
Adaptive Load Control Algorithms for 3rd Generation
Mobile Networks

Simin Nadjm-Tehrani1,Kayvan Najarian2,Calin Curescu1,Tomas Lingvall3,Teresa A. Dahlberg2

1Dept. of Computer and Information
Science, Linköping University,

Sweden

{simin,calcu}@ida.liu.se

2Dept. of Computer Science,
University of North Carolina at

Charlotte, USA

{knajaria,tdahlber}@uncc.edu

3Center for Radio Network Control,
Ericsson Radio Systems, Linköping,

Sweden

ABSTRACT
In this paper we present strategies to deal with inherent load
uncertainties in future generation mobile networks. We address
the interplay between user differentiation and resource allocation,
and specifically the problem of CPU load control in a radio
network controller (RNC).

The algorithms we present distinguish between two types of
uncertainty: the resource needs for arriving requests and the
variation over time with respect to user service policies. We use
feedback mechanisms inspired by automatic control techniques
for the first type, and policy-dependent deterministic algorithms
for the second type. We test alternative strategies in overload
situations. One approach combines feedback control with a pool
allocation mechanism, and a second is based on a rejection-ratio-
minimising algorithm together with a state estimator.

A simulation environment and traffic models for users with voice,
mail, SMS and web browsing sessions were built for the purpose
of evaluation of the above strategies. Our load control
architectures were tested in comparison with an existing algorithm
based on the leaky bucket principle. The studies show a superior
behaviour with respect to load control in presence of relative user
priorities, and minimal rejection criteria. Moreover, our
architecture can be tuned to future developments with respect to
user differentiation policy.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design – Wireless communication, packet-
switching network. C.2.1 [Computer-Communication
Networks]: Network Operations – Network Management. I.6.4
[Simulation and Modelling]: Model Validation and Analysis.

General Terms
Algorithms, Design.

Keywords
Resource allocation, load control, QoS

1. INTRODUCTION
Providing Quality of Service (QoS) [3] towards network users has
been present ever since the first networks for voice or data
communication were conceived. What is new in our day and age
is the rebirth of several earlier techniques when
telecommunication and IP networks meet.

Several authors put forward the scenario that IP will be the
common ingredient of future networks, and thereby base the study
of QoS issues on the techniques developed for Internet traffic [2].
Others study the special characteristics of mobile communication
in presence of IP-based services [10,14]. In this paper we consider
how enforcing a simple form of QoS in mobile networks can be
integrated into a resource allocation problem, namely the CPU
load control algorithms.

Third generation (3G) mobile networks have a number of aspects
common with IP networks: the complexity of traffic models for
users of services such as mail, short message services (SMS), and
web browsing. In addition, they have to deal with a new factor
that affects the offered load to the system: the user mobility.
These factors together lead to execution of various functions in
the radio control node in order to dynamically allocate data and
control channel (types and rates), set up and tear down
connections, and so forth. Thus, 3G networks need adaptive
resource management for different resource types that need to be
allocated inter-dependently.

A major track of research is the allocation of bandwidth as a
resource and adaptive admission control algorithms based on
available bandwidth and QoS requirements [4,7,8,11]. Another
resource type is the CPU, which processes the generated tasks
resulting from the above dynamic decisions after a user has been
admitted to a system. As user needs change, and the available
bandwidth is increased/decreased, the results of the bandwidth
allocation algorithm affect the load on a CPU that is executing the
required control functions. Note that even operating at maximum
bandwidth allocation levels there will be new incoming tasks for
the CPU. Therefore dealing with the more scarce resource (the
bandwidth) will not eliminate CPU overloads. To solve this
problem with over-provision will be wasteful since such
overloads should not be too common. If the CPU overload is
allowed a hardware based resetting mechanism will be activated,
with an even worse effect on system availability. Thus we need to
control the CPU utilisation during overloads. This paper presents
the special algorithms to ensure that a radio control CPU is not
overloaded during traffic overload situations.

The result of load control algorithms may be the rejection of some
functions. Hence, a differentiation scheme (perhaps similar to the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
MSWiM'02, September 28, 2002, Atlanta, Georgia, USA.
Copyright 2002 ACM 1-58113-610-2/02/0009…$5.00.

one used in the bandwidth allocation algorithm) needs to be in
place. As bandwidth allocation schemes use more complex user
profiles as input, we aim for a consistent solution to the load
control problem. System-wide optimal resource allocation needs
to take care of interdependencies between these two resource
types, and our work is a step towards understanding some of the
interdependencies.

