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ABSTRACT 
In this paper we present strategies to deal with inherent load 
uncertainties in future generation mobile networks. We address 
the interplay between user differentiation and resource allocation, 
and specifically the problem of CPU load control in a radio 
network controller (RNC). 

The algorithms we present distinguish between two types of 
uncertainty: the resource needs for arriving requests and the 
variation over time with respect to user service policies. We use 
feedback mechanisms inspired by automatic control techniques 
for the first type, and policy-dependent deterministic algorithms 
for the second type. We test alternative strategies in overload 
situations. One approach combines feedback control with a pool 
allocation mechanism, and a second is based on a rejection-ratio-
minimising algorithm together with a state estimator. 

A simulation environment and traffic models for users with voice, 
mail, SMS and web browsing sessions were built for the purpose 
of evaluation of the above strategies. Our load control 
architectures were tested in comparison with an existing algorithm 
based on the leaky bucket principle. The studies show a superior 
behaviour with respect to load control in presence of relative user 
priorities, and minimal rejection criteria.  Moreover, our 
architecture can be tuned to future developments with respect to 
user differentiation policy.   

Categories and Subject Descriptors 
C.2.1 [Computer-Communication Networks]: Network 
Architecture and Design – Wireless communication, packet-
switching network. C.2.1 [Computer-Communication 
Networks]: Network Operations – Network Management. I.6.4 
[Simulation and Modelling]: Model Validation and Analysis. 

General Terms 
Algorithms, Design. 

Keywords 
Resource allocation, load control, QoS 

1. INTRODUCTION 
Providing Quality of Service (QoS) [3] towards network users has 
been present ever since the first networks for voice or data 
communication were conceived. What is new in our day and age 
is the rebirth of several earlier techniques when 
telecommunication and IP networks meet. 

Several authors put forward the scenario that IP will be the 
common ingredient of future networks, and thereby base the study 
of QoS issues on the techniques developed for Internet traffic [2]. 
Others study the special characteristics of mobile communication 
in presence of IP-based services [10,14]. In this paper we consider 
how enforcing a simple form of QoS in mobile networks can be 
integrated into a resource allocation problem, namely the CPU 
load control algorithms. 

Third generation (3G) mobile networks have a number of aspects 
common with IP networks: the complexity of traffic models for 
users of services such as mail, short message services (SMS), and 
web browsing. In addition, they have to deal with a new factor 
that affects the offered load to the system: the user mobility.  
These factors together lead to execution of various functions in 
the radio control node in order to dynamically allocate data and 
control channel (types and rates), set up and tear down 
connections, and so forth. Thus, 3G networks need adaptive 
resource management for different resource types that need to be 
allocated inter-dependently.  

A major track of research is the allocation of bandwidth as a 
resource and adaptive admission control algorithms based on 
available bandwidth and QoS requirements [4,7,8,11]. Another 
resource type is the CPU, which processes the generated tasks 
resulting from the above dynamic decisions after a user has been 
admitted to a system. As user needs change, and the available 
bandwidth is increased/decreased, the results of the bandwidth 
allocation algorithm affect the load on a CPU that is executing the 
required control functions. Note that even operating at maximum 
bandwidth allocation levels there will be new incoming tasks for 
the CPU. Therefore dealing with the more scarce resource (the 
bandwidth) will not eliminate CPU overloads. To solve this 
problem with over-provision will be wasteful since such 
overloads should not be too common. If the CPU overload is 
allowed a hardware based resetting mechanism will be activated, 
with an even worse effect on system availability. Thus we need to 
control the CPU utilisation during overloads. This paper presents 
the special algorithms to ensure that a radio control CPU is not 
overloaded during traffic overload situations.  

The result of load control algorithms may be the rejection of some 
functions. Hence, a differentiation scheme (perhaps similar to the 
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one used in the bandwidth allocation algorithm) needs to be in 
place.  As bandwidth allocation schemes use more complex user 
profiles as input, we aim for a consistent solution to the load 
control problem. System-wide optimal resource allocation needs 
to take care of interdependencies between these two resource 
types, and our work is a step towards understanding some of the 
interdependencies.  

A subtle complexity in the application of algorithms for adaptive 
resource allocation together with user differentiation is the mutual 
effect of the network algorithms on user behaviours. We therefore 
propose a framework in which a mix of techniques from real-time 
systems, control theory and AI can be applied and simulated. 

