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Abstract

When multiple defects (also called diseases or faults)
are present, there is a possibility of interactions be-
tween the defects. When defects interact, the cues
(data obtainable) for a combination of defects is not
a simple sum of the cues observable for the component
defects. Expected cues may be missing, altered, or new
cues may appear. FEach of these alterations of cues
makes diagnosis more difficult, as the correct defect
combination may not even be considered (triggered)
by a diagnostic system. We present an algorithm for
heuristic solution construction that integrates multi-
ple types of information about the case. Solutions are
evaluated based on how many of the abnormal cues
are accounted for, with a method that combines cues
that may be altered due to interactions between de-
fects. The method can account for cues that combine
with one another in three basic ways, set union, addi-
tively and ordered dominance (some values mask other
values) or with a combination of those basic ways.

For the solution space of one task, diagnosing con-
genital heart defects, we considered seven major de-
fects and found the solution space (exhaustive) was
reduced by approximately 50% because some of the
defects could not physically occur together. Experi-
mental results on cases from hospital files demonstrate
the effectiveness of the heuristic solution construction
algorithm to generate the correct solution early which
reduced the number of solutions explored (compared to
an exhaustive search) even further on most cases. With
the computational power of current workstations, even
cases requiring exploration of this entire solution space
required less than 4 minutes of CPU time per case.

Introduction

Cue refers to a piece of data available about the case
(observed) or one expected from a defect. Cues may be
either normal (expected of a normal patient) or abnor-
mal (also called symptoms). Cues include test results,
patient interviews, physical exams, and the patient’s
history. Single defect refers to a single physical abnor-
mality. Disease or fault are terms also used frequently.
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Each defect has a name that uniquely identifies it. Mul-
tiple defectrefers to the coexistence of two or more phys-
ical abnormalities (defects), independent of any causal
relationship(s). A multiple defect with a unique name
will be called a complex defect.

Diagnosing multiple defects continues to be a difficult
problem in many domains, especially medical domains.
When multiple defects might be present, the number of
potential solutions to each problem is greatly increased.
Multiple defects are interacting when the cues from the
multiple defect case are not set additive (Patil 1988)
when compared to the cues for the component defects.
Diagnosis is even more difficult if the defects interact.
In particular, when defects interact, expected abnormal
cues may be combined, missing, or altered, and new
abnormal cues may appear.

Bylander, et al. (1991) have shown that abduction
problems are in general intractable. One exception is
finding one best explanation for an ordered, indepen-
dent, monotonic abduction problem. Interacting de-
fects are clearly not in the tractable category, since cues
may cancel. As a result, solutions to multiple defect
problems will continue to require a great deal of com-
putational power. Within these constraints, a combi-
nation of efficient heuristic solution construction algo-
rithms and increasingly powerful computers allows us
to tackle interesting diagnostic problems, one of which
is described in this paper.

Diagnostic Control Algorithm

This is a decision-support approach to diagnosis, in
other words, the goal is not “a diagnosis”, but rather to
produce evidence that compares alternative solutions.
This approach uses a ranking of solutions based on how
many of the abnormal cues in the case are accounted
for and identifying which one(s) are not. Any solutions
accounting for all or almost all of the abnormal cues
can be considered potential diagnoses.

This approach applies to multiple interacting defects
and synthesizes ideas from a number of diagnostic ap-
proaches including set covering (Peng and Reggia 1990),
recognition-based reasoning (Thompson et al. 1983;
Johnson et al. 1988) and abduction and hypothe-
sis assembly (Bylander et al. 1991; Fischer 1991;



Josephson and Josephson 1994).

This computational model uses two primary modes
of reasoning. First, a forward chaining style includ-
ing recognition-based reasoning is performed until all
cues have been accepted. Then, an abductive style con-
sisting of alternating solution construction and evalua-
tion is performed until an adequate solution is found
or all alternatives have been considered (Reed 1995;
Reed et al. 1997). Heuristics are used in the con-
struction of alternative solutions to focus on the most
promising solutions first.

