
Integration of Formal Methods into System Safety and Reliability Analysis

O. Akerlund; Saab AB, Aerospace; Linkoping, Sweden

S. Nadjm-Tehrani; Dept. of Computer & Info. Science, Linköping University; Sweden

G. Stålmarck; Prover Technology AB and Dept. of Computing Science, Chalmers University; Sweden

Keywords: Formal verification, Safety analysis, Reliability analysis, NP-Tools

Abstract

System verification and hazard analysis
procedures on critical systems are traditionally
carried out in separate stages of product
development and by different teams of
engineers. Safety and hazard analyses have for
several decades been based on techniques such
as fault tree analysis (FTA), whereas system
verification is carried out by testing and
simulation. Recent years have seen an
increasing interest in application of formal
methods for detecting design errors at early
development stages. In this paper we propose a
technique whereby both safety correctness
proofs and reliability analysis, like FTA, can
be performed on one design model: a model of
the system in propositional logic and integer
arithmetic. An obvious benefit is that the two
parallel activities take place in the
development process in a natural manner, and
using a common model. The model is used for
performing FTA-like analysis without building
the fault-tree.

We describe the application with examples
from the aerospace domain and show how the
theorem prover NP-Tools can be used to
combine the two types of analysis.

Introduction

Safety-critical systems, especially those in
aerospace, nuclear power industry and railway
systems are confronted with stringent
certification requirements. Recent standards in
several of these areas emphasize both demands
on functional correctness and safety and
hazard analyses.

Detailed design and verification steps in the
system development process are traditionally
performed prior (or in parallel) to the safety
and hazard analyses. These activities are often

performed by separate teams of engineers and
usually using different models and analysis
environments. The resulting risk for
incompatibility and incompleteness is
amplified by the variety of engineering
disciplines involved (mechanical, electrical,
chemical, software, etc). Language barriers
and methodological gaps are ample. The
original fault-tree analysis technique, for
example, was devised for systems consisting
mostly of hardware, and attempts to apply and
extend it to software are only recent.

Formal techniques for software correctness
analysis are based on mathematical semantics
for programming languages and design
models. Hence, a methodical application of
FTA to software requires a formal semantics
for the standard FTA notations. Hansen et. al.
provide a comprehensive overview of various
semantics assigned to the FTA notation, and
propose a unified underlying semantics in
order to relate safety and correctness analyses
to the same system model (ref. 1). They use a
model whereby the system is described as a
collection of state variables as function of
time. Formal analysis in the Duration Calculus
is then used to systematically derive
requirement specifications from FTA. We have
a common aspiration in that we propose the
use of the same system model both for safety
correctness and reliability analyses, though the
notation and analysis methods we propose are
based on propositional logic augmented with
finite integer arithmetic (PROP+).
Furthermore, in our approach the FTA is never
built. Rather, the functional model of the
system is extended with failure modes;
reliability analysis in the sense of FTA is
performed directly on the augmented model.

A recent breakthrough in application of formal
methods within system verification builds on
efficient analysis of systems with large state
spaces. One such direction is the application of
BDD-based model checking techniques, see
e.g. reference 2. A BDD (Binary Decision

Diagram) is a data structure, which efficiently
represents propositional formulas. That is,
several boolean operations on formulas, if
carried out on BDD representations, take time
which is linear in the number of propositional
variables used. In this paper we report on
another direction whereby proofs about large
systems are efficiently performed in a theorem
prover for PROP+ based on Stålmarck’s
method (ref. 3). This method works well when
the property of interest has an “easy” proof
even though the system in question has a large
state space. Hardness of a proof is related to
the greatest number of simultaneously open
assumptions in a proof. The proof tool NP-
Tools is a verification environment based on
Stålmarck’s method. That is, it is a first order
theorem prover which implements Stålmarck’s
algorithm.

The paper has the following structure. In
section 2 we give a brief exposition to the
proof technique and the application of the tool
for verification of correctness in a system
description. Section 3 describes reliability
analysis in general, and in the context of the
mentioned tool in particular. Section 4
elaborates on applications from the aerospace
domain: a climatic chamber case study
provided by Saab AB, as well as a report on
application of the technique on the fuel
subsystem of the JAS Gripen multi-role
aircraft. The paper is concluded with a
summary in section 5.