1.1 Related areas of work 
The work on adaptive resource allocation in networks spans a 
number of research communities. In this section we provide an 
overview of the areas based on selected works from each area. 

Some proposals for QoS-based resource allocation in 3G have a 
fully adaptable scheme, where each connection can be run with 
different QoS levels, with a goal to maximise the total benefit. 
Others offer strict guarantees and reservations to fulfil a QoS 
contract. Lately these two techniques are merging, connections 
can request a minimum bandwidth, which has to be guaranteed, 
and a maximum bandwidth, which gives the highest local reward 
[7]. Richardson et al. [12] propose an algorithm to schedule a 
downlink in a 3G network. Priority-based weighted fair queuing 
[15] combines priority-driven and share-driven scheduling which 
lowers the delay of important sessions while maintaining the 
guaranteed bandwidth. Another ongoing work addresses 
developing adaptive resource management protocols to maintain 
QoS guarantees in the wake of network failures [5,6]. This work 
focuses on the lowest network layers for managing dynamic use 
of wireless channels by users with multiple service guarantees.  
None of these works treat CPU load control. 

Over two decades of research in the real-time systems community 
treats the question of CPU’s load in general, and scheduling of 
jobs with well-defined characteristics in particular. Recently, the 
area of automatic control in which feedback is a means of dealing 
with uncertainties, has influenced the work on adaptive 
scheduling. This provides powerful tools for deriving analytical 
results in presence of certain assumptions [1,13]. Stankovic et al 
[13] present a distributed system where feedback control is used 
for minimizing deadline miss ratio at over-utilisation, and keep 
CPU utilisation as high as possible at under-utilisation. The 
system is purely adaptive; no priority between tasks can be 
specified. Abeni et. al [1] present a feedback adaptive QoS 
scheme which integrates the notion of constant bandwidth server 
(CBS) into an earliest-deadline-first (EDF) scheduling 
environment. The CBS provides the temporal isolation for the 
different tasks, while adaptivity is performed globally by 
increasing the CPU share of a task, or locally by constraining the 
application to a given bandwidth. While there is a notion of 
priority between the tasks, it does not guarantee a certain CPU 
share. This work is strongly tied up with the EDF scheduling 
policy. Note that in our case the load control algorithm decides 
about the incoming tasks independently from the scheduling 
policy used by the underlying operating system. 

2. LOAD CONTROL IN 3G NETWORKS 
The Radio Network Controller is responsible for controlling the 
common resources in a 3G radio access network and serving the 
User Equipment (UE) in the best possible way. The hardware in 
each RNC consists of a number of processors each responsible for 
handling UEs within a certain part of the network. A user request 
arrives at one of these CPUs to begin with. When the traffic is not 
unexpectedly high the request is further processed as described by 
the 3G specification and dynamic bandwidth allocation takes care 
of further resource needs. The network should however have 
mechanisms to deal with unexpectedly high loads in parallel with 
operation of the bandwidth allocation mechanism. That is, the 
functions generated by a switching decision in one control step 
may simply be rejected by the CPU’s load control algorithm after 
the bandwidth allocation step.  

Now, the purpose of the algorithms that we will consider in 
section 3 is to accept as much load into the processor as possible 
without causing an overload on the CPU. The load is being 
primarily caused by traffic functions (see below), but also by 
functions on behalf of the higher network management layers 
(O&M) and other Operating System (OS) processes. Traffic 
functions are divided into connection management and mobility 
management functions. Here we will present some of the 
connection management functions. Connection Setup is used for 
establishing a signalling connection link to the UE. Connection 
Release ends the connection and releases the associated resources 
(channels, codes), RAB (Radio Access Bearer) Establishment / 
Release manage the connections to the UE used for service data 
transfer. To manage packet switched services different bandwidth 
channels are provided. Some of them can be shared by many 
connections, and others are dedicated. When the bandwidth of a 
channel does not suit a particular service a Channel Switch 
function is performed. Paging is performed when a UE is 
accessed form the Core Network. Power Control and Admission 
Control based on cell bandwidth are other function types. 
Mobility management functions are Soft /Softer Handover, which 
are performed to maintain a connection across cell boundaries and 
Cell Update to track the location of a UE.  

