
Support for Object-Orientation in AP-233

Asmus Pandikow and Anders Törne
Real-Time Systems Laboratory

Department of Computer and Information Science
University of Linköping

581 83 Linköping, Sweden
E-Mail: {asmpa, andto}@ida.liu.se

Abstract. This paper is motivated by the need to
bridge the gap between the engineering methods used
in software engineering and those used in systems
engineering. Different alternatives attacking the
problem are presented and evaluated. An
implementation of one of the alternatives is
described, namely the inclusion of the most important
object-oriented concepts from the OMG Unified
Modeling Language (UML) into the working draft 5
of the ISO-10303-233 (AP-233) systems engineering
standard proposal. These concepts have also been
integrated into the AP-233 structures for version and
configuration management and hence, allow now for
the traceability of design elements between systems
and software specifications. The extensions allow to
include UML conformant tools in AP-233 controlled
system designs and on the other hand, the use of AP-
233 management capabilities for designing software.

INTRODUCTION

Object-oriented methods have become prevailing in
software engineering. Despite the fact that their
concepts might also be employed in other
engineering disciplines, object-oriented methods have
not yet been fully recognized outside the software
world. The importance of software for contemporary
systems is steadily growing, hardware and software
are increasingly integrated, e.g. in embedded
systems.

Currently there is a gap between systems and
software engineering methods, as explained in
(Cocks 1999). Developing such integrated systems,
it is desirable to be able to reference both, hardware
and software elements, in order to provide full
traceability throughout the complete specification of
a system. Such comprehensive specifications provide
the means for system-wide management
functionalities such as version and configuration
management. A global specification also allows for
system-wide traceability links between single
specification elements, e.g. the allocation of
requirements to systems as well as to single software
constructs.

At present, such global capabilities supporting
system-wide traceability, are being manifested in
working drafts of a proposal for the international

systems engineering standard AP-2331. This work is
performed in the SEDRES-2 project, see (SEDRES-2
2000), and the AP-233 working group, see (ISO AP-
233 Website 2001).

The need to integrate object-oriented concepts in
the working draft in order to support modern
software engineering methods with AP-233, origins
from the SEDRES-2 project. The original intention,
as stated in (Pandikow et al. 2000), was to integrate
object-orientation and traditional structured methods
in AP-233 at the level of single object-oriented
respective traditional structured concepts in order to
exchange specifications of both methods on design
concept level. This turned out to be difficult, as for
the greater part concepts of one method have no
matching semantics in the other methods.

Nevertheless, integrating the concepts on a
higher level, i.e. including concepts from both worlds
in generic design management capabilities, would
also allow to achieve the most important goals
described in (Pandikow et al. 2000):

• Close integration of software engineering and
systems engineering

• Change and configuration management support
for the major UML concepts.

• Traceability of single elements between systems
and software specifications

• Enable the use of object-oriented methods
outside the software world

• Enable partly data exchanges between tools of
different design methods

Object-orientation and Systems Engineering. As
stated above, object-orientation has started to be
recognized in the systems engineering community, as
software becomes more and more important in the
development of systems. Especially industries with
software-intensive products, such as in
telecommunication, employ object-oriented methods,
but also other branches have started to use object-
oriented methods for analysis and design.

Also, there are efforts towards creating object-
oriented systems engineering methods, such as the

1 AP-233: “Application Protocol 233”, part 233 of the
ISO 10303 (STEP) standard

OOSEM, described in (Lykins et al. 2000). In
(Axelsson 2001) the author extends the UML
notation such that it can be employed for designing
real-time computer systems. The author creates
additional elements that allow for richer
specifications of a physical architecture and for
modeling continuous-time relationships.

Nevertheless, object-orientation is new,
compared to traditional structured methods, which
have been used and matured over decades. There is
limited experience with systems that were in part or
entirely developed with object-oriented methods.
Also, the ways to integrate with the existing and
legacy work in order not to lose past efforts is not yet
solved. This paper starts to work on the
harmonization of object-oriented and structured
design methods in order to allow for an improved
interdisciplinary communication among engineers.

Prerequisites. Reading this paper requires some
knowledge about AP-233 and what it is aiming at, as
well as some understanding of basic object-oriented
concepts. However, appropriate links to secondary
literature in the areas can be found in the text and
references.