Correctness Proofs using NP-Tools

In our approach systems and system
requirements will be represented in PROP+. A
dynamic system will be represented by a
collection of state variables, input variables,
output variables and a transition relation over
these variables. Each state variable x in the
system model is represented in the model used
by NP-Tools via three variables: x(0) for initial
value of x, x(t) and x(t+1) for the value of x
before and after an arbitrary computation step
t, respectively.

A typical requirement for a dynamic system is
that “property P holds in all reachable states of
the system”. Such properties are referred to as
safety properties in the formal verification
literature; here in the context of safety and
hazard analyses it would be confusing to use
the same term. Therefore we refer to it as a
correctness property. Such correctness
properties will be proved by induction. To
prove the inductive base and the inductive step

for a given property, Stålmarck’s algorithm as
implemented in the verification tool NP-Tools
(ref. 4) will be used.

In this proof environment the user-system
interactions are of four types as shown in
figure 1. The system model can be represented
in a variety of ways, e.g. a system model can
be represented as formulas in a textual editor
or represented by block diagrams (resembling
gate logic) in a graphical editor. The properties
of the model that one is interested to prove are
“Questions”, also expressed as formulas. These
correspond to formalized requirements on the
system. The type of analysis is dependent on
the question. If the objective of the question is
to find out whether the property necessarily
holds (for all variable assignments) the chosen
mode is “Prove”. In this case the outcome
could be “Valid” meaning that the property
holds for all variable assignments, or a counter
example is produced. If the objective of the
question is to check whether a particular
property might hold, then the analysis mode is
“Satisfy”. The resulting answer could then be
“Satisfiable” meaning that a satisfying
assignment is found where the property is true,
or “Contradictory” meaning that no variable
assignments support this statement.

Figure 1 - User-system interactions in NP-
Tools

System modeling: Systems modeling in NP-
Tools is either performed via automated
translators from design languages or by
manual modeling in the editors of the tool. The
manual modeling is often done in two steps,
first by representing the system as a discrete
synchronous system and secondly by a model
in NP-Tools of the initial state and the
transition function of the discrete synchronous
system.

A discrete synchronous system is executed in
discrete steps and has a given initial memory
configuration, the initial state. At each step a
combinatorial function f, the transition
function, is computed. The function f is
applied to input values and values of the
internal memory cells and computes output
values and updated system memory, see figure

2. We will restrict the data types of our
systems to boolean and integers.

Figure 2 - The synchronous system model

Thus, we are working with a transition system
model of the application, where due to
synchrony and determinism the transition
relation is a function f. The possible behavior
of the system is uniquely determined by the
initial state and the transition function.

The transformation of a system description
into the discrete synchronous model involves a
number of steps – for example, the
identification of all memory cells (e.g. latches)
and the modeling of communication between
modules explicitly.

A system model will consist of two logical
formulas, one formula I, characterizing the
initial state, and another formula TR,
representing the transition relation. In order to
represent the transition function as a formula
we need a notation for updated memory. We
will use M(t+1) as a name for the updated
value of a memory variable M(t).

k-step models: In order to prove more complex
requirements the system models described
above can be generalized to k-step models, i.e.
models where k copies of the transition
function are composed. In this way properties
such as “given a state in which condition C
holds, property P will hold within n steps from
this state” can be proved. The k-step model can
also be used for so called reachability analysis.
A detailed description can be found in
reference 5.

Translated models: NP-Tools can also read a
few design languages such as Lustre (ref. 6)
and Sternol (ref. 7) via translators. The
automatically generated system model
corresponds to the above representation, an
initial state and a transition function expressed
by a logical formula over state variables before
and after a step.

Proving correctness properties by induction:
Requirements will be expressed as logical
constraints on inputs, outputs, memory and
updated memory, i.e. logical formulas in these
variables.

To prove that a property F holds in all states of
a system represented as an initial state I and a
transition function TR, we prove the two
formulas:

I → F (F holds in the initial state)

F & TR → F’

where F' is the formula obtained as a result of
simultaneously substituting M(t+1) for every
state variable M(t) appearing in F. That is, if F
holds before an arbitrary step then it will
continue to hold after the step.

If the two induction formulas are valid, then
the property F holds in all states of the system.

