Support for Object-Orientation in AP-233

Asmus Pandikow and Anders Torne
Real-Time Systems Laboratory
Department of Computer and Information Science
University of Linkdping
581 83 Linképing, Sweden
E-Mail: {asmpa, andto}@ida.liu.se

Abstract. This paper is motivated by the need to systems engineering standard AP-23Bhis work is
bridge the gap between the engineering methods usqeerformed in the SEDRES-2 project, see (SEDRES-2
in software engineering and those used in system8000), and the AP-233 working group, see (ISO AP-
engineering. Different alternatives attacking the233 Website 2001).
problem are presented and evaluated. An The need to integrate object-oriented concepts in
implementation of one of the alternatives isthe working draft in order to support modern
described, namely the inclusion of the most importansoftware engineering methods with AP-233, origins
object-oriented concepts from the OMG Unified from the SEDRES-2 project. The original intention,
Modeling Language (UML) into the working draft 5 as stated in (Pandikow et al. 2000), was to integrate
of the ISO-10303-233 (AP-233) systems engineeringbject-orientation and traditional structured methods
standard proposal. These concepts have also beén AP-233 at the level of single object-oriented
integrated into the AP-233 structures for version andespective traditional structured concepts in order to
configuration management and hence, allow now foexchange specifications of both methods on design
the traceability of design elements between systemeoncept level. This turned out to be difficult, as for
and software specifications. The extensions allow tdhe greater part concepts of one method have no
include UML conformant tools in AP-233 controlled matching semantics in the other methods.
system designs and on the other hand, the use of AP- Nevertheless, integrating the concepts on a
233 management capabilities for designing software.higher level, i.e. including concepts from both worlds

in generic design management capabilities, would
INTRODUCTION also allow to achieve the most important goals

Object-oriented methods have become prevailing irfi€Scribed in (Pandikow et al. 2000):
software engineering. Despite the fact that thei. Close integration of software engineering and
concepts might also be employed in other systems engineering
engineering disciplines, object-oriented methods have
not yet been fully recognized outside the softwaree Change and configuration management support
world. The importance of software for contemporary for the major UML concepts.
systems is steadily growing, hardware and software
are increasingly integrated, e.g. in embedded
systems.

Currently there is a gap between systems and Enable the use of object-oriented methods
software engineering methods, as explained in outside the software world
(Cocks 1999). Developing such integrated systems,
it is desirable to be able to reference both, hardwaré Enable partly data exchanges between tools of
and software elements, in order to provide full different design methods

traceability throughout the complete specification OfObject—orientation and Systems Engineering. As
a system. Such comprehensive s_peC|f|cat|ons providgiated above, object-orientation has started to be
the ~means for system-wide —managementecognized in the systems engineering community, as
functionalities such as version and configurationgafvare becomes more and more important in the
management. A global specification also allows forgeyelopment of systems. Especially industries with
system-wide traceability links between single qyfware-intensive products such as in
specification elements, e.g. the allocation Ofglecommunication, employ object-oriented methods,
requirements to systems as well as to single softwarg,; aiso other branches have started to use object-
constructs. ", _oriented methods for analysis and design.

At present, such global capabilities supporting Ajso, there are efforts towards creating object-

system-wide traceability, are being manifested ingriented systems engineering methods, such as the
working drafts of a proposal for the international

