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Abstract

In all new cars, a computer is controlling the engine and this computer is
part of the engine control unit. The software that runs on the computer
is large and complex, which makes it hard to maintain. One way to deal
with the complexity is to use a database where the shared data in the
system is stored. For this purpose, a real-time data repository has been
developed in this master’s thesis project. The repository running on the
real-time operating system Rubus will be used to evaluate future algorithms
for data handling in real-time databases. In this context data repository is
a small-scale real-time database. The implemented repository can handle
concurrent transactions and it uses two different methods for concurrency
control, namely two phase locking - high priority and an optimistic algo-
rithm called broadcast commit. The transactions can be scheduled using
the earliest deadline first algorithm. In addition, we have implemented the
data dependency scheduling algorithm where a graph is kept in order to
see how data items depend on each other. The graph is then used when
updating a data item to keep its dependencies as fresh as possible.
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Chapter 1

Introduction

This chapter gives an introduction to the report, introducing the topic to
the reader and explaining the background.

1.1 Purpose

The purpose of this master’s thesis is to develop a real-time data repos-
itory for the engine control unit used in current models of Saabs. The
data repository will be used to evaluate new algorithms for handling data
validity.

1.2 Target reader

The target reading group is people with basic knowledge in real-time sys-
tems and databases. The background chapter provides enough information
for a person with some computer science knowledge to enjoy the report.

1.3 Topic background

In all modern cars there is a computer that controls the behavior of the
engine. The computer is called an engine control unit and it controls many
parameters, for example, the amount of fuel to inject and at what time
to ignite the air/fuel mixture. The software that runs on the computer
is large and complex and it is hard to maintain the software. To address
this, a database has been identified as one way to deal with complexity by
centralizing the data. If the developer can focus on the actual algorithms
instead of thinking about where to find a certain data item, much is gained.
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Also, the reduced complexity makes the software more efficient and less
memory consuming.

This master’s thesis is a part of an ISIS project called Real-time databases
for engine control in automobiles®.

1.4 Disposition of the report

The report starts by giving a background to the topic in chapter 2 and
continues with describing the problem in chapter 3. In chapter 4 a real-time
operating system is introduced, namely Rubus; it is presented here since it
gives a better understanding of the following chapters. Then in chapter 5
the data repository developed is described, and finally in chapter 6 a more
thorough description of the solutions and implementation is presented. The
two final chapters present related work (chapter 7) and the conclusions
drawn from the project (chapter 8).

Information about the project can be found at;
http://www.ida.liu.se/labs/rtslab/projects/ISIS_DB_EngineControl/



Chapter 2

Background

This chapter introduces fundamental knowledge needed to understand the
problem. Four-stroke engines and the engine control unit that controls
the engine are described. An introduction to the software that runs on the
engine control unit and some real-time related information is also provided.

2.1 Four-stroke engines

The engine in most new cars is called a four-stroke engine [18]. The name
comes from the four phases each cylinder goes through. Phases only change
at bottom dead center (BDC) and top dead center (TDC). TDC is when
the piston is at its highest point in the cylinder, that is, the pressure in
the cylinder is at the highest level. BDC is when the piston is at its lowest
point, here the pressure is at the lowest. The phases are described in figure
2.1 [18]:

1. Intake phase
The intake valve is open and, while the piston moves downwards, the
cylinder is filled with a fresh air/fuel charge from the intake manifold.
In this phase the piston moves from TDC to BDC.

2. Compression phase
Here the fuel/air-mixture is compressed to a higher temperature and
pressure through the mechanical work produced by the piston. A
moment before TDC (BTDC) a spark from the spark plug ignites the
mixture and initiates the combustion. The combustion is started in
this phase since it takes a little while for the flame to travel into the
cylinder. In this phase the piston moves from BDC to TDC.
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Figure 2.1: The phases in a four-stroke engine

3. Expansion phase
Work is produced by the fuel/air-mixture during the expansion phase
when the volume expands. Towards the end of this phase the exhaust
port is opened and the blow out process starts, the gases are escaping
the cylinder since the pressure in the cylinder is higher than in the
exhaust system. In this phase the piston moves from TDC to BDC.

4. Exhaust phase
The gases that are left in the cylinder are now pushed out into the
exhaust system. When the piston reaches TDC a new cycle is started.
In this phase the piston moves from BDC to TDC.

Since only one phase produces any actual work (the expansion phase), there
are usually four or six cylinders in a four-stroke engine.

2.2 Engine control unit

The ECU controls a lot of things, among others, the amount of air to inject
into each cylinder, when to ignite the air/fuel-mixture etc. [20]. It also
has intelligence to, for example, add more air (the amount of fuel to inject
is regulated by the amount of air that was sucked into the engine [20])
when the heat is turned on in the car. The increased speed of the engine
then generates more electricity that is used to heat the car. The ECU
is connected to a CAN-network® in order to get sensor values and to set
actuators. The CAN network is also used to reprogram the flash-memory

!CAN stands for Controller Area Network. It is an ISO standard for serial data
communication. The protocol was aimed at automotive applications.
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and to connect from an external computer to the ECU in order to see and
change different parameters.

2.2.1 Operation of the ECU

The ECU basically reads a lot of sensor values, for example temperatures
and wheel speeds and then it uses these values in order to calculate on
some action to do, this action is transmitted to the actuators. The actions
must often be performed within a given time. The things sent out and read
are electrical signals, there are drivers for the actuators and sensors in the
ECU, these convert the values in the computer to the electrical signals. An
actuator is for example a valve, i.e., something that changes the behavior
of the engine. There are 70 input/output pins on the ECU and some are
used for power supply etc. That gives us about 60 pins available for sensors
and actuators [20].

2.2.2 Physical description

The data in this subsection is extracted from Jinnelév [13]. The processor
on the ECU is a Motorola MC68332, running at 16.778 MHz. The ECU
has 64kb of RAM and 512kb of flash-memory. The flash memory contains
the executable code and the RAM contains run-time data. There is also a
slave processor on the board; it is primarily used to control the throttle.

2.3 Engine control software

The software in the engine control unit is layered. The bottom layer consists
of the drivers for the sensors and actuators. The drivers get a current or
a voltage level from a sensor and make these raw values readable in the
software. The layer above then converts these raw values to usable ones,
for example temperature or pressure. In the same way, if a value is sent to
an actuator, the layers convert the value into a form that the actuators can
understand. The values are stored in two global structures, one is called
In and contains the sensor values and the other one is called Out and this
is where the actuator values are stored.

2.3.1 Time bases

There are two time bases in the system, one is based on clock ticks, one
tick every bms, the other one is based on the angle of a cogwheel connected
to the engine. The cogwheel is supposed to have 60 cogs, but two cogs are
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missing in order to detect a new revolution of the cogwheel. Then there
is a detector that detects these gaps and generates a signal. This signal
is sent to the engine control unit where it generates an interrupt in the
software. Since the cogwheel is mechanically connected to the engine, the
number of interrupts generated is dependent on the speed of the engine.
The interrupts can also be set to arrive at certain cogs before or after a gap.
There are calculations to be done on each interrupt; therefore the load of
the engine control unit is also increased when the engine speed is increased.

2.3.2 Diagnose

There is also a diagnose subsystem in the engine control software [13]. The
diagnose checks if the sensors and actuators are working and if they do not,
a flag is set in the subsystem. The flags can then be read with different
tools by a mechanic at a car repair shop, in order to find the error and fix
it. Some sensors and actuators have backups so that the diagnose system
can chose to run a backup sensor or actuator if the primary one is broken.

2.4 Real-time systems

There are almost as many definitions of real-time systems as there are books
and papers on the subject, this one was chosen because it fits the engine
control system quite well [14]: “Any system where a timely response by the
computer to external stimuli is vital is a real-time system?”.

There are two distinct classes of real-time systems, namely hard real-
time and soft real-time [21]. In hard real-time systems it is vital that all
deadlines are met, i.e., that all tasks complete on time. This constraint
implies that every action done in the system should have a bounded delay.
There is usually no secondary storage in a hard real-time system since that
can add unpredictable delays. In soft real-time systems, deadlines are not
as important as in hard real-time systems, if a deadline is missed, it only
reduces the value of the task. Tasks have priorities that the scheduler
should follow; a high priority task should always run before a lower priority
one. The soft real-time systems generally provide a lot more support for
process synchronization and other advanced operating system services.

