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Abstract

E-commerce Web-servers often face overload conditions
during which revenue-generating requests may be dropped
or abandoned due to an increase in the browsing requests.
In this paper we present a simple, yet effective, mechanism
for overload control of E-commerce Web-servers. We de-
velop an E-commerce workload model that separates the
browsing requests from revenue-generating transaction re-
quests. During overload, we apply LIFO discipline in the
browsing queues and use a dynamic priority model to ser-
vice them. The transaction queues are given absolute pri-
ority over the browsing queues. This is called the LIFO-
Pri scheduling discipline. Experimental results show that
LIFO-Pri dramatically improves the overall Web-server
throughput while also increasing the completion rate of
revenue-generating requests. The Web-server was able to
operate at nearly 60% of its maximum capacity even when
offered load was 1.5 times its capacity. Further, when com-
pared to a single queue FIFO system, there was a seven-fold
increase in the number of completed revenue-generating re-
quests during overload.

Keywords: E-commerce, overload control, Web-servers,
LIFO, priority.

1. Introduction

The capacity of a Web-server is measured in terms of the
rate of requests/second that it can fulfill. When the request
rate to a Web-server exceeds its capacity, the server is over-
loaded, its response time increases to an unacceptable level,
and requests start timing out, i.e., they are abandoned, typ-
ically after some service has been received. Abandonments
lead to retries, and the effective load on the server increases
further. In this situation, in the absence of an overload con-
trol mechanism, the server ends up being busy doing un-
productive work and the throughput degrades. E-commerce
Web-servers, e.g., retail Web sites, often experience such

overload situations, triggered by events such as closing time
of a sale or intense shopping days [8].

Occurrence of overload situations can be minimized by
appropriately sizing the server centers and by using tech-
niques such as load balancing. However, overloads are not
completely avoidable—unexpected consumer demand, par-
tial server failures, or other such events can trigger unex-
pected overloads. We therefore need mechanisms to protect
the Web-server from being pushed to an unproductive state
during overloads. In this paper we propose and experimen-
tally analyze one such mechanism. Specifically, we focus
on E-commerce Web-servers, e.g., the server for an on-line
store. For such Web-servers, the requirement is not only to
be productive during overload, but to be able to differenti-
ate between direct revenue-generating requests and brows-
ing requests that generate revenue only indirectly. On typ-
ical shopping Web sites, the load due to the browsing re-
quests far exceeds that of the revenue-generating requests
and it is imperative that the browsing requests do not pre-
vent revenue-generating requests from getting completed.

Overload control of telecommunication switches has
been studied extensively, e.g., [5], and some of the princi-
ples developed there can be applied to Web-servers. How-
ever, there is an important difference between a Web-server
and a telecommunication switch. The former is typically
modeled as a single queue (with single or possibly multi-
ple servers) while the latter is a multi-queue system. Fur-
thermore, since the servers take the form of processor
threads, the service rate of the servers is a decreasing func-
tion of the number of active servers. Thus it is not clear
if the overload control methods developed for telecom-
munication switches will be directly applicable. Therefore
experimental evaluation like the one that we do in this pa-
per is necessary.

Overload control of Web-servers has gained much at-
tention in the recent past. Approaches include admission
control [3] or sophisticated scheduling policies [2], or both
[6]. The fact that Web usage is session-oriented has been
recognized, and several overload control mechanisms are



based on that. A mechanism that does not admit new ses-
sions at overload was proposed in [3]. The mechanism pro-
posed by [2] employs a dynamic weighted fair sharing pol-
icy to process requests from those sessions that are more
likely to complete. This is done by dynamically adjusting
the weights of the queues, as calculated by maximizing a
productivity function. Elnikey et al [6] propose and imple-
ment an admission control and request scheduling policy, in
which the resource requirement of a request is estimated by
an external entity, and admission control is done based on
that. Furthermore, a shortest job first scheduling approach
is utilized for improving response times. A control theory
based approach to overload control is described in [1]. The
authors use a feedback control loop based mechanism to
prevent overload by monitoring the utilization of server re-
sources and switching to a degraded QoS level in overload
conditions. However, their solution is meant primarily for
static content as it relies on the availability of an alternate
‘degraded’ set of objects to be served. Thus, it does not take
into account the variable execution time of scripts that are
involved in serving dynamic content. Hence the approach
of [1] is not directly applicable to an E-commerce scenario
such as the one we have considered here.