To control the load on the processor we could either reject or 
delay some of the above-mentioned functions. A preliminary 
study of deferral methods shows that delaying traffic functions is 
not a solution [9]. Moreover many of these functions should not 
be subjected to rejections. Mobility functions have to be executed 
in order to maintain the connection status of the UE as it moves 
across cells. Rejecting basic control functions like Power Control 
would disturb the existing connections. Also disconnection from 
the network should not be refused.  This leaves us with three 
candidates: Connection Setup, RAB Establishment and Channel 
Switches. Since RAB establishment is usually performed directly 
after a Connection Setup its control would not bring any benefit. 
Therefore in this paper we concentrate on two traffic function 
types: requests for new connections (R1) and requests for channel 
switches (R2). Rejecting a new connection is deemed less 
penalizing than dropping an established call, therefore the former 
may get a lower importance compared to the latter. In this paper 
we assume that all the other traffic tasks together with other OS 
tasks are directly sent to the processor and are therefore outside 
our control (thus referred to as direct tasks). The proposed 



Figure 2.  Schematic description of the first architecture  
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algorithms however, are not restricted to two task types or two 
importance levels.  

Cast as a simple control problem in its simplest form, we have the 
schematic diagram from Figure 1: The CPU to be protected from 
overload is our “plant” in a control terminology. The requests 
arriving are input to the controller (CTRL), which has the 
primary task of protecting the CPU from overloads. To do this it 
has access to the actual measured CPU utilisation, which is the 
sum of utilization caused by the number of accepted requests 
(denoted by A) and the utilisation from direct tasks (denoted by 
Ud). There are certain levels of desired utilisation, denoted here 
as a set value Us. The reason for having a Us that is different from 
100% is the performance characteristics of the hardware and the 
risk of automatic resetting. That would jeopardise network 
availability during high load situations. Thus we want to keep Us 
to stay at say 90%. Let Ci be estimated computation time for task 
type i. In order to estimate the utilisation caused by the mixture 
of arriving tasks (R = R1+ R2), we represent the required 
utilisation for each task type by ci , where ci = Ci/P and P is the 
sampling interval.  Thus, U = Ud + Σ Ai ci, where A = A1 + A2 are 
the accepted tasks made up of types 1 and 2 respectively (new 
connections or channel switches). So far we differentiate only 
between task types. Next we add a user dependent QoS 
dimension. That is, we represent different user classes by the 
index j. Rij will now represent the request type i from user type j. 
Then we can observe the network behaviour as the mix of user 
types and the mix of task types changes over time. 

3. ALGORITHM DESIGN 
The above parameters make several uncertainties explicit. We 
distinguish between two types of uncertainty: the resource needs 
of arriving requests and the variation over time with respect to 
user service policies. The first type manifests itself both in the 
mix of user requests and the mix of generated tasks (depending on 
whether the user is using voice, mail, SMS, web). Different user 
needs lead to different volumes of channel switches that in turn 
generate different volumes of tasks to be executed on the CPU. In 
this category of uncertainty we also find the volume of direct 
tasks arriving at the CPU (Ud above) and the claim on the 
processor with respect to each task (cij). The second type of 
uncertainty, namely the differentiation policy for user/task types, 
is treated at a higher level. It can be affected by the market and 
pricing information, or by configuration changes known at higher 
layers of network management. At the RNC level, we use variants 
of automatic control techniques to adjust for the first type, and 
deterministic algorithms to reflect the policy to deal with the 
second type. A change in the policy can thus be seen as the 
adjustment in the service level delivered to a particular user class 
over time. 

This paper presents and compares two strategies. One approach 
combines feedback and feed forward control mechanisms with a 
deterministic pool allocation algorithm, while the other is based 
on a rejection-minimisation algorithm and state estimation. These 
two approaches are then compared with an existing leaky-bucket 
type load control algorithm. Figure 2 illustrates our architecture 
for the first approach, where the Load Control Unit (LCU) is 
instantiated by two boxes dealing with the two types of 
uncertainties mentioned above. Mechanisms for reflecting policy 
changes though represented as a (leftmost) box in our two 
architectures, is not the subject of this research in this paper and 
should be studied in presence of 3G business models and 
forthcoming data sets. 