A subtle complexity in the application of algorithms for adaptive
resource allocation together with user differentiation is the mutual
effect of the network algorithms on user behaviours. We therefore
propose a framework in which a mix of techniques from real-time
systems, control theory and AI can be applied and simulated.

1.1 Related areas of work
The work on adaptive resource allocation in networks spans a
number of research communities. In this section we provide an
overview of the areas based on selected works from each area.

Some proposals for QoS-based resource allocation in 3G have a
fully adaptable scheme, where each connection can be run with
different QoS levels, with a goal to maximise the total benefit.
Others offer strict guarantees and reservations to fulfil a QoS
contract. Lately these two techniques are merging, connections
can request a minimum bandwidth, which has to be guaranteed,
and a maximum bandwidth, which gives the highest local reward
[7]. Richardson et al. [12] propose an algorithm to schedule a
downlink in a 3G network. Priority-based weighted fair queuing
[15] combines priority-driven and share-driven scheduling which
lowers the delay of important sessions while maintaining the
guaranteed bandwidth. Another ongoing work addresses
developing adaptive resource management protocols to maintain
QoS guarantees in the wake of network failures [5,6]. This work
focuses on the lowest network layers for managing dynamic use
of wireless channels by users with multiple service guarantees.
None of these works treat CPU load control.

Over two decades of research in the real-time systems community
treats the question of CPU’s load in general, and scheduling of
jobs with well-defined characteristics in particular. Recently, the
area of automatic control in which feedback is a means of dealing
with uncertainties, has influenced the work on adaptive
scheduling. This provides powerful tools for deriving analytical
results in presence of certain assumptions [1,13]. Stankovic et al
[13] present a distributed system where feedback control is used
for minimizing deadline miss ratio at over-utilisation, and keep
CPU utilisation as high as possible at under-utilisation. The
system is purely adaptive; no priority between tasks can be
specified. Abeni et. al [1] present a feedback adaptive QoS
scheme which integrates the notion of constant bandwidth server
(CBS) into an earliest-deadline-first (EDF) scheduling
environment. The CBS provides the temporal isolation for the
different tasks, while adaptivity is performed globally by
increasing the CPU share of a task, or locally by constraining the
application to a given bandwidth. While there is a notion of
priority between the tasks, it does not guarantee a certain CPU
share. This work is strongly tied up with the EDF scheduling
policy. Note that in our case the load control algorithm decides
about the incoming tasks independently from the scheduling
policy used by the underlying operating system.

2. LOAD CONTROL IN 3G NETWORKS
The Radio Network Controller is responsible for controlling the
common resources in a 3G radio access network and serving the
User Equipment (UE) in the best possible way. The hardware in
each RNC consists of a number of processors each responsible for
handling UEs within a certain part of the network. A user request
arrives at one of these CPUs to begin with. When the traffic is not
unexpectedly high the request is further processed as described by
the 3G specification and dynamic bandwidth allocation takes care
of further resource needs. The network should however have
mechanisms to deal with unexpectedly high loads in parallel with
operation of the bandwidth allocation mechanism. That is, the
functions generated by a switching decision in one control step
may simply be rejected by the CPU’s load control algorithm after
the bandwidth allocation step.

Now, the purpose of the algorithms that we will consider in
section 3 is to accept as much load into the processor as possible
without causing an overload on the CPU. The load is being
primarily caused by traffic functions (see below), but also by
functions on behalf of the higher network management layers
(O&M) and other Operating System (OS) processes. Traffic
functions are divided into connection management and mobility
management functions. Here we will present some of the
connection management functions. Connection Setup is used for
establishing a signalling connection link to the UE. Connection
Release ends the connection and releases the associated resources
(channels, codes), RAB (Radio Access Bearer) Establishment /
Release manage the connections to the UE used for service data
transfer. To manage packet switched services different bandwidth
channels are provided. Some of them can be shared by many
connections, and others are dedicated. When the bandwidth of a
channel does not suit a particular service a Channel Switch
function is performed. Paging is performed when a UE is
accessed form the Core Network. Power Control and Admission
Control based on cell bandwidth are other function types.
Mobility management functions are Soft /Softer Handover, which
are performed to maintain a connection across cell boundaries and
Cell Update to track the location of a UE.