Our survey suggests that although a number of mecha-
nisms have been proposed, none of the work focuses on the
essential difference between revenue-generating and brows-
ing requests, that are a characteristic of an E-commerce
Web site. In our work, we specifically recognize this dif-
ference, and work from there. We assume that the ultimate
goal of an E-commerce Web site is to complete as many
revenue-generating requests as possible—any work that an
E-commerce Web-server does should be in support of this
final goal. We propose a simple combination of priority
queuing and last-in-first-out (LIFO) scheduling during over-
load, to achieve this goal. We have implemented and ana-
lyzed our mechanism experimentally, by emulating a typi-
cal E-commerce Web site. We use a session-based workload
model that emulates realistic user behavior—variable aban-
donments, variable retries, and session abandonments as a
result of request abandonments. We show that our mecha-
nism performs well under all such realistic conditions.

Note that the use of LIFO for overload control when
dealing with impatient customers is not new and has
been proposed for telecommunication systems. Doshi
and Heffes [5] provide an excellent analysis of this fam-
ily of service disciplines for overload control. They have
analytically shown that LIFO based schemes are more at-
tractive at overload from both throughput and delay
points of view. Note though, that in the absence of over-
load, the response time of LIFO will have a higher variance
than that of FIFO and can hence cause more abandon-
ments than FIFO. In fact, we have experimental results to
show that this does happen in the case of Web-servers.
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Figure 1. FSM diagram of a session repre-
senting a retail Web site. We also show exam-
ple transition probabilities for the case of the
FSM representing a Markov Chain. The self-
loops and the exit probabilities from each
stage are not shown. In our experiments the
transitions shown as dashed lines are as-
sumed to have zero probability.

The rest of the paper is organized as follows. In Sec-
tion 2 we propose an E-commerce workload model and
describe our LIFO-priority based overload control mecha-
nism. In Section 3 we describe the experimental setup and
discuss the results. We conclude in Section 4 with discus-
sions and suggestions for future work.

2. Proposed Overload Control Scheme for E-
Commerce Web-Servers

The goal of an E-commerce Web site, is revenue gen-
eration, which it achieves by allowing visitors to browse
through its merchandise (if it is a retailing Web site), and
then buy. Since a large fraction of the browsing visitors
do not intend to buy, it is important that those that have
shown the intent to buy by beginning the buying process
must be helped to complete the transaction without timing
out and abandoning the transaction. This is especially im-
portant during overload conditions when the server strains
under an increased overhead. Before describing the over-
load control scheme we present our model about a typical
E-commerce workload.

2.1. An E-Commerce Workload Model

We assume that in an E-commerce Web site most of the
users browse the site for some time and leave, while a few of
these browsing users proceed towards a revenue-generating
transaction that is a multi-step (multiple Web page) process.
For example, in an online retail site, the user first visits the
home page and then possibly browses or searches through
the catalog. If the preferred product is available then more



details about that product may be sought. We term these
requests as the browsing requests. Most of the users leave
the site at this point; few who have the intention of buy-
ing some product proceed to the first step in a sequence
of transactions, e.g., the ‘login’ page. From this point on-
ward, the user is led through a multi-stage sequenced trans-
action (involving, e.g., entering payment and shipping de-
tails), usually culminating in a ‘confirm’ request, that final-
izes the transaction. We term these the transaction requests.
This movement of the user between the different types of
pages can be represented by a finite state machine as shown
in Fig. 1. To construct a tractable model that can simplify
simulation and analysis, we assume that the transitions be-
tween the states are memoryless and that the probabilities
are stationary. Thus the user behavior can be modeled as a
stationary finite state Markov chain with states correspond-
ing to the pages.