3.1 First Architecture 
The overall objective of the LCU is to achieve the stabilisation of 
the CPU utilisation around a set point Us while managing 
individual user/task preferences according to pij’s. pij are set by a 
second controller (UP-CTRL) and represent the proportion of the 
available load that should be allocated to a certain request type 
(i,j) i.e. Σ pij =100% of the available utilisation. This setting can 
be chosen based on task/user importance or other 
technical/economical data. The LCU is split into two different 
parts, a deterministic part and a feedback part. The first element 
(the LC-Logic) is responsible for accepting tasks based on a 
differentiation policy. This would be enough if our model were 
not subject to disturbances. That is, the cij for each task was 
accurate and the incoming direct tasks that are outside our control 
were 0. Since this is not true, we use the feedback from L-CTRL. 
This second element is used to adapt our current claim to the CPU 
using feedback about actually measured utilisation, and to follow 
the desired Us. L-CTRL provides adjustments to variations in Ud 
and cij, and its output is the current available load Uavail. We have 
tested various P or PI controllers as instantiations of this unit (see 
section 5). In LC-Logic the utility shares decided by the UP-

Figure 1. Schematic overview of processor protection

U 

 
CTRL  

CPU 
A 

Ud 

R 

Us 

rij’s  –  are the numbers of incoming user requests of a given task 
type-i from user type-j.   
pij’s – specify the percentage of  the available utility which should 
be allocated to user requests of type (i,j). 
aij’s  – are the numbers of admitted requests of type (i,j). 
mij’s – indicate the numbers of missed (rejected) requests of type 
(i,j). 
Uavail – is the estimated available utilisation.   
U  – is measured (actual) utilization, which includes processing of 
admitted user tasks in addition to background tasks assigned by the 
operating system and the direct tasks not under control of the LCU. 



Figure 3.  Schematic description of the second architecture 
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CTRL will be used to compute the available load for each type: uij 
= pij * Uavail .  

In reality the mix of incoming tasks may not correspond to the set 
points uij. If the requests of a certain type rij are demanding more 
utilisation from the processor than uij  (rij * cij  > uij), then we have 
a request excess for the type ij. Let’s assume we allocate 
utilisation quotas of size uij to the incoming tasks. We will try to 
accommodate as many tasks as possible within their allocated 
quota. Then the following cases may arise: 

1 We have a quota excess for all the types:  rij * cij  > uij. Then 
we accept for every ij as much as its quota can 
accommodate: aij = uij / cij 

2 We have a quota shortfall for all types: rij * cij  < uij. Then we 
can accept all incoming tasks: aij = rij. 

3 We have a mix of excesses and shortfalls for different types 
ij. In this case, for each type we accommodate as much as 
possible within the allocated quota. If there is free space in 
some of the quotas, it will comprise an available pool. This 
pool will then be allocated to the remaining requests 
proportionally to the requested excess. Although this 
reallocation may not correspond to the initial priorities 
between tasks (priorities from which the initial quotas were 
established), it is a computationally efficient way to allocate 
all available CPU utilisation. In the end, if the pool is not big 
enough some of the tasks will have to be rejected. 

3.2 Second Architecture 
In the second approach all three elements of adaptation are rooted 
in control theory. The UP-CTRL is now replaced by a fuzzy 
controller that adaptively allocates the user-based pj’s as well as a 
weight for differentiating between task types wj (see Figure 3).  

The task of the constraint optimizer is to optimize the number of 
accepted tasks based on the following two criteria: 1) To 
accommodate as many received requests (rij’s) as possible, i.e. to 
ensure that aij’s are as close as possible to rij’s. 2) To ensure that 
the total computation time of the accepted requests does not 
exceed the pre-specified values of utilization. A cost function that 
attempts to have aij’s as close as possible to rij’s can be described 
as follows (where we consider a mix of two user types and two 
request types): 

2
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In the above definition, w1 and w2 are the weights that represent 
the priorities of type 1 requests (e.g. channel switches) over type 
2 (e.g. new connections). The cost function of equation (1) does 
not take into consideration the pre-specified constraints on the 
CPU utilization: 
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U1 and U2 at each sample time are calculated based on pre-
specified percentages of the measured CPU utilization U in the 
previous sample, i.e. U1 and U2 at sample “k” can be specified as:  
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where pj describe the share of each user in the available 
bandwidth. In order to incorporate the constraints of equations (2) 
in a more general cost function, the method of Lagrange 
Multipliers for optimization can be used, i.e. the new cost 
function can be defined as:  
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In order to optimize the above cost function, the following set of 
equations must be solved: 
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Calculating the derivatives, equations of (5) will result in the 
following set of linear equations: 
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Algorithm of LC-Logic 
Pool := 0  
Over := 0 
uij = pij * Uavail 
for i,j := 1 to N do 
if (rij * cij  <= uij) then 
  aij := rij 
  Pool := Pool + (uij – rij * cij) 
  Oij := 0 
  mij := 0 
 if (rij * cij  > uij) then  
  aij := uij / cij 
  Oij := rij * cij  - uij 
  Over := Over + Oij 
for i,j := 1 to N do 
 if (Oij > 0) then 
  aij := aij + (Pool *Oij /Over)/cij 
  mij := rij - aij 

