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Abstract. This article presents an approach to simulating hybrid sys-
tems. We show how a discrete controller that controls a continuous envi-
ronment can be co-simulated with the environment (plant) using C-code
generated automatically from mathematical models. This approach uses
Signal with Simulink to model complex hybrid systems. The choices
are motivated by the fact that Signal is a powerful tool for modelling
complex discrete behaviours and Simulink is well-suited to deal with
continuous dynamics. In particular, progress in formal analysis of Sig-
nal programs and the common availability of the Simulink tool makes
these an interesting choice for combination. We present various alter-
natives for implementing communication between the underlying sub-
models. Finally, we present interesting scenarios in the co-simulation of
a discrete controller with its environment: a non-linear siphon pump
originally designed by the Swedish engineer Christofer Polhem in 1697.

1 Introduction

The use of software and embedded electronics in many control applications leads
to higher demands on analysis of system properties due to added complexity.
Simple controller blocks inMatlab are increasingly replaced by large programs
with discrete mode changes realising non-linear, hierarchical control and super-
vision. The analysis of these design structures bene�ts from modelling environ-
ments using languages with formal semantics { for example, �nite state machines
(e.g. Statecharts [11], Esterel [5]), or clocked data 
ows (e.g. Lustre [9],
Signal [8]).

These (discrete-time) languages and associated tools provide support in pro-
gramming the controller in many ways. To begin with, they provide an archi-
tectural view of the program in terms of hierarchical state machines or block
diagrams. In recent years, certain modelling environments for continuous sys-
tems have also been augmented with versions inspired by these languages, e.g.
Matlab Stateflow [20] and MatrixX [12] discrete-time superblocks.
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In addition, formal semantics for the underlying languages allows the con-
troller design to be formally analysed. Constructive semantics in Esterel and
clock calculi in Lustre and Signal, enable formal analysis directly at compila-
tion stage [4]. Properties otherwise checked by formal veri�cation at later stages
of development [6], e.g. causal consistency or determinism, are checked much
earlier. Also, results of these analyses are used at later stages of development { in
particular, for automatic code generation (code optimisation) and code distribu-
tion [2, 3, 7, 13]. Note that these types of formal analysis of a discrete controller
are so far not supported in the traditional modelling environments (e.g.Matlab

and MatrixX).
However, properties at the system level still have to be addressed by the

analysis of the closed loop system. Formal veri�cation of hybrid models is gen-
erating new techniques for this purpose. Restrictions on the class of di�erential
and algebraic equations (DAE) for the plant or approximations on the model to
get decidability are active areas of research [10, 26, 14].

In this paper we explore another direction aimed at applications where the
DAE plant model is directly used for controller testing within the engineering
design process. That is, we study the question of co-simulation. Formal veri-
�cation can be a complement to, or make use of the knowledge obtained by
integrated simulation environments. In this set-up the plant is speci�ed as a set
of DAE and the controller speci�ed in a high level design language. The con-
troller is subjected to formal veri�cation supported by the discrete modelling
tools, and the closed loop system is analysed by co-simulation. To this end, we
propose a framework in which Signal programs and Matlab-Simulink [22]
models can be co-simulated using automatically generated C-code. We present
the application of the framework to a non-trivial example suggested earlier [27,
28].

2 Introduction to SIGNAL

Signal is a data-
ow style synchronous language specially suited for signal
processing and control applications [1, 16, 18]. A Signal program manipulates
signals, which are unbounded series of typed values (logical, integer...), with an
associated clock denoting the set of instants when values are present. Signals of
a special kind called event characterised only by their clock i.e., their presence
(when they occur, they give the Boolean value true). Given a signal X , its clock
is obtained by the language expression event X , resulting in the event that is
present simultaneously withX . To constrain signalsX and Y to be synchronous,
the Signal language provides the operation: synchro X; Y . The absence of a
signal is noted ?.