2.2. LIFO-Pri Overload Control Algorithm

Recall that our objectives are twofold—(1) maximize
the throughput of revenue-generating requests while (2) im-
proving overall throughput of the Web-server during over-
load. The mechanism that we propose in the sequel will be
called LIFO-Pri.

To achieve the first goal of maximizing the throughput
of revenue-generating requests, we employ a priority mech-
anism. Separate queues are maintained for each type of re-
quest. The transaction request queues are given a simple
non-preemptive priority over the browsing request queues.
We make a simplifying assumption that we would never
want to serve any browsing request if a transaction request
is waiting to be served. Between the transaction queues, the
queue for the last request, e.g. ‘confirm’, in the multi-step
transactions has the highest priority. The queue for the re-
quest, e.g. ‘payment’, just before ‘confirm’ has the second
highest priority, and so on.

To achieve the second goal of maximizing the overall
throughput, we propose a load-based LIFO mechanism—a
FIFO policy during normal load and a LIFO policy during
overload. As noted earlier LIFO based policies provide bet-
ter throughput and delay performance at overload as com-
pared to FIFO. This can be explained as follows. Since the
mean delay at overload is high, the high variance of the de-
lay works in our favor by having more requests that do not
time out than would happen with FIFO.

We make the reasonable assumption that overload is pri-
marily due to browsing requests. Hence we employ LIFO
during overload only for the browsing queues while serv-
ing the transaction queues according to FIFO.

We also propose a dynamic priority mechanism for se-
lecting requests from the browsing queues to allow those
that may have a higher chance of leading to a transaction re-

quest to complete with a higher probability. We use dynamic
priorities because static absolute priorities can lead to star-
vation of low priority queues. The proposed scheme is as
follows. For the browsing queues, two different attributes
are maintained for each queue:

• Number of pending requests in that queue (Ni).

• Utility of that queue (Ui).

The queue priority at any time is then given by Ui × Ni.
The utility is an indicator of the relative importance of the
queues. This utility could, for example, be based on the
‘revenue generation potential’, i.e., if the ‘details’ page re-
quest is more likely to lead to a buy request than a ‘search’
page request, then the ‘details’ page can be given a higher
utility. The values for the utility may be obtained from the
Markov chain describing the user behavior. By including
the queue length in obtaining the priority, we prevent the
lower priority queues from getting starved.

Algorithm 1 LIFO-Pri
SET DISCIPLINE:

while alive do
CPU Util ⇐ Utilization measured over an interval
if (CPU Util > CPU Upper Threshold) AND (Brows-
ing Policy = FIFO) then

Browsing Policy ⇐ LIFO
end if
if (CPU Util < CPU Lower Threshold) AND (Brows-
ing Policy = LIFO) then

Browsing Policy ⇐ FIFO
end if

end while
DYNAMIC PRIORITY:

while alive do
if (A worker thread is available) AND (At least one
queue has a pending request) then

for all 1 ≤ i ≤ Number of queues do
DPi ⇐ Ni × Ui

end for
Q ⇐ arg max

i
(DPi)

Read a request from queue Q according to current
service discipline.
Assign worker thread to request.

end if
end while

The service discipline used by LIFO-Pri for the browsing
requests depends on the CPU utilization. If the CPU utiliza-
tion crosses a predefined upper threshold, then it starts serv-
ing the browsing requests according to LIFO, and it contin-
ues with this discipline while the CPU utilization is above
lower threshold. Recall that the transaction requests are al-
ways served in FIFO order.
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The above discussion is summarized in Algo-
rithm 1. Note that the two parts of the algorithm—
SET DISCIPLINE and DYNAMIC PRIORITY have to be
executed in parallel, typically by separate threads.

3. Experimental Results and Discussions

The overload control policy as described in the above
section was implemented in a Web-server. The Web-server
architecture is as depicted in Fig. 2. Experiments were car-
ried out to verify the performance of our overload control
mechanism, by varying load on the Web-server that we have
built. The experiments done can be divided into two parts:

• Experiments to compare FIFO and LIFO service order.

