

emit ShutOff_1B
end present

end signal
each tick

end module

Fig. 2. Part of the Esterel code for PLD2.

Our experience [5] indicate that synchronous hardware systems can be
written more easily and with fewer lines of code in Esterel than in hardware
description languages such as VHDL [17]. This is due to the higher level
of abstraction and the suitable constructs for modelling hierarchical reactive
modules. Bug count per thousand lines of code (bugs/kloc) appears to be
constant over different languages [15]. Hence, we believe that the use of Esterel
could contribute to system correctness and maintainability at a lower cost (i.e.
development time), compared to the design methods that are commonly used
in the industry today.

The main advantage with using Esterel for hardware development is, how-
ever, its tight coupling to formal methods for system analysis. Esterel compil-
ers automatically check the design for causality loops, and the fact that Esterel

5

Hammarberg and Nadjm-Tehrani

is synchronous makes formal verification particularly efficient [6]. Nondeter-
ministic programs are rejected at compilation stage, making the reliance on
the output of a module at each instant possible. The commercial tool Esterel
Studio [4] has two model checkers built-in — one based on binary decision di-
agrams (BDDs) [14] and one based on propositional satisfiability (SAT) tech-
niques [18]. Thus, many design faults should be quickly found and eliminated
already at the design stage of the process.

The two model checkers bring the best of both worlds in the battle against
complexity, namely state space explosion and long proofs with many open
hypotheses, respectively. The tool used in our experiments was the SAT solver.
It implements the St̊almarck proof technique that is based on the observation
that many systems with large state spaces have short proofs 2 . The interested
reader is referred to the tutorial by Sheeran and St̊almarck [19] for a full
exposure to the method, since it is beyond the scope of this paper.

System

Observer

Input
signals

Output
signals

Alarm
signal

Fig. 3. A system being monitored by an observer. The arrows indicate signal flow
or signal readings.

In Esterel, the safety properties 3 to prove with the model checker are
formalised as synchronous observers. The observer is a process, also written
in Esterel, that runs in parallel with the actual system and monitors its input
and output signals, as depicted in figure 3. As soon as the observer finds that
the property is violated, it emits an alarm signal (sometimes also called bug
signal). Proving the property is thus reduced to proving that the alarm signal
will never be emitted.

A justified concern is whether the generated VHDL code is efficient enough
to be useful in a real industrial application. In this particular case study, the
PLDs are combinatorial. Thus, the size differences are not significant. Our
experiments encompassed another system [5], in which we compared an FPGA
implementation synthesized from Esterel with a hand-written VHDL imple-
mentation of the same system. The Esterel implementation was approximately
three times slower and occupied slightly more than two times of the logic blocks
(CLBs) in the FPGA. Although more studies are needed to be able to draw
any real conclusions, this indicates that VHDL is still the appropriate choice

2 In the sense of Gentzen style deductions.
3 In the formal verification sense: non-reachability of a bad state.

6

Hammarberg and Nadjm-Tehrani

if efficiency is crucial, but in other cases, the acceptance criteria may simply
be fitting into the chip. In these cases, Esterel can produce implementations
of fully acceptable size and speed. We also argue that the additional cost of
using a larger FPGA, should the implementation not fit, will in many cases
be minor compared to the potential gains resulting from shorter development
time and increased reliability. Moreover, ongoing research (see for instance [3]
and [10]) aims at further improving the compilation of Esterel to hardware,
and the language itself is being developed to allow for better control over the
hardware resources.

Finally, it should be noted that there are other synchronous languages, e.g.
Signal [12] and Lustre [7], that support formal verification. However, none of
them can presently be compiled to VHDL (and thus not synthesized to an
FPGA) with a commercially available compiler. This is the main reason for
Esterel being chosen in our studies.

3.2 Fault tree analysis (FTA)

A traditional technique for safety analysis is to produce a fault tree that dis-
plays the hazardous events and their possible implicants. In a fault tree, each
node represents an event, and the top event is the disaster that one wants to
find the possible causes to. The children of an event in the tree are the events
that, alone or together, may cause that event. By producing a complete fault
tree, one can reveal what faults (or combinations of faults) are hazardous and
must be attended to. In addition, if the probabilities for the leaf events are
known, a probability for the top event can be calculated.

