
Integrating Systems and Software Engineering
Concepts in AP-233

Asmus Pandikow, Erik Herzog, Anders Törne
Real-Time Systems Laboratory

Linköpings Universitet
581 83 Linköping, Sweden

E-mail: {asmpa, erica, andto}@ida.liu.se

ABSTRACT

This paper presents ongoing work to extend the ISO
10303-233 (AP-233) systems engineering information
model in order to integrate software-engineering
concepts. The work is motivated by the increasing
importance of software in contemporary systems and
the gap between systems and software engineering’s
specification methods. Encoding entities supporting
modern software engineering attains two objectives.
Firstly, the model could be used for exchanging
software specifications in addition to system
specifications. Secondly, relationships between entities
representing software and system concepts can be
encoded which allows for traceability between
requirements expressed in a systems specification and
the software design specification.

INTRODUCTION

Requirements on and specifications of systems and
software have traditionally been expressed in text, often
augmented with illustrations in different formats. As
long as this was the predominant method there were no
explicit information exchange problems between system
and software engineers. Expressing requirements and
specification in natural language has distinct drawbacks,
as most, if not all natural languages are ambiguous by
nature. It is very difficult to express requirements in a
format that cannot be misunderstood or misinterpreted.
Furthermore, textual specifications cannot be simulated
or verified formally. Consequently, it is not possible to
make any statements about the correctness of such a
specification.

Both the systems and software engineering
communities have acknowledged the drawbacks of
using natural language in specifications, but different
methods have evolved in the respective communities.
Systems engineering has adopted a function-centered
approach as described in, e.g., (Hatley and Pirbhai,
1987) and (Oliver et al., 1997), while software

engineering preferred the object-oriented approach.
The result is a situation where moving information
between the domains has become difficult. There exists
a gap between the models at system and software levels,
as described in (Cocks, 1999). As a consequence,
decisions in the software development phases cannot be
directly traced from the systems engineering point of
view and vice versa. This might lead to mismatching
specifications and hence result in software that might
not be compliant with the original system requirements.

AP-233 is the reference within ISO 10303 (STEP)
to a standardization project for systems engineering data
exchange. The main aspect of this project is to create an
information model that encompasses the main systems
engineering information elements.

In this paper we describe ongoing work to interlink
the systems engineering process and the software
engineering process and to integrate object-oriented
concepts into the existing elements of the current
working draft of the AP-233 information model. An
up-to-date overview of the AP-233 project is available
in (Johnson et al., 2000) and the architecture of the AP-
233 information model is presented (Herzog and Törne,
2000).

The rest of this paper is outlined as follows. The
next section provides further motivation for the need to
integrate object-oriented concepts with the systems
engineering process and sketches the scope of the
integration work. The subsequent sections describe the
process of object-oriented software engineering
followed by a brief description of the elements of the
AP-233 information model. More information on AP-
233 is available in (Herzog and Törne, 1999a), (Herzog
and Törne, 1999b) and (Johnson, 1998). The object-
oriented concepts are then compared to the matching
parts of the AP-233 model and the degree of
equivalence is identified. This is followed by a
discussion of the integration work performed. A
conclusion and an outline of future work finish the
paper.

THE NEED TO INTEGRATE SE AND OO

In many domains, systems engineers are concerned with
systems having substantial parts of their functionality
implemented as software.

The increasing capacity of computer systems and
the flexibility of software facilitates the realization of
more system functions as software and hence increases
a system’s software/hardware ratio. The fact that
different analysis and design methods for software and
systems engineering are employed, makes it difficult to
convey information from the system engineering
process to the software engineering process. This also
applies to the feedback from the software engineering
process, which is delivered to the encompassing system
engineering process.

Inherent software intensive domains, such as
telecommunication, have started to look at their
products as part of the encompassing system. This
implies the same problem as mentioned above:
conveying information between different processes,
using different concepts and different notations.

Object-oriented software engineering has emerged
as the dominant software engineering method.
Combining the methods of object-oriented software
engineering and system engineering would improve the
information exchange between the engineering
processes and hence improve the overall process.

We are involved in the development of AP-233 and
believe that this provides an opportunity for integrating
systems engineering and object-oriented concepts in
order to achieve the objectives stated above. Including
concepts of software engineering in the AP-233
information model will then provide the means for
maintaining traceability of design decisions and their
consequences throughout the complete engineering
process, including software engineering. It may also
improve the overall process by increasing the common
understanding of the system to be developed.