• Experiments with an E-commerce setup to test the
LIFO-Pri policy.

The first set of experiments separately characterize per-
formance of LIFO and FIFO under non-overload and over-
load conditions on the Web-servers. These experiments of-
fer several insights that will be discussed later in this sec-
tion. The second set of experiments test the effectiveness of
the LIFO-Pri overload control mechanism.

The test-bed contains a server and a client machine. The
server machine is based on an Intel P-IV 1.6 GHz CPU with
256 MB RAM, running Debian GNU/Linux Sid. The Web-
server runs on this machine with a maximum limit of 30
worker threads. It must be noted that the priority assign-
ment is only for the assignment of a worker thread and the
transaction queues are not given priority in execution by the
operating system. The client machine is based on an Intel
P-IV 2.4 GHz CPU with 256 MB RAM running Debian
GNU/Linux Sid. The client is used to generate load on the
Web-server using httperf [7].
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Figure 3. Response time distribution at ρ =
0.941 with a timeout of 20 seconds.

3.1. Comparison of FIFO and LIFO

Since we are specifically comparing the performance of
LIFO and FIFO service disciplines, we carried out a set of
experiments on a basic Web-server with a single queue and
not with the E-commerce setup model of Fig. 1. The load
is generated by repeatedly making a request for a CPU-
intensive CGI file. The distribution of the inter-arrival time
between requests is exponential.

3.1.1. Experimental Setup The Web-server is configured
with a single queue with a buffer capacity of fifty. To com-
pare the FIFO and LIFO approaches, we repeat the exper-
iments with the following three different service policies.
In the first case, called Always-FIFO, the Web-server al-
ways serves the requests in FIFO order. In the second case,
termed Always-LIFO, the Web-server always serves the re-
quests in LIFO order. In the third case, that we call LIFO-
at-overload, the service discipline alternates between LIFO
and FIFO as is done in LIFO-Pri.

3.1.2. Results The experiments were performed to study
the server response as a function of increasing load. In this
set of experiments, we use a fixed timeout value for all the
requests.

Denote the server intensity (ratio of arrival rate to ser-
vice rate) by ρ. When the offered load is below the capacity
of the server, i.e., ρ < 1.0, the number of requests that are
either dropped or timed out is almost zero for all the three
cases. Fig. 3 shows the unconditional complementary dis-
tribution of the response time1 for ρ = 0.941. Observe the

1 All response time distribution graphs in this paper are the uncon-
ditional complementary distributions. This allows us to treat the re-
sponse time of the timed out or dropped requests to be infinity.



Timeout of 40 seconds

Percentage (%) Always-FIFO Always-LIFO LIFO-at-overload
Requests Completed 86.7 84.4 84.6
Requests Timeout 0.0 2.3 2.0
Requests Dropped 13.3 13.4 13.4

Timeout of 20 seconds

Requests Completed 21.9 81.0 76.8
Requests Timeout 64.9 5.4 9.7
Requests Dropped 13.3 13.6 13.4

Table 1. Comparison of FIFO and LIFO based service disciplines in a single queue system. Server
throughput at ρ = 1.47 with a timeout of 40 and 20 seconds.

longer tail for the case of Always-LIFO implying that a sig-
nificant fraction of requests have a long response time. This
effect is not seen when LIFO-at-overload is used. Thus, us-
ing LIFO is not appropriate when the load is less then the
capacity of the Web-server.