Consider now a fault tree for the aerospace application, where the top event
is the airplane crashing. One event (internal node in the fault tree) that can
single-handedly cause the top event is when two or more shut-off valves close
simultaneously. To further derive the descendants of this event in the fault
tree would require a complete analysis of the behaviour of the three electronic
components H-ECU, PLD1 and PLD2; something that would be extremely
tedious to do in separate models developed in FTA tools. Clearly, there is a
need for tool support to create the fault tree automatically. Moreover, every
change in the design would potentially render reconstructing the fault tree.

Component
Fault
mode
macro

Fault mode signal

Inputs
Possibly
corrupted inputs Outputs

Fig. 4. Extending a component with a fault mode. Arrows indicate signal flow.

Åkerlund et al, 1999, showed how FTA-like analysis of a hardware or a
software component could be performed with the help of a SAT solver [21].

7

Hammarberg and Nadjm-Tehrani

The component was first modelled as a set of logic formulas relating the input
and output variables. By checking that the formulas that constitute the model
imply a specific property, such as “at most one shut-off valve is signalled to
close simultaneously”, compliance with a safety (correctness) property in the
absence of external faults could be proved. This is ordinary model check-
ing. Then, the model was extended with additional input signals representing
specific fault modes in the environment that could cause corruption of the
real input to the component. A fault was modelled by a macro that modifies
the input signals if the fault mode signal is present, as illustrated in figure
4. By again verifying this extended model, one could either prove that the
component was tolerant to the modelled faults or see on the produced coun-
terexamples which fault modes could cause violation of the property. The
counterexamples were automatically generated by the verification tool, as a
side effect of the analysis. Note that a fault tree was never built explicitly,
but the setup allows the study of effects of single as well as multiple faults
(including those with non-monotonic effects).

4 Analysis of fault tolerance

In this section, we combine and extend the above techniques to obtain several
advantages. First, instead of low level (circuit) modelling of the design as in
the Åkerlund et al study, we lift the design abstraction to a higher level. Due to
maturity of Esterel tools, high-level design can now be used for automatic code
generation. Without this step, our original ideas with automated FTA-like
analysis are far from applicability in every day industrial settings. Secondly,
we extend the classes of considered faults. In addition to faulty inputs of the
component under design, we model faulty outputs generated by the component
itself as a result of random failures, as well as faults in the environment that
consumes the output of the component.

We illustrate that the ideas are practical and that the Esterel tool makes
them immediately available already at the design stage. Hence we remove
the need for creating and managing two separate models (one for design ver-
ification, and one for FTA/FMEA analysis of safety-related properties). In
addition, the idea builds on a framework for combining individual components
to form a verification bench that allows the study of the effects of the above
fault classes.

The three steps involved in formally analysing fault tolerance will be ex-
plained in the following.

4.1 Development of verification bench

In order to verify the hardware and software components working together
with physical parts of the system, it will be necessary to build an Esterel model
of relevant parts of the environment. In addition to models of the physical

8

Hammarberg and Nadjm-Tehrani

parts of the system, we include models of all necessary wires between various
components as well as wires between the components and the physical parts.
Next, observers running in parallel with the components and the environment
are added. This construction will be referred to as a verification bench, into
which various components can be plugged in and analysed.

A verification bench for the aerospace application is illustrated in figure 5.
It contains models of the four valves and of the wires between the components,
and it has empty slots for H-ECU, PLD1 and PLD2. The observer monitors
the output of the valve models and emits an alarm signal as soon as more
than one valve is closed at the same instant.

Verification bench

H-ECU PLD1 Valve

PLD2

Valve

Valve

Valve

Observer

HS1B_Closed

HS1C_Closed

Alarm

HS2B_Closed

HS2C_Closed

HS1Sensors

ShutOffLow

HS2Sensors

Fig. 5. Verification bench for aerospace application. Grey boxes indicate modules
of the verification bench and white boxes indicate modules to be verified. Arrows
indicate wires; double arrows are collections of several wires. The vertical bar in
the middle is a short-hand for a set of connections.