The examples in this paper are given in
EXPRESS-G and UML notation. If needed,
additional information about the EXPRESS language
family can be obtained from (ISO 10303-11 1994).
Also, a description of UML concepts can be obtained
from (Muller 1997).

Paper Outline. After this introductory chapter, the
UML is discussed with respect to the integration
intentions. Then, AP-233 in its state before the
integration is briefly discussed. A deeper
understanding of AP-233 can be achieved by
following the literature links in the chapter. After
that, the approach taken to integrate the object-
oriented concepts of the UML in AP-233 is
described, followed by an example for the
representation of an UML specification. Conclusions
and a description of future work in this area end the
paper.

THE UML

The UML, see (OMG UML v1.3 2000), has been
selected by the authors for the integration efforts,
because it provides a comparable view on software
engineering as AP-233 on systems engineering.
Other notations, such as Verilog or VHDL for
hardware design, provide for the greater part only
domain specific views and do not have the same
potential for being employed in other engineering
disciplines as the UML.

The UML has been adopted as standard by the
OMG in 1997, see (OMG Website 2000), and
contains all of the major object-oriented concepts,
such as use cases, class diagrams, etc. It is currently
the most favored and comprehensive notation for
software engineering. The integration of the UML
and AP-233 is difficult, as the UML is evolving in a

different pace than AP-233. Currently, the UML 1.4
is being released, UML 2.0 is under development and
supposed to be released in 2001, whereas AP-233
strives for a stable solution that is durable and
unchanging for a longer period. Furthermore, the
specification of the UML leaves the interpretation
and representation of details of some of its elements
to the software tools. Also, the semantics are not
always defined with formal rigor and may result in
ambiguous interpretations across different tools. This
makes it difficult to integrate some UML concepts
with existing counterparts of the AP-233. Hence, the
proposed integration approach results in partly
parallel constructs for structured analysis and object-
oriented concepts, even when a closer integration
may have been desirable.

The unambiguous definition of parts of the UML
semantics is to be tackled by the OMG in future
releases of the UML, see (OMG UML Roadmap), but
will probably in details be left undefined in order not
to constrain different interpretations of the UML. For
software engineering this does not appear to hinder
the dissemination of the UML, as it is already heavily
employed. Nevertheless, fully defined semantics are
vital for all engineering disciplines. Especially
collaboratively developing heterogeneous systems
requires unambiguous exchangeability of
specifications. Nevertheless, the integration of the
major object-oriented concepts found in the UML is
still possible, as it is unlikely that the major concepts
will change in their appearance and structure, but
only be refined in their semantics. The concepts have
proven their expressiveness and usefulness in the past
years of object-oriented software development and
can therefore be considered to be stable enough for
the integration purposes.

The UML can be seen as collection of the major
object-oriented notations. It has been developed on
the basis of methods by (Booch 1994), (Rumbaugh et
al. 1991) and (Jacobson et al. 1992) and is the result
of merging the notations to a unified notation
supporting the greater part of object-oriented
development processes. Although the use of single
concepts of the UML is not bound to a certain
process, there is a common interrelation between the
concepts that can be found in all processes using the
UML:

• Use cases are the starting point

• Class diagrams are created from initially known
architectures or may also evolve from refining
use cases

• Behavior diagrams (collaborations, sequences,
statecharts, and activities, see (Muller 1997) for
more detailed descriptions) are refinements of
single use cases (and may represent the behavior
of class operations)

• Implementation diagrams are built on the basis
of previously created specifications and existing
physical architecture

The concepts can be viewed as major object-oriented
concepts and have been chosen for being fully
integrated in the AP-233 proposal.

STEP AND AP-233

The STEP2 framework (ISO 10303) provides mature
capabilities for traditional engineering disciplines
such as mechanical and electrical engineering. The
management capabilities of STEP standards, such as
configuration management, are widely adopted in
industry.

AP-233, as part of STEP, provides
comprehensive support for the most important
systems engineering concepts in the following areas:

• Requirements engineering

• Functional architecture

• Physical architecture

• Management information

• Inter-allocation of specification elements and
traceability

As mentioned in the introduction, up to working draft
5 there was no support for object-oriented analysis
and design concepts in AP-233. Hence, the support
for modern software engineering was lacking and
object-oriented software specifications could not
explicitly be included in AP-233 compliant designs.
More detailed information about the architecture of
AP-233 can be obtained from (Herzog and Törne
2000).