2.1 The kernel of Signal

Signal is built around a small kernel comprising �ve basic operators (functions,
delay, selection, deterministic merge, and parallel composition). These operators



allow to specify in an equational style the relations between signals, i.e., between
their values and between their clocks.

Functions (e.g., addition, multiplication, conjunction, ...) are de�ned on the type
of the language. For example, the Boolean negation of a signal E is not E.

X := f(X1; X2; � � � ; Xn)

The signals X ,X1,X2,� � � ,Xn must all be present at the same time, so they are
constrained to have the same clock.

Delay gives the previous value ZX of a signal X , with initial value V 0:

ZX := X $1 init V 0

Selection of a signal Y is possible according to a Boolean condition C:

X := Y when C

The clock of signal X is the intersection of the clock of Y and the clock of oc-
currences of C at the value true. When X is present, its value is that of Y .

Y : ? 1 2 3 4 ? 5
C : t ? t f ? t t

X := Y when C : ? ? 2 ? ? ? 5

Deterministic merge de�nes the union of two signals of the same type, with a
priority on the �rst one if both are present simultaneously:

X := Y default Z

The clock of signal X is the union of that of Y and of that Z. The value of X
is the value of Y when Y is present, or else the value of Z if Z is present and Y
is not.

Y : 1 ? 2 3 ? 4 5
Z : ? 10 20 ? 30 ? 50

X := Y default Z : 1 10 2 3 30 4 5

Parallel composition of processes is made by the associative and commutative
operator \j", denoting the union of the equation systems. In Signal, the parallel
composition of P1 and P2 is written:

(j P1 j P2 j)

Each equation from Signal is like an elementary process. Parallel compo-
sition of processes is made by the associative and commutative operator \j",
denoting the union of the equation systems. In Signal, the parallel composition
of P1 and P2 is denoted: (j P1 j P2 j).



2.2 Tools

All the di�erent tools which make up the Signal environment use only one tree-
like representation of programs, thus we can go from one tool to another without
using an intermediate data structure. The principal tools are the compiler which
allows to translate Signal programs into C, the graphical interface and, for the
classic temporal logic speci�cations, the veri�cation tool Sigali.

The most interesting tool from a formal veri�cation point of view is the Si-
gali tool supporting the formal calculus. It contains a veri�cation and controller
synthesis tool-box [17, 15], and facilitates proving correctness of the dynamical
behaviour of a system with respect to a temporal logic speci�cation.

The equational nature of the Signal language leads to the use of polynomial
dynamical equation systems (PDS) over Z=3Z as a formal model of program
behaviour. Polynomial functions over Z=3Z provides us with eÆcient algorithms
to represent these functions and polynomial equations. Hence, instead of enu-
merating the elements of sets and manipulating them explicitly, this approach
manipulates the polynomial functions characterising their set. This way, vari-
ous properties can be eÆciently proved on polynomial dynamical systems. The
same formalism can also be eÆciently used for solving the supervisory control
problem.

3 Introduction to SIMULINK

Simulink is the part of the Matlab toolbox for modelling, simulating, and
analysing dynamical systems. It provides several solvers for the simulation of
numeric integration of sets of Ordinary Di�erential Equations (ODEs). As Sig-
nal, Simulink allows stand-alone generation in four steps, i.e. specify a model,
generate C code, generate make�le and generate stand-alone program. For code
generation, however, currently it is not possible to use variable-step solvers to
build the stand-alone program. Thus, we had to use the �xed step size solvers,
and therefore, the step size needs to be set accurately.

Simulink Real-Time Workshop (RTW) [19] is the setting for automatic C
code generation from Simulink block diagrams via a Target Language Com-
piler (TLC) [21]. By default1, the RTW gives mainly four C �les : <Model>.c,
<Model>.h, <Model>.prm and <Model>.reg. The function of these �les in stand-
alone simulation is fully described in [29]. Figure 1 summarises the architecture
of the stand-alone code generation with Simulink. The make�le is automati-
cally made from a template make�le (for example grt unix.tmf is the generic
real-time template make�le for UNIX).