Traceability of single elements between systems
and software specifications

! AP-233: “Application Protocol 233", part 233 of the
ISO 10303 (STEP) standard

OOSEM, described in (Lykins et al. 2000). In different pace than AP-233. Currently, the UML 1.4
(Axelsson 2001) the author extends the UMLis being released, UML 2.0 is under development and
notation such that it can be employed for designingsupposed to be released in 2001, whereas AP-233
real-time computer systems. The author createstrives for a stable solution that is durable and
additional elements that allow for richer unchanging for a longer period. Furthermore, the
specifications of a physical architecture and forspecification of the UML leaves the interpretation
modeling continuous-time relationships. and representation of details of some of its elements
Nevertheless, object-orientation is new,to the software tools. Also, the semantics are not
compared to traditional structured methods, whichalways defined with formal rigor and may result in
have been used and matured over decades. Thereambiguous interpretations across different tools. This
limited experience with systems that were in part ormakes it difficult to integrate some UML concepts
entirely developed with object-oriented methods.with existing counterparts of the AP-233. Hence, the
Also, the ways to integrate with the existing andproposed integration approach results in partly
legacy work in order not to lose past efforts is not yetparallel constructs for structured analysis and object-
solved. This paper starts to work on theoriented concepts, even when a closer integration
harmonization of object-oriented and structuredmay have been desirable.
design methods in order to allow for an improved The unambiguous definition of parts of the UML
interdisciplinary communication among engineers. semantics is to be tackled by the OMG in future
. . . . releases of the UML, see (OMG UML Roadmap), but
Prerequisites. Reading this paper requires some.,; probably in details be left undefined in order not
knowledge about AP-233 _and what Itis aiming at, azo constrain different interpretations of the UML. For
well as some understanding (.)f baglc object-oriente oftware engineering this does not appear to hinder
ﬁt%r;g?uprtjinﬁﬁ\e,;vzvrggsagggogga;gumkisnt?hesetcec))(?d;r: e dissemination of the UML, as it is already heavily
mployed. Nevertheless, fully defined semantics are
references. vital for all engineering disciplines. Especially

The examples in this paper are given incollaborativel ;
: y developing heterogeneous systems
EXPRESS-G and UML notation. If needed, requires unambiguous exchangeability of

additional information about the EXPRESS language e : ;
family can be obtained from (SO 10303-11 1994).specn‘lcatlons. Nevertheless, the integration of the

- ; ajor object-oriented concepts found in the UML is
Also, a description of UML concepts can be obtained._.. ; fp : :
from (Muller 1997). till possible, as it is unlikely that the major concepts

will change in their appearance and structure, but
Paper Outline. After this introductory chapter, the only be refined in their semantics. The concepts have
UML is discussed with respect to the integrationproven their expressiveness and usefulness in the past
intentions. Then, AP-233 in its state before theyears of object-oriented software development and
integration is briefly discussed. A deeper can therefore be considered to be stable enough for
understanding of AP-233 can be achieved bythe integration purposes. _ _
following the literature links in the chapter. After ~ The UML can be seen as collection of the major
that, the approach taken to integrate the objectobject-oriented notations. It has been developed on
oriented concepts of the UML in AP-233 is the basis of methods by (Booch 1994), (Rumbaugh et
described, followed by an example for theal. 1991) and (Jacobson et al. 1992) and is the result
representation of an UML specification. Conclusionsof merging the notations to a unified notation

and a description of future work in this area end thesupporting the greater part of object-oriented
paper. development processes. Although the use of single

concepts of the UML is not bound to a certain
THE UML process, there is a common interrelation between the

The UML, see (OMG UML v1.3 2000), has been concepts that can be found in all processes using the

selected by the authors for the integration efforts,UML:

because it provides a comparable view on software Use cases are the starting point

engineering as AP-233 on systems engineering. . o

Other notations, such as Verilog or VHDL for * Class diagrams are created from initially known
hardware design, provide for the greater part only architectures or may also evolve from refining
domain specific views and do not have the same US€ Cases

potential for being employed in other engineering,

disciplines as the UML.

The UML has been adopted as standard by the
OMG in 1997, see (OMG Website 2000), and
contains all of the major object-oriented concepts,
such as use cases, class diagrams, etc. It is currently
the most favored and comprehensive notation foe Implementation diagrams are built on the basis
software engineering. The integration of the UML of previously created specifications and existing
and AP-233 is difficult, as the UML is evolving in a physical architecture

Behavior diagrams (collaborations, sequences,
statecharts, and activities, see (Muller 1997) for
more detailed descriptions) are refinements of
single use cases (and may represent the behavior
of class operations)

The concepts can be viewed as major object-orientedhe first alternative can currently be viewed as
concepts and have been chosen for being fulltheoretical and impracticable, as both communities

integrated in the AP-233 proposal. (software and systems engineering) each already
undertake great efforts towards creating respective
STEP AND AP-233 domain-specific standards, see (OMG UML v1.3

The STEP framework (ISO 10303) provides mature 1999)| anld (ISO AP-233 r:Nepsri]tebZOhm). Another
capabilities for traditional engineering disciplines comkphet%y new I(?pprgagl W'tb ot pat:rles as
such as mechanical and electrical engineering. That@keholders would probably not be acceptable.

management capabilities of STEP standards, such a The Secof‘d_ alternative WOl.'”d mean major
configuration management, are widely adopted incNanges to existing software engineering standards,
industry. e.g. the UML, and is also not acceptable as the UML