Counter models: If NP-Tools fails to prove a
property, a counter model will be presented.
This corresponds to an instantiation of the
system variables for which the proposed
formula evaluates to false. A counter model of
the induction base shows how the property
might fail in the initial state, and a counter
model of the induction step shows how the
property fails to be time invariant. This
provides valuable help in finding design errors
or misconceptions in requirement
formulations.

Performance: Proving validity of formulas in
propositional logic is a computationally hard
problem. The general problem to show that a
formula is true for some value assignments to
its variables is NP-complete. (In practice this
means that for some formulas, i.e. for some
systems and/or questions, the answering time
is too long to be practically useful.) This also
relates to the name NP-Tools, which is
intended to attack an NP-complete problem.
Using techniques like BDD model checking
and the Stålmarck’s algorithm we get
satisfactory results for many practical
purposes. The advantage of Stålmarck’s
method for automated property proving, as
compared to BDD based approaches, is the
relatively low sensitivity to the size of system
models (ref. 8).

Reliability Analysis

Within the area of reliability analysis we
explore two methods: Fault Tree Analysis
(FTA) and Failure Mode and Effect Analysis
(FMEA). Both are used to investigate the
impact of hardware failures on system
behavior. These methods were developed some
40 years ago when systems consisted mostly of
hardware components and they were relatively
uncomplicated. The much more complex
systems of today, being highly integrated from
hardware and software, can be difficult to
analyze using these methods. We describe
how to use the functional model, earlier used
for correctness analysis, also for performing
hardware failure analysis. This paper provides
an overview and a more complete exposition is
given in reference 9. We use simple examples
to illustrate the ideas, but the method is equally
applicable to more complex designs.

Modeling hardware failures: Usually many of
the input variables to the functional model
represent information originating from
hardware. For example, an input variable may
represent a signal coming from a button, which
can be either on or off. Now, it is possible to
express “why” the button is on or off in terms
of “configuration-variables” and “failure
mode-variables”, see figure 3 for an
illustration.

Figure 3 - Failure mode circuit for a button

The failure mode circuit is such that the
“configuration-variables” express the wanted
behavior of the system and the “failure mode-
variables” can invalidate this behavior since
the failures have priority over the choice. Note
that the logic forces exactly one of the
“configuration-variables” to be true and at
most one of the “failure mode-variables” to be
true at a time.

In the button-example only boolean variables
were used. Having access also to integer
arithmetic extends the possibilities for failure
modes. For example, assume a system is

powered by electricity, which is supplied by
two batteries connected in series. Each battery
gives 0 – 8 V, and the system requires 10 V to
function, obtained as the sum of the two
batteries. Also, none of the batteries must have
a voltage of 0 V. A PROP+ model of this
power supply is shown in figure 4.

Figure 4 - Failure mode circuit of power
supply from two batteries

Since Battery_1 and Battery_2 are integer
variables with given domains the failure modes
must be expressed accordingly. The failure
modes related to this circuit are: “Battery_1 =
0”, “Battery_2 = 0” and “Battery_1 +
Battery_2 < 10”. Also in this case the failure
modes have priority over the choice being
made.

Figure 5 generalizes the idea of extending the
functional model with failure modes for
hardware variables.

Figure 5 - Extension of functional model to
include failure modes

Having access to a list of hardware failure
modes we now have the necessary ingredients
for performing analyses like FTA and FMEA.

Analysis for finding cut sets: The qualitative
result of a FTA is the cut sets, i.e. single or
combinations of failures resulting in some
hazardous event, often called the “Top Event”.
Using the automatic verification capability in
NP-Tools it is possible to find the cut sets
without explicitly constructing the fault tree.
The technique for doing this is to express the

top event in conjunction with the list of failure
modes and some predefined system
configuration in a Question (see figure 1).

It is most interesting to find minimal cut sets,
i.e. sets consisting of as few failures as
possible and which necessarily lead to the top
event. The technique presented here makes it
possible to decide how many of the failure
modes may occur simultaneously. This is done
using a predefined function EQ(k,[F1,..., Fn]),
which forces exactly k out of the n failure
modes F1,..., Fn to be true at the same time.
For example, when we are interested in finding
single failures k is set to 1. The idea is
illustrated in figure 6.