By default, the run of a stand-alone program provides a Matlab data �le
(<Model>.mat). Before building of the stand-alone program, it is possible to
select which data we want to include in the Matlab �le. Then, one can use
Matlab to plot the result.

1 It is possible to customise the C code generated from any Simulink model with the
TLC which is a tool that is included in RTW.
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Fig. 1. Automatic code-generation within the Real-TimeWorkshop architecture

4 Modelling multi-mode hybrid systems

Signal and Simulink have both a data-
ow oriented style. Here we present a
mathematical framework in which both Signal and Simulink sub-models can
be plugged in to form a hybrid system.

Hybrid systems can be mathematically represented as follows:

_xi = fi(q; xi; ui; di) ; xi 2 R
ni ; q 2 Q (1)

yi = hi(q; xi; ui) (2)

ei = si(q; xi; ui; yi) (3)

�i = e:1fei 6=ei g (4)

q0 = T (q; �) ; � = (�i; i = 1; : : : ; I) (5)

Where:



(1): i = 1; : : : ; I indexes a collection of continuous time subsystems (CTS),
q 2 Q is the discrete state, where Q is a �nite alphabet,
xi 2 R

ni is the vector continuous state of the ith CTS,
ui 2 R

mi is the vector continuous control of the ith CTS,
di 2 R

oi is the vector continuous disturbance of the ith CTS.
(2): yi 2 R

pi is the vector continuous output of the ith CTS,
(3): ei 2 Bri where B is the Boolean domain. Thus at each instant an r-tuple of

predicates depending on the current values of (q; xi; ui; yi) is evaluated.
Examples are xki > 0 where superscript j refers to the kth component of xi,
if xi = (x1i ; : : : ; xni), or g(q; xi; ui; yi) > 0 for g(q; :; :; :) : Rni+mi+pi 7�! R,
and so on.

(4): ei (t) denotes the left limit of ei at t, i.e., the limit of ei(s) for s < t; s % t.
Assume that eki (t) 6= eki (t) means that the kth predicate changes its status
at instant t; this generates an event �ki . The marked events �ki together form
a vector event �i (and the latter form the vector event �). Thus trajectories
ei are piecewise constant.

(5): q; q0 are the current and next discrete automaton state.

We use an architectural decomposition earlier used for several case stud-
ies [25]. Here we use it to discuss the way the communication between the two
sub-models can be implemented for co-simulation.

In the generic architecture shown in Figure 2, the Plant (P) is the physical
environment under control. The inputs u, the outputs y and the disturbances
d all have continuous domains. The Characterizer (C) is the interface between
the continuous plant and the discrete selector, including A/D converters. The
Selector (S) is the purely discrete part of the controller { with discrete, input,
state and output. The E�ector (E) is the interface between the discrete selector
commands and the continuous physical variables including actuators.

This architecture is a good starting point for hybrid system modelling. It
remains to decide:

{ How to map the mathematical representation above on the architecture?
{ Which parts should be modelled in Signal and which parts in Simulink?
{ How the Signal part should be activated? Which mechanism should be used
including A/D convertors.

Controller K

c

u

e

Plant P

Characterizer C

Selector S

E�ector E

y

d

Fig. 2. General hybrid system architecture. Solid (dotted) arrows represent con-
tinuous (discrete) 
ows



From our introductory remarks it should be fairly obvious that selector mod-
elling is best done in Signal, and that Simulink is best for modelling the plant.
Thus, it remains to determine how to implement the interface between the two,
or rather, where and how to model the characterizer and the e�ector. Next, we
need to determine how to generate runs of the hybrid system.

In this paper we adopt the scheme whereby the main module of the Simulink
model is the master and the Signal automaton is one of the many processes run
in a pseudo-parallel fashion. This is realisable using the translation scheme in
RTW. The Simulink model then contains input ports allowing Simulink sub-
system blocks to be enabled and disabled, and output ports allowing subsystems
to emit events to the controller. The connection can now be made by means of
global variable passing.