2.4.1 Scheduling

Scheduling is the task of devising a schedule given a set of tasks with
corresponding precedence constraints, resource requirements and deadlines
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[14]. A precedence constraint means that some task has to run before
or after another task. Resource requirements are for example processing
power and memory requirements. A deadline is a time when the task must
have finished. There are three main groups of tasks when you consider
periodicity; periodic, aperiodic and sporadic tasks. A task is periodic if it
runs periodically, for example once every second, it is aperiodic if it can
arrive at any time. Sporadic tasks are like aperiodic ones, only that there
is a minimal time between the arrivals of the tasks.

A schedule may be computed in advance (off-line scheduling) or obtained
dynamically (online scheduling). Off-line scheduling is done before the
actual execution of the task. Online scheduling is done when the task arrives
in the system. There are several approaches to doing scheduling, the most
classic ones are: Rate monotonic (RM) [16] where the tasks have static
periods and they are assigned priorities that are inversely proportional to
their period time, that is, if a task has a long period time, it will have a
lower priority. Another approach is earliest deadline first (EDF) [16] where
a task dynamically gets a higher priority if its deadline is closer. Both
of these algorithms are optimal under certain assumptions, RM is optimal
when the tasks have static period times and EDF is optimal when the tasks
get dynamic priorities.

2.4.2 Semaphores

A semaphore is an integer variable that is only modified with the atomic
functions wait () and signal() [21]. wait() decreases the value of the
semaphore by one and signal() increases it. If the semaphore is less then
zero, wait () stays in a loop until the semaphore is equal to, or greater than
zero. A muter semaphore is used for mutual ezclusion between threads,
i.e., to avoid that two threads enter a critical section at the same time.

A problem when using semaphores is called priority inversion [21]. It oc-
curs when a higher priority thread needs a lock on a semaphore that a lower
priority thread holds. The lower priority thread can then be interrupted
by a third thread, this makes the waiting time for the high priority thread
unbounded. A solution to the problem is called priority ceiling, where the
threads run at a pre-set ceiling priority when they hold a semaphore. This
makes the lower priority thread run at a higher priority as long as it holds
the semaphore and therefore it cannot be interrupted by the third thread.



CHAPTER 2. BACKGROUND 8

The priority ceiling protocol is an extension to the priority inheritance
protocol [8]. The idea with priority inheritance is that a thread blocking a
set of other threads inherits the priority of the blocked thread with the high-
est priority. For instance, if a thread holds a semaphore, it will execute at
the highest priority among the threads which wait for the same semaphore.
This reduces the blocking time of the threads since a low priority thread
that holds a semaphore will be able to run at a higher priority as long as it
holds the semaphore. The priority inheritance protocol has some problems
that the priority ceiling protocol does not have [8], the most important one
is that deadlocks are not prevented. A deadlock occurs when two threads
are waiting for a semaphore locked by the other thread.

2.5 Real-time databases

A real-time database system is a system where time constraints are asso-
ciated with transactions and data has specific time intervals for which the
data is valid [22]. An ordinary database has no notion of time, i.e., all data
in an ordinary database is valid as long as the values are in the database.
In a temporal database the notion of time is added, i.e., it has validity
intervals for its data. This solves problems with oversampling of sensor
values since if a transaction tries to read an old value, the database can
handle this event in some way. One difference between a temporal database
and a real-time database is the fact that a real-time database has time con-
straints on the operations on the database, hence, you can make sure that
a transaction is finished within a certain time [22]. Another difference is
that a temporal database is often an ordinary database with added validity
intervals and this gives unpredictable delays when accessing data items.

2.5.1 Concurrency control

Concurrency control is used to avoid that different transactions that run
simultaneously interfere with each other [21]. There are two classes of
methods to achieve this, one is called optimistic and the other one is called
pessimistic [12]. The pessimistic approach means that conflicts are avoided
during the execution of the transaction, this is achieved by using locks on
data items. The optimistic approach on the other hand lets all transactions
run and when the transaction is done, it checks that no conflicts occurred.
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2.5.2 Transactions

Transactions should follow the ACID properties, that is, Atomicity, Con-
sistency, Isolation and Durability [6]:

Atomicity means that an observer should see everything or nothing, that
is, a user should not see any intermediate transaction results.

Consistency means that if a transaction violates an integrity constraint
in the system, the system intervenes to cancel the transaction or to
correct the violation of the constraint. In a temporal database con-
sistency has two additional components, namely absolute consistency
and relative consistency [19]. Absolute consistency is between the
state of the environment and its reflection in the database. Relative
consistency is among the data used to derive other data items. These
notions are described more in section 2.5.3.

Isolation means that the same effect should be reached if we run the
transactions in parallel as if we were to run them in serial order.

Durability means that if a transaction commits, the changes are never
lost.

A transaction in a real-time database has a deadline when it should be done
and often also a priority.

2.5.3 Validity intervals

A validity interval is a period of time after the data was created where the
data is valid [19]. There are generally two different validity intervals in real-
time databases; absolute validity interval, which is the interval when the
data has the property of absolute consistency, and relative validity interval
which is the interval when the data has the property of relative consistency.

A set of data items used to derive a new data item form a relative con-
sistency set. Each such set R is associated with a relative validity interval
denoted by R,,;. A data item d from this set R has a correct state if it
is logically consistent, that is, satisfies all integrity constraints and if it is
temporally consistent, which means that it should have both absolute con-
sistency and relative consistency. A data item d from the set R is absolutely
consistent if the difference between the timestamp of d and the current time
is less than the absolute validity interval, i.e., d € R is absolutely consistent
if (current_time — diimestamp) < |davil-
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The data item d is relatively consistent if the difference between the
timestamp of d and all the data items in the set R is less than the relative
validity interval, i.e., d is relatively consistent if Vd' € R, |dtimestamp —

{%mestamp| < |Rypyi]- davi represents the absolute validity interval and
dtimestamp is the timestamp for the data item d. R,,; is the allowed relative

validity interval for the set R.

2.5.4 On demand updating

On demand updating is a way of updating a data item when the user re-
quests it and the data item is not valid as it is [2]. A database with
on-demand behavior must know how to update the values stored in the
database.

2.6 Real-time operating system

A real-time operating system (RTOS) should provide efficient mechanisms
and services to carry out good real-time scheduling and resource manage-
ment [17]. It should also keep its own time and resource consumptions
predictable and accountable. The RTOS should be extensible, modular
and preferably small since it is often supposed to run in embedded systems
where memory is limited. An RTOS is often built around a micro-kernel
that provides certain services, for example scheduling, synchronization and
interrupt handling.



Chapter 3

Problem description and
statement

This chapter describes the current system and the problems that are the
focus of this master’s thesis work.

3.1 The system today

This section introduces the problems with the system today.

3.1.1 Multiple versions of similar data

The different tasks in the system use the values in the global structures
mentioned in subsection 2.3 to derive new data and that particular derived
data is often stored in other global structures. There are many of these
global structures and that makes it hard to find out what the values actually
represent, therefore a programmer might simply derive a new value instead
of looking for the very same derived value in the global structures. If there
was a way of storing derived values in a common repository, much could be
gained, both in the processing power of actually doing the calculation only
once and then the memory that we save by storing the derived value only
once.

3.1.2 Sampling of sensor values

A function is called to start the process of updating a sensor value. There
is no way of checking before such a call if refreshing of the sensor value
is needed, instead the developer has to statically check the code and see
where else the value is refreshed and if that is often enough. This is a

11
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tedious work and it is easy to miss an update of the values, therefore many
sensor values are over-sampled, that is, updated more often than necessary.

3.1.3 Real-time operating system

Jinnel6v [13] describes that there is no real-time operating system available
in the provided engine control software. Instead, everything is interrupt-
driven, i.e., if a certain interrupt is triggered the corresponding code will
run. Since then, a version of the software that runs on the real-time oper-
ating system Rubus has been provided.

3.2 Aims and objectives

To solve the identified problems, a set of aims and objectives for the thesis
project was devised. The aims and objectives are presented in this section.

3.2.1 Evaluate Rubus

An evaluation of the Rubus-version of the engine control software was done,
covering the current solution and the improvements that could be done.