The modules applicable when new cues are avail-
able include two identify features modules and two rec-
ognize defect modules for recognition-based reasoning
(RBR) described next. The identify solution type mod-
ule searches for cues that can focus problem solving on a
subset of the solution space. The solution type may be
identified as a single defect, a named defect, a complex
defect, a multiple defect, or some combination of those
types. The identify essential defects module searches
for cues that are only produced by one specific defect.
These are also called pathognomonic cues. If a cue can
only be caused by one defect and that cue appears,
then the corresponding defect must be a component of
the solution. These defects are called essential (Fischer
1991).

The two recognition-based reasoning (RBR) mod-
ules applicable when new cues are available propose
and evaluate hypotheses (Thompson et al. 1983;
Johnson et al. 1988). The propose hypotheses mod-
ule activates physiological and defect hypotheses based
on observed cues in the case. The review hypotheses
module evaluates all active hypotheses with new in-
formation as it becomes available. Hypotheses can be
in exactly one of four states, dormant (inactive), pro-
posed (believed relevant), accepted (believed true), and
rejected (believed false). All hypotheses start in a dor-
mant state, meaning they are not currently considered
relevant to the case. The other three states all describe
active hypotheses. Evidence is gathered to support or
oppose active hypotheses. If enough positive evidence
accumulates, a proposed hypothesis will be accepted.
If enough negative evidence accumulates, a proposed
or accepted hypothesis will be rejected. Rejecting a hy-
pothesis is final. Once rejected, a hypothesis cannot
change state.

The second step of the control algorithm is to eval-
uate the current solution. If the RBR modules accept
one defect after all observed cues have been processed,
that solution is considered the “current solution” and is
evaluated using a metric described in the next section.
If the current solution explains all abnormal cues (or
at least some specified cutoff value), then that is the
only solution evaluated and the problem is considered
solved.

In all other cases, when recognition-based reasoning
(RBR) accepts no defects or more than one defect, or if
the accepted defect does not explain all the abnormal
cues, then solutions are constructed and evaluated by

the construct solutions and evaluate solutions modules,
respectively.

Evaluating Solutions

The metric used to compare solutions is called evidence
points and is defined below (Reed et ol. 1997). Solu-
tions are evaluated based on the ratio of explained to
total abnormal cues. For a case C' and a solution S,
the abnormal cues observed in the case (Obs.c) and
expected for the defects in the solution (Ezp.s). The
best solutions are those that have the highest evidence
point ratios (meaning the fewest unexplained abnormal
cues). The evidence point (EP) formula is shown next.

EvidencePoints(C, S) =

> Explained Abnormal(Obs.c or Exp.g)
> Ezxplained Abnormal + Y Unexplained Abnormal

Cues are categorized as either important or ignored.
Important abnormal expected cues for each defect are
classified in one of two categories - required or optional
Required expected cues are “always” present in a case
when the defect is present (unless they are missing or
altered due to interactions between defects). Optional
expected cues are often present in cases when the defect
is present, but their absence does not need a reason. Ig-
nored cues are those that are either not important for
determining a diagnosis or are not useful for discrimi-
nating between defects. Ignored cues are not included
in the evaluation of solutions using the evidence points
metric.

EP calculations generalize to solutions containing
more than one defect and account for interactions be-
tween defects as follows. The EP calculations cluster
cues. Cues of the same type from the case and all de-
fects in the solution are considered together. Each type
of cue has a specific combination method. The methods
currently available include three basic ways - set union,
additively, and ordered dominance (where “stronger”
values mask other values), or a combination of the three
basic ways based on characteristics of the cue, case or
domain. These combination methods allow the correct
interpretation of altered cues due to interacting defects.

When a case is presented, it is assumed that all ab-
normal cues of the important types are included, as is
usually done by physicians documenting a case. If the
observation of a specific cue is not possible, that cue is
given a value of unknown for that case. Unknown cues
and all expected cues of the same type are not included
in the EP formula when solutions are evaluated.

Heuristic Solution Construction

Candidate solutions are constructed using the heuristic
algorithm summarized in Table 1. First, solutions con-
taining one defect (single or complex) are explored, then
those with two defects, etc, up to the mazimum num-
ber of defects per solution, which is domain dependent.
Heuristic solution construction makes use of the defects



proposed and accepted by the recognition-based reason-
ing (RBR) modules and any essential defects or solution
type identified (all modules active on new cues).