To control the load on the processor we could either reject or
delay some of the above-mentioned functions. A preliminary
study of deferral methods shows that delaying traffic functions is
not a solution [9]. Moreover many of these functions should not
be subjected to rejections. Mobility functions have to be executed
in order to maintain the connection status of the UE as it moves
across cells. Rejecting basic control functions like Power Control
would disturb the existing connections. Also disconnection from
the network should not be refused. This leaves us with three
candidates: Connection Setup, RAB Establishment and Channel
Switches. Since RAB establishment is usually performed directly
after a Connection Setup its control would not bring any benefit.
Therefore in this paper we concentrate on two traffic function
types: requests for new connections (R1) and requests for channel
switches (R2). Rejecting a new connection is deemed less
penalizing than dropping an established call, therefore the former
may get a lower importance compared to the latter. In this paper
we assume that all the other traffic tasks together with other OS
tasks are directly sent to the processor and are therefore outside
our control (thus referred to as direct tasks). The proposed

Figure 2. Schematic description of the first architecture

 aij

U

Load Control Unit

 CPU

 pij

 UP-CTRL

mij

user
policy

 rij

 L-CTRL LC-Logic

 Uavail

 Us Ud

algorithms however, are not restricted to two task types or two
importance levels.

Cast as a simple control problem in its simplest form, we have the
schematic diagram from Figure 1: The CPU to be protected from
overload is our “plant” in a control terminology. The requests
arriving are input to the controller (CTRL), which has the
primary task of protecting the CPU from overloads. To do this it
has access to the actual measured CPU utilisation, which is the
sum of utilization caused by the number of accepted requests
(denoted by A) and the utilisation from direct tasks (denoted by
Ud). There are certain levels of desired utilisation, denoted here
as a set value Us. The reason for having a Us that is different from
100% is the performance characteristics of the hardware and the
risk of automatic resetting. That would jeopardise network
availability during high load situations. Thus we want to keep Us
to stay at say 90%. Let Ci be estimated computation time for task
type i. In order to estimate the utilisation caused by the mixture
of arriving tasks (R = R1+ R2), we represent the required
utilisation for each task type by ci , where ci = Ci/P and P is the
sampling interval. Thus, U = Ud + Σ Ai ci, where A = A1 + A2 are
the accepted tasks made up of types 1 and 2 respectively (new
connections or channel switches). So far we differentiate only
between task types. Next we add a user dependent QoS
dimension. That is, we represent different user classes by the
index j. Rij will now represent the request type i from user type j.
Then we can observe the network behaviour as the mix of user
types and the mix of task types changes over time.

3. ALGORITHM DESIGN
The above parameters make several uncertainties explicit. We
distinguish between two types of uncertainty: the resource needs
of arriving requests and the variation over time with respect to
user service policies. The first type manifests itself both in the
mix of user requests and the mix of generated tasks (depending on
whether the user is using voice, mail, SMS, web). Different user
needs lead to different volumes of channel switches that in turn
generate different volumes of tasks to be executed on the CPU. In
this category of uncertainty we also find the volume of direct
tasks arriving at the CPU (Ud above) and the claim on the
processor with respect to each task (cij). The second type of
uncertainty, namely the differentiation policy for user/task types,
is treated at a higher level. It can be affected by the market and
pricing information, or by configuration changes known at higher
layers of network management. At the RNC level, we use variants
of automatic control techniques to adjust for the first type, and
deterministic algorithms to reflect the policy to deal with the
second type. A change in the policy can thus be seen as the
adjustment in the service level delivered to a particular user class
over time.

This paper presents and compares two strategies. One approach
combines feedback and feed forward control mechanisms with a
deterministic pool allocation algorithm, while the other is based
on a rejection-minimisation algorithm and state estimation. These
two approaches are then compared with an existing leaky-bucket
type load control algorithm. Figure 2 illustrates our architecture
for the first approach, where the Load Control Unit (LCU) is
instantiated by two boxes dealing with the two types of
uncertainties mentioned above. Mechanisms for reflecting policy
changes though represented as a (leftmost) box in our two
architectures, is not the subject of this research in this paper and
should be studied in presence of 3G business models and
forthcoming data sets.