One has to be aware of the fact that object-
orientation originates from software engineering and is
not originally intended to directly represent objects of
the physical world as concepts like inheritance do not
exist there. Nevertheless, the object-oriented approach
might be used for representing physical structure and
logical relationships between physical objects. In this
paper we focus on the integration of object-orientation
to support the flow of information from systems
engineering to software engineering.

OBJECT-ORIENTED CONCEPTS

As object-oriented concepts originate from software
engineering and as software is always only a part of the
system to be developed, the early object-oriented
methods such as (Booch, 1991) and (Rumbaugh et al.,

1991) do not cover all aspects of the software’s entire
lifecycle. For example, requirements management and
post-productive activities such as maintenance and
disposal were usually expected to be covered by the
methodology of the encompassing project.

The Unified Modeling Language UML (Booch et
al., 1996) emerged from the major object-oriented
methods by (Booch, 1994), (Rumbaugh et al., 1991)
and (Jacobson et al., 1992). It is the first object-
oriented notation that allows engineers to informally
capture requirements (beginning with the help of
Jacobson’s “use cases”) and also addresses aspects of
physical architecture (in its implementation diagrams).

As the UML incorporates all important object-
oriented concepts and as the Object Management Group
(OMG Web Site, 2000) accepted it in 1997 as a
standard, our further discussions and integration efforts
are based on the current version 1.3 of the UML (OMG
UML Specification, 1999).

The ideal object-oriented software engineering
process can be described through three sequential
phases: system analysis, design and implementation.
Object-orientation provides basic concepts, which can
be homogeneously used throughout all phases of the
process. The basic concepts are class, object, attribute,
operation, message, inheritance and polymorphism, see
(Balzert, 1996) or (Muller, 1997) for an introduction.
The main phases of the object-oriented software
engineering process are further outlined below:

Analysis phase. Identifying the elemental use cases
and the global logical packages of the system is the first
step within the analysis phase of object-oriented
software engineering. This is supported by the UML
concepts for use cases and a system’s static structure.

Completing the static model of a system
(identifying classes, their associations and subsystems)
and subsequently creating the dynamic model (detailed
use cases and behavior descriptions) are concluding the
analysis work. The UML provides additional concepts
for this: use cases can be elaborated as message
sequences and collaborations between objects.
Moreover, state machines, activity diagrams and class
operations can be used to describe behavior.

Design phase. In the design phase the system model
from the analysis phase is further elaborated to gain a
closer mapping to the final software. The analysis
concepts are generally kept and only extended by
details that allow for tailoring the model for
implementation purposes. For this, the UML provides
for example class templates, detailed interface and
association descriptions as well as overloading and
several kinds of polyphormism for class operations.

Implementation phase. Implementing the model,
which emerged from the design phase in an object-
oriented programming language, is the final phase of the
object-oriented software engineering process. The
UML supports implementation by a view of the
components of the software, their interfaces and
relations. It also provides a notation for the run-time
deployment of software components among the
system’s hardware components.

UML in software engineering. The UML supports the
software engineering phases with several notations,
each giving a different view of the modeled system.
One notation alone is not sufficient to describe the
complete system and the notations usually do not
require formal rigor. Instead, they permit the inclusion
of semi-formal and informal elements, which allows
modeling at different levels of granularity. This might
lead to difficulties in interpreting and exchanging the
model as it may contain ambiguities.

AP-233 CONCEPTS

The current AP-233 working draft information model,
supports the core elements produced in a system
engineering process based on structured analysis
(Hatley and Pirbhai, 1987). The model itself is process

independent, but there is a close relationship to the
design elements mentioned in the process description in
IEEE 1220 (Ptack, 1998). The engineering process is
illustrated in Figure 1.

In the information model there is extensive support
for the representation of requirements, functional and
physical architectures. There are entities defined for
maintaining traceability of how a system evolves.

The assumption in AP-233 is that the main
elements of a complete specification for each life cycle
of a system may be one of more of the following:

1. The set of requirements defining what a system shall
perform, how well it shall be performed etc.

2. A functional architecture defining the functions,
formally or informally, a system shall perform,
including how it communicates with elements
outside the system. The functional architecture may
also contain elements for defining the dynamic
behavior of a system, e.g., finite state machines,
causal chains or formal statements.

