
VectorPU: A Generic and Efficient Data Container
Enabling Transparent Data Transfer on GPU-based Systems

Lu Li and Christoph Kessler
IDA, Linköping University

Overview

I Large percentage of code written for data management
(82% for a simple example)

I Nvidia’s Unified Memory incurs significant overhead.
I We propose VectorPU
. A high level and efficient data abstraction
. Enable a unified memory view with STL-like interface
. Very low overhead
. Additional optimizations: lazy allocation, optimal transfer fusion

VectorPU

I C++ template run-time library.
I Expressive annotations but no compiler support required
I Portable to different heterogeneous architectures.
I Significant speedup compared to Nvidia’s unified memory
I No noticeable slowdown compared to manually written code

Annotation of Operands for Access Modes

I R: CPU read, GR: GPU read
I W: CPU write, GW: GPU write
I RW: CPU read and write, GR: GPU read and write
I I: iterator, e.g., RI refers to a CPU read iterator,

REI refers to a CPU read end iterator
I ...

Flow Signature

I Function invocation annotation (one-time)
. α signature: foo (R(x) , W(y), RW(z), size) ;

I Function definition annotations (reusable)
. β signature: #define func flow (GR)(GW)(GRW)(NA)
. γ signature: global void bar(const float *x[[GR]],

float *y[[GW]], float *z[[GRW]], int size)

Example using Iterator

1 vectorpu::vector<My_Type> x(N);
2 std::generate(WI(x), WEI(x), RandomNumber);
3 thrust::sort(GRWI(x), GRWEI(x));
4 std::copy(RI(x), RI(x), ostream_iterator<My_Type>(cout, ""));

References

[1] L. Li and C. Kessler, “VectorPU: A Generic and Efficient Data-container and Component
Model for Transparent Data Transfer on GPU-based Heterogeneous Systems.,” in Proc. 8th
Workshop on Parallel Programming and Run-Time Management Techniques for Many-core
Architectures and 6th Workshop on Design Tools and Architectures for Multicore
Embedded Computing Platforms (PARMA-DITAM’17), ACM, 2017.

Acknowledgments

Performance Results

Laptop A AGC Triolith
0

1

2

3

4

S
p
e
e
d
u
p
 t
o
 u

n
if
ie

d
 m

e
m

o
ry

 b
y
 V

e
c
to

rP
U

(a) Conjugate Gradient, compared with
Nvidia’s UM.

Laptop A AGC Triolith
0.0

0.2

0.4

0.6

0.8

1.0

1.2

S
p
e
e
d
u
p
 o

ve
r

h
a
n
d
w

ri
tt
e
n
 d

a
ta

 t
ra

n
s
fe

r

(b) FFT, compared with handwritten
CUDA code.

I Setup: Laptop A (laptop, Kepler GPU), AGC (workstation, Maxwell GPU),
Triolith (supercomputer, Kepler GPU), CUDA 7.5

I More benchmarks compared with Nvidia’s Unified Memory:
. parallel reduction: speedup 1.40× to 8.66× on different problem sizes
. sort: speedup 13.29× on 1M element

Programmability Improvement

I VectorAdd from the CUDA SDK:
. Logical LOC drops from 75 (normal CUDA program) to 24 (VectorPU)

I Parallel Reduction:
. Logical LOC drops from 21 (Nvidia’s Unified Memory) to 17 (VectorPU)

Additional Optimizations

I Lazy Allocation
. Allocations deferred until invocation points
. Data objects to be transferred together are allocated together, so that

these transfers can be fused.
. Initially obtain speedup 2.85× by merging small data operands.

I Transfer Fusion Optimization (TFO)
. Greedy TFO algorithm, proven optimal for any set of operands
. Check at run-time the distance between operands under transfer
. If small enough, merge the transfers by transfering redundant data

between them and discard the data afterwards
. The efficiency could be further improved in coherence management

0 3K 6K 9K 12K 15K
0

20

40

60

80

100

T
im

e
(m

ic
ro

se
co

nd
)

Non−TFO
TFO

Min, max
Standard deviation

(a) On Laptop A, speedup 1.01-2.8×

0 3K 6K 9K 12K 15K
0

20

40

60

80

100

120

140

T
im

e
(m

ic
ro

se
co

nd
)

Non−TFO
TFO

Min, max
Standard deviation

(b) On Triolith, speedup 1.05-1.98×
Figure: TFO Microbenchmark Speedups on 2 Systems.

X-axis labels show gap lengths between arrays.

Contact Information

I Open source: http://www.ida.liu.se/labs/pelab/vectorpu/
I Lu Li, Christoph Kessler

http://www.ida.liu.se/labs/pelab/vectorpu/ lu.li@liu.se, christoph.kessler@liu.se

http://www.ida.liu.se/labs/pelab/vectorpu/