3.1 First Architecture
The overall objective of the LCU is to achieve the stabilisation of
the CPU utilisation around a set point Us while managing
individual user/task preferences according to pij’s. pij are set by a
second controller (UP-CTRL) and represent the proportion of the
available load that should be allocated to a certain request type
(i,j) i.e. Σ pij =100% of the available utilisation. This setting can
be chosen based on task/user importance or other
technical/economical data. The LCU is split into two different
parts, a deterministic part and a feedback part. The first element
(the LC-Logic) is responsible for accepting tasks based on a
differentiation policy. This would be enough if our model were
not subject to disturbances. That is, the cij for each task was
accurate and the incoming direct tasks that are outside our control
were 0. Since this is not true, we use the feedback from L-CTRL.
This second element is used to adapt our current claim to the CPU
using feedback about actually measured utilisation, and to follow
the desired Us. L-CTRL provides adjustments to variations in Ud
and cij, and its output is the current available load Uavail. We have
tested various P or PI controllers as instantiations of this unit (see
section 5). In LC-Logic the utility shares decided by the UP-

Figure 1. Schematic overview of processor protection

U

CTRL

CPU
A

Ud

R

Us

rij’s – are the numbers of incoming user requests of a given task
type-i from user type-j.
pij’s – specify the percentage of the available utility which should
be allocated to user requests of type (i,j).
aij’s – are the numbers of admitted requests of type (i,j).
mij’s – indicate the numbers of missed (rejected) requests of type
(i,j).
Uavail – is the estimated available utilisation.
U – is measured (actual) utilization, which includes processing of
admitted user tasks in addition to background tasks assigned by the
operating system and the direct tasks not under control of the LCU.

Figure 3. Schematic description of the second architecture

 aij

U

Load Control Unit

 CPU

 pj, wj

 FZ-CTRL

mij

user
policy

 rij

 state
estimator

 constraint
 optimizer

cij,U

 Us Ud

CTRL will be used to compute the available load for each type: uij
= pij * Uavail .

In reality the mix of incoming tasks may not correspond to the set
points uij. If the requests of a certain type rij are demanding more
utilisation from the processor than uij (rij * cij > uij), then we have
a request excess for the type ij. Let’s assume we allocate
utilisation quotas of size uij to the incoming tasks. We will try to
accommodate as many tasks as possible within their allocated
quota. Then the following cases may arise:

1 We have a quota excess for all the types: rij * cij > uij. Then
we accept for every ij as much as its quota can
accommodate: aij = uij / cij

2 We have a quota shortfall for all types: rij * cij < uij. Then we
can accept all incoming tasks: aij = rij.

3 We have a mix of excesses and shortfalls for different types
ij. In this case, for each type we accommodate as much as
possible within the allocated quota. If there is free space in
some of the quotas, it will comprise an available pool. This
pool will then be allocated to the remaining requests
proportionally to the requested excess. Although this
reallocation may not correspond to the initial priorities
between tasks (priorities from which the initial quotas were
established), it is a computationally efficient way to allocate
all available CPU utilisation. In the end, if the pool is not big
enough some of the tasks will have to be rejected.

3.2 Second Architecture
In the second approach all three elements of adaptation are rooted
in control theory. The UP-CTRL is now replaced by a fuzzy
controller that adaptively allocates the user-based pj’s as well as a
weight for differentiating between task types wj (see Figure 3).

The task of the constraint optimizer is to optimize the number of
accepted tasks based on the following two criteria: 1) To
accommodate as many received requests (rij’s) as possible, i.e. to
ensure that aij’s are as close as possible to rij’s. 2) To ensure that
the total computation time of the accepted requests does not
exceed the pre-specified values of utilization. A cost function that
attempts to have aij’s as close as possible to rij’s can be described
as follows (where we consider a mix of two user types and two
request types):

2
2222

2
12122

2
2121

2
1111122211211)()()()(),,,(ararwararwaaaaf −+−+−+−= (1)

In the above definition, w1 and w2 are the weights that represent
the priorities of type 1 requests (e.g. channel switches) over type
2 (e.g. new connections). The cost function of equation (1) does
not take into consideration the pre-specified constraints on the
CPU utilization:

222221212

121211111

Ucaca
Ucaca

=+
=+ (2)

U1 and U2 at each sample time are calculated based on pre-
specified percentages of the measured CPU utilization U in the
previous sample, i.e. U1 and U2 at sample “k” can be specified as:

)1()(
)1()(

22

11

−×=
−×=

kUpkU
kUpkU (3)

where pj describe the share of each user in the available
bandwidth. In order to incorporate the constraints of equations (2)
in a more general cost function, the method of Lagrange
Multipliers for optimization can be used, i.e. the new cost
function can be defined as:

)()()(

)()()(),,,,,(

22222121221212111111
2

2222

2
12122

2
2121

2
111112122211211

UcacaUcacaar
arwararwaaaaf
−++−++−+

+−+−+−=

λλ
λλ (4)

In order to optimize the above cost function, the following set of
equations must be solved:

0,0,0,0,0,0
2122122111

=
∂
∂=

∂
∂=

∂
∂=

∂
∂=

∂
∂=

∂
∂

λλ
ff

a
f

a
f

a
f

a
f (5)

Calculating the derivatives, equations of (5) will result in the
following set of linear equations:

0

0

022

022

022

022

222221212
2

121211111
1

2222222
22

122122122
12

2112121
21

111111111
11

=−+=
∂
∂

=−+=
∂
∂

=+−=
∂

∂

=+−=
∂

∂

=+−=
∂

∂

=+−=
∂

∂

Ucacaf

Ucacaf

car
a

f

cawrw
a

f

car
a

f

cawrw
a

f

λ

λ

λ

λ

λ

λ

 (6)

Algorithm of LC-Logic
Pool := 0
Over := 0
uij = pij * Uavail
for i,j := 1 to N do
if (rij * cij <= uij) then
 aij := rij
 Pool := Pool + (uij – rij * cij)
 Oij := 0
 mij := 0
 if (rij * cij > uij) then
 aij := uij / cij
 Oij := rij * cij - uij
 Over := Over + Oij
for i,j := 1 to N do
 if (Oij > 0) then
 aij := aij + (Pool *Oij /Over)/cij
 mij := rij - aij

Solving the above set of equations results in the following task
acceptance criteria:

2
122

2
22

22222121222
2222

2
122

2
22

222221212122
1212

2
211

2
11

121211111211
2121

2
211

2
11

12121111111
1111

)(

)(

)(

)(

cwc
Ucrcrcra

cwc
Ucrcrcwra

cwc
Ucrcrcwra

cwc
Ucrcrcra

+
−+−=

+
−+−=

+
−+−=

+
−+−=

 (7)

The following two observations can be made. First, the set of
equations in (7) can be used in any sample point k to update the
values of accepted number of tasks based on rij and cij, and the
allocated utilization for the user j. Second, if r11c11 + r21c21 = U,
then using the above equations: a11= r11, which gives the intuitive
and expected strategy of accepting all requests. Also, we should
ensure that the computed aij follow this constraint: 0<aij ≤ Uj / cij .

Note that so far cij has been a constant representing the estimated
utilisation per task and Ud has been null. In order to have much
more accurate estimates for cij’s and Ud , we should use a Kalman
estimator (that is an optimal estimator). This estimator, at each
sample point “k”, uses the measured values of the total amount of
utilization for the past few samples (i.e.

)(),...,1(),(kUpkUpkU −−−), and the number of accepted
tasks in the past few samples (i.e.)(),...,(),(kapkapka ijijij −−)

to find the optimal estimation of cij’s and Ud for the next sample
“k+1”. In this approach the relation between cij’s, Ud and U at
sample “k” can be describes as:

)()()()()(
)()()()()(

22222121

12121111

kUkckakcka
kckakckakU

d++
++= (8)

We expect that by using the optimally estimated values of the
computation times, the resulting controller can avoid under-
utilisation more successfully.

The FZ-CTRL in Figure 3 controller uses the rate of rejections in
any of the task categories. By considering these values as input,
the controller decides about re-proportioning of utilization time,
i.e. updating the ratios pj. A set of fuzzy rules can best implement
such a controller that would also adjust the relative priority
between task types (wj). These rules are generated based on the
heuristic knowledge of the experts in the field and then optimized
using a set of training data.

4. EVALUATION OF ARCHITECTURES
In order to evaluate our algorithms in a realistic setting we have
implemented a simulation environment in which traffic models
for various user scenarios can be created and tested against the
designed algorithms. The simulation environment enables us to
test-run the scenarios on an existing simulated model of the target
machine together with the relevant operating system and middle-
ware.

The traffic models generated are derived from available data,
providing different RNC traffic functions for different types of
user applications like voice, mail, SMS and web browsing. The

models also reflect user behavioural patterns with respect to
available load, such that an increase in the service levels
(reflected in fewer rejections) or vice versa lead to different future
developments in the traffic scenario. As an example we will show
how we generate a “web browsing” session. Figure 4 shows the
states in which a connection can be and the possible transitions,
which result in different traffic functions.

The simulation platform provides an excellent environment in
which many parameters in the designed RNC algorithms can be
varied and experimented with, e.g. various P, PI controllers,
different coefficients, different sampling intervals, different pij
levels. However, it should be noted that all elements of user-
differentiation introduced here are for research purposes and
constitute exploratory ideas. More precise models can only be
derived when service and business models are in place.