5 Computational model with global variable passing

The mathematical model in section 4 is a natural way to conceptualise and
model a multi-mode hybrid system. To implement such a system we have to
transform these equations into a computational model. In this section we cast the
generic mathematical model into the architectural framework presented earlier.
In section 6 we provide three protocols for activation of the Signal part of the
model.

The plant is made of a collection of �nite continuous time subsystems. As
in the mathematical representation of section 4, let I be the cardinality of the
collection and let i index over I. Each subsystem i contains a vector xi 2 R

ni of
ni continuous state and also ni di�erential equations.This set of equations can
be rewritten as follows:0

B@
_x1i
...
_xni

i

1
CA =

0
B@

f1i (q; x
1
i ; ui; di)
...

fni

i (q; xni

i ; ui; di)

1
CA (6)

Hence, the system contains
PI

k=1 nk di�erential equations for each q. That is,

J = jQj
PI

k=1 nk di�erential equations in the continuous system. However, the
implementation needs to extract the discrete parameter q 2 Q of these di�eren-
tial equations.
At any time t, one or several equations among this collection forms the basis for
computation. Consider the whole set of system equations as follows:

F1(x
1
1; u1; d1) = f11 (q1; x

1
1; u1; d1)

F2(x
1
1; u1; d1) = f11 (q2; x

1
1; u1; d1)

...
FjQj(x

1
1; u1; d1) = f11 (qjQj; x

1
1; u1; d1)

FjQj+1(x
2
1; u1; d1) = f21 (q1; x

2
1; u1; d1)

...

(7)



Let j be a new index for indexing the system equations. Then, we can de�ne a
new function Fj for the jth equation in the above list. Now we can rewrite each
di�erential equation as follows:

_xj = Fj(xj ; uj ; dj) (8)

which allows to calculate the vector continuous state x and the vector continuous
output y thanks to equation y = h(x; u). Then y feeds the characterizer, and the
equation e = s(y) de�nes the detection of event e.

Figure 3 shows one possible mapping of the mathematical representation
into the architecture (later, we will see that this is not the only mapping). In
comparison with Figure 2, a new component has been added in the controller,
it is the Edge detector which corresponds to equation (4). The discrete state q
is de�ned only in the selector which is the only purely discrete part. So, the
selector contains the rewritten form of equation (5):

q0 = T (q; �) � = (�j ; j = 1; : : : ; J) (9)

and the new equation below:

c = g(q0) (10)

where c 2 RJ is the vector discrete control of the e�ector. The e�ector deduces
from its input c two continuous vectors u 2 RJ and enabl 2 BJ thanks to:

(uj ; enablj) = k(cj) (11)

enablj is used by the plant to enable or disable the jth di�erential equation and
uj is the vector continuous control of the jth di�erential equation.

Since the discrete controller (the automaton) is in one state at any one com-
putation point2, it follows that the change in continuous state is well-de�ned,
i.e. although several equations are enabled in parallel, only one equation at a
time is chosen for each continuous state variable.

2 This is a property of the data-
ow program ensured by formal analysis built-in in
the compilers for synchronous languages.
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Fig. 3. Hybrid system representation

6 Selector activations

The selector, i.e. the union of equations (9) and (10) is assumed to work in
discrete time, meaning that continuous time t is sampled with period �t. During
each sampling period, the (ej(t); ej(t+�t)) trajectory is recorded, and it is hoped
that each component of ej changes at most once during the sampling period. If ej
changes during the sampling period then the event �j is emitted. Then, there are
several possibilities for checking the event �j by the selector. These possibilities
depend on how the selector is activated. Here we discuss three activation methods
{ i.e., periodic, aperiodic and asynchronous selector activations.

6.1 Periodic synchronous selector activations

Synchronous means here that the selector activation coincides with a tick of the
clock of the sampled continuous system.

Protocol 1 At each sampling period �t, the selector senses the �nal value of
vector �j , and applies its transition according to (9).

