
Towards a Tunable Multi-Backend Skeleton Programming
Framework for Multi-GPU Systems

Johan Enmyren
PELAB

Dept. of Computer and
Information Science
Linköping University

x10johen@ida.liu.se

Usman Dastgeer
PELAB

Dept. of Computer and
Information Science
Linköping University
usmda@ida.liu.se

Christoph W. Kessler
PELAB

Dept. of Computer and
Information Science
Linköping University
chrke@ida.liu.se

ABSTRACT
SkePU is a C++ template library that provides a simple
and unified interface for specifying data-parallel computa-
tions with the help of skeletons on GPUs using CUDA and
OpenCL. The interface is also general enough to support
other architectures, and SkePU implements both a sequen-
tial CPU and a parallel OpenMP backend. It also supports
multi-GPU systems. Currently available skeletons in SkePU
include map, reduce, mapreduce, map-with-overlap, map-
array, and scan. The performance of SkePU generated code
is comparable to that of hand-written code, even for more
complex applications such as ODE solving.

In this paper, we describe how to make SkePU tunable, by
adding the mechanism of execution plans that can configure
a skeleton so that, at run time, the predicted best suitable
resource and platform is chosen automatically, depending
on operand data sizes. We also discuss how the approach
can be extended to provide a fully auto-tunable skeleton
programming system, which is a work in progress.

Categories and Subject Descriptors
C.1.4 [Processor Architectures]: Parallel Architectures;
D.1.3 [Programming Techniques]: Concurrent Program-
ming—Parallel Programming

General Terms
Algorithms, Languages, Performance

Keywords
Skeleton Programming, GPU, CUDA, OpenCL, Data Par-
allelism, Auto-tuning

1. INTRODUCTION
The general trend towards multi- and many-core based

systems constitutes a disruptive change in the fundamental

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MCC’10, November 18-19, 2010, Göteborg, Sweden
Copyright held by the authors.

programming model in mainstream computing and requires
rewriting of sequential application programs into parallel
form to turn the steadily increasing number of cores into per-
formance. Worse yet, there is a number of very different ar-
chitectural paradigms such as homogeneous SMP-like multi-
cores, heterogeneous multicores like Cell Broadband Engine,
or hybrid CPU/GPU systems, sometimes with a very high
complexity of programming such systems efficiently. More-
over, we observe a quick evolution process on the hardware
side, pushing new architecture generations and variations
on the market with short time intervals. The lack of a uni-
versal parallel programming model immediately leads to a
portability problem.

Skeleton programming [2, 11] is an approach that could
solve the portability problem to a large degree. It requires
the programmer to rewrite a program using so-called skele-
tons, pre-defined generic components derived from higher--
order functions that can be parameterized in sequential prob-
lem-specific code, and for which efficient implementation for
a given target platform may exist. Skeleton programming
constrains the programmer to using only the given set of
skeletons for the code that is to be parallelized or ported
automatically—computations that do not fit any predefined
skeleton (combination) still have to be rewritten manually.
In turn, parallelism and leveraging other architectural fea-
tures comes almost for free for skeleton-expressed computa-
tions, as skeleton instances can easily be expanded or bound
to equivalent expert-written efficient target code that encap-
sulates all low-level platform-specific details such as manag-
ing parallelism, load balancing, communication, utilization
of SIMD instructions etc.

In previous work [4], we described the design and imple-
mentation of SkePU, a new C++ based skeleton program-
ming library for single- and multi-GPU systems that sup-
ports multiple back-ends, namely CUDA and OpenCL for
GPUs and OpenMP for multi-core CPUs, but also sequen-
tial C for single-core execution. In order to optimize mem-
ory transfers for skeleton operand data at GPU execution,
SkePU implements a lazy copying technique in the vector
data container that is used in SkePU to represent array
operands. Our experimental evaluation showed that code
written in terms of SkePU skeletons is portable across all
platforms with implemented back-ends, and achieves per-
formance close to hand-written code.

In particular, the benchmarks in [4] showed significant
speedup for GPU execution compared to CPU execution
when run with larger data sizes on a GPU compared to a fast

CPU core, while CPU execution, with or without OpenMP
thread-level parallelism is faster for smaller problem sizes.
However, the transition points when to switch from an im-
plementation for one CPU to an OpenMP parallelization or
to code for a single GPU or for multiple GPUs are strongly
dependent on the characteristics of the target system.

This led to the idea to provide a mechanism for (semi-
)automatic adaptation at run-time to let SkePU select the
best implementation variant depending on the actual prob-
lem size (and possibly further problem parameters).