 



Solving the above set of equations results in the following task 
acceptance criteria: 
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The following two observations can be made. First, the set of 
equations in (7) can be used in any sample point k to update the 
values of accepted number of tasks based on rij and cij, and the 
allocated utilization for the user j. Second, if r11c11 + r21c21 = U, 
then using the above equations: a11= r11, which gives the intuitive 
and expected strategy of accepting all requests. Also, we should 
ensure that the computed aij follow this constraint: 0<aij ≤ Uj / cij . 

Note that so far cij has been a constant representing the estimated 
utilisation per task and Ud has been null. In order to have much 
more accurate estimates for cij’s and Ud , we should use a Kalman 
estimator (that is an optimal estimator).  This estimator, at each 
sample point “k”, uses the measured values of the total amount of 
utilization for the past few samples (i.e. 

)(),...,1(),( kUpkUpkU −−− ), and the number of accepted 
tasks in the past few samples (i.e. )(),...,(),( kapkapka ijijij −− ) 

to find the optimal estimation of cij’s and Ud for the next sample 
“k+1”. In this approach the relation between cij’s, Ud and U at 
sample “k” can be describes as: 
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We expect that by using the optimally estimated values of the 
computation times, the resulting controller can avoid under-
utilisation more successfully. 

The FZ-CTRL in Figure 3 controller uses the rate of rejections in 
any of the task categories. By considering these values as input, 
the controller decides about re-proportioning of utilization time, 
i.e. updating the ratios pj. A set of fuzzy rules can best implement 
such a controller that would also adjust the relative priority 
between task types (wj). These rules are generated based on the 
heuristic knowledge of the experts in the field and then optimized 
using a set of training data. 

4. EVALUATION OF ARCHITECTURES 
In order to evaluate our algorithms in a realistic setting we have 
implemented a simulation environment in which traffic models 
for various user scenarios can be created and tested against the 
designed algorithms. The simulation environment enables us to 
test-run the scenarios on an existing simulated model of the target 
machine together with the relevant operating system and middle-
ware. 

The traffic models generated are derived from available data, 
providing different RNC traffic functions for different types of 
user applications like voice, mail, SMS and web browsing. The 

models also reflect user behavioural patterns with respect to 
available load, such that an increase in the service levels 
(reflected in fewer rejections) or vice versa lead to different future 
developments in the traffic scenario.  As an example we will show 
how we generate a “web browsing” session. Figure 4 shows the 
states in which a connection can be and the possible transitions, 
which result in different traffic functions.  

The simulation platform provides an excellent environment in 
which many parameters in the designed RNC algorithms can be 
varied and experimented with, e.g. various P, PI controllers, 
different coefficients, different sampling intervals, different pij 
levels. However, it should be noted that all elements of user-
differentiation introduced here are for research purposes and 
constitute exploratory ideas. More precise models can only be 
derived when service and business models are in place. 

The results we show below concentrate on overload scenarios. 
The offered load quickly rises to about 30% over the maximum 
capacity of the processor. The load profiles provide us with a 
realistic enough approximation according to our knowledge about 
3G traffic behaviour, and are obviously open to further 
experiments. In addition, in order to check the exact behaviour of 
the algorithms under controlled experiments (which may never 
the less be far from realistic traffic scenarios), we have tried 
several artificial but carefully designed scenarios too. These 
scenarios were used to confirm our pre-simulation predictions and 
intuitions about how the algorithms would behave in a particular 
setting. In the following section we provide some selected results 
and comparisons. 