In both heuristic and exhaustive search modes, so-
lution construction and evaluation will stop when ei-
ther the first sufficient solution or all solutions up to
the same number of defects as the first have been
constructed and evaluated. If no solutions explaining
enough abnormal cues are found, processing continues
until all heuristic or exhaustive solutions have been con-
structed and evaluated (up to the maximum number of
defects per solution).

Heuristically generated solutions are constructed us-
ing the following modules: include essential defects,
cover cues, add associated defects, match solution type,
eliminate incompatible defects, and eliminate duplicate
solutions. The add essential defects module makes sure
that any essential defects identified are included in the
solutions constructed. The cover cues module includes
defects that explain significant abnormal observed cues
in the case as identified by the RBR modules (accepted,
proposed, or rejected defect hypotheses).

1. Construct 1 defect solutions in this order:

Essential defects.
RBR. accepted defects.
RBR proposed (including rejected) defects.

2. For NUMDEF = 2 to MAXDEFPERSOLN do
Start with solutions of (NUMDEF -1) defects,
form solutions containing NUMDEF defects by

adding defects in the following order:

essential defects.

RBR accepted defects

RBR proposed defects.

associated defects (Common,Occasional,Rare):
Remove duplicate solutions.
Remove solutions of incompatible type(s).
Remove solutions with incompatible defects.

End For

Table 1: Heuristic solution construction algorithm.

The add associated defects module finds and adds de-
fects that co-occur with a minimum of some specified
frequency with some defect already under consideration
to a solution. The frequencies that defects occur with
other defects are classified into four categories, com-
mon, occasional, rare, and never. For each pair of de-
fects, D; and Dj, the rate that D; occurs when defect
D; is present is contained in a database. Defects that
never occur together can be due to the physical proper-
ties of the defects. Often the frequency that Dy appears
when D; is present is the same as that of D; appear-
ing when Dy, is present. These appear as symmetrical
entries in the matrix. However, it is possible that the
frequencies will be different due to the fact that D;, and
D; can occur with greatly different frequencies.

The eliminate duplicates, match solution type, and

eliminate incompatibles modules prune unproductive
solutions that may be generated and should be self ex-
planatory.

Exhaustive Solution Construction

Exhaustive solution construction mode, when selected,
first constructs and evaluates solutions using the heuris-
tic module. Then all solutions not constructed in the
heuristic mode are constructed and evaluated. The ex-
haustive mode may also be automatically invoked if the
heuristic mode did not find any solutions capable of ex-
plaining all or most of the important abnormal cues.

Example Domain

This section describes characteristics of the domain of
pediatric cardiology. There is a standard set of data col-
lected in this domain including history, physical exam,
blood tests, cardiac auscultation, X-ray, and EKG data.
Based on consultation with an expert, we chose between
2 and 5 important types of cues in each of 4 critical test
areas (cardiac auscultation, EKG, physical exam, and
X-ray). Cues in other areas were ignored.

Defects

In this domain, four kinds of physical defects can oc-
cur — communication defects (holes), obstructions near
valves (or insufficiencies), absent or mis-connected ves-
sels, and electromechanical defects. Electromechanical
defects (other than secondary manifestations of other
defects) were excluded from this investigation. They
are covered in the work of others including Bratko et
al. (1989) and Downing and Widman (1991).

The 7 common defects selected for this study are
described next. Aortic Stenosis (AS) and Pulmonary
Stenosis (PS) are valvular defects (obstructions) that
restrict the flow of blood through the aortic or pul-
monary valves, respectively.  Atrial Septal Defect
(ASD) and Ventricular Septal Defect (VSD) are com-
munication defects, where blood flows between two nor-
mally unconnected chambers of the heart (the upper
two and lower two respectively).

Tetralogy of Fallot (TF) is a complex defect with four
components: VSD, PS, the aorta usually overrides the
VSD, and right ventricular hypertrophy (thickening of
the chamber wall) is present. Total Anomalous Pul-
monary Venous Connection (TAPVC) is another com-
plex defect. It occurs when all the vessels from the lungs
connect to the right atrium instead of the left atrium.
A hole in the atrial septum (ASD) is necessary with
this defect, otherwise oxygenated blood could not flow
to the body.