Figure 6 - Analysis set-up for finding single
failures

Note that we are using the analysis mode
Satisfy, which helps us to find all possible
model instantiations when the specified
System configuration, the EQ-function and the
Top Event are true. If the result of the analysis
in figure 6 is a model, we have found a single
failure resulting in the Top Event. Also note
that if there are no single failures causing the
Top Event to occur the answer will be
Contradictory, i.e. it is not possible to find any
instantiation of the model having exactly one
failure mode being true at the same time as the
Top Event is true.

Depending on the category of the system
failure function (SFF) – including both System
and Question – being analyzed we can decide
whether the single failure is a minimal cut set
or not. If the SFF is monotonic we know that
the single failure found is a minimal cut set. If
it is not known whether the SFF is monotonic
or not, which is mostly the case, we can
perform a complementary analysis to decide if
the single failure found is a prime implicant or
not. This distinction between monotonic and
non-monotonic SFF will be explained shortly.
For non-monotonic SFF we use the word
prime implicant instead of minimal cut set.
The complementary analysis needed is to
investigate if the single failure found in the
figure 6 analysis will always, also in
conjunction with other failure modes, lead to
the Top Event. Figure 7 shows this set-up.

Figure 7 - Complementary analysis to
investigate if a single failure is a prime
implicant

Comparing figures 6 and 7 note that System
configuration is the same but the EQ-function,
including the list of failure modes, is not
included in the second analysis. In the
Question-area we claim, expressed by the
implication, that the given configuration in
conjunction with the single failure will always
lead to the Top Event being true. To
investigate if this claim is true the analysis
mode is changed to Prove. The result of this
analysis can be: (1) Valid, which means that
the single failure found earlier is a prime
implicant or (2) Counter model exists, meaning
that it is possible for the Top Event not to
happen even though the single failure has
occurred. The reason for this contradiction
must be that yet another failure (in the list of
failure modes) may occur – a failure, which in
conjunction with the single failure found
earlier, prevents the Top Event from
happening.

The next step is to examine whether there exist
more than one single failure leading to the Top
Event. This is done while specifying that
single failures already found must not be true.

The interested reader is referred to the
literature for a deeper study. The theory for
safety analysis of monotonic and non-
monotonic SFF can be found in reference 10.
Prime implicants have for example been
treated by references 11 and 12. The extension
to find combinations of two or more failures
and a procedure for finding prime implicants
using NP-Tools is described in reference 9.

Using this style of reasoning we perform both
FTA and FMEA types of analysis on the same
system model. Actually, determining whether
single or multiple failures lead to a hazardous
event corresponds to FMEA-like analysis.

Applications

For illustrating the methods described above
we will use two examples. First a simplified
climatic chamber is used where the model was
obtained directly from a specification in

natural language, to a model in PROP+. Next,
analysis of a part of the fuel transferring
system in the Gripen aircraft is described.

Climatic chamber

This is a fictitious system which nevertheless
exhibits some problems appearing in realistic
applications.

Modeling: The climatic chamber specification
prescribes the functionality of the controller
for regulating the chamber temperature by
means of a heater and a fan. Figure 8 illustrates
the system and its environment.

Figure 8 - An illustration of the climatic
chamber system

The system consists of a chamber with a given
volume. Outside air flows through the system
via the inlet and leaves the chamber from the
outlet. The aim is to ventilate the chamber
using the heater and the fan. The actual
temperature and actual flow are to be kept
close to operator-selected values for
temperature and flow. A condensed description
of the system specification is:

1. Primarily the functionality is specified
around five system states: off, wait, solution
(sol), work and block. These correspond to
different operating modes: wait for
initialisation, solution for stabilization, work
for normal operation, and block for emergency
stop.

2. Initially the system starts from the off-state
in which all variables are given pre-defined
values.

3. Some variables are treated as constants;
either because they are fixed in a particular
design (e.g. thresholds), or because they are
not controlled by the system (being determined
by the environment at any given instance).

4. Transitions from one state to another are
governed by the difference between the
selected (set) temperature and the actual

temperature. Depending on the size and/or the
duration of a temperature discrepancy different
state transitions are specified.

5. All state transitions are accompanied with
different types of actions, for example resetting
time to zero or switching on some warning
indication.