3. A physical architecture defining the physical and/or
logical architecture of the system under
specification.

4. Traceability relationships defining traceability from
requirements to elements in the functional or
physical architecture.

Physical
Verification

Requirement
Analysis

Requirements
Baseline

Validation

Functional
Analysis

Functional
Verification

Synthesis

Requirements Baseline

Validated Requirements Baseline

Functional Architecture

Verified Functional Architecture

Physical Architecture

Verified Physical Architecture

Control

PROCESS
INPUTS

Requirements
Trade Studies &

Assessments

Functional
Trade Studies &

Assessments

Design
Trade Studies &

Assessments

Systems

Analysis

Requirement &
Constraint Conflicts

Requirement
Trade-offs & Impacts

Decomposition/Allocation
Trade-offs & Impacts

Decomposition &
Requirement Allocation
Alternatives

Design Solution
Trade-offs & Impacts

Design Solution
Requirements &
Alternatives

Process Output

Figure 1: The IEEE 1220 Systems Engineering process

5. Allocation relationship defining how elements in the
functional architecture are mapped onto physical
elements.

The main elements of the model are illustrated below in
Figure 2 and different aspects of the model are further
outlined in, e.g., (Johnson, 1998), (Herzog and Törne,
1999a) and (Herzog and Törne, 1999b).

In addition to the elements presented above the
information model supports representation of
presentation information, version and configuration
management and a wide variety of administrative
information as described in (Herzog and Törne, 2000).

COMPARISON

Approach. To prepare the integration of object-
oriented concepts into the AP-233 information model,
we have started with comparing object-oriented
concepts and their corresponding equivalents in the AP-
233 information model using the following approach:

• Create a meta-model of the UML

• Identify semantically equivalent parts of the UML
and the AP-233 model

• Compare the matching parts of both models and
determine their degree of equivalence

The purpose of the comparisons is to support the
identification of opportunities for integrating the
models.

UML meta-model. The UML meta-model has been
partly based on the existing meta-model in (OMG UML
Specification, 1999). It has been captured in
EXPRESS, just as the AP-233 information model was,
in order to facilitate the integration efforts by an
equivalent representation with respect to the modeling
language.

UML constructs have been modeled in accordance
to the modeling style selected for AP-233 in order to
gain maximum congruence.

Equivalents. Table 1 gives an overview of the UML
notations and how they roughly map to equivalent parts
of the AP-233 information model.

UML Notation AP-233 equivalent

Static structures Packages, partially types,
data items

Use cases Partially in system views
Sequences and
Collaborations

Partially causal chains

Activities Causal chains
Statecharts Finite state machines
Components and
deployment

Physical architecture

Table 1: UML notation mapping
The mapping of single concepts of the UML

notations to semantically equivalent concepts of the AP-
233 information model is shown in Table 2.

AP-233 OO (UML)

Project management (no equivalent)
Configuration
management

(no equivalent)

Version management (no equivalent)
Requirements (no direct equivalent)

Partially in use cases
System / sub-system (no direct equivalent)

Partially packages, classes
and components

Partial system view Partially in use cases
Functional analysis /
breakdown

in classes

Causal chains (no direct equivalent)
Partially as message
sequences object
collaboration

Physical system
structure

Partially in components and
deployment

Data types Data types, except class
State machines Statecharts
Petri nets, causal
chains

Activities and their
transitions

(no equivalent) Classes, objects and
associations between them

(no equivalent) Interactions between
classes and objects

Table 2: Concept mapping
Global interconnections within the AP-233 model,

such as version management and traceability had to be
excluded from the mapping, as these are not supported
by the UML.

Allocated to

System

Requirements Functional
architecture
(Behaviour)

Physical
architecture

Traces to

Fulfils Fulfils

Traces to

Fulfils

System
requirements

Defines functional
architecture

Defines physical
architecture

Figure 2: Information model,
conceptual view

Comparison. For each equivalence in comparison we
evaluated whether they represent the same idea or if
they represent genuinely different concepts.

Comparing the corresponding parts of the two
models resulted in the following equivalence classes:

• Full equivalence

• Partial equivalence

• No equivalence

Full equivalence means that the respective UML
concept can be represented by the corresponding AP-
233 concept. Small extensions to the AP-233 model
may have to be inserted in order to fully capture the
UML characteristics. These extensions may in turn also
be beneficial for systems engineering methodologies
and for the systems engineering process.