Partial Anomalous Pulmonary Venous Connection
(PAPVC) is when some, but not all, of the vessels are
mis-connected as in TAPVC. There need not be a hole
in the atrial septum with this defect, therefore it is
considered a single defect. The maximum number of
(named) defects per case is considered to be three.



Defect associations and incompatibilities

Figure 1 shows the association relationships among the
7 cardiac defects examined in this study. The diagonal
of the figure is crossed out since each defect can oc-
cur only once in a patient. In the top row, ASD and
VSD occasionally occur with AS, while PAPVC, PS,
and TAPVC rarely occur with AS. TF never occurs
with AS. PS and VSD never occur with TF because
they are part of the definition of TF. Similarly with
ASD and TAPVC.

ASSOCIATED DEFECT
Aortic Atrial Partial Pulmonary Total  Tetralogy Ventricular
Stenosis  Septal APVC Stenosis APVC  of Septal
DEFECT Defect Fallot Defect
Aortic @) R R R N @)
Stenosis occasional rare rare rare never [ occasional
Atrial O C C N C C
Septal occasional common | common never common | common
Defect
Partial R C R N R R
APVC rare common rare never rare rare
Pulmonary R C R R N C
Stenosis rare common rare rare never common
Total R N N R R R
APVC rare never never rare rare rare
Tetralogy N C R N R N
of never common rare never rare never
Fallot
Ventricular
Septal O C R C R N
occasional | common rare common rare never
Defect

Figure 1: Defect association relationships identified.

Some of the 7 defects are incompatible, they do not
or cannot (physically) occur together, and are identified
by an N in a cell of Figure 1. Ignoring the order of de-
fects in a solution and using the maximum of 3 defects
per case, a maximum of 37 possible combinations of de-
fects can occur, 7 containing single (including complex)
defects, 16 with 2 defects, and 14 with 3 defects.

In a domain with no incompatible defects (and 7 sin-
gle defects where the order of defects is again ignored),
there would be 63 possible combinations to search (7
single defects, 21 combinations of 2 defects, and 35 com-
binations of 3 defects). The search space is reduced by
almost half (41% fewer) due to characteristics of the
domain.

If the maximum of 3 defects per case is lifted, the
reduction in the number of possible solutions is even
greater - there are only 44 possible solutions containing
the above defects consistent with the incompatibilities
- an additional 6 possibilities with 4 defects and 1 pos-
sible combination of 5 defects. If there were no incom-
patible defects, there would be 127 possible solutions.
The number of solutions to explore is reduced by over
65% due to the defect incompatibilities of this domain.

Tests on Hospital Cases

The diagnostic algorithm has been implemented and
a knowledge base constructed for the task of diagnos-
ing congenital heart defects. The knowledge base con-
tains the 7 common defects described above (5 single
and 2 complex). A total of 78 cases with single, com-
plex, and multiple defects were available from hospi-
tal files for knowledge base construction and testing.
Each case contained 1, 2, or 3 of the 7 defects as deter-
mined by surgery or cardiac catheterization (performed
after the initial expert diagnosis). Approximately one-
third of the cases were used for knowledge base con-
struction and the other two-thirds (53 cases) were used
in a “blind” test. On these cases, the original ex-
pert diagnosis is compared to the results obtained using
recognition-based reasoning alone (RBR) and to the re-
sults obtained using the computational model with the
heuristic solution construction (HSC) algorithm (which
includes the RBR modules). It should be noted that
the experts saw the patients in person while both RBR
and HSC used selected information from the written
records. Therefore, the experts had access to more in-
formation about the cases.

Result Expert RBR HSC
S [ Correct or ranks high 32 18 30
S | UTD or partial 1 10 0
S | Incorrect or ranks low 0 5 3
C [ Correct or ranks high 4 2 4
C | UTD or similar defect 2 2 1
C | Incorrect or ranks low 0 2 1
M | Correct or ranks high 8 0 7
M | UTD, or near the top 5 7 3
M | Incorrect or ranks low 1 7 4

S - single, C - complex, M - multiple, UTD - Unable
to diagnose.