3.2.2 Develop a centralized real-time data repository

The development of a centralized real-time data repository was the main
task of the thesis work. The repository;

e is able to be extended and modified easily. This item is important
since the main purpose of the repository is to evaluate the perfor-
mance of new algorithms for handling validity intervals but also study
other real-time database issues.

e is able to handle absolute validity intervals (AVI), i.e., check if a read
data item is valid and collect statistics of the amount AVIs that are
violated. If an AVTI is violated, it is possible to handle it.

e is able to handle relative validity intervals (RVI). It is possible to tell
a transaction how big the interval is and the repository then checks
that the data items read do not violate this. The repository handles
any violations.

e provides different ways of doing concurrency control. The repository
can handle one protocol from each of the two main groups of concur-
rency control approaches, therefore it should be easy to implement
other ones within these two groups.
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e collects statistics of transaction. Currently information about the
number of started transaction, execution time of the transactions etc.
is collected.

e schedules transactions. Rubus (see chapter 4) schedules threads in a
preemptive way, i.e., the highest priority thread that is ready to run is
executed. It is interesting to study the performance if the scheduling
algorithm is changed to a standard one, like earliest deadline first.

e supports the data dependency graph algorithm [10] where different
data items depend on each other and updates are triggered to keep
the data items as up to date as possible.

3.2.3 Analyze the existing system

The existing system was analyzed in order to find good transaction ex-
amples. These examples reflect the real system, i.e., with the load and
common variables.



Chapter 4

Evaluation of Rubus

This chapter introduces the real-time operating system Rubus and evalu-
ates how well it is suited for running the real-time data repository, described
in chapter 5, on the engine control unit.

4.1 Introduction to Rubus

Rubus is a real-time operating system developed by Arcticus Systems. It
contains services to provide an execution platform for the application soft-
ware of safety critical systems [5]. The system is split into three kernels,
the red kernel that runs time-triggered red threads, the blue kernel that
runs event-triggered blue threads and the green kernel that runs interrupt-
triggered green threads. There is also a set of basic services that any kernel
can use. The kernels can communicate between each other using these basic
services. Resources are statically allocated in Rubus, i.e., before run-time
the developer allocates the needed memory and sets up every thread with
their buffer sizes etc.

4.1.1 The red kernel

As mentioned, the red kernel runs time-triggered red threads. The threads
run by an off-line-generated static schedule where the threads have dead-
lines and maximal execution times which makes the red kernel good for
modeling hard real-time systems where a deadline miss can lead to a catas-
trophe. There is also a possibility to switch between different red schedules
if, e.g., there is a mode change in the system. The red threads always have
priority over blue threads. The red kernel also supervises that the deadlines
are respected.

14
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Red threads support preemption, i.e., a red schedule can be composed
of a set of red threads that interrupt each other. The threads use the
same stack for storing execution time information, therefore a thread that
preempts another thread must finish its execution before the preempted
thread can execute again.

The red threads do not have any constructs for synchronization of the
threads, no semaphores or signals to make sure that there are no conflicts
when accessing common data. This makes the red kernel inappropriate to
use when implementing a dynamic system where many threads are sup-
posed to communicate with each other and access the same data.

4.1.2 The blue kernel

The blue kernel is an event-triggered kernel; it runs the threads by a priority
based preemptive scheduling algorithm which guarantees that the thread
with the highest priority among the ready threads is always executed first.
The blue threads execute when the red threads do not utilize the processor.
There are services for synchronization of blue threads included, namely
message queues, signals and mutex semaphores [3]:

Message queues are used to communicate between blue threads, any blue
thread can write a message to the queue and any blue thread can read
the message. The messages and the queue itself are of fixed size, this
enhances the performance of the message queue.

Signals are sent between blue threads. They do not carry any actual
message other than a special bit-mask®.

Mutex semaphores are used to synchronize blue threads.

Another service in the blue kernel is blue thread management where the
developer for example can lock preemption, i.e., make sure that the blue
threads do not interrupt each other. There are also possibilities to monitor
the blue threads, check their stack usage and get information about their
priorities etc.

4.1.3 The green kernel

Interrupt-triggered green threads run in the green kernel [4]. The green
threads interrupt the red and blue ones if the processor’s interrupt logic

! A bit-mask is a binary number-string that can be used to mask out information from
another string.
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allows it. The reason to use the green kernel instead of just letting the
interrupts run as they want to is that the interrupts can be monitored,
that is, one can set the maximal frequency and maximal execution time of
them, and if they are violated, they can be handled. Some services in the
green kernel are interrupt control, where the developer can lock interrupts,
and thread management where for example information about executing
threads can be collected.

Green threads could be good to use in the engine control system since
they add some extra control over the interrupts such as maximal allowed
frequency and maximal allowed execution time. It is recommended to signal
a blue thread from the green interrupt threads since the blue threads have
all the constructs for handling concurrent threads.

4.1.4 Basic services

There is a set of common services that all the kernels can use and the
services can also be used to communicate between the different kernels.
The services are [3]:

Memory pools. Since there is no possibility to dynamically allocate mem-
ory in Rubus (due to the fact that Rubus should be portable and all
platforms do not support dynamic memory handling) there is an op-
tion to use memory pools. One can look at a memory pool as a part of
the memory where applications can borrow memory and then return
it.

Basic message queue. The difference between the basic message queue
and the message queue in the blue kernel is that when using the basic
queue, the threads cannot wait for a message to appear in the queue.
The messages are consumed using first in - first out (FIFO).

Mailbox. The threads can send and receive messages from the mailbox.
The mailbox contains references to the messages; this makes the mail-
box fast.

Event log. It is used to log different events in the system. The log is
fetched from the developed application with Rubus Visual Studio.

Communication. In order to communicate with the developed applica-
tion from Rubus Visual Studio the developer needs to use the com-
munication service.
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4.1.5 Hardware Adaption Layer services

The hardware adaption layer contains services that adapt Rubus OS for
a specific target processor. By using this approach the services that are
target-specific are implemented in the most appropriate manner. The ser-
vices include [4]:

Basic timer control. There are possibilities to disable the basic timer for
a while. The basic timer is the timer that all other timers in Rubus
depend on.

Execution time measurement. In order to measure time with high res-
olution this service is provided.

Communication. This is the hardware-dependent service of communica-
tion used by the basic communication service in order to communicate
with the application from Rubus Visual Studio.

4.2 Windows simulator

Arcticus Systems provides a simulator in order to be able to simulate a run
of the developed system in Windows. This greatly reduces the time needed
to develop and debug a system. However when the system is deployed on
the real target, the Rubus OS library file that is included is changed. Due to
the fact that the simulator runs on top of another operating system there is
a difference between the simulator environment and the real environment.
The resolution of the basic timer (the timer that all other timers depend on)
is always at least 10ms. In earlier versions of the simulator, the Windows
NT clock was used to generate basic clock ticks in Rubus but sometimes
ticks were missed since Windows NT is a multitasking system and the
Rubus application might not be active when the NT clock tick is generated.
To solve this problem, an interval of NT-ticks is used to generate a Rubus
tick. This makes the system more robust but the resolution of the basic
timer might be bigger than 10ms since ticks still can be missed in the
interval.

4.3 Rubus Visual Studio

Rubus Visual Studio (RVS) is a tool, developed by Arcticus Systems, which
is used to design, simulate and analyze the real-time system being devel-
oped. The developer allocates all the resources needed by the application
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Figure 4.1: Rubus Visual Studio screen shot. To the left different resources
that can be added or removed are shown. In the middle there is a small ex-
ample of a red schedule, and to the right the developer can change different
parameters.

and then Rubus Visual Studio generates a set of .c- and .h-files that are in-
cluded in the project. It is also possible to connect to the application from
RVS and collect a lot of information about the application, e.g. missed
deadlines. All the parameters and services mentioned in the previous sec-
tions are configured using RVS.

4.4 Evaluation

This section evaluates the existing Rubus-version of the engine control soft-
ware. The features of Rubus are also discussed.

4.4.1 The current system

In the Rubus-version of the engine control software the time functions are
mapped to red threads. But since the engine control system was not de-
signed to be hard real-time, a lot of errors occur. A better solution could
be to signal blue threads from the red threads in order to capture the fact
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that the system is not hard real-time. The engine control software is not
hard real-time since some calculations miss deadlines, i.e., some interrupt
functions execute longer than the period between two interrupts when the
load is high on the engine control unit. When a calculation misses a dead-
line an old value is used, for example in the function that calculates the
amount of fuel to inject in the intake phase can use the values from the
previous intake phase if the new calculations are not done in time.

4.4.2 Services

All services Rubus provides are easy to use and they are quite similar in the
way the functions are called etc. A problem with the services is that they
might be too limited depending on the application’s needs. For example,
in the original version of Rubus there is no way of turning off the priority
ceiling protocol of the mutex semaphores, and there is no way of setting
the priorities of the blue threads dynamically, even though that should not
add much complexity or much code. The features needed are described in
chapter 8.

4.4.3 Timer resolution

The fact that the basic timer only ticks every 10ms makes the Windows
simulator bad for actually evaluating algorithms since the transaction load
is too low. Instead, the actual evaluation would have to be done on the
engine control unit or on some other platform where the timer resolution
is higher. The simulator is good for developing and debugging since the
developer can use the debug tools in Microsoft Visual Studio.