ANALYSIS

The gap between the different engineering methods
for software and systems as described by (Cocks
1999) has developed from employing diverging
design paradigms in the respective engineering
disciplines. While structured methods still prevail in
systems engineering, has software engineering
developed and employed object-oriented methods.
The integration of both paradigms is not
straightforward, as for many object-oriented design
concepts no semantically matching structured
concepts exist, and vice-versa. Nevertheless, the
integration of both methods could be achieved in
several ways:

1. Creation of a new unified software and systems
engineering standard

2. Inclusion of systems engineering concepts in a
software engineering standard

3. Inclusion of software engineering concepts in a
systems engineering standard

2 STEP: “Standard for the Exchange of Product
Model Data”, also “ISO-10303”, a standardization
framework by the International Organization for
Standardization, ISO (see www.iso.ch)

The first alternative can currently be viewed as
theoretical and impracticable, as both communities
(software and systems engineering) each already
undertake great efforts towards creating respective
domain-specific standards, see (OMG UML v1.3
1999) and (ISO AP-233 Website 2001). Another
completely new approach with both parties as
stakeholders would probably not be acceptable.

The second alternative would mean major
changes to existing software engineering standards,
e.g. the UML, and is also not acceptable as the UML
intentionally only represents the object-oriented
approach. A viable solution in line with this
alternative would be to create a UML systems
engineering profile that tailors the UML to the needs
of systems engineering, with the disadvantage of a
distributed and unsynchronized standard (AP-233
together with UML profile).

Including software engineering concepts in the
ongoing efforts towards creating the AP-233 systems
engineering data exchange standard is currently the
most promising alternative. AP-233 represents
commonly agreed concepts and provides the right
opportunity to harmonize with object-oriented
concepts. Besides representing the most important
concepts of the current systems engineering practice,
working draft 5 of AP-233 also provides mature
capabilities for managing models, versions and
configurations. These are capabilities that UML
specifications will gain from, as they are not natively
supported by the UML.

The chosen alternative may not be approved by
all members of the systems engineering community
to be the best possible solution, as there may be
different opinions about which alternative to prefer
and at which level the integration shall take place.
Nevertheless, the chosen approach can be seen as one
of several implementations of the alternatives and can
be taken to be compared to other future solutions.

OBJECT-ORIENTATION IN AP-233

When discussing AP-233 and its extensions in order
to also capture object-oriented concepts, this paper
actually refers to the information model that has been
created by the SEDRES-2 project. The SEDRES-2
information model has been forwarded to the AP-233
working group and is updated since then by proposals
from both communities. For simplicity reasons, this
paper does not distinguish SEDRES-2 and AP-233
work, but the reader has to keep in mind, that the
request for the inclusion of object-oriented concepts
origins from the SEDRES-2 participants.

As described above, the UML has been selected
as basis for the efforts of identifying the major
object-oriented concepts. As a result of the different
semantics of UML respective AP-233 concepts, the
integration has been performed by including object-
oriented concepts in the management capabilities of
AP-233 rather than on concept level.

The overall goal was to create support for all
UML concepts, preserving their characteristics and
include them in the existing generic management

capabilities of AP-233. For the greater part, the
concepts have been introduced as new AP-233
concepts, except for the cases where AP-233 already
offers semantically adequate alternatives.

The intentions in (Pandikow et al. 2000) to
obtain a close mapping between object-oriented and
AP-233 concepts have not been fully realized.
Instead, the focus was put more on the integration of
object-oriented concepts in the AP-233 version and
configuration management capabilities rather than
performing the integration on a lower level. Thus,
the lower level integration, i.e. the mapping between
single object-oriented concepts and their structured
analysis counterparts, has only been performed in
cases where the concepts are congruent or where AP-
233 concepts had only slightly to be changed.

The greater part of the UML meta-model has
been implemented as specified in the UML. The
following paragraphs deal each with a certain area of
the UML, describing its respective integration and
possible peculiarities of the implementation.

For more detailed descriptions of UML concepts,
see (OMG UML v1.3 1999) and (Muller 1997).
Descriptions of basic object-oriented concepts such
as classes, associations, etc., can be obtained from
(Balzert 1999), (Muller 1997) or equivalent
introductory literature.