The results we show below concentrate on overload scenarios.
The offered load quickly rises to about 30% over the maximum
capacity of the processor. The load profiles provide us with a
realistic enough approximation according to our knowledge about
3G traffic behaviour, and are obviously open to further
experiments. In addition, in order to check the exact behaviour of
the algorithms under controlled experiments (which may never
the less be far from realistic traffic scenarios), we have tried
several artificial but carefully designed scenarios too. These
scenarios were used to confirm our pre-simulation predictions and
intuitions about how the algorithms would behave in a particular
setting. In the following section we provide some selected results
and comparisons.

5. SIMULATION RESULTS
We present a comparison of the two architectures presented above
with an existing algorithm at Ericsson, which uses the leaky
bucket mechanism. On a sample-by-sample basis, the core
difference between the existing and the new algorithms is in terms
of the LCU design. In the following experiments we therefore
exclude the effect of a long-term adjustment of the system to user
policy revisions (UP-CTRL or FZ-CTRL). Though a Kalman
estimator would be optimal for dealing with uncertainties, our
experience shows good results even with a few simple estimators;
e.g. in the following experiments we used a simplified feedback
mechanism. When the system is overloaded (underloaded) we
decrease (increase) Uavail (Uavail = Us – Ud) with a constant step.

Figure 4. The ”www browsing” session

0 50 100 150 200 250 300 350 400
0

20

40

60

80

100

Load generated in
First Architecture

0 50 100 150 200 250 300 350 400
0

20

40

60

80

100

time (s)

Load generated in the
leaky bucket setting

Figure 6. Load comparison

0 50 100 150 200 250 300 350 400
0

200

400

600

800

1000

1200

1400

1600

1800

2000

time (s)

First Architecture
Second Architecture
Leaky Bucket Architecture

Figure 5. Cumulative overload beyond the desired threshold

The leaky bucket type algorithm, used to control the load on the
processor, works in the following manner: Whenever a task
arrives, first it checks whether enough space is available in the
bucket. For each task type a different rejection level can be
specified. If the “water” in the bucket is above the specified level
the task will be rejected. If it is below, the task is accepted and an
amount of “water” corresponding to the execution time of the
task is poured into the bucket. At regular intervals, “water” is
taken from the bucket, to emulate a constant outflow. To provide
adaptability a heuristic feedback mechanism is used. The amount
of water to put into the bucket is raised or lowered if the average
measured load on the processor is lower or higher than Us.

Recall that our load control system has two goals. First, to avoid
reaching CPU load levels beyond a particular threshold, and
second, to differentiate between the user/task types as specified
by a given policy. Figure 5 shows how our two architectures
compare to the base line algorithm in the context of a realistic
traffic scenario. The Y-axis shows the accumulated overload
beyond the given threshold (Us), expressed in terms of
percentages. This graph shows that the leaky-bucket algorithm
has a steeper rate with respect to violating the “no overload”
requirement.

In order to better explain Figure 5, Figure 6 shows the load on the
processor generated by the leaky bucket architecture compared
with our first architecture (Pool + P-controller). The amount over
the 80% line is the overload presented in the previous figure.
Figure 6 also shows that the P-controller is quicker to adapt to the
changes in Ud, which increases the overload protection of the
processor. On the other hand, the leaky bucket has slightly less
rejections than our architectures. We argue that this is because it
also allows more load on the processor. The second architecture
presents very similar load results compared to the first
architecture. Our experiments show that no matter which
differentiation policy is used, the use of feed back mechanisms
ensures a more stable behaviour in the light of inaccuracies in the
ci and Ud estimates.

Let’s now look at the differentiating behaviour of the two
proposed algorithms. These algorithms are intrinsically different
in the following sense: Pool allocation is useful when the
differentiation policy can be naturally described as shares of the
CPU, whereas the constraint optimiser is beneficial if the
proportion of rejections is in focus. This relative prioritising is
illustrated for the 50/50 case in Figure 7 where the number of
accepted and rejected tasks is plotted for one user type. With a
50/50 we expect half of the CPU share to go to new connections
and half to channel switches. In this case the new connections are
not enough to occupy the entire allocated share, thus the pool is
reallocated to the channel switches. This results in the number of
accepted channel switches to be above the 50% share. We would
expect that the number of rejected new connections to be zero, but
there are few such rejections due to estimation errors of the
adaptive part. In the second architecture, since both types have the
same priority (50/50), the constraint optimiser tries to reject as
many new connections as channel switches.