Chapter 5

A real-time data repository

This chapter describes a real-time data repository for the engine control
unit running Rubus.

5.1 Preliminaries

The reason not to call the repository a database is the fact that not all
features of a classic database are implemented. For example, there is no
need to search the repository since everything is statically allocated; the
only thing that will change in the repository is the values and properties of
the data items. Also, there is no permanent log since there is no secondary
storage. The repository was developed using the programming language C
since the engine control software is developed in the same language.

5.2 Design

This section introduces the design and explains why the given design was
chosen.

5.2.1 Interface to the data repository

In order to use the repository, a few functions need to be introduced:!

!Jinneldv [13] proposed an interface to a real-time database, this is used with a few
modifications. The deadline is given to BeginTransaction instead of CommitTransaction
and the ReadDB and WriteDB functions are modified since there is no way to overload
functions in C.

20
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BeginTransaction starts a transaction, here the maximal execution time
of the transaction and the maximal allowed relative validity interval
of the data items read in the transaction are stated.

ReadDB reads a data item from the repository. The returned value is a
union of the possible data types in the system.

WriteDB writes a data item to the repository. The absolute validity
interval and the timestamp of the written data item are calculated
from the previously read data items in the transaction.

WriteDBavi also writes a data item to the repository; the difference from
WriteDB is that the allowed validity interval is expressed as a param-
eter. The timestamp is taken as the current time.

UpdateDB updates the parents to a given data item. This function is
called when using the data dependency scheduling algorithm.

CommitTransaction verifies the transaction and makes the changes to
the data repository permanent.

When accessing a data item in the repository, the user defines what data
item is to be accessed, this is done using an enumerate data type. The data
is then stored in an array and the enumerated constant represents an index
in that array. As mentioned in section 2.3 the software in the original
system is layered. The repository represents the layer below the actual
applications, i.e., the repository will be the only place where an application
in the engine control software retrieves any data.

5.2.2 Data storage

The data is, as mentioned in the previous subsection, stored in an array.
This makes looking up indexes very fast and since every data is known in
advance, no searching is required. Each position in the array consists of a
structure where this information is stored. The structures are as follows:

The data is of course kept in the data structure. This could be any of the
basic data types in the system?. A solution to this is to use a union-
structure. A union represents an area in memory where different
types of data could be stored.

2The data types in the system consist of u8, s8, ul6, s16, u32 and s32. The number
represents how many bits each type takes and the letter represents if the variable type
is signed or unsigned.
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Timestamp that represents when the data item was created.

Absolute validity interval is also kept here, this value represents how
long time after the timestamp the data item is valid.

Locking information is stored in each data item. Depending on the
concurrency control algorithm chosen, different locking information
is needed. More about this in section 5.3.

Some more information is stored in each data item, depending on the cur-
rent configuration of the repository. This is further discussed in chapter
6.

5.2.3 Transaction handling

To represent the transactions in the system, an array with the currently
executing transactions is kept. The transaction number is given by the po-
sition in the array. Since there are only eight interrupt levels in the system,
there could be at most eight concurrent transactions [13], this gives us that
keeping an array with the executing transactions does not imply a large
overhead in memory consumption®. If data dependency graph schedul-
ing or on demand updating is used, the amount of data needed to store
is doubled since each arriving transaction can trigger a series of triggered

transactions. The information kept in the array is:
Maximal execution time given as a parameter to BeginTransaction.
Starting time of the transaction.

Log pointer is a pointer to the log of this transaction, this is described
in more detail below.

Minimal timestamp of the current read-set.

Maximal timestamp of the current read-set. The maximal and minimal
timestamps is kept in order to be able to check the relative validity
interval of a transaction. The read-set R is not relatively consistent
if max_timestamp — min_timestamp > Ryy;.

The relative validity interval that is allowed for the transaction.

3There is 64kb of memory in the engine control unit and the information about exe-
cuting transaction takes approximately 8¥12=96 bytes since there can be at most eight
concurrent transactions and the information needed to store about each active transac-
tion is about 12 bytes
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There is also a possibility to record the execution time of the transaction
so far, this could be used in order to make good estimations on whether a
restart of the transaction will be finished within the deadline.

5.2.4 Log handling

There is no permanent log in the system since there is no secondary storage
and very little memory in the engine control unit. There is, however, a need
to keep temporary logs for each transaction. Here the transactions store the
actions they have taken. At commit time, the log is used in different ways
depending on the concurrency control algorithm currently used. If the
concurrency control algorithm is optimistic, no write operations actually
change the repository before the commit point, therefore all writes are
stored in the log. On the other hand, if pessimistic concurrency control is
used, all old values of the data repository are stored in the log file in order
to be able to roll back the changes.

5.3 Concurrency control

As mentioned before, concurrency control is needed to make sure that trans-
actions running concurrently do not interfere with each other. There are
two distinct approaches to this, the optimistic and the pessimistic.

5.3.1 Optimistic concurrency control

Optimistic concurrency control (OCC) [15] is provided in the data repos-
itory. OCC is what it sounds like, let a transaction run to the end and
then detect any conflicts when the transaction is done. OCC is good when
there are few conflicts in the system. There are three phases in a transac-
tion that runs in an OCC-system, the first one is read, where the actual
work of the transaction is done, all writes done in this phase are done to
private storage [15]. The next phase is validation, where the transaction
makes sure that no conflicts occurred during the execution of the trans-
action, and finally there is the write phase where all changes are written
to the database. There are several approaches to achieve optimistic con-
currency control, the one chosen here is a variant of the broadcast commit
approach where a transaction detects an error and broadcasts this to all
other active transactions [12]. The transactions involved in the conflict
are then restarted. Experiments show that optimistic concurrency control
outperforms two-phase locking (see subsection 5.3.2) when there are few
conflicts [12]. To illustrate how optimistic concurrency control works in the
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Figure 5.1: Optimistic concurrency control
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data repository lets look at an example (Figure 5.1). Here we have two
transactions, T1 and T2. We can see that T2 has higher priority than T1
since T2 interrupts T1. T1 starts by reading X, then T2 starts running
and reads X, here we have no problem since many transactions can read
the same data item without problem. When T2 then writes X, we get a
problem since T'1 has read it before. Then T2 broadcasts a message about
this conflict to all active transactions. T2 then continues and writes all its
changes to the database. Now T1 resumes its execution and writes to X,
this is no problem since all write-operations are to local storage. Then T1
reaches the validation phase and sees the broadcasted message and realizes
that it has to restart.

The locking information needed to store when using optimistic concur-
rency control is only a single 8-bit value for each data item. The value is
used to mark what transaction first touched the data item.

5.3.2 Pessimistic concurrency control

Pessimistic concurrency control uses locks to ensure that no conflicts occur
during the execution of the transaction. The most common pessimistic
concurrency control protocol is called two-phase locking (2PL) [6]. The
basic idea is that if a transaction needs to read a data item, it acquires
a read-lock on the data item, and if it wants to write a data item, it
acquires a write-lock. There can be many readers on the same data item
at the same time, but there can only be one writer. Hence, read-locks are
compatible with each other but conflicting with write-locks; write-locks are
also conflicting with each other. There are two phases in a transaction
in 2PL; the first one is a phase where the transaction gains locks, called
the growing phase, and then a phase where it releases them, the shrinking
phase. Once a transaction has released a lock it is not allowed to gain any
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Figure 5.2: Pessimistic concurrency control

more locks. There is also a variant of 2PL that is called strict two-phase
locking, here all locks are released at the commit point of the transaction
[6]. The reason to use strict two-phase locking is that it does not allow
dirty reads, that is, a transaction reads a data item that was written by a
transaction that is roll-backed later.

The original two-phase locking algorithm is not well suited for real-time
systems since it does not consider priorities. One variant of 2PL that
considers priorities is called two-phase locking with high priority (2PL-HP)
[1]. There is a set of rules that the transactions should follow in a 2PL-HP
system:

1. If a higher priority transaction needs a lock on a data item, and a
lower priority holds a conflicting lock on the same data item, the lower
priority transaction should be aborted.

2. If a lower priority transaction needs a lock on a data item that a
higher priority transaction holds a conflicting lock on, the lower pri-
ority transaction should wait until the higher priority transaction has
released its lock.

3. A transaction can only join a set of readers if it has a higher priority
than all transactions that wait for a write-lock on the data item.