AP-233, as opart of STEP, provides intentionally only represents the object-oriented

comprehensive support for the most importantapproach. A viable solution in line with this

systems engineering concepts in the following areas:2!t€mative would be to create a UML systems
y g g P 9 engineering profile that tailors the UML to the needs

* Requirements engineering of systems engineering, with the disadvantage of a
. . distributed and unsynchronized standard (AP-233
* Functional architecture together with UML profile).
« Physical architecture Including software engineering concepts in the
ongoing efforts towards creating the AP-233 systems
* Management information engineering data exchange standard is currently the

most promising alternative. AP-233 represents
commonly agreed concepts and provides the right
opportunity to harmonize with object-oriented
As mentioned in the introduction, up to working draft concepts. Besides representing the most important
5 there was no support for object-oriented analysisoncepts of the current systems engineering practice,
and design concepts in AP-233. Hence, the suppoworking draft 5 of AP-233 also provides mature
for modern software engineering was lacking andcapabilities for managing models, versions and
object-oriented software specifications could notconfigurations. These are capabilities that UML
explicitly be included in AP-233 compliant designs. specifications will gain from, as they are not natively
More detailed information about the architecture ofsupported by the UML.
AP-233 can be obtained from (Herzog and Térne The chosen alternative may not be approved by
2000). all members of the systems engineering community
to be the best possible solution, as there may be
ANALYSIS different opinions about which alternative to prefer
nd at which level the integration shall take place.
evertheless, the chosen approach can be seen as one
of several implementations of the alternatives and can
éJe taken to be compared to other future solutions.

e Inter-allocation of specification elements and
traceability

The gap between the different engineering method
for software and systems as described by (Cock
1999) has developed from employing diverging
design paradigms in the respective engineerin
disciplines. While s_,tructured methods still prgvail i_n OBJECT-ORIENTATION IN AP-233
systems engineering, has software engineering
developed and employed object-oriented methodsWhen discussing AP-233 and its extensions in order
The integration of both paradigms is notto also capture object-oriented concepts, this paper
straightforward, as for many object-oriented designactually refers to the information model that has been
concepts no semantically matching structuredcreated by the SEDRES-2 project. The SEDRES-2
concepts exist, and vice-versa. Nevertheless, th#formation model has been forwarded to the AP-233
integration of both methods could be achieved inworking group and is updated since then by proposals
several ways: from both communities. For simplicity reasons, this
. o aper does not distinguish SEDRES-2 and AP-233
1. Cregtlon_of a new unified software and system ork, but the reader has to keep in mind, that the
engineering standard request for the inclusion of object-oriented concepts
2. Inclusion of systems engineering concepts in &origins from the SEDRES-2 participants.
software engineering standard As described above, the UML has been selected
) . . . as basis for the efforts of identifying the major
3. Inclusion of software engineering concepts in Aobject-oriented concepts. As a result of the different
systems engineering standard semantics of UML respective AP-233 concepts, the
integration has been performed by including object-
oriented concepts in the management capabilities of
2 STEP: “Standard for the Exchange of Product AP-233 rather than on concept level.
Model Data”, also “ISO-10303", a standardization The overall goal was to create support for all
framework by the International Organization for UML concepts, preserving their characteristics and
Standardization, ISO (see www.iso.ch) include them in the existing generic management

capabilities of AP-233. For the greater part, theversion and configuration managed concepts have
concepts have been introduced as new AP-23Been extended by object-oriented concepts of interest.
concepts, except for the cases where AP-233 alreadyurthermore, the capabilities of managing systems
offers semantically adequate alternatives. and subsystems have been extended and an additional
The intentions in (Pandikow et al. 2000) to mechanism for coupling UML diagrams to the AP-

obtain a close mapping between object-oriented ané33 notion of systems has been created. Also, the
AP-233 concepts have not been fully realized.interrelations between diagrams (e.g. one diagram is
Instead, the focus was put more on the integration o specialization of another) has been made explicit.
object-oriented concepts in the AP-233 version andrigure 1 gives an overview on the EXPRESS
configuration management capabilities rather tharimplementation for this.

performing the integration on a lower level. Thus, l ————————————
| oo_mode_elemem_selecq

the lower level integration, i.e. the mapping between WL =" ik
single object-oriented concepts and their structured model element
analysis counterparts, has only been performed in)
cases where the concepts are congruent or where AP- 00_element_import