Partial equivalence indicates that only some of the
major characteristics of an UML concept can be found
in the AP-233 equivalent. The AP-233 model would
have to be extended substantially to be able to capture
the UML counterpart.

No equivalence denotes that an UML concept
cannot be identified in the AP-233 information model
or that the corresponding concepts are semantically
completely different and hence new model entities have
to be created.

Table 3 summarizes the UML concepts grouped
into the presented equivalence classes.

UML Concept Equivalence class

Statecharts Full equivalence
Activities & transitions Full equivalence
Classes Partial equivalence
Objects Partial equivalence
Component view Partial equivalence
Deployment view Partial equivalence
Use cases Partial equivalence
Class associations No equivalence
Message sequences No equivalence
Object collaborations No equivalence

Table 3: Equivalence classes
For the cases of full or no equivalence the

modeling solutions are obvious: AP-233 entities, which
support fully equivalent UML concepts have possibly
only to be adapted to the flavor of UML. Entities for
capturing the cases of no equivalence have to be created
and linked to existing context entities and global
mechanisms of the AP-233 model.

Partial equivalencies require a more thorough
investigation of possible integration alternatives in
order to retain the semantics and modeling
characteristics of both the UML and the existing AP-

233 model. The following paragraphs describe the
above mentioned partial equivalencies in more detail.

The UML class concept incorporates class
operations and attributes, which partially can be
compared to the existing AP-233 notions of functions,
data items (variables) and their definition in data types.
Also objects as instances of classes have similarities
with the AP-233 data items and their definition in a data
type. Thus, the AP-233 model provides some of the
elements of a class but not a composite data type that
combines them, i.e. the class as a data type is missing.
See also the integration example further down.

The implementation notations in the UML, i.e. the
component view and the deployment view, can for the
most part be represented by AP-233 entities for physical
architecture. However, the possibility of having
incomplete component interface definitions is not
included in the AP-233 model and the run-time
character of the UML deployment view does not
semantically match the AP-233 model.

The notion of use cases can for the greater part be
represented by AP-233 entities for a partial view of a
system, i.e. a perspective only including certain aspects
of the system. Nevertheless, for the UML actors there
is no semantically equivalent construct available in the
AP-233 model.

INTEGRATION

We are currently integrating UML concepts into the
AP-233 information model. We have decided to focus
on some characteristic object-oriented concepts first and
integrate the remaining parts after having gained
experience from the first integration efforts. Use cases,
classes and objects, associations between classes and
statecharts have been selected for this, as they include at
least one concept of each equivalence class in our
integration taxonomy.

The integration of partial equivalencies such as
classes and objects has to be carefully examined with
respect to interference with AP-233 constructs. For
example, to integrate the class concept we have
extended the existing AP-233 data types with a new
data type “class”, e.g. we consider a class to be a data
type, which also can be found in other object-oriented
notations such as programming languages.

To avoid side effects we have decided to introduce
a new abstract super type for the class data type and the
existing traditional AP-233 data types, as shown in
figure 3.

super data type

class data type traditional data type

one of

Figure 3: Integration example

The traditional data types again represent the
traditional usage of data types within the AP-233
information model, whereas the object-oriented usage
refers to the super data type. This means that an object-
oriented data instance can either be of type class or of
one of the traditional data types.

Once UML concepts are integrated in the
information model, they are supported by general AP-
233 concepts such as version and configuration
management. Moreover, the information model can also
be extended to link concepts which are already part of
the information model to relevant UML concepts. For
example, requirements can then also be associated with
elements in the object-oriented model such as classes
and objects.

This allows for the inclusion of object-oriented
elements into the tracing capabilities of the AP-233
information model. Decisions taken in the software
engineering phase can then be traced from a global
systems engineering point of view.

CONCLUSIONS AND FUTURE WORK

It is likely that in the future software will take over even
more functionality, which has so far only been
realizable with hardware. Also additional tasks might
be realized with the help of software, which increases
the proportion of software in systems.

This development is an indication that it would be
beneficial if systems engineering methods could be
extended to incorporate advanced software-engineering
methods. A desirable consequence is that paths for
smooth information exchange between systems and
software engineering could be established.

It has not been decided whether object oriented
concepts as outlined in this paper shall be included into
the AP-233 standard proposal. Regardless of the
decision made it is important to close the gap between
software and systems engineering methods – both from
a method and a data exchange point of view.

We intend to continue integrating UML concepts
into the AP-233 information model in order to identify
examples of design data exchanges between traditional
systems engineering tools and object-oriented tools
supporting the UML as well as between object-oriented
tools.