Table 2: Results on all 53 test cases.

Table 2 summarize the results on all the test cases.
In the 33 single defect cases (S), the experts correctly
identified all but 1 case where the expert gave a par-
tially correct diagnosis. RBR alone correctly diagnosed
approximately half (18) of the cases, incorrectly diag-
nosed 5 cases and was unable to come to a conclusion
in the rest. HSC was almost as good as the experts,
ranking the correct diagnosis as the best single defect
solution (29/33) or very close (1/33) in approximately
90% of the cases. The center of the table shows the
results on the 6 complex defect test cases (C). The ex-
perts gave the correct diagnosis in 2/3 of the cases and
diagnosed a clinically similar defect to the actual de-
fect in the other cases. RBR correctly diagnosed 1/3
of the cases, diagnosed incorrect defects in another 1/3
of the cases and was unable to diagnose the remaining
1/3. HSC ranked the correct solution at or close to the
top in 2/3 of the cases and ranked a clinically similar



defect higher in 1 case, again approaching the level of
the experts.

On the 14 multiple defect cases (M) shown at the bot-
tom of the table, the experts gave the correct diagnosis
in over half (8) of the cases, gave alternative or partial
diagnoses in approximately 1/3 (5) of the cases and in-
correctly diagnosed the remaining case (with clinically
very similar defects). RBR did not correctly diagnose
any cases. In half of the cases, RBR diagnosed incorrect
defects, in the remaining half of the cases no conclusion
was reached. HSC ranked the correct solution at or
near the top in half of the cases, in approximately 1/4
(3) of the cases, the correct solution ranked reasonably
high, while in the remaining cases, the correct solution
was not near the top. On the case misdiagnosed by the
experts, HSC ranked the same incorrect, but clinically
similar solution well above the correct solution (which
was ranked low).

The RBR knowledge base was updated during the
construction phase, but was not originally designed for
multiple defects. This clearly shows as none of the mul-
tiple defect cases were correctly diagnosed by RBR. The
same RBR knowledge base was used in HSC, however,
and contributed to the correct diagnosis of 7 multiple
defect cases, which is detailed in the next section.

In the cases where the correct solutions did not rank
at the top, we analyzed all unexplained abnormal cues
(missed points in the EP formula) and determined that
they were due to either atypical cues present in the
case, or inaccurate expected cues in the knowledge base.
More knowledge base development effort can reduce or
eliminate the second category. Atypical cues will always
be a hazard when working with real data. The EP
metric’s evaluation of cases is used to highlight these
“unexplained” cues to bring them to the attention of the
user. Even including these unexplained abnormal cues,
the HSC algorithm demonstrates a large improvement
from a previous method, RBR alone, applied to the
cases and approached the level of the original expert
diagnoses.

Generating the correct solution

To improve the percentage of correct solutions gener-
ated by HSC in the future, we next analyze the test
cases above to determine which reasoning methods gen-
erated the correct solutions.

Results on the 53 test cases are shown in Table 3.
RBR activated (accepted, proposed, or rejected) the
correct solution in the majority of the cases (29/33 or
88%), although only reached the correct diagnosis in
about half (18). On one case, both the correct defect
and an incorrect defect were accepted.

In general, this means that RBR is very good at acti-
vating the correct defect on single defect cases. It is not
infallible, however. The evaluation of solutions with the
EP metric gives something like a “second opinion” on
potential solutions and resulted in a much higher num-
ber of correct diagnoses being rated at or near the top
compared to other solutions (Table 2). However, po-

Solution Generation S C M
RBR accepted (all) 18 2 0
RBR accepted (1 of 2 or 3) N/A N/A 3
RBR accepted (2 of 1, 2 or 3) 1 N/A 0
RBR accepted incorrect 2 2 2
RBR accepted correct+incorrect 1 0 1
RBR rejected (1 of 1, 2 or 3) 2 0 1
RBR proposed all 6 0 2
RBR proposed (1 of 1, 2 or 3) 2 0 1
RBR proposed (2 of 2 or 3) N/A 0 1
RBR proposed only incorrect 0 2 3
No defects proposed 2 0 0
Associated defects N/A N/A 2

S - single, C - complex, M - multiple

Table 3: Correct solutions generated on all 53 test cases.

tential solutions must be constructed before they can
be evaluated. In cases where no defects were proposed,
or the proposed defects did not explain very much of
the data, all possible single defects were evaluated (ex-
haustive search).