233 concepts had only slightly to be changed.
The greater part of the UML meta-model has

been implemented as specified in the UML. The @

following paragraphs deal each with a certain area of

container

the UML, describing its respective integration and system_context
possible peculiarities of the implementation. oo_view_system_ | view
For more detailed descriptions of UML concepts, view_relationship =

see (OMG UML v1.3 1999) and (Muller 1997).
Descriptions of basic object-oriented concepts such
as classes, associations, etc., can be obtained from

(Balzert 1999), (Muller 1997) or equivalent)) . .
introductory literature. Figure 1: Managing Object-Oriented Models

in AP-233

description

Modeling Style. AP-233 is created within the 1SO- . .))

10303 (STEP) framework and is modeled with theTh® OO_view entity represents object-oriented
object-flavored EXPRESS language family. Thediagrams. The type of diagram (class diagram, use
STEP modeling style, as described in (Herzog an§@s€ diagram, etc.) is stored in theew_type
Torne 2000), based on principles from (Gregory andfttribute. Interrelatlo_ns betw_een _dlag_rams are
Reingruber 1994), strives for a flat super- / subclas§ePresented by theo_view_relationshipentity and

hierarchy in order to serve the standardization@'® textually described in theescription attribute.
process. Complex inheritance hierarchies arel € 00_viewis a kind ofoo_packaggthe thick line

avoided. However, the UML meta-model heavily I figure 1 betweemwo_viewandoo_packagelepicts
employs inheritance (which is not unusual for object-an inheritance relationship. Finally, the connection
oriented designs) in order to reduce specificatiorPEtwee” elements on a diagram and the diagram itself

redundancy and get leaner modeling elements that afé €Stablished through theo_element_imporentity,
not overloaded with high-level features. 00_model_element_selectepresents the set of

The approach taken to combine the conflictingP0ssible diagram elements.

objectives, is to decide for each modeling elementg|ohal Concepts. The stereotype and constraint
whether the considered feature is necessary for thggncepts have been included as specified in (OMG
model element or not. This results in fewer and lesg;pi 1.3 1999). The UML properties are similar to
complex entities and relationships compared to thghe UML tagged values and are currently represented
approach of attaching explicitly all inherited featuresinrough the AP-233 entities for representing
directly to the model elements. Furthermore, thezssessments of system characteristics. In future
inheritance relationships have been implemented agersions, AP-233 properties might be employed for
flat EXPRESS sets (select statements) of modelinghis purpose. The UML notes are semantically
elements, where a set can contain another Sejquivalent to AP-233 justifications, hence a new
speaking object-oriented: the superclass is a set Qncept has not been introduced for those.
subclasses.

, _ Static Structure. The complete set of UML
Model Management. ~Managing versions and elements describing a system’s static structure, e.g.
configurations in software engineering is usually cjasses (with attributes and operations), objects and
performed as an external task external of theyssociations among them, have been added. For the
development process. Likewise, also the currenfreater part of static structure concepts, new entities
version 1.3 of the UML provides a snapshot view onpaq to be created, because there were no semantically
a design, i.e. it does not explicitly support d'fferemequivalent concepts available in AP-233.
versions and configurations of a design. To achieve Figure 2 shows a simplified model of how the

this, the existing model management capabilities ofe|ationship between a class and its constituents
AP-233 have been adopted and the respective sets of

(attributes and operations) is realized (note that mosdiagram arole of a classifier has always difeline

of the attributes have been omitted in this example). and, aclassifiercan only accepinessagesvhen it is
“activated”, i.e. it is has aactivationsegment. Such

implicit elements are supposed to be created by

definition software tools that implement the UML.

Q
Classifir
@) O
owner owner \
Role
send
0o_attribute ‘ ‘ co_behaviora_feature‘ |
Message
00_operation o

O acknowledge Activation

definition specification

Figure 2: EXPRESS Example for Static
Structure Elements Figure 3: Sequence Diagram Example

The relationship is implemented as in the UML meta-The UML statecharts are represented by the AP-233
model, i.e. the owner attributes ob_attributeand fjnite state machines. The major exception is the
00_behavioral_featureare connected to the set of pngtion of “synchronized states” in the UML, which
UML classifiers (and attributes and operations arey|iows to synchronize concurrent states, but this can
classifiers). be substituted by modeling the respective statechart
The example shows that a class may havjifferently, ie. creating states of explicit
attributes and operations assigned. Entities thaéynchronization in the finite state machine.
represent instances of object-oriented concepts (.9 The semantics of the UML activity diagrams can
objects are instances of a class) have been modelgg represented by AP-233 causal chains. Hence,

explicitely and are directly related with the respectivethere have been only a few extensions made to AP-
definition. This deviation from the UML meta- 233 tg support activities.