Modeling Style. AP-233 is created within the ISO-
10303 (STEP) framework and is modeled with the
object-flavored EXPRESS language family. The
STEP modeling style, as described in (Herzog and
Törne 2000), based on principles from (Gregory and
Reingruber 1994), strives for a flat super- / subclass
hierarchy in order to serve the standardization
process. Complex inheritance hierarchies are
avoided. However, the UML meta-model heavily
employs inheritance (which is not unusual for object-
oriented designs) in order to reduce specification
redundancy and get leaner modeling elements that are
not overloaded with high-level features.

The approach taken to combine the conflicting
objectives, is to decide for each modeling element,
whether the considered feature is necessary for the
model element or not. This results in fewer and less
complex entities and relationships compared to the
approach of attaching explicitly all inherited features
directly to the model elements. Furthermore, the
inheritance relationships have been implemented as
flat EXPRESS sets (select statements) of modeling
elements, where a set can contain another set,
speaking object-oriented: the superclass is a set of
subclasses.

Model Management. Managing versions and
configurations in software engineering is usually
performed as an external task external of the
development process. Likewise, also the current
version 1.3 of the UML provides a snapshot view on
a design, i.e. it does not explicitly support different
versions and configurations of a design. To achieve
this, the existing model management capabilities of
AP-233 have been adopted and the respective sets of

version and configuration managed concepts have
been extended by object-oriented concepts of interest.
Furthermore, the capabilities of managing systems
and subsystems have been extended and an additional
mechanism for coupling UML diagrams to the AP-
233 notion of systems has been created. Also, the
interrelations between diagrams (e.g. one diagram is
a specialization of another) has been made explicit.
Figure 1 gives an overview on the EXPRESS
implementation for this.

oo_package

oo_model_e lement_se lec t

oo_element_ impor t

mode l_e lement

container

oo_v iew

n a m e

view_type

oo_view_relat ionship
descr ipt ion

base reference_view

oo_v iew_sys tem_
view_relat ionship

v iew

sys tem_v iew

system_contex t

Figure 1: Managing Object-Oriented Models
in AP-233

The oo_view entity represents object-oriented
diagrams. The type of diagram (class diagram, use
case diagram, etc.) is stored in the view_type
attribute. Interrelations between diagrams are
represented by the oo_view_relationship entity and
are textually described in the description attribute.
The oo_view is a kind of oo_package, the thick line
in figure 1 between oo_view and oo_package depicts
an inheritance relationship. Finally, the connection
between elements on a diagram and the diagram itself
is established through the oo_element_import entity,
oo_model_element_select represents the set of
possible diagram elements.

Global Concepts. The stereotype and constraint
concepts have been included as specified in (OMG
UML v1.3 1999). The UML properties are similar to
the UML tagged values and are currently represented
through the AP-233 entities for representing
assessments of system characteristics. In future
versions, AP-233 properties might be employed for
this purpose. The UML notes are semantically
equivalent to AP-233 justifications, hence a new
concept has not been introduced for those.

Static Structure. The complete set of UML
elements describing a system’s static structure, e.g.
classes (with attributes and operations), objects and
associations among them, have been added. For the
greater part of static structure concepts, new entities
had to be created, because there were no semantically
equivalent concepts available in AP-233.

Figure 2 shows a simplified model of how the
relationship between a class and its constituents

(attributes and operations) is realized (note that most
of the attributes have been omitted in this example).

oo_object

oo_c lass

defini t ion

oo_attr ibute oo_behaviora l_feature

oo_operat ion

owner owner

oo_att r ibute_instance

defini t ion

oo_method

speci f icat ion

Figure 2: EXPRESS Example for Static
Structure Elements

The relationship is implemented as in the UML meta-
model, i.e. the owner attributes of oo_attribute and
oo_behavioral_feature are connected to the set of
UML classifiers (and attributes and operations are
classifiers).

The example shows that a class may have
attributes and operations assigned. Entities that
represent instances of object-oriented concepts (e.g.
objects are instances of a class) have been modeled
explicitely and are directly related with the respective
definition. This deviation from the UML meta-
model, where all instances inherit from a common
instance, has been made in order to flatten the
inheritance hierarchy but is otherwise equivalent to
the UML meta-model.

Use Cases. Use cases have no direct semantic
equivalent in AP-233. The AP-233 concept of
“partial system views” is partly equivalent, but as use
cases are a prominent concept of their own and
tightly coupled to other object-oriented elements, this
would impose major changes in the system view
concepts, which in turn would complicate the non-
object-oriented use of the respective entities.
Therefore, new entities for capturing use cases have
been added.