6. The specification includes boundaries for
rate of temperature change and rate of flow.

Since the system description in natural
language is in a style of system-state-
transitions, the modeling in PROP+ was done
via a first translation into state-transition
diagrams. Next this state-transition was
modeled using the NP-Tools’ graphical
interface gate logic and integer arithmetic
(PROP+). Thus, the system is mathematically
represented by its state transition relation and
its initial states. Figures 9 and 10 illustrate one
such translation.

Figure 9 - Illustration of the first translation
step, the state-transition format

Notice that in figures 9 and 10 the variables
x(t) and x(t+1) are denoted by x_t and x_t_1
respectively.

The state transition fragment in figure 9
captures the functionality associated with the
block-state. Each transition is associated with a
condition for the transition to take place and
one or more actions. In NP-Tools, for each
state in the transition diagram there is a
boolean variable representing the state, and a
PROP+ model describing transitions in and out
of the state. The idea is that the transition
diagram can be developed in a system
development language, such as statecharts (ref.
13) and the PROP+ model can be obtained by
automatic translation.

Figure 10 shows the PROP+ model associated
to the state transitions in figure 9.

Figure 10 - The PROP+ format for how to
reach the block-state

The PROP+ model also includes functionality
not explicitly shown in the state transition
model. For example, being in block-state it is
obvious that we should remain there as long as
“Power_on” is true and the fan is kept on until
“Time_tblock” has elapsed. If there is more
than one reason to leave a state the conditions
leading away must be mutually exclusive to
get a deterministic system.

Correctness Analysis: After the model is
completed we start by doing “sanity” checks
and correctness analysis.

One example of a sanity check is to investigate
determinism. In a controller this analysis is
done by claiming: given that we are in exactly
one state at step t, are we also in exactly one
state at the next step t+1? The analysis set up is
shown in figure 11.

Figure 11 - Analysis to investigate
determinism

The pre-defined function “EQ” is used here to
force the system to be in exactly one mode at
each time point. The claim about determinism
is expressed by the implication, and at the
same time choosing analysis-mode Prove.
Getting the answer Valid indicates
determinism in this sense. If the answer is
Contradictory there is a possibility for the
system not to end up in exactly one of the
modes and this counter-model is shown by the
tool – a typical case where the tool supports
debugging a design model.

While building the climatic chamber model we
first had non-determinism, mainly due to

problems that conditions leading away from a
state were not mutually exclusive and the
events were not prioritized properly.

Next, the functional correctness is investigated
in the absence of hardware failures. One safety
related claim for the climatic chamber is that
its temperature should never become too warm
provided that the set temperature is within pre-
defined limits. The analysis set up for this
safety requirement in the three normal modes
is shown in figure 12.

Figure 12 - Safety correctness analysis that
temperature is never to high

Getting the answer Contradictory in figure 12
means that it is impossible to end up in either
of the states wait, sol or work and at the same
time having a chamber temperature exceeding

C0320 . In this case we have chosen the
hazardous temperature “too warm” to be

C0320 .

For this analysis we did get some counter
models, indicating that our model of the rate of
change of chamber temperature was too weak.
After complementing the model the answer
was Contradictory which proves that the “not
too warm”-requirement is fulfilled in the given
models.

Reliability Analysis: Before performing the
reliability analysis we must extend the
functional model with failure mode macros as
described earlier. In this case we illustrate the
idea with two failure circuits, one for the
“temperature” signal which is an input to the
controller and one for the warning-by-sound
signal which is an output from the controller.

One of the input variables to the controller is
the current temperature, “Temp(t)”. It is
possible to have a failure mode where the
temperature sensor is wrongly calibrated by
ten degrees, which will influence the
temperature received by the controller. This
could be modeled as follows.

Figure 13 - Failure mode circuit for
temperature sensor showing ten degrees too
much

As shown in figure 13 the input variable
Temp(t), on the functional macro, is expanded
with the failure mode circuit. The logic of the
failure circuit is such that the input variable
Temp(t), to the failure mode circuit, passes
unchanged to equivalent to Temp(t), to the
functional model, if the boolean variable
Temp_failure_plus10 is false – that is, if the
failure mode has not occurred. On the other
hand, if Temp_failure_plus10 is true, Temp(t)
is increased by 10 before it is attached to the
functional model.