This protocol is simple, but assumes that sampling period �t is small enough
to avoid missing events. This may typically lead to taking a �t much smaller
than really needed, i.e., to activate the automaton for nothing most of the time.



6.2 Aperiodic synchronous selector activations

Protocol 2 Here the continuous time system (equations (8)) is the master,
driven by continuous real time t. Each time some �j occurs a \wake up" event
is generated by the jth continuous time system in which �j was generated. Then
selector (equation (9)) awaits for wake up, so wake up is the activation clock of
the selector. When activated, the automaton checks which event �j is received,
and moves accordingly, following equation (9).

Within this protocol, the master is the continuous time system, and the se-
lector reacts to the events output by the continuous time system. More precisely,
the continuous time system outputs wake up (in addition to �j), which in turn
activates the selector.

6.3 Asynchronous selector activations

Here, continuous subsystems and the selector have independent Simulink threads,
that means above all the selector has its own thread and its own activation clock.

Protocol 3 At each round, the selector senses whether there is some event � ,
if it is the case then the selector moves accordingly, following equation (9) and
�nally, it outputs the state changes to the e�ector following equation (10).

It is important to note that with Protocol 3 the � generation should be
done in the Signal part instead of the Simulink part (compare with Figure 3).
Indeed, if the � is provided by Simulink, there is a risk that the selector will
miss some � because no assumption can be made about when the selector will
check its input channels. In the best case some � are recognised with a delay of
one tick in the selector.

7 Application: the siphon pump

The protocols for aperiodic and asynchronous selector activations have been
implemented in our co-simulation environment [29]. In this section we give a
brief exposition to application of the aperiodic protocol to a non-trivial example
earlier introduced in [27, 28]. This is a model of a siphon pump machine invented
by the Swedish engineer Christofer Polhem in 1697. The purpose of the pump
was to drain water from the Swedish copper mines with almost no movable
parts. This works by having a system of interconnected open and closed tanks,
and driving the water up to the ground level by adjusting the pressure in the
closed tanks via shunt valves. The idea of the pump was so revolutionary in those
times that the pump was never built. However, a model of the pump going back
to the 17th century is the basis of the dimensions (and therefore the coeÆcients
in the model) that we have used in our down-scaled model. Figure 4 shows a
fragment of the pump consisting of the bottom three tanks.



The plant model has several interesting characteristics. First, even without
the discrete controller, there are some discrete dynamic changes in the plant.
These are brought about by the two check valves (hydro-mechanically) control-
ling the 
ow of water between each open and closed container. Secondly, the
plant dynamics (and also the closed loop dynamics) is non-linear. When the
check valve between container i and container i+1 is cracked, the 
ow of water
in that pipe, denoted by qi(i+1), is de�ned by _qi(i+1) = f(pi(i+1); qi(i+1)) where f
is a non-linear function, and pi(i+1) is the pressure in the pipe between container
i and container i+ 1.

For closed-loop simulation we thus had to make an appropriate decomposi-
tion, placing the purely discrete parts (including switching in the plant) in the
Signal environment, and the purely continuous parts in the Simulink environ-
ment.

q1

q23

Pneumatic
pipe

q12

Hydraulic
pipe

x1

Check
valve

q34

p�

p+

x2

pc

Discrete
shunt

valve

x3

Fig. 4. A fraction of the siphon pump machine

7.1 Working principles

The purpose of the pump is to lift the water which 
ows into the sump at the
bottom of the mine to the drained ground level sump. This pump works in a two-
phase (pull and push) manner as follows. The principle works for an arbitrary
system of alternative closed and open tanks as follows.

The pull phase In the pull phase, the pressure vessels (the closed tanks) are
de-pressurised by opening the p� side of the shunt valve which drains the vessels
(the p� side is connected to a negative pressure source e.g. a vacuum tank).
Now, the water will be lifted from all the open containers to the pressure vessels
immediately above. Hence, as a result of this �rst phase, all the pressure vessels
will be water-�lled.