Behavior. New entities representing the UML
concepts for collaborations, interactions and message
sequences have been added to AP-233. Note that
especially sequence diagrams contain a number of
elements that have no direct representations in the
UML meta-model, because their existence is implicit,
due to the existence of other elements.

As an example, figure 3 shows an UML sequence
diagram that describes a simple communication
between a sender and a receiver. The concepts lifeline
and activation are vital elements of a sequence
diagram, but are not explicitly represented in the
UML meta-model. Hence, they are not in represented
in AP-233 as well. Their existence can be derived
from the existence of other elements: in a sequence

diagram a role of a classifier has always a lifeline
and, a classifier can only accept messages when it is
“activated”, i.e. it is has an activation segment. Such
implicit elements are supposed to be created by
software tools that implement the UML.

Receiver

send

Sender

acknowledge

Lifeline

Activation

Message

Role

Classifier

Figure 3: Sequence Diagram Example

The UML statecharts are represented by the AP-233
finite state machines. The major exception is the
notion of “synchronized states” in the UML, which
allows to synchronize concurrent states, but this can
be substituted by modeling the respective statechart
differently, i.e. creating states of explicit
synchronization in the finite state machine.

The semantics of the UML activity diagrams can
be represented by AP-233 causal chains. Hence,
there have been only a few extensions made to AP-
233 to support activities.

Implementation. The UML concepts for the
representation of physical architecture is tailored to
the needs of software engineering, i.e. is limited to
computing devices. The AP-233 capabilities for the
representation of physical architecture are far richer.
Hence, AP-233 has in this respect only been extended
in order to capture the UML notion of components
and their relationships. Physical computing devices
(the UML notion of “nodes”) are represented by
existing elements of the AP-233 physical
architecture.

EXAMPLE

The example in figure 4 shows how an UML
specification would be represented with the new
object-oriented capabilities of AP-233 that have been
described in this paper.

Person
< Job

employeeemployer

Job
salary

Company

Figure 4: Class Diagram Example

The example contains a simple class diagram that
describes the relationship between a company and its
employees. There are two classes, Company and
Person, and an association among them, the

association Job. Additionally, the association class
Job describes the association in more detail, i.e.
whenever the association Job is instantiated, also an
instance of the association class Job is instantiated.

The example would be represented by AP-233 as
shown in figure 5 (note that entities with a black
triangle in the bottom right corner depict an instance
of an entity, italics are denoting attribute values).

oo_class

oo_element_import

model_
element

name

Person

oo_associat ion_end

classifier

oo_class

name

Company

oo_associat ion_end

classifier

oo_element_import

model_
element

oo_package

container

container

oo_element_import

model_element

container

oo_element_import

model_
element

container

oo_associat ion

association

association

oo_element_import

model_
element

container

oo_associat ion_class

oo_element_import

container

model_
element

oo_class

name

Job

class

association

oo_view

name

job relationships

view_typeclass diagram

oo_attr ibute

owner

name

salary

 Figure 5: Example AP-233 Instance
Representation

The class diagram itself is represented by an oo_view
object and its superclass oo_package. The example
diagram is entitled “job relationships”, see
oo_package. The classes Company and Person and
are represented by respective oo_class objects, the
association Job is represented by an oo_association
object. The end points of the association (employer
and employee) are represented by
oo_association_end objects. The association class
Job is represented by an oo_association_class object,
connected to the oo_class Job and the respective
oo_association Job. The attribute salary is an
oo_attribute, attached to the oo_class Job through its
attribute owner.

CONCLUSIONS AND FUTURE WORK

Possible approaches to bridge the gap between
object-oriented software engineering methods and
structured systems engineering methods have been
identified and evaluated in this paper. The
implementation of one of the approaches, namely to
include software engineering concepts in the ISO-
10303-233 standard proposal in order to support
object-oriented concepts, has been presented.

Future reviews of this proposal will show,
whether the chosen approach is appropriate and to
which detail object-orientation is to be represented in
AP-233. However, the integration of object-oriented
software engineering concepts in AP-233 allows for
the inclusion of modern software engineering
concepts in the generic management capabilities of
AP-233. Hence, UML compliant software
specifications may now become part of global AP-
233 controlled system specifications. Also, the other
way round, AP-233 capabilities may be employed for
software specifications.