When the offered load is higher than the capacity of
the server, requests are dropped or are abandoned due to
timeouts. We consider two timeout values—40 seconds and
20 seconds to model less patient customers. It can be seen
in Table 1 that the percentage of requests dropped is almost
identical for all the three service schemes but the abandon-
ment rate depends significantly on the timeout value. First,
consider the case when the timeout value is 40 seconds.
Here, as is to be expected, Always-FIFO has the lowest per-
centage of abandoned requests. A large timeout value fa-
vors FIFO, because the FIFO response time does not have
the “long tail” of LIFO. Note that even for the same aver-
age queue length, LIFO may result in much larger response
time values than FIFO (a request that gets “pushed” to the
end of the queue may never get served, and will eventu-
ally timeout). With a 20 second timeout, the Always-FIFO
policy now shows a much larger abandonment rate than the
LIFO policies. Further, the FIFO policy is able to achieve
only 21.9% success rate as opposed to about 80% for the
LIFO policies.

Fig. 4 shows the response time histogram and distribu-
tion for the case of ρ = 1.47 and a timeout of 40 sec-
onds. Observe that for Always-FIFO the mode is at 20 sec-
onds. Also see that for Always-FIFO all the requests have
a response time of less than 24 seconds (which explains
no abandonments, since the timeout is 40 seconds). For
the two LIFO-based policies we observe two interesting
phenomena—the mode occurs at about 7 seconds but a sig-
nificant number of the requests have a very large response
time, even as large as 40 seconds. This is also reflected in
the long tail of the LIFO response time distribution.

Fig. 5 shows the histogram and the distribution of the re-

sponse time with a timeout of 20 seconds. Comparing with
the 40 second timeout case, we observe that the difference
in histograms for Always-LIFO and for LIFO-at-overload
does not change significantly with the timeout value except
that the tail is shortened. However, for the case of Always-
FIFO the mode of the distribution is at about 18 seconds.
Also, for Always-LIFO and for LIFO-at-overload, nearly
80% of the requests have a response time of less then 10 sec-
onds, whereas for Always-FIFO, less than 5% of requests
experience this response time.

Thus by using LIFO-at-overload approach we have
achieved not only higher throughput, but also signifi-
cantly better response time distribution at higher load.

3.2. Experimental Analysis of LIFO-Pri

In the experiments described in the previous section the
workload consisted of a random sequence of requests for
URLs and did not correspond to a transaction. We verified
the claim that using LIFO service discipline improves the
performance of a Web-server during overload in the pres-
ence of impatient users. We now present results of exper-
iments that were performed to test the proposed LIFO-Pri
mechanism.

3.2.1. Experimental Setup For validating our mech-
anism, we set up a Web site that emulates the charac-
teristics of a typical E-commerce Web site as per our
model of Fig. 1. Some of the possible transitions in the
model were assigned a probability of zero so as to min-
imize the effect of ‘unknown’ factors in the controlled
experiments.

The eight types of pages shown in Fig. 1 are generated
using Perl CGI scripts that have interleaved random busy
and waiting periods. The busy periods represent local pro-
cessing and the waiting periods represent time spent in the
back-end server calls such as database lookups. Table 2
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Figure 5. Response time histogram and distribution for ρ = 1.47 and a timeout of 20 seconds.

shows the mean execution times (including the delay in ser-
vicing back-end requests) of these CGI scripts.

We use httperfwith the --wsesslog option to gen-
erate the E-commerce workload. i.e., httperf reads ses-
sion descriptions from a file of 1000 randomly generated
session descriptions according to the Markov chain shown
in Fig. 1 and keeps cycling through them until a specified
total number of sessions have been completed. This is nec-
essary because we did not have a load generator that could
generate such a randomly distributed workload. Each ses-
sion consists of a sequential set of requests which must be
completed for the session to succeed. The session arrival

process is modeled to be Poisson.
As in the previous section, we model the ‘impatience’

of the users by using timeouts for the requests. httperf
supports two kinds of timeouts. The basic timeout is called
--timeout and it is the amount of time that the load gen-
erator waits for a server reaction, i.e., forward progress must
be made within this timeout value while creating a TCP con-
nection, sending a request, waiting for or receiving a reply.
An additional --think-timeout is added to the basic
timeout while waiting for a reply after issuing a request.
This is used to allow for the additional response time that
the server might need to initiate sending a reply for a re-