Figure 6 shows a skeleton for the implementation of this verification bench
in Esterel. All wires are modelled with local signals using the signal con-
struct, and the main body consists of calls to the components (run keyword)
and the valve models running in parallel with the observer that checks that no
pair of valve-closed signals are simultaneously present. The signal renamings
in the run construct defines how the interface of the component is connected
to the local signals or to the main inputs or outputs.

Notice that the verification bench can be written independently of the
components. This is useful for distributed development — code from differ-
ent departments, or even different companies, can easily be plugged in and
immediately checked by formal verification.

4.2 Augmenting with fault modes

The next step in the process of checking for safety-related fault tolerance is
to model faults in the verification bench. Here we will show how to model

9

Hammarberg and Nadjm-Tehrani

module Main:
sensor HS1Pressure : double;
% more main inputs
output HS1B_Closed;
% more main outputs
output Alarm;
signal

ShutOffLow_1B;
% more wires

in
run HECU [

signal HS1Pressure / HS1Pressure;
% more connections

]
||
run PLD1 [...]
||
run PLD2 [...]
||
run Valve [...]
||
% more valves
||
loop

present HS1B_Closed and HS1C_Closed then
emit Alarm;

end present;
% more checks

each tick
end signal

end module

module Valve:
% valve model

end module

Fig. 6. Skeleton code for aerospace application verification bench in Esterel.

malfunctions in the chips on which the components run, in our case the mi-
croprocessor and the two PLDs. Many other classes of faults, such as electrical
or mechanical faults in physical parts of the system, can also be modelled in
the verification bench with some creativity.

Faults in the hardware parts such as FPGAs or microprocessors on which
the system components run can occur due to sudden power-down, overheating
or radiation that flips some bits over inside the chip. Modelling such faults at
fine granularity would be complicated, so we will opt for a coarse granularity
strategy and assume that if such a fault occurs, the outputs of the component
running on the chip can be anything. Besides being much simpler, this strategy
also has the advantage that the component design module does not have to be
altered; the malfunction can be completely modelled in the verification bench.

To induce completely arbitrary output from a component, one can add

10

Hammarberg and Nadjm-Tehrani

Component
Fault
switch

Component
inputs

Arbitrary values

Fault mode signal

Correct values
Real wire

Fig. 7. Fault switch modelling component faults. Double arrows indicate possibly
several signals.

...
run HECU [

signal HS1Pressure / HS1Pressure;
% more connections
% feed output to local correct-values wire

]
||
loop

present FaultHECU then
% feed arbitrary values to local signals (ShutOffLow_1B etc)

else
% feed correct values to local signals

end present
each tick
...

Fig. 8. Skeleton code for fault switch in Esterel.

an additional block coming in between the outputs of the component and the
following wires, as depicted in figure 7. This block will be referred to as a fault
switch and can be seen as the formal verification counterpart of fault injectors
used in test benches. Figure 8 shows the Esterel implementation of a fault
switch following the H-ECU, and it should replace the run HECU call in figure
6. The idea is to let through the correct output of the component into the wires
as long as the fault mode signal is absent, but when it is present, arbitrary
values will be fed into the wires instead. These arbitrary values can be taken
from additional inputs of the verification bench, since the verification tool will
allow these to be anything. The component must furthermore be connected
to the inputs of the fault switch instead of the wires.

In the aerospace application case, the following faults were modelled:

• Arbitrary malfunction in the H-ECU, in PLD1 or in PLD2 (e.g. due to
radiation).

• Short-cut to ground on the incoming low side shut-off signal to each of the
four valves.

11

Hammarberg and Nadjm-Tehrani

• Short-cut to ground on the low side of each valve 4 .

• Short-cut between the low and the high side of each valve.

4.3 Fault mode verification

In Esterel Studio, plugging in the designs of the components is simply a matter
of loading them into the verification bench project. The verification bench and
the components together then constitute a model of the complete subsystem
that can be verified with the built-in model checker.