The current efforts in the systems engineering
community on evaluating the UML and formulating
usability requirements for future UML versions in
cooperation with the OMG indicates that there is
great interest in the area.

The principal author intends to continue working
on further implementations of the mentioned
alternatives in order to enable the use of the UML
also in other engineering disciplines than in software
engineering. This will probably include contributing
to a UML profile tailoring the UML to the needs of
systems engineering. The results of this work may
improve interdisciplinary communication among
engineers, just what this paper is aiming at.

ACKNOWLEDGEMENTS

The authors would like to thank the participants of
the SEDRES-2 project for their hard work.
Especially, the valuable contributions from Erik
Herzog, see (Herzog and Törne 2000), are gratefully
acknowledged. Also, the financial support from the
European Commission for the SEDRES-2 project is
gratefully acknowledged.

REFERENCES

Axelsson, J.: “Unified Modeling of Real-Time
Control Systems and their Physical
Environments Using UML” in the proceedings
of the “Eighth IEEE International Conference
and Workshop on the Engineering of Computer
Based Systems”, IEEE Computer Society, 2000

Balzert, H. "Lehrbuch der Objektmodellierung",
Spektrum Verlag, 1999.

Booch G.: "Object-Oriented Analysis and Design
with Applications", The Benjamin / Cummings
Publishing Company, 1994.

Cocks, D.: "The Suitability of Using Objects for
Modeling at the Systems Level" in the
"Proceedings of the Ninth Annual International
Symposium of the International Council on
Systems Engineering", pages 1047-1054,
INCOSE, 1999.

Gregory, W. and Reingruber, M.: “The Data
Modelling Handbook: A Best Practice Approach
to Building Quality Data Models”, Wiley and
Sons, 1994

Herzog, E. and Törne, A.: "AP-233 Architecture" in
the "Proceedings of the Tenth Annual
International Symposium of the International
Council on Systems Engineering", INCOSE,
2000.

ISO 10303-11: “Industrial automation systems and
integration - product data representation and
exchange - part 11: Description methods: The
express language reference manual”,
Technical Report ISO 10303-11:1994(E), ISO,
Geneva, 1994.

ISO AP-233 Website: Internet homepage of the AP-
233 Systems Engineering Working Group at
http://www.sedres.com/ap233/sedres_iso_home.
html, hosted by the SEDRES project, 2001

Jacobson I., Christerson M., Jonsson P., Övergaard
G.: "Object-Oriented Software Engineering - A
Use Case Driven Approach", Addison-Wesley,
1992.

Lykins H., Friedenthal S, Meilich A.: “Adapting
UML for an Object Oriented Systems
Engineering Method (OOSEM)” in the
"Proceedings of the Tenth Annual International
Symposium of the International Council on
Systems Engineering", INCOSE, 2000.

Muller, P.-A.: "Instant UML", Wrox Press Ltd.,
1997.

OMG UML Roadmap: “UML 2.0 Roadmap
Recommendations”, OMG FTP Server at
http://cgi.omg.org/cgi-bin/doc?ad/2000-06-01,
OMG, 2000.

OMG UML v1.3: “OMG Unified Modeling
Language Specification, version 1.3, first
edition”, OMG FTP Server at
ftp://ftp.omg.org/pub/docs/formal/00-03-01.pdf,
OMG, 1999.

OMG Website: Internet homepage of the Object
Management Group at http://www.omg.org,
OMG, 2000.

Pandikow A., Herzog E. and Törne A.: "Integrating
Systems and Software Engineering Concepts in
AP-233", in the Proceedings of the 10th Annual
International Symposium of the international
Council on Systems Engineering, pages 831 -
837, INCOSE, 2000.

Rumbaugh J., Blaha M., Premerlani W., Eddy F.,
Lorensen W.: "Object-Oriented Modeling and
Design", Prentice Hall, 1991.

SEDRES-2: Project homepage of the “Systems
Engineering Design Representation Exchange
Standard 2” project IST 11953 at
http://www.sedres.com, 2000.

SEDRES-2 AP-233 proposal: “AP-233 Working
Draft 5”, SEDRES-2 Website at
www.sedres.com/documents/sedres_all_docume
nts.html, SEDRES-2 project, 2001