5. SIMULATION RESULTS 
We present a comparison of the two architectures presented above 
with an existing algorithm at Ericsson, which uses the leaky 
bucket mechanism. On a sample-by-sample basis, the core 
difference between the existing and the new algorithms is in terms 
of the LCU design. In the following experiments we therefore 
exclude the effect of a long-term adjustment of the system to user 
policy revisions (UP-CTRL or FZ-CTRL). Though a Kalman 
estimator would be optimal for dealing with uncertainties, our 
experience shows good results even with a few simple estimators; 
e.g. in the following experiments we used a simplified feedback 
mechanism. When the system is overloaded (underloaded) we 
decrease (increase) Uavail (Uavail = Us – Ud) with a constant step. 

Figure 4. The ”www browsing” session 
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Figure 6. Load comparison 
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Figure 5. Cumulative overload beyond the desired threshold

The leaky bucket type algorithm, used to control the load on the 
processor, works in the following manner: Whenever a task 
arrives, first it checks whether enough space is available in the 
bucket. For each task type a different rejection level can be 
specified. If the “water” in the bucket is above the specified level 
the task will be rejected. If it is below, the task is accepted and an 
amount of “water” corresponding to the execution time of the 
task is poured into the bucket. At regular intervals, “water” is 
taken from the bucket, to emulate a constant outflow.  To provide 
adaptability a heuristic feedback mechanism is used. The amount 
of water to put into the bucket is raised or lowered if the average 
measured load on the processor is lower or higher than Us. 

Recall that our load control system has two goals. First, to avoid 
reaching CPU load levels beyond a particular threshold, and 
second, to differentiate between the user/task types as specified 
by a given policy. Figure 5 shows how our two architectures 
compare to the base line algorithm in the context of a realistic 
traffic scenario. The Y-axis shows the accumulated overload 
beyond the given threshold (Us), expressed in terms of 
percentages. This graph shows that the leaky-bucket algorithm 
has a steeper rate with respect to violating the “no overload” 
requirement. 

In order to better explain Figure 5, Figure 6 shows the load on the 
processor generated by the leaky bucket architecture compared 
with our first architecture (Pool + P-controller). The amount over 
the 80% line is the overload presented in the previous figure. 
Figure 6 also shows that the P-controller is quicker to adapt to the 
changes in Ud, which increases the overload protection of the 
processor. On the other hand, the leaky bucket has slightly less 
rejections than our architectures. We argue that this is because it 
also allows more load on the processor. The second architecture 
presents very similar load results compared to the first 
architecture. Our experiments show that no matter which 
differentiation policy is used, the use of feed back mechanisms 
ensures a more stable behaviour in the light of inaccuracies in the 
ci and Ud estimates. 

Let’s now look at the differentiating behaviour of the two 
proposed algorithms. These algorithms are intrinsically different 
in the following sense: Pool allocation is useful when the 
differentiation policy can be naturally described as shares of the 
CPU, whereas the constraint optimiser is beneficial if the 
proportion of rejections is in focus. This relative prioritising is 
illustrated for the 50/50 case in Figure 7 where the number of 
accepted and rejected tasks is plotted for one user type. With a 
50/50 we expect half of the CPU share to go to new connections 
and half to channel switches. In this case the new connections are 
not enough to occupy the entire allocated share, thus the pool is 
reallocated to the channel switches. This results in the number of 
accepted channel switches to be above the 50% share. We would 
expect that the number of rejected new connections to be zero, but 
there are few such rejections due to estimation errors of the 
adaptive part. In the second architecture, since both types have the 
same priority (50/50), the constraint optimiser tries to reject as 
many new connections as channel switches. 

Our next set of experiments was designed to separate the effect of 
the two boxes in each strategy: the adaptive part that deals with 
uncertainties in cij and Ud, and the deterministic algorithms. These 
experiments showed that the Ud, being at times very oscillative, 
has a stronger impact on the results than the cij. However, the 
experiments show that both adaptation elements (feed back 
controller or state estimator) can be tuned with the right choice of 
coefficients. Illustrations are omitted due to space restrictions. 

Our final illustration is a proof of concept for the multi-user 
multi-task differentiation (Figure 8). This is especially interesting 
when the offered load has a different mixture compared to the 
expected load. We illustrate the workings of the constraint 
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Figure 8: Multi-user scenario with unbalanced load 

optimiser in detail.  We have chosen a scenario with wj 
corresponding to 1000/1 (almost always prefer channel switches) 
and pj’s corresponding to 80/20 (allocate ~80% of the available 
load to user one and ~20% to user 2). The offered load happens to 
have a 50/50 mix in tasks generated by user 1 and user 2. 