ACKNOWLEDGEMENTS
The authors gratefully acknowledge the hard work

of participants in the supporting projects. The financial
support from the European Commission for the
SEDRES project (Esprit 20496) and Swedish National
Board for Industrial and Technical Development
(NUTEK) for the SEDEX project (Project no. IPII-98-
06292) is also gratefully acknowledged.

REFERENCES
Balzert, H.: "Methoden der objektorientierten

Systemanalyse", Spektrum Akademischer Verlag,
1996.

Booch, G.: "Object-Oriented Design with
Applications", Benjamin / Cummings Publishing
Company, 1991.

Booch, G.: "Object-Oriented Analysis and Design with
Applications", The Benjamin / Cummings
Publishing Company, 1994.

Booch, G., Rumbaugh, J., Jacobson, I.: "The Unified
Modeling Language for Object-Oriented
Development", Rational Software Corporation
http://www.rational.com/uml, 1996.

Cocks, D.: "The Suitability of Using Objects for
Modeling at the Systems Level" in the
"Proceedings of the Ninth Annual International
Symposium of the International Council on Systems
Engineering", pages 1047-1054, INCOSE, 1999.

Hatley, D. and Pirbhai, I.: “Strategies for Real-Time
System Specification”, Dorset House, 1987.

Herzog, E. and Törne, A.: “A Seed for a Step
Application Protocol for Systems Engineering” in
“1999 IEEE Conference and Workshop on
Engineering of Computer-Based Systems”, pages
174–180, IEEE Computer Society Press, 1999.

Herzog, E. and Törne, A.: "Towards a Standardised
Systems Engineering Information Model" in the
"Proceedings of the Ninth Annual International
Symposium of the International Council on Systems
Engineering", pages 909-916, INCOSE, 1999.

Herzog, E. and Törne, A.: "AP-233 Architecture" in the
"Proceedings of the Tenth Annual International
Symposium of the International Council on Systems
Engineering", INCOSE, 2000.

Jacobson, I., Christerson, M., Jonsson, P., Övergaard,
G.: "Object-Oriented Software Engineering - A
Use Case Driven Approach", Addison-Wesley,
1992.

Johnson, J.: “The Sedres Project: Producing a Data
Exchange Standard Supporting Integrated Systems
Engineering” in the "Proceedings of the Eighth
Annual International Symposium of the
International Council on Systems Engineering",
INCOSE, 1998.

Johnson, J., Herzog, E., Barbeau, S. and Giblin, M.:
"The Maturing Systems Engineering Data
Exchange Standard AP-233 & Your Role", in the
"Proceedings of the Tenth Annual International
Symposium of the International Council on Systems
Engineering", INCOSE, 2000.

Muller, P.-A.: "Instant UML", Wrox Press Ltd., 1997
OMG UML Specification: "OMG Unified Modeling

Language Specification", version 1.3, Rational’s
UML Web Site at http://www.rational.com/uml/

resources/documentation/, Rational, 1999.
OMG Web Site: Internet homepage of the Object

Management Group at http://www.omg.org, OMG,
2000.

Ptack, K.R. (editor): “IEEE Standard for Application
and Management of the Systems Engineering
Process”, IEEE Press, 1998.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F.,
Lorensen, W.: "Object-Oriented Modeling and
Design", Prentice Hall, 1991.

SEDRES Web Site: Internet homepage of the SEDRES-
2 project at http://www.sedres.com, SEDRES-2
project, 2000.

BIOGRAPHIES
Asmus Pandikow is a Ph.D. student in the Real-

Time Systems Laboratory in the Department of
Computer and Information Science at Linköpings
universitet, Sweden. His research addresses software
engineering, systems engineering, information modeling
and tool integration.

Erik Herzog is a Ph.D. student in the Real-Time
Systems Laboratory in the Department of Computer and
Information Science at Linköpings universitet, Sweden.
His research include Systems engineering, specification
methods, information modelling and tool integration
techniques. He is also a nominated technical expert for
ISO TC184/SC4/WG3.

Anders Törne, Ph.D., is an associate professor in
the Real-Time Systems Laboratory in the department of
Computer and Information Science, Linköpings
universitet, Sweden, and manager of the Linköping
office of Carlstedt R&D. His research interests are the
design of real-time and embedded systems, systems
engineering, and high-level specification languages.