An outgoing variable from the functional
macro can also be affected by hardware
failures. Here we show how such a failure
affects the warning sound for the emergency
mode. The sound failure may either be the
result of an incorrect computation (logic), or
there might be a hardware failure on the loud
speaker itself, see figure 14.

Figure 14 - Failure mode circuit for warning
sound

Observe, the failure modes in figure 14 can
occur at most one at a time and when occurring
they have priority over the signal coming from
the controller.

Using this method all hardware variables
attached to the controller can be expanded with
failure mode macros. This will result in the
extended model shown in figure 5. The next
step is to find the result of FTA using this
model, i.e. to find single or combinations of
failures resulting in the top event. Using our
approach we can easily investigate if the safety
requirement, already proven in the correctness
analysis, still holds when failure modes are
allowed. For example, the requirement
concerning high chamber temperature, shown

in figure 12, can be reanalyzed to investigate
whether any failure mode makes overheating
possible. Having access to the list of failure
modes the FTA-like analysis is shown in figure
15.

Figure 15 - Analysis set-up to find single
failures in the climatic chamber

We know that overheating is not possible in
the absence of failures. Getting a possible
instantiation from the analysis of figure 15 we
can conclude that there is a single failure
causing this violation. By negating the failure
mode found, i.e. forcing it not to happen, more
single failures can be found. When we get the
answer Contradictory, we know that all single
failures are found. We can further investigate
whether each one of the failures found is also a
prime implicant.

Next, we want to find combinations of two
failures. This is done in the function EQ(k , [
List of failures]) by changing k to 2, i.e. by
forcing exactly two failure modes to happen at
the same time. At the same time the
conjunction of all earlier found prime
implicants is negated, see figure 16.

Figure 16 - Analysis to find combinations of
two failures. PI1 and PI2 represent prime
implicants found at earlier steps

Note in figure 16 that by excluding the prime
implicants, expressed by the negated
conjunction of all prime implicants in the
Question, they can not appear in any
combination of two failures.

Using the methodology in this way we can find
single and multiple failures without explicitly
building any fault tree.

Aircraft Fuel system

Here we report on analysis of a part of the fuel
system in the Gripen aircraft, which controls
the transferring of fuel between tanks. Fuel
transfer is regulated by a number of factors, for
example valve-states, amount of fuel left,
aircraft state, etc. This exercise is interesting
from two points of view. First, the automatic
generation of the NP-Tools model, and second
the realistic size of the application.

In this case, the system specification in natural
language was first formalized using the
Statemate tool (ref. 14). At the next step the
Statemate model was automatically translated
into a NP-Tools macro using a prototype
which is under development. This translator is
based on a restricted subset of the language of
statecharts as implemented in Statemate.
Hence, first the Statemate model had to be
modified according to the restrictions. For
example variables of type real had to be
converted into variables of type integers and
the top level of the model had to consist only
of one statechart (in turn consisting of a
hierarchy of statecharts). Moreover, the
prototype does not handle activity charts.

The size of the analyzed system can be
illustrated by the number of input, state and
output variables. In this case, the controller has
about 700 in-pins and about 500 out-pins.
Nevertheless, the analyses performed were
completed within a minute at the most.

This can be compared with size of the climatic
chamber model, in another version than in this
paper, which was automatically translated
from statecharts. In this version there were 96
in-pins and 88 out- pins, and analysis results
were obtained within seconds.

Summary

We have presented an approach whereby
functional analysis and reliability analysis is
based on the same system model. The analyses
are performed in three stages: first functional
correctness of the design is checked in the
absence of failures. Next, the functional model
is augmented with failure modes. Single (as
well as multiple) failures leading to a Top
Event in the sense of FTA analysis can then be
identified. In this manner traditional FTA
analysis is extended to integrated HW/SW
systems but no fault tree needs to be built.

For a particular application area, failure mode
macros should be available as standard

components. Hence, the extension of the
model with failure modes can be partially
automated. Also finding the prime implicants
according to the method presented here can be
automated.

Future expansions of this work are to include
the quantitative part of the FTA by extending
the model with probabilities for failure modes
and treating other forms of FMEA analysis.