The top row shows the percentage of the available load (Us –Ud) 
occupied by user 1 and user 2 respectively. To begin with, none 
of the users fill up their allocated share, so the mix is different 
from the 80/20 proportions. When the system is at overload 
(around 130 seconds) the accepted load corresponds to the 
allocated quota. The next two rows show the load in the first row 
divided between channel switches and new connections for each 
user.  For user 1 the allocated quota is enough to accommodate 

new connections (despite 1000/1 priority to channel switches). 
Since user 2 has only a 20% share, it gets completely occupied by 
channel switches and almost entirely rejects new connections, 
which is the expected behaviour. 

6. CONCLUSIONS AND FUTURE WORK 
In this paper we presented adaptive architectures for load control 
in an RNC node of a 3G network. The main goal was to provide a 
protection scheme for the processor while rejecting as few control 
tasks as possible, and ensuring that in case of overload, different 
task types are accepted based on a policy decided by the service 
provider. For example, it would be a strange situation if a user 
that was accepted into the system based on certain QoS 
parameters and bandwidth availability, was later rejected in a load 
control algorithm. System behaviour under (partial) traffic 
overloads should be consistent with the provider policy. The 
presented architectures can be partitioned in two main 
components. The adaptive part is a feedback-feedforward 
controller, whose function is to deal with the uncertainties in our 
model e.g. the execution time of tasks and the load on the 
processor that is outside our control. The deterministic part is the 
differentiating algorithm, which ensures that the available load is 
partitioned corresponding to a certain policy. The presented 
architectures successfully protect the processor from overload, 
and also enforce the specified QoS.  

We have compared our proposed architectures with an existing 
regime that is based on the Leaky bucket. While this algorithm is 
quite satisfactory in the current settings (no user differentiation), 
it enforces absolute priorities among task types. If the need for 
relative prioritisation arises in 3G business models, then absolute 
priorities may not suffice. Our architectures formulate QoS 
requirements as relative priorities between different task/user 
types, and enforce them by share/rejections quotas for the 
different types. The algorithms have been evaluated in the context 
of realistic traffic scenarios using our implemented simulator and 
traffic generator. While the Pool is straightforward to implement, 
it is not suited to implement strict priorities among tasks, due to 
the pool reallocation mechanism. The optimiser on the other hand, 
does not enforce a proportional share of the CPU since it is based 

First Architecture      Second Architecture 

Figure 7. Behaviour with a 50/50 differentiation policy 



on rejection minimisation.  The analysis of both architectures 
enables the service provider to focus on the technique most suited 
in a particular setting. 

The next issue was the adaptive character of the architectures. 
Confronted with a strong oscillating Ud neither the P-controller 
nor the leaky bucket estimator show an ideal behaviour.  The P-
controller has the drawback that it follows the oscillative 
character of the Ud, one control interval behind. On the other hand 
the averaging estimator used in the leaky bucket architecture is at 
times too slow to react, leading to the possibility of overload of 
the processor. The simple state estimator falls somewhere in the 
middle. To improve the behaviour of our control schemes it 
would be necessary to have a better estimation of the Ud. This 
entails treating traffic functions and management tasks differently 
(e.g. delaying management tasks selectively). In particular, there 
are tasks whose rejection increases the load (or at least does not 
decrease it since it generates other tasks). The rejection of these 
could be taken account of in estimation of future Ud. 

There are several directions for extending the work after the 
initial analysis of the algorithms. Further studies using variants of 
the UP-CNTL and the FZ-CTRL is dependent on realistic user 
and business models. The formal analysis of each algorithm is 
also interesting: e.g. how to extend the constraint optimiser 
solution when the number of users/task types increases beyond 2. 
Consideration of the load control algorithms´ overheads 
(themselves running on the same CPU) is also worth studying. 
There is obviously a limit (beyond two user types) after which the 
optimiser itself will have a high execution overhead. Studying 
interdependencies between CPU load control and other resource 
allocation problems (e.g. bandwidth) is another interesting track 
of work.  The experiments so far show that a load control 
algorithm can be faced with such overload situations that even if 
it works perfectly well, there are still no tasks accepted. Multi-
processor load balancing is a way to treat such overloads. 
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