To analyse safety-related fault tolerance, we make use of the feature in
Esterel Studio to constrain some input signals. In this case the fault mode
signals can be restricted to analyse different scenarios. By further testing for
the observer alarm signal emission, we can check for violation of the safety
property in presence of those faults. For example, if we are only interested
in component malfunction to see what combinations of faulty components
the system can withstand, we can constrain all other fault mode signals to
be absent. If we want to find systematic design faults, that is, violations of
properties in absence of external faults, we simply constrain all fault mode
signals to be absent. This is probably the first thing we want to do. Single
(and possibly double) faults can be found by allowing all single (and all pairs
of) fault modes, constraining the other fault mode signals to be absent.

Figure 9 shows the model checker window in Esterel Studio when verifying
the aerospace application verification bench. In the Model Inputs panel, the
user can easily constrain the fault mode signals before running the verification.
It should be clear that if this model were verified with all fault mode signals
allowed to be present, then the safety properties would most probably be
found false, unless the system is extremely robust and can withstand any
fault. When a property is found false, a counter-example is produced that
shows a sequence of combinations of faults and inputs that lead to safety
violation.

Using this technique on the aerospace application verification bench, con-
sisting of 422 lines of code spread of 6 Esterel modules, we could verify the
following:

• The components do not contain design faults causing violation of the prop-
erty. This was shown by constraining all fault mode signals to be absent
before running the verification.

• No combination of the twelve valve faults can cause violation of the property.
This was verified by constraining the three component fault mode signals
to be absent.

• No single random fault can cause violation of the property. The three com-

4 This is not the same as grounding of the incoming low side shut-off signal, since there are
electronic components in the valve that, based on the incoming signals, produce a voltage
that makes the valve close. This fault models grounding of the low side of the voltage.

12

Hammarberg and Nadjm-Tehrani

Fig. 9. The model checker window in Esterel Studio.

ponent fault modes were checked by for each of them constraining the other
fault mode signals to be absent. The other twelve faults were already cleared
by the previous step.

• The only double fault violating the property was shown to be when both the
H-ECU and PLD2 are faulty. This was checked by testing the relevant
possible double faults, again constraining the other fault mode signals for
each pair. Since the four valves are symmetrical, it was sufficient to check
physical faults in one valve such as 1B, reducing the number of combinations
to twelve.

The model checking never took more than a few seconds. As long as the
system is mainly combinatorial (as in this case), the complexity of the problem
is linear to the size of the model in average case for a SAT-solver [19]. This
means that systems of this kind totalling thousands of lines of code should still
be feasible to verify. Alternatively, if testing for validity takes too long, one
may opt for the bug chasing strategy option in Esterel Studio. This option
omits the proof-searching part of the model checking and only searches for
counter-examples 5 , and can thus not be used for proofs, but only for finding
fault mode combinations.

5 The model checking is an induction proof over the discrete time. The induction depth is
increased until either the base step is found false or the inductive step is found true. The
bug chasing strategy omits the inductive step.

13

Hammarberg and Nadjm-Tehrani

5 Conclusions

The conquest for making safe avionic systems while incorporating modern
technology and more complex functionality is a driving force for the rising
interest in FPGAs in safety-related systems. As with other reusable compo-
nents, we need guidelines on how to incorporate such components into the
development and safety analysis processes. Furthermore, we need specific
guidelines for treatment of FPGAs when building up safety arguments.

In this paper we provide some evidence that results of the last decade
of research in language design, formal verification and tool development are
reaching maturity levels that make a serious case for these techniques in real
applications. We have illustrated how an FPGA design process can combine
analyses for safety and functional correctness, and guide the designer in the
search for a focus for fault tolerance methods. The abstract (implementation
independent) design model was shown to be transformable to a VHDL imple-
mentation with acceptable loss of efficiency (still fitting in the circuit that was
intended for the design), and at the same time supporting formal analysis of
the design.

We proposed a formal verification bench for analysing systematic and ran-
dom faults in the external environment, using the standard technique of ob-
servers, and showed it to be an efficient means of pinpointing fault combina-
tions that need more attention in safety evaluations. The use of verification
benches for safety analyses should be applicable to any design language with
formal verification support, not only to Esterel.

Ideally, the analysis should render a set of prime implicants of the system
failure function, but this is not possible in the current version of the tool.
One algorithmic approach is presented in [2]. Current work on the Esterel
verification bench includes extention of the tool so that prime implicants (or
FTA-like cut-sets) are automatically generated. Another extention would be
visualisations and combination with quantitative methods currently used by
engineers.