Request Mean execution time (mS)
Main Page (Br-1) 200
Browsing (Br-2) 300
Searching (Br-3) 300
Details (Br-4) 222
Login (Tr-1) 280
Shipping (Tr-2) 420
Payment (Tr-3) 500
Confirm (Tr-4) 300

Table 2. Mean execution time of CGI scripts.

quest, since we are running time-consuming CGI scripts and
not merely fetching a static file. The think-timeout is
particularly important in our case because it directly cor-
responds to the ‘impatience’ of customers. httperf (up
to version 0.8) supported only fixed values for these time-
outs. We modified the code to implement exponentially dis-
tributed --think-timeout values. This allowed us to
use variable and random timeouts in our experiments to en-
able us to more reasonably model user impatience. Note that
most other experimental works assume fixed timeout val-
ues.

Since we are modeling abandonments by timeouts, we
must also model the user behavior of retrying an aban-
doned request. The retry model that we use is as follows.
Whenever a request times out, it retries with a probability
of p and abandons with probability of 1 − p. The num-
ber of retries per request is upper bounded by M . We
added this new functionality, which is accessed with the
--retry-model option, to httperf.

If any request in a session fails, even after the retries, the
entire session is considered to have failed. The remaining
requests in that session are not issued in such a case. This
is the realistic model for a Web-server because users would
most likely ‘give up’ and leave the Web site, after failing
to load a desired page. Thus, for a transaction request to be
generated, all the preceding browsing requests of that ses-
sion must have been completed successfully. This clearly
implies that to have a higher amount of revenue generation
under overload conditions, we must also increase the num-
ber of browsing requests that are completed. This would in-
crease the chances of success for a session that would result
in a revenue-generating transaction. Our proposal of giving
a strictly higher priority to a transaction request over brows-
ing requests would then ensure that if a transaction request
is generated, it has a very high chance of completion.

The server is configured with eight queues: four queues
for browsing requests and four for transaction requests.
Thus each queue, and each type of request has its own pa-
rameters and handling mechanisms. We perform three sets
of experiments as follows.

Request queue Utility
Main Page (Br-1) 27
Browsing (Br-2) 22
Searching (Br-3) 36
Details (Br-4) 73
Login (Tr-1) 3650
Shipping (Tr-2) 4050
Payment (Tr-3) 4500
Confirm (Tr-4) 5000

Table 3. Utility values for queues.

1. SQ: Single queue to store all the requests and served
according to FIFO. The queue is assumed to have ca-
pacity to queue 100 requests.

2. 8Q-AF: Eight queues, one for each type of request with
all of them always serving in FIFO order. The brows-
ing queues are assumed to have capacity to store 50 re-
quests while the transaction queues have capacity for
25 requests.

3. 8Q-LIFO-Pri: Eight queues, one for each type of re-
quest with LIFO at overload for browsing queues and
FIFO for transaction queues and dynamic priority.
Buffer capacities are as in 8Q-AF.

The utility of the browsing queues and the transaction
queues is assigned in proportion to the probability that a re-
quest of that type eventually results in a ‘confirm’ (Tr-4)
transaction. For instance, from Fig. 1, the probability that a
‘browse’ page (Br-2) will lead to a final ‘confirm’ trans-
action Tr-4 is 0.022, whereas the probability that a ‘de-
tails’ (Br-4) page will lead to a final ‘confirm’ transaction
is 0.073. The utility for each type of request for the parame-
ters shown in Fig. 1 is shown in Table 3. Also, note that we
assign the utility to the queues in such a way that the trans-
action requests always have higher priority than the brows-
ing ones while their relative priority changes dynamically.

The --timeout value for these experiments is 8 sec-
onds and the --think-timeout is exponentially dis-
tributed with a mean of 12 seconds. Thus the mean total
timeout value for receiving a reply is 20 seconds. If a re-
quest is timed out, the retry mechanism described earlier
comes into operation. The request is retried with a proba-
bility of 0.4 (p = 0.4) whenever a timeout occurs, up to
a maximum of 5 (M = 5) retries per request. Also, the
upper threshold of the CPU utilization for the switch-over
from FIFO to LIFO in the browsing queues is 0.99 while the
lower threshold value for the change from LIFO to FIFO is
0.95.