In the complex and multiple defect cases, RBR ac-
tivated the correct defect in 2/3 of the complex cases
and at least one of the component defects in all but 3
(11/14) of the multiple defect cases. In two multiple
defect cases, associated defects were necessary to con-
struct the correct solutions since only one component
defect was activated by RBR. In one case, one correct
defect was proposed, and in the other, one correct de-
fect was accepted by RBR. The other component of
the correct solution was not proposed by RBR in either
case. Both second defects were commonly associated
with a defect under consideration. Unfortunately, in
one of the cases, a single defect explained all the case
cues, so this single defect solution would be preferred
over a two defect solution (which was correct). The
other case contained one atypical cue that was not ex-
plained by the correct two-defect solution, although the
correct solution was the best two-defect solution. Two
three-defect solutions (supersets of the correct solution)
were able to explain all the observed cues in that case.

Discussion

Generating and testing large numbers of potential so-
lutions to one problem has been computationally pro-
hibitive until recently. We use a combination of heuris-
tics to focus on the most promising solutions first, com-
bined with reasonably fast computers. The experiments
reported were performed using sun 4 (40 Mhz Sparc)
workstations running Unix BSD 4.3 and Lucid Com-
mon Lisp. The fastest of the 53 problems mentioned
above were solved in 3 seconds of CPU time. Even
when all possible (37) solutions were explored and ver-
bose printout was requested (generating 30-50 pages of
text per case), the longest cases took less than 4 min-
utes of CPU time.



HSC performed very well and explored only one or
a very few solutions on most single-defect cases, where
there is no possibility of interactions between defects.
More time and computation was focused on cases that
were more difficult - ones containing multiple defects or
presenting atypical cues. Effort is reduced in the eval-
uation of all solutions because only “important” cues
are processed (14 types in the domain investigated). In
addition, only cues of the same type are matched in
clusters to calculate the EP, so there is no exponen-
tial growth there. The amount of time spent was well
within the limits of current systems, and increasingly
larger problems will be feasible as computer power dou-
bles every few years.

Other successful approaches to the diagnosis of mul-
tiple interacting defects include model-based reasoning
(de Kleer and Williams 1987; Reiter 1987), qualita-
tive reasoning (Bratko et al. 1989; Downing and Wid-
man 1991), complete simulation models (Wu 1991; Jang
1993) and probabilistic reasoning based on variations of
Bayes theory (Kleiter 1992; Szolovits and Pauker 1993;
Heckerman et al. 1995).

The significant differences and advantages of this
computational model center on correctly explaining
cues modified due to interactions between defects, espe-
cially in domains where complete simulation models are
not available or cannot feasibly be constructed. All de-
fects in a solution are evaluated in a cluster, when nec-
essary, to explain abnormal cues in this method. Other
methods, like symptom clustering, group cues together
and explain them with one disease, but do not use a
combinations of defects to explain one cue (with the
exception of some additive combinations). For proba-
bilistic methods, the interaction between defects means
that the probability of an abnormal cue is altered com-
pared to the probability calculated from the compo-
nent defects. Thus the collection and use of additional
statistics is necessary for each combination of defects
and each type of cue where interactions are present.

Future work is planned to experiment on larger sets of
defects and to explore the usefulness of different weights
associated with each type of cue, giving more (or less)
importance to selected cues.

Summary

Multiple interacting defects occur in many domains.
On real problems, the entire search space of solutions
may not need to be explored except on the most diffi-
cult cases. In the domain examined, we found that the
number of possible solutions was greatly reduced, by al-
most half, due to incompatible defects. There were also
a relatively small number (3) of maximum defects per
solution. Current computational resources easily pro-
cessed even an exhaustive generation and evaluation of
solutions. Other domains may produce similar results.
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