In this paper, we describe how SkePU can be made tun-
able by adding the concept of execution plans. An execution
plan sets the intervals of problem size (and possibly further
parameters) within which a certain back-end with certain
parameters (grid-size and block-size for GPUs, ‘number of
threads’ for OpenMP) should be chosen. In a longer term
perspective, execution plans will be computed automatically
by machine learning techniques from training data generated
by micro-benchmarking. The machine learning approach for
automatically generating execution plans is demonstrated
for very simple cases in this paper, but will be extended in
future work to tuning for backend-selection and composition
of skeletons.

In first results, we demonstrate the potential for tunabil-
ity, both in terms of choosing parameters for a backend and
selecting which backend implementation to use. We discuss
composition of skeletons and how auto-tuning can be applied
to a bigger application such as an ODE solver. Furthermore,
it shows the resulting potential for performance portability
at transition from one to another target architecture, for the
Reduce skeleton in SkePU.

2. SKEPU
SkePU is a C++ template library designed to make par-

allel programming easier with the use of higher-order func-
tions, skeletons. SkePU is geared towards GPU-based and
hybrid systems, using CUDA and/or OpenCL as backend
for GPUs. A large portion of the library therefore consists
of GPU memory management, kernels and, in the case of
OpenCL, code generation and compilation. The interface is
however fairly general and does not make the library bound
to only GPUs. This can also be seen in SkePU as there is a
sequential CPU and an OpenMP based implementation of
all the skeletons. Modifications of the source code are not
necessary since the interface is the same for all implementa-
tion variants.

In addition to the skeletal functions, SkePU also includes
one container which must be used when doing computations
with the skeletons. It is a vector/array type, designed after
the STL container vector. Its implementation uses the STL
vector internally and its interface is mostly compatible with
STL vector.

The SkePU vector hides GPU memory management and
also uses lazy memory copying to avoid unnecessary mem-
ory transfer operations between main memory and device
memory. The SkePU vector keeps track of which parts
of it are currently allocated and uploaded to the GPU. If a
computation is done, changing the vector in the GPU mem-
ory, it is not directly transferred back to the host memory.
Instead, the vector waits until an element is accessed on the
host side before any copying is done (for example through
the [] operator); this lazy memory copying is of great use if
several skeletons are called one after the other, with no mod-

BINARY_FUNC(plus, double, a, b,
return a+b;

)

// expands to:

struct plus
{

skepu::FuncType funcType;
std::string func_CL;
std::string funcName_CL;
std::string datatype_CL;
plus()
{

funcType = skepu::BINARY;
funcName_CL.append("plus");
datatype_CL.append("double");
func_CL.append(
"double plus(double a, double b)\n"
"{\n"
" return a+b;\n"
"}\n");

}
double CPU(double a, double b)
{

return a+b;
}
__device__ double CU(double a, double b)
{

return a+b;
}

};

Figure 1: User function, macro expansion.

ifications of the vector by the host in between. In that case,
the vectors are kept on the device (GPU) through all the
computations, which greatly improves performance. Most
of the memory copying is done implicitly but the vector also
contains a flush operation which updates the vector from
the device and deallocates its memory.

Specification of User Functions.
In order to provide a simple way of defining functions that

can be used with the skeletons regardless of the target ar-
chitecture, SkePU provides a macro language where prepro-
cessor macros expand, depending on the target selection, to
the right kind of structure that constitutes the function. The
SkePU user functions generated from a macro based spec-
ification are basically a struct with member functions for
CUDA and CPU, and strings for OpenCL. Figure 1 shows
one of the macros and its expansion.

Skeleton Functions.
Customized instantiations of skeleton functions are cre-

ated by expanding a class template of the generic skele-
ton function parameterized in the macro-based user func-
tion specification. These generated skeleton functions in
SkePU are then represented by (singleton) objects. By over-
loading operator() they can be made behave similarly to
regular functions. All skeletons contain member functions
representing each of the different implementations, CUDA,
OpenCL, OpenMP and CPU. The member functions are
called CU, CL, OMP and CPU respectively. If the skeleton
is called with operator(), the library decides which one to
use depending on what is available. In the OpenCL case, the

#include <iostream>

#include "skepu/vector.h"
#include "skepu/mapreduce.h"

BINARY_FUNC(plus, double, a, b,
return a+b;

)

BINARY_FUNC(mult, double, a, b,
return a*b;

)

int main()
{

skepu::MapReduce<mult, plus> dotProduct(new mult,
new plus);

skepu::Vector<double> v0(1000,2);
skepu::Vector<double> v1(1000,2);

double r = dotProduct(v0,v1);

std::cout<<"Result: " <<r <<"\n";
return 0;

}

// Output
// Result: 4000

Figure 2: Dot product with MapReduce in SkePU.

skeleton objects also contain the necessary code generation
and compilation procedures. When a skeleton is instanti-
ated, it creates an environment to execute in, containing all
available OpenCL or CUDA devices in the system. This
environment is created as a singleton so that it is shared
among all skeletons in the program.