3.2.2. Experimental Results Fig. 6 shows the over-
all throughput as a function of the offered load. We can see
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that when the load is below the capacity of the server, i.e.,
ρ = 1, (corresponds to 5.6 requests/second for this work-
load model), all the three schemes have similar throughput.
When ρ > 1, the throughput of the SQ system drops signif-
icantly and is the minimum of the three cases for ρ > 1.3.
In the 8Q-AF system a larger number of transaction re-
quests complete and we can see a marginal improve-
ment in the throughput. The best performance is clearly in
the 8Q-LIFO-Pri system with a throughput of almost 3.5 re-
quests/second (about 63% of the server capacity) even for
ρ = 2.0 .

We now discuss the results in more detail and analyze
it at the requests level. Table 4 shows the composition of
requests for each value ρ, along with the number of re-
quests completed, requests timed out, and requests dropped
for each scheme (SQ, 8Q-AF and 8Q-LIFO-Pri) from each
of the queues. For 8Q-AF and 8Q-LIFO-Pri, the data for
the browsing queues is combined. Table 5 shows the over-
all percentage of requests completed, requests dropped, re-
quests timed out and requests that were not generated be-
cause the session aborted before completion.

We can see that when the offered load is less then the ca-
pacity of the server, (ρ = 0.85 case) the percentages are the
same in all the three schemes with 100% of the sessions get-
ting completed.

When the offered load exceeds server capacity, requests
timeout and generate retries which further increases the of-
fered load to the server. However, since some sessions are
aborted, the requests after the session abortion are not of-
fered and this can cause some reduction in the offered load.
This effect is seen in the reduced number of browsing and
transaction requests generated under each policy—42,029
requests are generated in SQ as compared to 43,402 in 8Q-
AF and 45,310 requests in 8Q-LIFO-Pri. The end result is
that the number of the Tr-4 requests (the direct revenue-
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Figure 7. Response time distribution for
‘main’ page (Br-1) for ρ = 1.4

generating request) completed2 increases from 8 in SQ to 15
in 8Q-AF and to 50 in 8Q-LIFO-Pri. Recall that this num-
ber should be the primary measure of performance of an
E-commerce Web-server.

Our experimental setup represents the fact that brows-
ing requests are important in the sense that they are the
source of transaction arrivals. Increasing the browsing re-
quest completion rate, coupled with priority to transaction
service, results in an overall increase in the transaction com-
pletion rate.

Table 4 shows that with ρ = 1.4, the LIFO-Pri scheme
increases the number of ‘login’ requests generated to 195,
out of which 187 are actually completed, only 8 time out
and there are zero drops. This is due to the fact that a larger
number of browsing requests are completed, which in turn
leads to the generation of transaction requests.

Some more observations from Table 4:

• The number of timed-out transactions is higher for
LIFO-Pri than for 8Q-AF. Although this may seem sur-
prising, observe that that a significantly larger number
were generated, e.g., 195 Tr-1 requests for LIFO-Pri as
compared to 24 for 8Q-AF.

• The effect of LIFO on reducing abandonments is
clearer from the browsing requests where the differ-
ence in the number generated is not very significant
(44,826 vs. 43,324). However, only 19,852 com-
pleted in 8Q-AF vs. 30,851 in LIFO-Pri—a result

2 The seemingly disproportionate decrease in these numbers as com-
pared to the non-overload case can be attributed to the lack of a
load generator that could generate our randomly distributed workload.
However, the numbers are sufficient for highlighting the performance
improvement in LIFO-Pri as compared to other schemes in overload
conditions.