References

1. Hansen K. M., Ravn A.P. and Stavridou
V. From Safety Analysis to Software
Requirements. IEEE Transactions on
Software Engineering, Vol 24, No. 7, July
1998, Pp 573-584.

2. Chan W., Anderson R.J., Beame P., Burns
S., Modugno F., Notkin D., and Reese
J.D. Model Checking Large Software
Specifications, IEEE Transactions on
Software Engineering, 24: Pp 498-519,
July 1998.

3. Sheeran M. and Stålmarck G. A tutorial
on Stålmarck's proof procedure for
propositional logic. In Proceedings of the
International Conference on Formal
Methods in Computer-Aided Design of
Electronic Circuits (FMCAD'98),
Springer-Verlag LNCS vol. 1522, 1998.

4. Prover Technology AB. Reference
Manual, NP-Tools version 2.4,
Stockholm, 1999.

5. Sheeran M. and Stålmarck G. Model
Checking with Induction and Boolean
Satisfiability. Technical report, U-99-003,
Prover Technology.

6. Halbwachs N., Caspi P., Raymond P. and
Pilaud D. The synchronous data flow
programming language LUSTRE. In
Proceedings of the IEEE. St Martin, 1991.

7. Borälv A. and Stålmarck G. Prover
Technology in Railways. In Industrial-
Strength Formal Methods, Academic
Press, to appear.

8. Groote J., Koorn J. and van Vlijmen. The
Safety Guaranteeing System at Station
Hoorn-Kersenboogerd. Technical Report
121, Logic Group Preprint Series,
Department of Philosophy, Utrecht
University, 1994.

9. Åkerlund O. Safety Correctness and
Reliability Analysis of Complex Systems
using Formal Methods. Licentiate Thesis,
Linköping University, LiU-Tek-Lic-
1997:53.

10. Barlow R. and Prochan F. Statistical
theory of reliability and life testing,
probability models (2nd ed.). To Begin
With, Silver Spring, 1981.

11. Quine W. (1959). A way to simplify truth
functions. American Mathematical
Monthly, volume 66, 1959.

12. Worrel R. Using the set of equation
transformation system in fault tree
analysis. In Reliability and Fault Tree
Analysis, (ed. R. E. Barlow, J. B. Fussell
and N. D. Singpurwalla), Philadelphia,
1975. Pp. 165-185.

13. Harel D. STATECHARTS: A Visual
Formalism for Complex Systems, Science
of Computer Programming, 8: Pp231-274,
1987.

14. i-Logix, Statemate Magnum Reference
Manual, version 1.1.

Biography

O. Åkerlund, Saab AB, 581 88 Linköping,
Sweden, telephone - +46 13 185101, e-mail –
ove.akerlund@saab.se.

Received his BA in Mathematics and Statistics
in 1973 from Stockholm University. In 1998
he obtained a Licentiate degree from
department of quality technology at Linköping
University. He has been involved in the area of

system safety and reliability both in the nuclear
industry and the aerospace industry in Sweden
for over 15 years. His current affiliation is with
the Saab AB, Aerospace as a specialist in
statistics and system safety analysis.

S. Nadjm-Tehrani, Department of Computer
and Information Science at Linköping
University, 581 83 Linköping, Sweden,
telephone - +46 13 282411, e-mail –
simin@ida.liu.se, http://www.ida.liu.se/~snt.

Is an associate professor in computer science at
the Embedded Systems Laboratory. She
received her PhD from Linköping University
in 1994, and her current research interests are:
formal specification and verification of
embedded systems, hardware/software co-
design, hybrid (continuous/discrete) models,
and real-time system specification languages.

G. Stålmarck, Prover Technology AB,
Alströmergatan 22, SE-112 47 Stockholm,
Sweden, telephone - +46 8 6176800, e-mail –
gunnar@prover.com, http://www.prover.com.

Received his BA degree in theoretical
philosophy from Stockholm University 1982.
He is the co-founder of the company Prover
Technology AB who owns the registered
patent for the propositional theorem prover
incorporated in NP-Tools. He is also an
adjunct professor within the Formal Methods
research group at the Computing Science
Department at Chalmers Technical University.
His research interests include automatic
theorem proving and formal verification of
systems.

