LiU > IDA > Real-Time Systems Lab
ABOUT
MEMBERS
COOPERATION
PROJECTS
PUBLICATIONS
COURSES
OPEN POSITIONS
THESES
ALUMNI

Announcements

[16 May 2017] A bachelor student at RTSLAB was awarded the best thesis award from IDA - Tim Hultman. more ...

[12 May 2016] A master student at RTSLAB was awarded the best thesis award from IDA - Alexander Alesand. more ...

[12 May 2016] A bachelor student at RTSLAB was awarded the best thesis award from IDA - Mathias Almquist and Viktor Almquist. more ...

[25 May 2015] A master student at RTSLAB was awarded the best thesis award from IDA - Klervie Toczé. more ...

[26 May 2014] A bachelor student at RTSLAB was awarded the best thesis award from IDA - Simon Andersson. more ...

[31 May 2012] A masters student at RTSLAB was awarded the best thesis award from IDA - Ulf Magnusson. more ...

[27 February 2008] A masters student at RTSLAB was awarded the best thesis award from IDA - Johan Sigholm. more ...

[03 March 2004] A masters student at RTSLAB was awarded the best thesis award from IDA - Tobias Chyssler. more ...

[01 Jul 2003] For second year in a row a masters student at RTSLAB was awarded the best thesis award from SNART - Mehdi Amirijoo. more ...

Master Thesis - Past Projects - Abstract

Optimizing Communication Energy Efficiency for a Multimedia Application

ID: LIU-IDA/LITH-EX-A--16/007--SE

Mobile devices have evolved rapidly in recent years and increased usage and performance are pushing contemporary battery technology to its limits. The constrained battery resources mean that the importance of energy-efficient application design is growing and in this regard wireless network accesses are a major contributor to a mobile device's overall energy consumption. Additionally, the energy consumption characteristics of modern cellular technologies make small volumes of poorly scheduled traffic account for a substantial share of a device's total energy consumption. However, quantifying the communication energy footprint is cumbersome, making it difficult for developers to profile applications from an energy consumption perspective and optimize traffic patterns. This thesis examines the traffic patterns of the Android client of the popular multimedia streaming service Spotify with the intention to reduce its energy footprint, in terms of 3G energy consumption. The application's automated test environment is extended to capture network traffic, which is used to estimate energy consumption. Automated system tests are designed and executed on a physical Android device connected to a 3G network, shedding light on the traffic patterns of different application features. All traffic between the Spotify client application and the backend servers is encrypted. To extract information about the traffic, the application code is instrumented to output supplementary information to the Android system log. The system log is then used as a source of information to attribute data traffic to different application modules and specific lines of code. Two simple traffic shaping techniques, traffic aggregation and piggybacking, are implemented in the application to provide more energy-efficient traffic patterns. As a result, 3G energy consumption during normal music playback is reduced by 22-54%, and a more contrived scenario achieves a 60% reduction. The reductions are attained by rescheduling a small class of messages, most notably data tracking application usage. These messages were found to account for a small fraction of total traffic volume, but a large portion of the application's overall 3G energy consumption.

Keywords: 3G, energy consumption, energy efficiency, traffic patterns, software testing, test automation, Spotify

File: Click here to download/view the thesis

Author(s): Jens Olander Green

Contact: Simin Nadjm-Tehrani

Click here to return.
Last modified February 2017. If you have questions or suggestions for the webpages, contact the webmaster