References

[1] Berry, Gerard and Georges Gonthier, The Esterel Synchronous Programming
Language: Design, Semantics, Implementation, Science of Computer
Programming, 19(2) (1992), 87-152, Elsevier Science, 1992.

[2] Deneux, Johann, “Automated Fault-Tree analysis”, Master’s Thesis, Uppsala
university, 2001.

[3] Edwards, Stephen A., High-level Synthesis from the Synchronous Language
Esterel, in Proceedings of the International Workshop of Logic and Synthesis
(IWLS), New Orleans, June 2002.

[4] Esterel Technologies web site, URL: http://www.esterel-technologies.com

14

Hammarberg and Nadjm-Tehrani

[5] Hammarberg, Jerker, “High-Level Development and Formal Verification of
Reconfigurable Hardware”, Master’s Thesis LiTH-IDA-Ex-02/102, Linköping
university, 2002.

[6] Halbwachs, Nicholas, Fabienne Lagnier and Pascal Raymond, Synchronous
Observers and the Verification of Reactive Systems, Third International
Conference on Algebraic Methodology and Software Technology (AMAST93),
Workshops in Computing, Springer-Verlag, June 1993.

[7] Halbwachs, Nicholas and Pascal Raymond, A Tutorial of Lustre, Technical
report, Verimag, September 1993.

[8] Henley, Ernest J. and Hiromitsu Kumamoto, “Reliability Engineering and Risk
Assessment”, Prentice-Hall, 1981.

[9] Holbrook, Donald, FPGA Use For Safety Critical Functions in an Air Intercept
Missile, in Proceedings of the 19th International System Safety Conference, pp
618-628, 2001.

[10] INRIA TICK project web page,
URL: http://www.inria.fr/recherche/equipes/tick.en.html

[11] Katz, Richard B., Faster, Better, Cheaper Space Flight Electronics — An
Analytical Case Study, Mil/Aero Applications of Programmable Logic Devices
(MAPLD) Conference, September 2000.

[12] Le Guernic, Paul, Thierry Gautier, Michel Le Borgne and Claude Le Maire,
Programming real-time applications with SIGNAL, in Proceedings of the IEEE,
vol 79, pp 1321-1336, September 1991.

[13] Manna, Zohar and Amir Pnueli, “The Temporal Logic of Reactive and
Concurrent Systems — Specification”, Springer-Verlag, New York, 1992.

[14] McMillan, Kenneth L., “Symbolic Model Checking — An approach to the
state explosion problem”, Technical Report CMU-CS-92-131, Carnegie Mellon
University, 1992.

[15] Musa, John D., Anthony Iannino and Kazuhira Okumoto, “Software Reliability
— Measurement, Prediction, Application”, McGraw-Hill, 1987.

[16] Shivakumar, Premkishore, Michael Kistler, Stephen W. Keckler, Doug Burger
and Lorenzo Alvisi, Modeling the Effect of Technology Trends on the Soft Error
Rate of Combinational Logic, in Proceedings of International Conference on
Dependable Systems and Networks, pp 389-398, IEEE, June 2002.

[17] Sjöholm, Stefan and Lennart Lindh, “VHDL för konstruktion”,
Studentlitteratur, Lund, 1999.

[18] Sheeran, Mary, Satnam Singh and Gunnar St̊almarck, Checking Safety
Properties Using Induction and a SAT-Solver, in Proceedings of Formal
Methods in Computer-Aided Design, Springer-Verlag, November 2000.

15

Hammarberg and Nadjm-Tehrani

[19] Sheeran, Mary and Gunnar St̊almarck, A Tutorial on St̊almarck’s Proof
Procedure for Propositional Logic, in Proceedings of International Conference on
Formal Methods in Computer-Aided Design, Springer-Verlag, November 2000.

[20] Synplify Pro product web page,
URL: http://www.synplicity.com/products/synplifypro

[21] Åkerlund, Ove, Simin Nadjm-Tehrani and Gunnar St̊almarck, Integration of
Formal Methods into System Safety and Reliability Analysis, in Proceedings of
the 17th International System Safety Conference, Orlando, 1999.

16