Currently, SkePU implements the following skeletons:
In the Map skeleton, every element in the result vector r

is a function f of the corresponding elements in one or more
input vectors v1 . . . vk.

The Reduce skeleton computes a scalar result by applying
a commutative associative binary operator ⊕ to accumulate
all elements in the input vector.

Given a binary associative function ⊕, the Scan< ⊕ >
skeleton computes the prefix-⊕ vector of its input vector,
such as the prefix sums vector where ⊕ is standard addition.
Scan is an important basic building block of many scalable
parallel algorithms, such as parallel integer sorting.

MapReduce is a combination of Map and Reduce: It pro-
duces the same result as if one would first Map one or more
vectors to an intermediate result vector and then do a re-
duction on that result. It is provided since it combines the
mapping and reduction in the same computation kernel and
therefore avoids some synchronization, which speeds up the
calculation. In Figure 2 a dot product of two vectors is
expressed as a MapReduce skeleton with mult and plus as
provided user functions.

Map-overlap is similar to a Map, but each element r[i] of
the result vector is a function of several adjacent elements
of one input vector that reside at a certain constant max-
imum distance d from i in the input vector, where d is a
skeleton template parameter. Convolution is an example
of a calculation that fits into this pattern.

MapArray is another variant of Map where each element
of the result, r[i], is a function of the corresponding element

skepu::Reduce<plus> globalSum(new plus);
skepu::ExecPlan plan;
plan.add(1,3500, skepu::CPU_BACKEND);
plan.add(3501,3200000, skepu::OMP_BACKEND, 8);
plan.add(3200001,5400000, skepu::CL_BACKEND, 65536, 128);
plan.add(5400001,MAX_INT, skepu::CLM_BACKEND, 65536, 128);
globalSum.setExecPlan(plan);

Figure 3: Defining an executon plan and applying it
to a Reduce skeleton.

of one of the input vectors, v1[i], and any number of elements
from the other input vector v2.

Multi-GPU support.
SkePU has support for carrying out computations with

the help of several GPUs on a data-parallel level. It utilizes
the different GPUs by dividing the input vectors equally
amongst them and doing the calculations in parallel on the
devices. Here CUDA and OpenCL differ a lot. In OpenCL,
one CPU thread can control several GPUs, by switching
queues. In CUDA, or to be more precise, in the CUDA run-
time system which SkePU is based on, this is not possible.
Instead, each CPU thread is bound to one device. To make
multi-GPU computation possible, several host threads must
then be created. This is done in SkePU, but in the current
version new threads are started for each skeleton call and
bound to devices; this binding can take a lot of time, and
hence the multi-GPU support in SkePU with CUDA is not
very efficient. With OpenCL however, it works much better.

Execution Plan.
A new feature added to SkePU, which is the focus of this

paper, is the notion of an execution plan. It is an object con-
taining different parameters which will affect the execution
time of a skeleton. The parameters include a list of vector
sizes and adjoining backends which is used to decide which
backend to use at certain input sizes. Other parameters are
group and grid size for the GPU backends.

All skeletons include an execution plan and also support
for changing it manually. A default exectution plan is cre-
ated at skeleton instantiation time containing default pa-
rameters chosen by the implementation. Figure 3 shows
how to define an execution plan and apply it to a skeleton.

3. SKEPU TUNABILITY
Tuning opportunities for SkePU can be discussed at the

following three levels.

3.1 Tuning parameters for a specific backend
For GPU implementations of skeletons, varying grid-size

and block-size have considerable effect on the overall skele-
ton performance. The shared memory size is often a depen-
dent parameter calculated from the corresponding grid-size
and block-size and cannot be varied, for keeping correctness
of the implementation. For multi-CPU (OpenMP) imple-
mentations of different skeletons, the number of OpenMP
threads can have a great impact. Varying OpenMP schedul-
ing (e.g. different chunksizes) can be another tunable pa-
rameter which can be considered in future.

Tuning these parameters for each implementation and for
different problem sizes, we often get different parameter val-

ues for different problem sizes. However, in certain skeletons,
differences between optimal and second or third best can be
quite small and hence it could be decided not to switch quite
often back and forth to the new parameter values. This
could be handy for two reasons. First, each new configura-
tion will result in an entry in the corresponding execution
plan which increases the runtime overhead for the look-up.
Second, for the OpenMP backend as witnessed during the
experiments, switching the number of threads frequently in
an OpenMP program can have a negative impact on the
overall performance.