Our next set of experiments was designed to separate the effect of
the two boxes in each strategy: the adaptive part that deals with
uncertainties in cij and Ud, and the deterministic algorithms. These
experiments showed that the Ud, being at times very oscillative,
has a stronger impact on the results than the cij. However, the
experiments show that both adaptation elements (feed back
controller or state estimator) can be tuned with the right choice of
coefficients. Illustrations are omitted due to space restrictions.

Our final illustration is a proof of concept for the multi-user
multi-task differentiation (Figure 8). This is especially interesting
when the offered load has a different mixture compared to the
expected load. We illustrate the workings of the constraint

0 100 200 300 400
0

20

40

60

80

100
user 1 portion from Uavail

0 100 200 300 400
0

20

40

60

80

100
user 2 portion from Uavail

0 100 200 300 400
0

20

40

60

80

100
user 1 channel switches

0 100 200 300 400
0

20

40

60

80

100
user 2 channel switches

0 100 200 300 400
0

20

40

60

80

100

time(s)

user 1 new connections

0 100 200 300 400
0

20

40

60

80

100

time(s)

user 2 new connections

Figure 8: Multi-user scenario with unbalanced load

optimiser in detail. We have chosen a scenario with wj
corresponding to 1000/1 (almost always prefer channel switches)
and pj’s corresponding to 80/20 (allocate ~80% of the available
load to user one and ~20% to user 2). The offered load happens to
have a 50/50 mix in tasks generated by user 1 and user 2.

The top row shows the percentage of the available load (Us –Ud)
occupied by user 1 and user 2 respectively. To begin with, none
of the users fill up their allocated share, so the mix is different
from the 80/20 proportions. When the system is at overload
(around 130 seconds) the accepted load corresponds to the
allocated quota. The next two rows show the load in the first row
divided between channel switches and new connections for each
user. For user 1 the allocated quota is enough to accommodate

new connections (despite 1000/1 priority to channel switches).
Since user 2 has only a 20% share, it gets completely occupied by
channel switches and almost entirely rejects new connections,
which is the expected behaviour.

6. CONCLUSIONS AND FUTURE WORK
In this paper we presented adaptive architectures for load control
in an RNC node of a 3G network. The main goal was to provide a
protection scheme for the processor while rejecting as few control
tasks as possible, and ensuring that in case of overload, different
task types are accepted based on a policy decided by the service
provider. For example, it would be a strange situation if a user
that was accepted into the system based on certain QoS
parameters and bandwidth availability, was later rejected in a load
control algorithm. System behaviour under (partial) traffic
overloads should be consistent with the provider policy. The
presented architectures can be partitioned in two main
components. The adaptive part is a feedback-feedforward
controller, whose function is to deal with the uncertainties in our
model e.g. the execution time of tasks and the load on the
processor that is outside our control. The deterministic part is the
differentiating algorithm, which ensures that the available load is
partitioned corresponding to a certain policy. The presented
architectures successfully protect the processor from overload,
and also enforce the specified QoS.

We have compared our proposed architectures with an existing
regime that is based on the Leaky bucket. While this algorithm is
quite satisfactory in the current settings (no user differentiation),
it enforces absolute priorities among task types. If the need for
relative prioritisation arises in 3G business models, then absolute
priorities may not suffice. Our architectures formulate QoS
requirements as relative priorities between different task/user
types, and enforce them by share/rejections quotas for the
different types. The algorithms have been evaluated in the context
of realistic traffic scenarios using our implemented simulator and
traffic generator. While the Pool is straightforward to implement,
it is not suited to implement strict priorities among tasks, due to
the pool reallocation mechanism. The optimiser on the other hand,
does not enforce a proportional share of the CPU since it is based

First Architecture Second Architecture

Figure 7. Behaviour with a 50/50 differentiation policy

on rejection minimisation. The analysis of both architectures
enables the service provider to focus on the technique most suited
in a particular setting.

The next issue was the adaptive character of the architectures.
Confronted with a strong oscillating Ud neither the P-controller
nor the leaky bucket estimator show an ideal behaviour. The P-
controller has the drawback that it follows the oscillative
character of the Ud, one control interval behind. On the other hand
the averaging estimator used in the leaky bucket architecture is at
times too slow to react, leading to the possibility of overload of
the processor. The simple state estimator falls somewhere in the
middle. To improve the behaviour of our control schemes it
would be necessary to have a better estimation of the Ud. This
entails treating traffic functions and management tasks differently
(e.g. delaying management tasks selectively). In particular, there
are tasks whose rejection increases the load (or at least does not
decrease it since it generates other tasks). The rejection of these
could be taken account of in estimation of future Ud.