The example in figure 5.2 illustrates how 2PL-HP works. Here we have two
transactions, T1 and T2. T1 starts by writing X, and thereby write-locking
it. Then T2 with higher priority enters and wants to read X, according to
the rules, T2 should abort T1, wait for it to rollback and release locks and
then continue. T1 will restart and do its work when T2 is done. If, on the
other hand T2 had lower priority, it would have to wait until T1 was ready
with X and then continue.
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The idea to allow several readers at the same time but only one writer is
called the readers-writers problem [21]. The usual solution is to keep track
of the amount of readers in the system and only let writers enter the system
if the number of readers is equal to zero. When introducing priorities to the
readers and writers, we get the readers-writers problem with priorities. To
solve this a semaphore per priority level and data item is needed in order
to make sure that lower priority transactions can wait for higher priority
ones. In this specific application though, only one semaphore per data item
is needed since a lower priority transaction never will have to wait for a
higher one, since Rubus only lets higher priority threads interrupt lower
priority ones. Hence, we know that if another transaction has a lock on
a data item that we want to access, it must have lower priority, otherwise
it would not have been interrupted. As we can see in figure 5.2, T2 will
always have higher priority, otherwise T1 would finish before T2 gets to
run.

5.4 Earliest deadline first scheduling

There is an option to schedule transactions by the earliest deadline first
algorithm. The algorithm has been proven to be optimal [16]. Since Rubus
schedules threads and the transactions run in threads, the EDF-approach
is on top of the Rubus scheduling. This leads to unnecessary many context
switches. Another drawback is that only higher priority transactions can
enter the system and be scheduled. It would be good if there was a way of
“turning off” the Rubus scheduling so that any thread that is ready gets
to run, no matter what the priority of the thread is. This would give as
many context switches but it would be true EDF. The scheduling in the
repository works by signal sending and waiting for signals. Figure 5.3 shows
a set of messages being sent between three transactions and the scheduler.
The messages sent are described here:

1. Transaction A sends a message to the scheduler that it wants to run.

2. Since no other transaction is ready to run, the scheduler sends a
message to A that it can run.

3. Transaction B starts and wants to be scheduled, so it sends a message
to the scheduler and then waits for a reply.

4. Transaction C starts and also wants to be scheduled, it sends a mes-
sage and waits for a reply. Since transaction A has an earlier deadline
it continues to execute and transaction B and C waits.
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1
2
5
4
6
Transaction| Priority | Deadline| Arrival time
A 1 14 0
B 3 23 1
C 2 22 2
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Figure 5.3: Scheduling with EDF, three is the highest priority and one is

the lowest.

5. Transaction A is now done and sends a message about this to the

scheduler.

6. Since transaction C has an earlier deadline than transaction B it is

allowed to execute.

We can see that a transaction can only send a message to the scheduler if it
gets to execute for a short while, and it is only allowed to execute if it has
a higher priority than the currently executing transaction, according to the
Rubus scheduling algorithm. If we instead allowed any ready transaction
to execute, they would all be allowed to send the message and be fairly

scheduled according to EDF.

5.5 Data dependency graphs

This section describes data dependency graphs and how scheduling of trans-
actions can be done using them. A more detailed description is given by

Gustafsson [10].
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Figure 5.4: A data dependency graph

5.5.1 The graph

As mentioned in section 2.2.1, the engine control unit reads sensor values,
makes calculations on these value and then emits them to the actuators.
One can look at this as a data dependency graph, where sensor values are
base items and then a lot of derived values are using these. Also, derived
items can be used to derive new items. As we can see in the small example
(figure 5.4), there can be several levels in the graph. The top level consists
of the base items and all other items are derived from the base items.

5.5.2 Scheduling queues

To capture the properties of the current engine control system, there are
two queues for arriving transactions, one has higher priority than the other.
The higher priority queue is supposed to contain transactions started by
angle-interrupts since they often are considered to be more important. The
concurrency control algorithm used in the queues is optimistic. Earliest
deadline first is used to schedule transactions in each queue. If there is a
transaction ready in the higher priority queue, it gets to run before any
transactions in the low priority one.
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a) b3 d2 b2 b3 b4 d3

b) b3 d2 b2 b4 d3

Figure 5.5: Data dependency schedule generated for d5 with the depth-first
approach.

5.5.3 Triggered transactions

There are two different types of transactions in the system: arrived and
triggered. The arrived transactions are ordinary transactions that start by
standard execution of the system. Triggered transactions are transactions
started in order to make the parents of a data item fresh. Triggered transac-
tions are not put in the high or low priority queues described in subsection
5.5.2 since they are considered to be part of the currently executing arrived
transaction. Though, they get a transaction number in order to be able to
keep a transaction-local log.

5.5.4 Changed flag

In every data item there is a changed flag that states if the data item needs
an update. If a data item gets updated and the new value is far from
the old value on the data item, there is a possibility that the result of a
recalculation of the children of this data item changes much from the stored
value. Thus all children of the newly updated data item need to get their
changed-flag set.

5.5.5 Parent updates

As seen in figure 5.4, derived item d5 depends on items b2, d2, and d3; d2
then depends on b3, and d3 depends on b3 and b4. If d5 is to be updated
and the parents of it are marked as changed, they have to be updated.

There are generally two approaches to doing these updates, either depth-
first or breadth-first. Depth-first updates one parent-branch bottom-up
entirely before the next one. Figure 5.5a shows one example of a schedule
generated by the depth-first approach, figure 5.5b shows how the schedule
would look if the duplicates were removed. Breadth-first updates all items
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b4 b3 d2 b2 d3

Figure 5.6: Data dependency schedule generated for d5 with the breadth-
first approach.

in the level above before doing the next level, figure 5.6 shows an example
of a schedule when traversing the graph breadth first.

5.5.6 Generating data dependency schedules

As we can see in figures 5.5 and 5.6 the generated schedules can look quite
different depending on the way to traverse the data dependency graph. The
order to pick parents when generating schedules also makes a big difference
on the final result. To capture this, the parent that would add the most
error if it is not updated is scheduled first so that it has a higher probability
of being updated. To approximate the error that would be introduced if
the data item is not updated, a function is called. The function considers
how old the data item is. Also, a static weight is kept for each data item,
if it is important to have one data item fresh, it is given a high weight.

To update the parents of a data item, a function is called, namely
UpdateDB(...). This function takes a maximal update time as param-
eter, a schedule is then generated that fits within this time. If all updates
do not fit within the given time, some have to be left out. For example, in
figure 5.5, the total amount of time needed for the schedule with duplicates
is 10 time units. If the time is not enough, the schedule is generated so
that it will have time to finish the schedule. If there are five time units for
executing the updates, the schedule only includes b2, b4 and d3. The d2
branch is left as it is.

If, like in figure 5.5a, there are duplicate updates of data items, the one
that is run first is kept and the other ones are removed. It is considered that
a data item that is updated early in a generated schedule is fresh during
the whole duration of the schedule.
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Implementation details

This chapter describes the implementation of the real-time data repository.
The chapter is meant to simplify any future development of the repository
and to give more detailed descriptions of the solutions chosen.

6.1 Storage of data items

The amount of data needed to store with each data item depends on the
scheduling and concurrency control approaches chosen. With the compiler
option -Xenum-is-best the compiler will choose the smallest possible inte-
ger data type for the enumeration data type. If there, for example, are 200
data items, they can fit within an unsigned char data type and therefore
only occupy one byte of memory instead of four [23]. The data items are
stored in an array that is called DataBaseArray. This is further discussed
in sections 6.2, 6.4 and 6.5.

6.2 Concurrency control implementation

6.2.1 Optimistic concurrency control

The basic idea is that a transaction that wants to write a data item already
“locked” by some other transaction, broadcasts a message to all other active
transactions that there is a conflict in the system. The broadcast works
by having a global list where a transaction writes the message. The global
list is protected by a mutex semaphore called globalLogMutex. When a
transaction tries to verify that no conflicts occurred, it sees the message,
deletes the message and then restarts. Thus, the transaction that first
enters the verification phase is able to commit.

31
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The classic OCC-BC [11] algorithm works in a slightly different way;
instead of detecting the conflicts when the actual data item is accessed, it
does it during the verification. Also, in the classical algorithm a transaction
that gets a broadcast message can restart immediately without having to
reach the verification phase. The performance difference could be quite
large since many transactions can be affected by one broadcast message,
i.e., a transaction that detects a conflict can alert other transactions that
are then restarted, and the total time gained by restarting immediately
is then bigger than the time gained by being able to send the broadcast
message immediately when the conflict occurs.

The extra information needed to store on each data item when using this
concurrency control method is:

Lock that represents the transaction that first touched the item. This is
used when validating transactions.

