LiU > IDA > Real-Time Systems Lab
ABOUT
MEMBERS
COOPERATION
PROJECTS
PUBLICATIONS
COURSES
OPEN POSITIONS
THESES
ALUMNI

Announcements

[16 May 2017] A bachelor student at RTSLAB was awarded the best thesis award from IDA - Tim Hultman. more ...

[12 May 2016] A master student at RTSLAB was awarded the best thesis award from IDA - Alexander Alesand. more ...

[12 May 2016] A bachelor student at RTSLAB was awarded the best thesis award from IDA - Mathias Almquist and Viktor Almquist. more ...

[25 May 2015] A master student at RTSLAB was awarded the best thesis award from IDA - Klervie Toczé. more ...

[26 May 2014] A bachelor student at RTSLAB was awarded the best thesis award from IDA - Simon Andersson. more ...

[31 May 2012] A masters student at RTSLAB was awarded the best thesis award from IDA - Ulf Magnusson. more ...

[27 February 2008] A masters student at RTSLAB was awarded the best thesis award from IDA - Johan Sigholm. more ...

[03 March 2004] A masters student at RTSLAB was awarded the best thesis award from IDA - Tobias Chyssler. more ...

[01 Jul 2003] For second year in a row a masters student at RTSLAB was awarded the best thesis award from SNART - Mehdi Amirijoo. more ...

Master Thesis - Past Projects - Abstract

Autonomous Indoor Navigation System for Mobile Robots

ID: LIU-IDA/LITH-EX-G--16/004--SE

With an increasing need for greater traffic safety, there is an increasing demand for means by which solutions to the traffic safety problem can be studied. The purpose of this thesis is to investigate the feasibility of using an autonomous indoor navigation system as a component in a demonstration system for studying cooperative vehicular scenarios. Our method involves developing and evaluating such a navigation system. Our navigation system uses a pre-existing localization system based on passive RFID, odometry and a particle filter. The localization system is used to estimate the robot pose, which is used to calculate a trajectory to the goal. A control system with a feedback loop is used to control the robot actuators and to drive the robot to the goal. The results of our evaluation tests show that the system generally fulfills the performance requirements stated for the tests. There is however some uncertainty about the consistency of its performance. Results did not indicate that this was caused by the choice of localization techniques. The conclusion is that an autonomous navigation system using the aforementioned localization techniques is plausible for use in a demonstration system. However, we suggest that the system is further tested and evaluated before it is used with applications where accuracy is prioritized.

Keywords: autonomous, indoor navigation, robot navigation, automatic control, PID, vehicular

File: Click here to download/view the thesis

Author(s): Antymos Dag

Contact: Mikael Asplund

Click here to return.
Last modified February 2017. If you have questions or suggestions for the webpages, contact the webmaster