model, where all instances inherit from a common
instance, has been made in order to flatten thémplementation. ~The UML concepts for the
inheritance hierarchy but is otherwise equivalent to'eépresentation of physical architecture is tailored to
the UML meta-model. the needs of software engineering, i.e. is limited to
) _ computing devices. The AP-233 capabilities for the
Use Cases. Use cases have no direct semanticigpresentation of physical architecture are far richer.
equivalent in AP-233. The AP-233 concept of Hence, AP-233 has in this respect only been extended
“partial system views” is partly equivalent, but as usejn order to capture the UML notion of components
cases are a prominent concept of their own anng their relationships. Physical computing devices
tightly coupled to other object-oriented elements, thIS(the UML notion of “nodes”) are represented by

would impose major changes in the system vieweyisting elements of the AP-233 physical
concepts, which in turn would complicate the non-grchitecture.

object-oriented use of the respective entities.
Therefore, new entities for capturing use cases have EXAMPLE
been added.

00_attribute_instance

The example in figure 4 shows how an UML
Behavior. New entities representing the UML specification would be represented with the new
concepts for collaborations, interactions and messagebject-oriented capabilities of AP-233 that have been
sequences have been added to AP-233. Note thdescribed in this paper.
especially sequence diagrams contain a number of <Job
elements that have no direct representations in the| Company employer I employee Person
UML meta-model, because their existence is implicit, !
due to the existence of other elements. |

As an example,iure 3 shows an UML sequence Tob
diagram that describes a simple communication salary
between a sender and a receiver. The contiéglise))
and activation are vital elements of a sequence Figure 4: Class Diagram Example

diagram, but are not explicitly represented in thethe example contains a simple class diagram that
UML meta-model. Hence, they are not in representediescripes the relationship between a company and its

in AP-233 as well. Their existence can be derivedemployees. There are two class€gmpanyand
from the existence of other elements: in a sequencBerson and an association among them, the

associationJob. Additionally, the association class

Future reviews of this proposal will show,

Job describes the association in more detail, i.ewhether the chosen approach is appropriate and to
whenever the associati@ob is instantiated, also an which detail object-orientation is to be represented in
instance of the association cldsedbis instantiated.

The example would be represented by AP-233 asoftware engineering concepts in AP-233 allows for

shown in figure 5 (note that entities with a blackthe

AP-233. However, the integration of object-oriented

inclusion of modern software engineering

triangle in the bottom right corner depict an instanceconcepts in the generic management capabilities of

of an entity, italics are den

Person

O
name

00_class
@

model_
element

00_element_import] Cmpany

name
0o_class
9]

associatior

container

classifier]

00_association_end 4O

association

oting attribute values).

model_
element

00_element_import

Job
0

container

name
owner

q 00_class
name
00_attribute

association

salary
o)

class

00_association_class

@]
s
00_association
a _

model_
element

‘ oofassocwationiendj ‘ ooie\ememgmportj

model_
element

model_el

model_
element

00_element_import

container

00_element_import

lement
container

00_element_import]

container

contaiper

class diagramo view_type

Figure 5: Example

O
job relationships

00_view

AP-233 Instance

Representation

The class diagram itself is represented byanview
object and its superclas® package The example

diagram is entitled

njob

relationships”,

00_package The classe€ompanyandPersonand
are represented by respectiwe_classobjects, the
associationJob is represented by apo_association
object. The end points of the associatiemgloyer

and employeg

are
00_association_enabjects.

represented

Jobis represented by aro_association_classbject,

connected to theoo_classJob and the respective

00_association Jab The attributesalary is an
00_attribute attached to theo_class Jolthrough its

attributeowner,

CONCLUSIONS AND FUTURE WORK

Possible approaches to bridge the gap between
object-oriented software engineering methods and
structured systems engineering methods have been
identified and evaluated
implementation of one of the approaches, namely to
include software engineering concepts in the ISO-
10303-233 standard proposal in order to support

in this paper.

object-oriented concepts, has been presented.

see

by Balzert, H.
The association class

AP-233. Hence, UML compliant software
specifications may now become part of global AP-
233 controlled system specifications. Also, the other
way round, AP-233 capabilities may be employed for
software specifications.