ρ Case Requests Browsing Tr-1 Tr-2 Tr-3 Tr-4
Generated 54480 888 792 720 648
Completed 54480 888 792 720 648

SQ Timed out 0 0 0 0 0
Dropped 0
Completed 54480 888 792 720 648

0.85 8Q-AF Timed out 0 0 0 0 0
Dropped 0 0 0 0 0
Completed 54480 888 792 720 648

8Q-LIFO-Pri Timed out 0 0 0 0 0
Dropped 0 0 0 0 0

Generated 42029
Completed 16170 20 15 9 8

SQ Timed out 20029 18 5 1 1
Dropped 5753
Generated 43324 24 20 19 15
Completed 19852 23 19 19 15

1.4 8Q-AF Timed out 16305 1 1 0 0
Dropped 7167 0 0 0 0
Generated 44826 195 137 99 53
Completed 30851 187 127 87 50

8Q-LIFO-Pri Timed out 4075 8 10 12 3
Dropped 9900 0 0 0 0

Table 4. Throughput data for the different types of requests for different values of ρ.

ρ ρ = 0.85 ρ = 1.4
Case SQ 8Q-AF 8Q-LIFO-Pri SQ 8Q-AF 8Q-LIFO-Pri
Completed 100 100 100 29.9 36.6 57.5
Timed out 0 0 0 36.8 29.9 7.5
Dropped 0 0 0 10.6 13.1 18.2
Not Generated 0 0 0 22.8 20.4 16.8

Table 5. Throughput data (in percentage) for different values of ρ.

of the reduction of the number of request abandon-
ments from 16,305 to 4,075.

• For 8Q-AF no transaction requests are dropped even at
high loads because these queues have a high priority
and also because very few are offered.

• Using LIFO in the browsing queues along with prior-
ity for transaction queues as in 8Q-LIFO-Pri retains
the benefits of giving high priority to the transaction
requests. This can be seen in Table 4 where the num-
ber of transaction requests dropped in 8Q-LIFO-Pri is
zero even in overload conditions.

Fig. 7 shows the response time distribution of Br-1 re-
quests for ρ = 1.4; we see that for 8Q-LIFO-Pri, nearly

80% of the requests have a response time less then 5 sec-
onds, whereas in SQ and in 8Q-AF only about 10% of the
requests achieve this.

Fig. 8 shows the graph between the average response
time (of completed transactions) as a function of ρ for the
three policies. The response time with the LIFO-Pri policy
is significantly better during overload. Given the improved
throughput performance of LIFO-Pri, as was observed from
Table 4, this is not surprising because in the presence of
abandonments it is necessary to improve response time per-
formance to be able to increase throughput. Improving re-
sponse time reduces request abandonments, which in turn
causes fewer session abandonments and an increased over-
all throughput.
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4. Summary and Discussion

In this paper, we proposed and experimentally evaluated
an overload control scheme for Web-servers under a rea-
sonably realistic model of for E-commerce workload. The
LIFO-Pri scheme proposed in this paper is an extremely
simple, yet effective, mechanism for overload control. The
experimental results are highly encouraging—the server
could operate at nearly 60% of its maximum capacity even
when offered a load 1.5 times its capacity and has a factor
of 7 increase in the number of direct revenue-generating re-
quests completed as compared to a single queue model dur-
ing overload.

The benefits of LIFO were observed by Dalal and Jor-
dan [4], however, the results were not for an E-commerce
environment, and no implementation and experiments were
done (validation was by simulation). We believe our work
confirms experimentally the truly remarkable effect on per-
formance during overload of the LIFO policy along with
a priority for revenue-generating requests. Although the
LIFO service policy seems to always imply high variabil-
ity and unfairness, the abandonment and retry behavior of

users during overload, turns LIFO into a compelling choice.
Future work includes having better indicators for

overload—this work assumed that the CPU was the bottle-
neck resource and used CPU utilization as the indicator. We
would like to extend this to cases where we do not know the
bottleneck resource. Work is also needed to model user be-
havior even more appropriately (e.g. longer response times
should discourage ‘repeat’ visits). Lastly, analytical mod-
els are necessary to gain further insight into overload
control mechanisms for Web-servers.
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