The push phase In the push phase, the pressure vessels are pressurised by
opening the p+ side of the shunt valve to �ll the air-compressing vessel with air
(the p+ side represents a positive pressure source, e.g. created by an elevated
lake above the mine). Now, all the pressure vessels will be emptied via the
connections to the open containers immediately above. Hence, as a result of this
second phase, all the open containers will again be �lled with water. However,
the water has now been shifted upwards half a section. By repeating these two
phases the water is sequentially lifted to the ground level.

Figure 4 depicts a fraction of the siphon pump machine. The water entering
the bottom container (
ow q1) is lifted to the top container by lowering and
raising the pneumatic pressure Pc in the closed vessel. Due to the check valves
(in between the open and closed valves), the water is forced to move upwards
only. The reason why more than three containers and vessels are needed in
practice, is that the vertical distance between any pair of vessel and container
is strictly less than 10 meters since water can be lifted no higher than � : 10
meters by means of the atmospheric pressure (� 1 bar). In the sequel we assume
that there are only three levels to the pump and the �nal 
ow variable q3 = q34.
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Fig. 5. General hybrid system architecture of the pump

7.2 Mathematical models

From the high level description of the pump, it is possible to represent the sim-
ulated system by means of the architecture presented earlier. Thus, the system
decomposition can be depicted as in Figure 5.



At the topmost block, the pump has the external 
ow q1 [m
3=s] entering

container 1 as input and the external 
ow q3 leaving the container 3 as output.
The 
ow q1 entering container 1 is determined by the environment (ground water
entering the mine cannot be controlled but is de�ned by Mother Nature). Hence
q1 is a disturbance signal.

The closed loop system is modelled with the plant supplying control informa-
tion to the e�ector, the characterizer and eventually to the selector. Obviously,
the selector acts on the pneumatic pressure in container 2, i.e, increasing and
decreasing Pc. Then the e�ector provides from Pc and from the gravity induced
hydraulic pressure due to accumulated water in containers (p1, p2 and p3) the
net driving pressure of the vertical pipes (p12 and p23). Hence, in addition to q1,
the plant uses p12 and p23 to calculate the output 
ow q3. In order to stimulate
the selector, the characterizer \watches" continuously the water levels of the
containers (x1, x2 and x3) and sends event � to the selector when it is necessary.
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The re�ned model of the plant is depicted in Figure 6. It contains mainly two
check valve systems. Each check valve system is a hybrid system. Indeed, the
water 
ow through a check valve behaves di�erently according to the mode of
the latter. In the checked mode the water 
ow is zero and in the cracked mode
the water 
ow follows a non-linear di�erential equation (the interested reader
is referred to the full report [29] for details of the plant model). Note that the



check valve can be modelled using both Simulink and Signal: The discrete
mode changes are modelled in Signal and the rest in Simulink.

7.3 The control strategy

Finding a safe and optimal controller is far from easy. One of the more important
requirements is to maximise the output 
ow q3 without risking that xi will end
up outside de�ned safe intervals. That is, to avoid over
ow in the containers
(and the mine), specially under all possible disturbances (q1).

Another important requirement is related to energy consumption and main-
tainability. It is important to minimize the number of switches of the value of
Pc. Changing Pc from +50kPa to �50kPa and vice versa results in a signi�cant
amount of energy loss. One solution is to maintain Pc constant over as long
periods as possible.

A naive controller can be depicted by the automaton of Figure 7. This is not
a robust controller and it was chosen to show the power of the co-simulation
environment in illustrating its weaknesses.

Pc = 0 Pa

Idle Pull Push

Pc = �50 kPa Pc = 50 kPa

x1 � UB1
x2 � UB2 OR x1 � LB1

e3

x3 � UB3 OR x2 � LB2

e1 e2

Fig. 7. Automaton implementing the control strategy in a selector, UBi and
LBi are the level upper and lower limits in tank i respectively.