The current efforts in the systems engineering
community on evaluating the UML and formulating
usability requirements for future UML versions in
cooperation with the OMG indicates that there is
great interest in the area.

The principal author intends to continue working
on further implementations of the mentioned
alternatives in order to enable the use of the UML
also in other engineering disciplines than in software
engineering. This will probably include contributing
to a UML profile tailoring the UML to the needs of
systems engineering. The results of this work may
improve interdisciplinary communication among
engineers, just what this paper is aiming at.

ACKNOWLEDGEMENTS

The authors would like to thank the participants of
the SEDRES-2 project for their hard work.
Especially, the valuable contributions from Erik
Herzog, see (Herzog and Térne 2000), are gratefully
acknowledged. Also, the financial support from the
European Commission for the SEDRES-2 project is
gratefully acknowledged.

REFERENCES
Axelsson, J.: “Unified Modeling of Real-Time
Control Systems and their Physical

Environments Using UML” in the proceedings
of the “Eighth IEEE International Conference
and Workshop on the Engineering of Computer
Based Systems”, IEEE Computer Society, 2000

"Lehrbuch der Objektmodellierung",
Spektrum Verlag, 1999.

Booch G.: "Object-Oriented Analysis and Design
with Applications”, The Benjamin / Cummings
Publishing Company, 1994.

Cocks, D.: "The Suitability of Using Objects for
Modeling at the Systems Level" in the
"Proceedings of the Ninth Annual International
Symposium of the International Council on

Systems Engineering”", pages 1047-1054,
INCOSE, 1999.
TheGregory, W. and Reingruber, M.: “The Data

Modelling Handbook: A Best Practice Approach
to Building Quality Data Models”, Wiley and
Sons, 1994

Herzog, E. and Tdérne, A.: "AP-233 Architecture” in SEDRES-2 AP-233 proposal: “AP-233 Working
the "Proceedings of the Tenth Annual Draft 57, SEDRES-2 Website at
International Symposium of the International www.sedres.com/documents/sedres_all_docume
Council on Systems Engineering”, INCOSE, nts.html, SEDRES-2 project, 2001
2000.

ISO 10303-11: “Industrial automation systems and
integration - product data representation and
exchange - part 11: Description methods: The
express language reference manual”,
Technical Report ISO 10303-11:1994(E), 1SO,
Geneva, 1994.

ISO AP-233 Website: Internet homepage of the AP-
233 Systems Engineering Working Group at
http://www.sedres.com/ap233/sedres_iso_home.
html, hosted by the SEDRES project, 2001

Jacobson 1., Christerson M., Jonsson P., Overgaard
G.: "Object-Oriented Software Engineering - A
Use Case Driven Approach", Addison-Wesley,
1992.

Lykins H., Friedenthal S, Meilich A.: “Adapting
UML for an Object Oriented Systems
Engineering Method (OOSEM)” in the
"Proceedings of the Tenth Annual International
Symposium of the International Council on
Systems Engineering”, INCOSE, 2000.

Muller, P.-A.: "Instant UML", Wrox Press Ltd.,
1997.

OMG UML Roadmap: “UML 2.0 Roadmap
Recommendations”, OMG FTP Server at
http://cgi.omg.org/cgi-bin/doc?ad/2000-06-01,
OMG, 2000.

OMG UML v1.3: “OMG Unified Modeling
Language Specification, version 1.3, first

edition”, OMG FTP Server at
ftp://ftp.omg.org/pub/docs/formal/00-03-01.pdf,
OMG, 1999.

OMG Website: Internet homepage of the Object
Management Group at http://www.omg.org,
OMG, 2000.

Pandikow A., Herzog E. and Tdérne A.: "Integrating
Systems and Software Engineering Concepts in
AP-233", in the Proceedings of the 10th Annual
International Symposium of the international
Council on Systems Engineering, pages 831 -
837, INCOSE, 2000.

Rumbaugh J., Blaha M., Premerlani W., Eddy F.,
Lorensen W.: "Object-Oriented Modeling and
Design", Prentice Hall, 1991.

SEDRES-2: Project homepage of the “Systems
Engineering Design Representation Exchange
Standard 2" project IST 11953 at
http://www.sedres.com, 2000.