6.2.2 Pessimistic concurrency control

Two phase locking - high priority is implemented in the following way, each
data item has an array where the current readers of the data item are kept.
The position in the array is the reader’s transaction number and the size
of the array is equal to the maximum number of transactions. Then there
is a semaphore on each data item that represents a write-lock on a data
item. A transaction entering the system always has a higher priority than
all currently running transactions. Thus, all that is needed to do when a
conflicting lock is requested is to abort the one that currently holds the
lock and then wait for it to roll back and release its locks. This is also
true when running earliest deadline first scheduling since the deadlines are
fixed during the execution of the transaction and therefore an interrupted
transaction will not start again before the one that interrupted it is finished.
Abortions are managed by setting a flag on the aborted transaction in the
executingTransactionarray. The flag is checked in every operation on the
database to detect if the currently executing transaction is being aborted,
and then roll back changes and release the locks. The transaction has to
finish all calculations before it can restart.

The semaphores used in the pessimistic concurrency control implemen-
tation do not have the priority ceiling protocol. If the semaphores had the
priority ceiling protocol, a transaction that got a write-lock on a data item
would execute at the set ceiling priority. Then all threads that would have
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started executing, if the first thread was running on its original priority,
would be blocked.

The extra information needed when using this concurrency control algo-
rithm consists of:

Current readers. Since there can be many readers an array is needed to
keep track of the transactions reading the item. This information is
used when aborting transactions.

Writer that keeps track of the transaction number of the current writer.
This is used when aborting transactions.

Writer-semaphore is used when waiting for an aborted transaction to
release its locks.

6.3 Earliest deadline first scheduling

To keep track of the transactions that want to be scheduled there is a
global array called readyArray where each transaction that wants to start
executing stores its deadline and a pointer to the thread instance. The
scheduler thread uses the thread instance pointer in order to be able to
send a message that starts the transaction. It is not possible, when using
signals in Rubus, to see who is the the sender of a message, therefore the
pointer to the thread has to be stored in the global array. Rubus has a
function to get a pointer to the currently executing thread, the function is
called blueSelf (). The array is protected by a mutex semaphore called
edfSchedulingMutex.

When a transaction is done, it removes its deadline and thread pointer
from the global array, signals the scheduler that it is done so another trans-
action can start. During the execution of the transaction, other transactions
can arrive. They will signal the scheduler that they want to run, but if the
currently executing transaction still has the earliest deadline, the scheduler
sends a signal to it even if it is already started. This does not matter since
transactions never wait for any signals after they are started. Instead, all
pending signals are cleared when the transaction is done.

6.4 On demand updating of data items

One assumption taken when using on demand updating is that transactions
that update a given data item only update that item. Since the data
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repository is supposed to know how to update a data item, the transactions
need to be kept in functions so that a pointer to the function can be stored
with the data item that the transaction updates. This makes it possible
to, when trying to read a data item that is invalid, call this function and
then get an update of the data item.

Some extra information is needed on each data item when using on de-
mand updating of data items:

Transaction pointer is a pointer to the transaction that updates the data
item.

6.5 Data dependency graph scheduling

The data dependency graph is kept as a constant adjacency matrix to
reduce the memory usage. If the matrix is constant it will be kept in
the flash memory while if it was dynamic it would be in RAM memory.
Generally there is more flash memory available than RAM memory. An
adjacency matrix is a way to represent a graph [9]. The adjacency matrix
for the graph in figure 5.4 is shown in figure 6.1. The items in the example
graph are numbered 0-8 and then that number is mapped to a row and
column number. Each column marked as “1” represents that the item
with that row number has a parent that has that column number. The
transpose! of the matrix represents the children of a node in the same way.

There is an assumption in this algorithm, namely that every transaction
reads a set of data items and then writes another item. In this way, all the
read items in a transaction are the parents of the data item that is going
to be written. To capture this an extra function call is needed when doing
a transaction that uses the dependency graph algorithm. The function
was mentioned in subsection 5.5.5 and is called UpdateDB. It takes three
parameters. The first one is the transaction number, the second is which
data item that is updated in this transaction. The third is a maximal
execution time for the updates, i.e., how long time can be spent on updating
parents. Each data item in the repository keeps a maximal execution time
that represents how long its update transaction takes. This value is used
when generating the schedule. UpdateDB uses recursion to create a schedule

!The transpose of a matrix is constructed by letting the rows of the original matrix
become the columns of the transposed one [9].
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Figure 6.1: Data dependency graph adjacency matrix

and it stops when the accumulated time is about to exceed the maximal
update time given as a parameter to the function.

The prioritization between different parents mentioned in section 5.5.6
is also considered when generating the schedules. The solution is to use a
priority queue and call the recursive function on each item in the queue.
The priority queue consists only of the immediate parents of a given data
item and it is used to select which branch to update first. A new priority
queue is generated for each parent of a data item.

The extra information needed on each data item when implementing the
data dependency graph algorithm is:

Transaction pointer that points to the transaction that updates the data
item.

Update time for the data item, i.e., the time needed to execute the trans-
action that updates the data item. This is used when generating
schedules.

Changed flag that is set by the parents to a data item if they are changed
enough.

Change delta, the value of the data item can change within this delta
without getting the change flag set.
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6.6 Function description

This section describes the functions implemented in the data repository.

6.6.1 User functions

The functions that a user needs to know are:

e void initDatabase();
This function initializes the database and sets all values to what they
should be. This function should always be called before any transac-
tions start.

e char BeginTransaction(s8 *transNr,u32 met,ul6 rvi);

This function starts a transaction. It finds a transaction number and
sets all needed variables. Also, if earliest deadline first scheduling is
used, it signals the scheduler and waits for an answer. If the value of
*transNr is equal to the global constant BEGIN_TRANSACTION it
starts a transaction, otherwise it is considered that a transaction is
restarted. met is the maximal execution time of the transaction and
rvi is the relative validity interval allowed for the transaction. Two
extra parameters are needed when using data dependency schedul-
ing; the priority of the transaction, i.e., if the transaction should be
scheduled in the high or the low priority queue; the second extra
parameter is the type of transaction it is, i.e. if it is an arrived or
triggered transaction.

e void CommitTransaction(s8 *transNr);
This function validates the commiting transaction and if the valida-
tion was successful, it makes the changes done during the transac-
tion permanent. It sets transNr to the global constant TRANSAC-
TION_DONE in order for BeginTransaction to know that everything
was successful. If the validation fails on the other hand, it restarts
the transaction by leaving the transaction number as it is.

e void WriteDB(s8 *transNr, DataEnum di, DB_Data data);
This function writes a data item to the repository. The parameters
given are; transaction number, what data item to write and the new
data on that data item. Depending on the concurrency control algo-
rithm used, it either stores the new value directly in the data reposi-
tory (2PL) and the old values in a transaction-local list, or it stores
the new value in the list and leaves the data repository unchanged
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DB_Data dbdata;
s8 transNr=TRANSACTION_START;
while (BeginTransaction(&transNr,1000,5))

{

}

ReadDB (&transNr,IN_N_ENGINE, &dbdata) ;
CommitTransaction(&transNr) ;

Figure 6.2: An example of a transaction. The transaction is allowed to
execute for 1000us and the allowed relative validity interval is bms.

(OCC). The function calculates the AVI using calculateAvi. If on-
demand updating or data dependency scheduling is used, a function

pointer to the transaction that is calling WriteDB needs to be pro-
vided.

void WriteDBavi(..., ulé avi);

This function works in exactly the same way as WriteDB only that
with this function we can explicitly state the absolute validity interval
that should be stored for the data item. The function takes the same
parameters as WriteDB with the addition of the avi parameter.

e DB_Data ReadDB(s8 *transNr, DataEnum di, DB_Data *data);

This function reads a data item from the repository, returns the
value and sets the reference parameter to the value. The function
checks if AVI and RVT are violated using the functions checkRvi and
checkAvi.

void UpdateDB(s8 *transNr, u32 dataltem, u32 deadline);
This function takes a data item and a deadline as parameter, then it
generates a dependency graph schedule that fits within the deadline
and that updates the parents of the given data item.

Two examples of transactions are given in figures 6.2 and 6.3. The reason
to use different units for time is that there is never any need to give a
validity interval that is less than 1ms, but a transaction might be allowed
to execute for example 750us.