There are several directions for extending the work after the
initial analysis of the algorithms. Further studies using variants of
the UP-CNTL and the FZ-CTRL is dependent on realistic user
and business models. The formal analysis of each algorithm is
also interesting: e.g. how to extend the constraint optimiser
solution when the number of users/task types increases beyond 2.
Consideration of the load control algorithms´ overheads
(themselves running on the same CPU) is also worth studying.
There is obviously a limit (beyond two user types) after which the
optimiser itself will have a high execution overhead. Studying
interdependencies between CPU load control and other resource
allocation problems (e.g. bandwidth) is another interesting track
of work. The experiments so far show that a load control
algorithm can be faced with such overload situations that even if
it works perfectly well, there are still no tasks accepted. Multi-
processor load balancing is a way to treat such overloads.

7. ACKNOWLEDGEMENTS
The authors wish to thank Pär Gustavsson and Sören Holmström
at Ericsson for discussions and feedback during this work.

8. REFERENCES
[1] Abeni, L., and Buttazzo, G. Hierarchical QoS Management

for Time Sensitive Applications. Proceedings of the IEEE
Real-Time Technology and Applications Symposium, May
2001.

[2] Atiquzzaman, M., and Hassan, M. (Editors). Quality of
Service over Next-Generation Data Networks. The
Convergence of Information Technologies and
Communication (ITCOM), Denver, Colorado, August 2001.

[3] Aurrecoechea, C., Campbell, A.T., and Hauw, L. A Survey
of QoS Architectures. ACM/Springer Verlag Multimedia
Systems Journal, Special Issue on QoS Architecture, Vol.6
No.3, pg. 138-151, May 1998.

[4] Choi, S., and Shin, K. G. A Comparative Study of
Bandwidth Reservation and Admission Control Schemes in
QoS-sensitive Cellular Networks. Wireless Networks, 2000,
vol. 6: pp 289-305.

[5] Dahlberg, T. A., and Jung, J. Survivable Load Sharing
Protocols: A Simulation Study. Wireless Networks, May
2001, Vol. 7, pp. 283-296.

[6] Dahlberg, T. A., and Subramanian, K. R. Visualization of
Mobile Network Simulations. Simulation, Journal of the
Society for Computer Simulation International, to appear.

[7] El-Kadi, M., Olariu S., and Abdel-Wahab, H. A Rate-Based
Borrowing Scheme for QoS Provisioning in Multimedia
Wireless Networks. IEEE Transactions on Parallel and
Distributed Systems, February 2002, vol. 13, no. 2: pp. 156-
167.

[8] Liao, R., and Campbell, A. A Utility-Based Approach for
Quantitative Adaptation in Wireless Packet Networks.
Wireless Networks, September 2001, vol. 7: pp 5 41-557.

[9] Lingvall, T. Load Control in a Radio Network Controller
within UMTS. Linköping University Masters Thesis, LiTH-
IDA-Ex-02/X, March 2002.

[10] Mahadevan, I., and Sivalingam, K. Architecture and
Experimental Framework for Supporting QoS in Wireless
Networks Using Differentiated Services. Mobile Networks
and Applications, August 2001, vol. 6: pp. 385-395.

[11] Oliveira, C., Kim, J. B., and Suda, T. An Adaptive
Bandwidth Reservation Scheme for High-Speed Multimedia
Wireless Networks. IEEE Journal on Selected Areas in
Communications, August 1998, vol. 16, no. 6: pp. 858-874.

[12] Richardson, P., Sieh, L., and Ganz, A. Quality of Service
Support for Multimedia Applications in Third Generation
Mobile Networks Using Adaptive Scheduling. Real-Time
Systems, November 2001, 21(3): pp. 269-284.

[13] Stankovic, J.A., He, T., Abdelzaher, T.F., Marley, M., Tao,
G., Son, S.H., and Lu, C. Feedback Control Real-Time
Scheduling in Distributed Real-Time Systems. IEEE Real
Time Systems Symposium, December 2001.

[14] Staehle, D., Leibnitz, K., and Tsipotis, K. QoS of Internet
Access with GPRS. Wireless Networks, 2002, to appear.

[15] Wang, S., Wang, Y.-C., and Lin, K.-J. Integrating Priority
with Share in the Priority-Based Weighted Fair Queuing
Scheduler for Real-Time Networks. Real-Time Systems,
March 2002, 22(1-2): pp. 119-149.