The behaviour of this controller can be informally described as follows.

1. The �rst discrete state, i.e., the Idle state, is the initialisation state. At the
beginning, the three containers are empty. So it is necessary �rst to let the
bottom containers �ll. This is what is done in the Idle state.

2. When the �rst container is full enough, an event is broadcast by a level
sensor (which is simulated by the characterizer) and the pump moves from
the Idle state to the Pull state.

3. In the Pull state, container 2, i.e., the pressure vessel, is de-pressurised.
Hence container 2 �lls from container 1. Note that container 1 is continuously
�lled by the input 
ow q1 which is uncontrollable. So the water level of
container 1 moves according to the input 
ow q1 and the 
ow q12 in the



pipe between the two containers 1 and 2. When both are possible the level
of container 1 either rises or falls.

4. If the water level of container 1 moves down until a given minimum threshold
(detected by a sensor) or if the water level of container 2 is high enough then
the pump moves from the Pull state to the Push state.

5. In the Push state, container 2 is pressurised. Hence container 2 stops �lling
from container 1 and �lls container 3. So, container 1 continues to �ll ac-
cording to the 
ow q1 and container 3 �lls according to the 
ow q23 (in the
pipe between the two containers 2 and 3) and the output 
ow q3. Container
2 is of course emptied.

6. Finally, if the water level of container 2 reaches its minimum threshold or
if the water level of container 3 is high enough then the pump comes back
from the Push state to the Pull state. Thus, the loop is closed.

The above automaton shows which events lead to discrete state transitions
of the selector and how these events are detected. Hence it is easy to model a
characterizer which watches the di�erent water levels and provides the suitable
events.

8 Analysis results and future works

In this section we present some co-simulation results. We study the behaviour
of the closed loop system for given disturbance signals (incoming water into
the bottom container) in presence of the naive controller. It is illustrated that
while certain aspects of the behaviour are as expected, we also get unsatisfactory
outputs.

Fig. 8. Water levels of the system with q1 = 2:10�6m3=s



First, observing the behaviour of the 
ow in the di�erent pipes appears sat-
isfactory. However, that in itself is not suÆcient for correctness of the pump
behaviour. Indeed, it is necessary to study the water levels in each container to
check whether there is an over
ow. Figure 8 shows such traces. The water level of
the ith container is denoted by xi and H denotes the height of the containers. At
the beginning of the simulation, i.e., at time t = 0, the water level in container
1 is 0:02m and all the other containers are empty. What is important in these
traces is that around t = 350 s container 1 over
ows since x1 reaches the value of
H . Because water was not lifted fast enough against the input water 
ow q1. The
controller is not to blame, since over
ow is due to q1 which is uncontrollable.

The next plot shows that even if there is no over
ow, the controller has a
bad behaviour. That is, an in�nitely fast switching behaviour in the shunt valve
controller appears. This undesired behaviour of the system is a direct result of the
naive control strategy adopted, not due to the chosen communication protocol.
This lack of robustness in the controller is well-illustrated by the co-simulation,
see Figure 9.
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Fig. 9. The simulation result illustrating in�nite switching.

Current work includes experiments using the asynchronous protocol. Another
interesting problem is to study the range of values for q1, for which the pump
can work without problems; in particular, how simulation and formal veri�cation
can be combined to analyse such problems. Also, it is interesting to apply the
combined environment to systems with more complex controller structure [24],
where formal veri�cation in Sigali and co-simulation in the current environment
are combined.

A survey of related works on simulation of hybrid systems can be found in
[23]. A typical requirement in dealing with hybrid simulation is that systems



with uneven dynamics be simulated with variable step solvers so that rapid
simulation and accuracy can be combined. Our work points out a weakness
in the code generation mechanism of Matlab which restricts the ability to
use variable solvers. On the other hand, this may not be a problem in some
application areas. For example, it was not considered as a critical issue when
this work was presented at a forum including our industrial partners from the
aerospace sector.
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