6.6.2 Timing functions

This subsection describes the time measurement functions implemented.
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DB_Data locald2,locald3,locald5;
s8 transNr=TRANSACTION_START;
while (BeginTransaction(&transNr,100,5,L0W_QUEUE,ARRIVED))
{
UpdateDB (&transNr,D5,80) ;
ReadDB (&transNr,D2,&locald2) ;
ReadDB (&transNr,D3,&locald3) ;
localdb=calculateStuff(locald2,locald3);
WriteDB(&transNr,D5,locald5, &funcPtr);
CommitTransaction(&transNr) ;

Figure 6.3: An example of a transaction when using data dependency
graphs. UpdateDB updates as many parents to D5 as possible within 80us.

ul6 time;
time=startValidityTimer();
doLots0fStuff () ;
time=stopValidityTimer (time) ;

Figure 6.4: A time measurement example.

e ul6 startValidityTimer();
This function returns the value of the basic clock.

e ul6 stopValidityTimer (ul6 startTime);
This function does not really stop the timer, it only returns the time
lapsed between startTime and the current time. The time given as
parameter is given by startValidityTimer ().

An example of how to use these functions is given in figure 6.4. These func-
tions are used when checking RVI and AVT in the repository. The functions
are similar to the Rubus functions for high resolution time measurement,
i.e.,halBsExecTimeStart() and halBsExecTimeStop(...).

6.6.3 Data repository help functions

This subsection describes the helper functions in the data repository.

e void logCommit (LogItem *head);
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This function is used when using OCC, it writes all data items that
are stored in list pointed to by head.

e int calculateTimestamp(LogItem *head) ;
This function takes a pointer to the transaction-local list and reads
it to determine the read set of the transaction. Then it calculates a
timestamp using the timestamps of the data items in the read set.

e int calculateAvi(LogItem *head);
This function works in a similar way as the function in the previous
bullet, but it calculates an absolute validity interval using the read
set.

e u8 verify(s8 transNr);
This function is called when using OCC, it checks the global log for
conflicts.

e u8 checkRvi(DataEnum dataltem, s8 transNr);
This function takes a data item as parameter and then checks whether
reading this data item violates the relative validity interval. The
solution is to keep the maximal and minimal timestamp of the current
read set of the transaction and check whether the new timestamp is
bigger or smaller than these values. If so, the function checks whether
the new interval is bigger than the allowed relative validity interval.

e u8 checkAvi(DataEnum dataltem);
This function checks whether the data item given as parameter is
absolutely valid.

e void rollback(LogItem *1i, s8 transNr);
This function is used in pessimistic concurrency control to reset all
changes done by a transaction.

6.6.4 Locking functions

e u8 r_lock(DataEnum dataltem, s8 transNr);
This function read-locks a data item when using OCC.

e u8 w_lock(DataEnum dataltem, s8 transNr);
This function write-locks a data item when using OCC.

e u8 r_lock_2pl(DataEnum dataltem, s8 transNr);
This function read-locks a data item when using 2PL.
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e u8 w_lock_2pl(DataEnum dataltem, s8 transNr);
This function write-locks a data item when using 2PL.

e void releaselocks(LogItem *1i,s8 transNr);
This function releases all locks held. Depending on the concurrency
control algorithm used, it works in different ways, if optimistic concur-
rency control is used, the data item is simply marked as unused, and
if pessimistic concurrency control is used, the semaphore is unlocked.

6.6.5 Other functions

e SimpleItem* getDependencySchedule(DataEnum d,s8 transNr);
This function returns a pointer to a dependency graph schedule. This
function is only called from UpdateDB. The parameters are: the data
item to generate a schedule for, and the transaction number of the
caller.

e void printStatistics();
This function prints the collected statistics using printf(...) and
therefore the function is only available when using the Rubus Win-
dows simulator.

6.7 Implementation limitations

Currently there is no way of restarting a transaction immediately since there
is no way of “jumping” back to BeginTransaction whenever it is needed.
This could likely be solved using some sort of a state for each thread. The
state, including registers and the stack, is saved when a transaction enters
BeginTransaction and a transaction that detects that another transaction
needs a restart should reset the saved state on the thread that is executing
the conflicting transaction.

6.8 Statistics

There is a possibility to collect statistics of the transactions. A data struc-
ture called Statistics is available, which contains a lot of variables that
are changed during the execution of the system. For example, the number
of started transactions and number of restarts are stored. The data struc-
ture is protected by a mutex semaphore called statMutex. It is very easy
to collect more statistics in the system, a variable is added to the structure
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and then it is used to collect the wanted statistics. The following statistical
data is currently collected:

Number of started transactions

Number of committed transaction

Number of restarts

Number of missed AVIs

Number of missed RVIs

Number of missed deadlines

Number of transactions who read data items with the change flag set
Maximal number of concurrent transactions at a given time

Total run time of the system

Total execution time of transactions, can, for example, be used to
calculate the mean execution time of the transactions

Total deadline miss time, i.e., if a transaction misses its deadline, the
excess time is added to this variable

Number of triggered calls

A lot more is derived using this information. For example, throughput in
transactions per second and mean execution time for transactions. The
whole statistics structure could be read with some external tool when the
system is deployed on the engine control unit.

6.9

Compiling with Diab 5.0a

The Rubus-ported version of the engine control was compiled by Saab and
Mecel using an older version of the Diab-compiler. The version available
during the project was Diab 5.0a and some parameters to the compiler were
needed for it to work.

1.

-Xmismatch-warning. This option turns off the fact that the com-
piler treats warnings of type mismatches as errors.

. —Xpreprocessor-old. To use the same preprocessor as the old com-

piler.
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6.10 Benchmark suite

A small benchmark suite was developed during the thesis project, two sub-
systems in the engine control software was studied, FuelMaster and the
task that is run every 20ms. FuelMaster calculates the amount of fuel to
inject into the engine. The common variables of the two subsystems were
found and some transactions that use the variables were implemented. The
common variables are:

e In.n Engine [w/r]

e In.p AirBefThrottle [w/x]
e In.p_AirInlet [w/r]

e In.Q_AirInlet [w/r]

e In.p_AirAmbient [w]

e In.T Engine [w]

e In.ST IgnitionKey [w]

e In.v_Vehicle [w]

e In.U_Batt [w]

A [w] in the list means that the variable is written in both subsystems and
[r] means that it is read. Further needed development of the benchmark
suite is left as future work.



Chapter 7

Related work

This chapter presents some related work in the areas real-time databases,
concurrency control, scheduling and engine control.

7.1 Real-time databases

Ramamritham [19] gives a good overview of real-time databases, charac-
terizing data and transactions in real-time database systems. Also, active
databases are discussed with their pros and cons and some other issues with
real-time databases are also covered, like I/O and overload management.

7.1.1 Characteristics of transactions

The characteristics of transactions are introduced in the paper, the transac-
tions are split into three groups, namely write-only, update and read-only.
Write only transactions are, if the engine control system is considered,
reading the sensors and then writing the values into the database. Update
transactions are the ones that read a set of data items, perform some calcu-
lations and then write the results into the database. A read-only transaction
get a derived value from the database and sends it to an actuator.

Another distinction between transactions is done by the way they handle
deadline misses. Three types are introduced, hard, soft and firm. Hard and
soft deadlines are described in section 2.4. Firm deadlines mean that if a
deadline is missed, the value of the transaction is equal to zero but it does
not imply a catastrophe, instead the transaction can be aborted without
loosing any value in the system.

43
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7.1.2 Active databases

Berndtsson, Hansson [7] and Ramamritham [19] discuss the issues in merg-
ing active databases and real-time databases. It is described that the clas-
sical active databases follow the event-condition-action rule (ECA). ECA
means that when a specified event E occurs and a condition C holds, per-
form the action A. The papers also describe how this ECA-rule could be
made more appropriate for real-time applications; “on event E and if con-
dition C holds, perform action A within t seconds”. The active behavior
described earlier in the report and that is implemented in the data reposi-
tory is restricted to updating invalid data items when trying to read them.
If the implementation is mapped to the real-time ECA-rule, we can see the
event as reading a data item, the condition is that the data item is invalid
and the action is to update it. The timing comes in when using the data
dependency graph scheduling where a deadline for updating data items is
given.

The active behavior in the data repository is related to the work by
Adelberg, Garcia-Molina and Kao [2] where they talk about on-demand
updating of stale' data items. They have separated the user-transactions
that both read and write data in the database from updates that only
update data items; each update only updates one data item. The updates
are enqueued upon arrival in the system and when a user-transaction tries
to read a stale object, the update queue is searched for an update of the
data item. If the update is found, then it is applied. On demand updating
minimizes the number of stale data read. There are two other algorithms
introduced in the article, namely “do updates first” where updates are
applied as soon as they arrive in the system and “do transactions first”
where updates only are applied when no transactions exist in the system.
Also, “split updates” is described, here updates are applied to high priority
data on arrival and only when no transactions exist on low priority data.
The results in the article show that the on demand approach gives the
best overall performance. Although, it can be difficult to see what updates
are applicable to a certain item, for example, if an item that represents a
mean value of a set of stocks is read it can be hard to know what updates
to apply in order to get a fresh mean value. This work can be compared
to the implemented data repository where the “mean-value-problem” is
solved by having the data dependency graph. There is a difference between
updates and transactions in the repository too, even though updates are

1A stale data item is one that is too old to use in a calculation.
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transactions, the update transactions do not read any data items from the
repository before writing. Also, the update transactions are not enqueued,
instead they are considered as ordinary transactions and scheduled like
them. The update-functionality is only used when one of these updates
have not been applied often enough.

7.2 Concurrency control

This section will cover related work in the concurrency control area, mostly
for real-time applications.

7.2.1 Pessimistic concurrency control

Atzeni, Ceri, Paraboschi and Torlone [6] give a nice introduction to pes-
simistic concurrency control, describing two-phase locking and strict two-
phase locking. Abbott and Garcia-Molina [1] introduce the two-phase lock-
ing - high priority (2PL-HP) algorithm which is more suited for real-time
applications. They also cover some priority assignment policies like earliest
deadline first and least slack first. In the results from their experiments they
find that two-phase locking-high priority performs worst of the algorithms
tested, especially when combined with earliest deadline first scheduling.
Their test bed is a single processor and a database without any secondary
storage so it is similar to the set up in the data repository in this report.
Two-phase locking - high priority was implemented in the data repository
since it provides the constructs for pessimistic concurrency control and
should make it easier to implement other pessimistic algorithms.

7.2.2 Optimistic concurrency control

Kung and. Robinson [15] introduced optimistic concurrency control. They
let transactions run unhindered until the commit point. There the trans-
actions try to validate and if the validation fails the transaction restarts.
Haritsa, Carey and Livny [11] describe and evaluate the optimistic concur-
rency control - broadcast commit (OCC-BC). In the description, a trans-
action that gets a broadcast message can restart immediately, this is not
possible in the data repository since Rubus does not provide the necessary
constructs for it. The results from the article show that OCC-BC performs
better than 2PL-HP when there are few conflicts in the system.
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7.3 Scheduling

Liu and Wayland [16] give a view of the classic scheduling algorithms for
real-time systems, namely earliest deadline first and rate monotonic. They
conclude that the algorithms are optimal under certain conditions. Rate
monotonic is optimal among the fixed priority algorithms and earliest dead-
line first if it is possible to schedule dynamically.



Chapter 8

Conclusions

8.1 Summary

The real-time data repository implemented can handle transactions in a
real-time fashion. Transactions have deadlines and can be scheduled using
earliest deadline first [16] or by using Rubus static priority scheduling where
transactions are scheduled by the priority of the threads they execute in.
The following is implemented in the repository:

e A variant of the broadcast commit [11] protocol.

e The two-phase locking - high priority [1] concurrency control algo-
rithm.

e Earliest deadline first scheduling algorithm [16].
e Data dependency graph scheduling algorithm [10].
e Mechanisms for gathering statistics.

The broadcast commit protocol uses a global list as a broadcast channel.
The transactions cannot restart immediately when they get a broadcast
message, instead they have to execute until their verification-points, a so-
lution to this problem is outlined in chapter 8. A transaction that is suc-
cessfully validated gets to commit and a transaction with higher priority
has a higher probability to get successfully validated. The implementation
is not true broadcast commit [11] since the transactions do not restart un-
til the validation point and they send broadcast messages whenever they
detect a conflict.

47
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The idea with two-phase locking - high priority is that a higher priority
transaction should never have to wait for a lower priority one, instead the
higher priority transaction simply aborts the lower priority one. The abor-
tion functionality is implemented in the data repository by having the high
priority transaction set a flag on the lock holding lower priority transac-
tion and then waiting for it to roll back its changes and release the locks.
The waiting done here is very short and required since otherwise the higher
priority transaction could read intermediate results that the lower priority
transaction has written to the repository. This is the only waiting needed
since a transaction that aborts another one always has higher priority.

When scheduling with the earliest deadline first (EDF) algorithm, the
transaction with the earliest deadline executes first. It is implemented by
sending and receiving signals. A transaction that wants to be scheduled
sends a message to a scheduler thread that decides what transaction to
start. There is a restriction in the current implementation, namely that the
EDF algorithm works on top of Rubus scheduling. As described in section
5.4, a transaction with a very early deadline can be delayed because of the
fact that it is executing in a low priority Rubus-thread. A solution to this is
outlined in section 5.4. The data dependency graph algorithm keeps track
of how a data item is dependent on other data items in the repository. This
is done by keeping a graph that shows the data dependencies. The graph in
the repository is stored as an adjacency matrix [9]. To get the parents of a
data item updated, the function UpdateDB is called. It takes a deadline and
data item as parameters and generates a schedule that updates as many as
possible of the data item’s parents.

It is possible to collect statistics on transactions. Currently quite a lot of
information is provided, for example throughput in transactions per second,
AVT misses, RVI misses and mean execution time. It is easy to collect
statistics, a structure with all information is kept and the whole structure
could be read from the application with some external tool.

Some features missing in Rubus have been identified as vital to the future
development of the data repository, they are:

o Mutex semaphores without priority ceiling and ownership. In order to
implement two-phase locking with high priority a mutex semaphore
without priority ceiling was needed. Ownership makes standard so-
lutions to synchronization problems more complex too, for example,
monitors can not be implemented when the mutex semaphores have
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8.2

owners. Arcticus Systems have given us a version of Rubus with this
feature implemented but the feature is not available in the original
Rubus version.

Possibility to set dynamic priorities on blue threads. This could be
useful when doing future improvements on the repository.

Possibility to “turn off” Rubus thread scheduling. In section 5.4 the
problem with using earliest deadline first scheduling of transactions
is described. A transaction with an early deadline that is in a thread
with a low priority is delayed until all transactions in higher prior-
ity threads are finished. The solution would be to turn off Rubus
scheduling of blue threads and instead let every thread run when it is
ready to do so, then they can tell the EDF-scheduler their deadlines
and it can decide what transaction to start.

State functionality on blue threads. In order to to restart a trans-
action immediately; it would be nice to be able to store the current
state of a thread when the transaction starts and then be able to set
this state on the thread so that it continues from where the state was
stored. This functionality exists in Unix and the information needed
to store should be about the same as when doing a context switch. In
Unix, the function call needed to save the state is called setjmp(...)
and to reset the state, longjmp(...).

Future work

A few suggestions to future work is provided here:

e Develop a data dependency graph tool. It is very difficult to create the

graphs with their adjacency matrixes even if they are quite small as
the example in figure 6.1. It would be good to have a tool that handles
the graphs, perhaps in a graphical way. The tool should be able to add
new data items in the graph, add dependencies between data items
etc. The tool could handle the actual data repository too, adding and
removing the data items there as well. Perhaps could “stubs” for the
transactions be generated so that the correct data items are read and
written, the developer could then just add the calculations needed in
order to derive the data item. When everything is configured, the
tool should generate a set of .c and .h-files that should be included in
the project.
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e Possibility to restart transactions. As mentioned earlier, there is no
way of restarting a transaction when it is needed. This gives quite a
big overhead since a transaction could be quite long.

e The scheduling in Rubus should somehow be overridden in order to
get true earliest deadline first scheduling.

e Set up a better simulation environment. In order to get good results
from the runs of a system using the repository, a better simulation
platform is needed. As mentioned in section 4.2 the resolution of the
basic timer in the Rubus Windows simulator is only 10ms. This is
way to big to see any real differences between different algorithms
since the execution times of the transactions in the engine control
software is much smaller than 10ms. Instead, Rubus could be run as
the only operating system on an i386-processor to both get the file
handling so that logs could be kept, and get a higher resolution of the
timer. Another option is to clean up the engine control software so
that the engine control unit can be used as an evaluation platform.
This adds some problems though, for example, a tool to read data
from the engine control unit is needed, this could be the software that
Saab is using today or some sort of a CAN-analyzer that simply reads
data from the CAN network.

e Currently an improved benchmark suite is being developed in order
to evaluate the new algorithms. It will cover many issues with the
engine control system and provide a good evaluation platform.

e Evaluate the data dependency graph algorithm. The dependency
graph algorithm is new and untested, therefore it is interesting to
evaluate the two update schedule generating approaches available,
i.e., depth first and breadth first.
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