3.2 Tuning selection of backend
Besides determining optimal parameters for individual back-

end implementations, we need to choose between different
implementations for a single skeleton call. For instance, for
very small problem sizes, the sequential CPU implementa-
tion could be efficient and for slightly larger problem sizes,
the OpenMP implementation could take less execution time.
Similarly, for repetitive executions with data residing on de-
vice, GPU implementations often outperform (Multi-)CPU-
based implementations.

3.3 Tuning composition of different skeletons
Composition of different skeletons in a single program is

often what is required in real-world applications. This com-
position poses extra challenges on the tuning-framework as
tuning individual skeleton calls independently without pro-
gram composition knowledge will most likely yield poor per-
formance.

One real-world application ported to SkePU is the Runge
Kutta ODE Solver [4]. It uses twenty different skeletons
calls to Map, Mapreduce, Reduce and MapArray skeletons
often nested in loops. Listing 1 shows a synthetic example
that is extracted from the ODE solver application which
was earlier ported to SkePU [4]. Tuning such a composed
application that has different types of skeletons and also
different variations of the same skeleton (e.g. different user
functions) requires flexibility in the tuning framework. For
example, the decision made for the s1 call in listing 1 can
affect the optimal choices for later skeleton calls. Likewise,
knowledge about susequent skeleton calls along with their
execution frequency can affect optimality of decision at the
s1 call. To provide such functionality with current settings,
the execution plan will need to be altered for each skeleton
invocation rather than for each skeleton definition, which
can result in significant overhead. In the results section, we
will show the ODE solver application with empirical-tuning
considering composition of skeletons.

4. FIRST RESULTS
Results for SkePU with several benchmarks including a

Runge-Kutta ODE solver can be found in [4], showing that
performance close to hand-tuned code can be achieved. Here
we focus on the new tunability feature added to SkePU.

We consider two different GPU-based target architectures:

1. Target architecture 1 : Dual-quadcore Intel(R) Xeon
(R) E5520 server clocked at 2.27 GHz with 2 NVIDIA
GT200 (Tesla C1060) GPUs.

2. Target architecture 2 : Intel Core 2 Duo E6600 with
one GeForce GTS250 GPU.

. . .
s1 (v1 , v2 , out1) ; // MapArray ske l e ton c a l l
while (. . .)
{

s2 (out1 , v1) ; // Map c a l l 1
for (. . .)
{

s3 (v1 , v3) ; // Map c a l l 2
}
r e s = s4 (v2) // Reduce c a l l

s5 (out1 , v5 , out2) ; // Map c a l l 3
}
r e s2 = s6 (out1 , out2) ; //MapReduce c a l l
. . .

Listing 1: Simplified example code showing compo-
sition of different skeletons

4.1 Tuning Parameters
Figure 4 shows that even for very simple skeletons (element-

wise map), different combinations of grid-sizes and block-
sizes can have a profound impact on the overall performance.
In this case we have shown three hardcoded configurations of
grid-sizes and block-sizes for the OpenCL backend and one
tuned configuration for the same backend. The tuned con-
figuration is obtained by exercising different combinations of
the grid-sizes and block-sizes for different problem sizes us-
ing a genetic algorithm and choosing better (with respect to
execution time) for each case. The set of choices is too large
to hand-prune and often can be non-intuitive. In the follow-
ing, we show a small part of the execution plan which is auto-
matically generated by the tuning algorithm, where columns
denote lower input limit, upper input limit, backend,
block-size, and grid-size respectively:

1 --- 750000 CL_BACKEND 32 32768

750001 --- 1250000 CL_BACKEND 32 512

1250001 --- 2250000 CL_BACKEND 128 2048

2250001 --- 3750000 CL_BACKEND 32 2048

3750001 --- 4250000 CL_BACKEND 32 16384

4250001 --- 5250000 CL_BACKEND 128 32768

5250001 --- 5750000 CL_BACKEND 128 16384

5750001 --- 6250000 CL_BACKEND 128 32768

6250001 --- 7250000 CL_BACKEND 512 16384

7250001 --- 8250000 CL_BACKEND 256 16384

...

To reduce entries in the execution plan and consequently the
runtime lookup overhead, we use a threshold value to keep a
previous configuration entry for new problem sizes if it lies
within the desired threshold limit. Choosing a threshold
value is often a tradeoff between the runtime overhead and
the precision of tuning process.

4.2 Performance portability for different back-
ends

We consider a simple vector sum computation, expressed
by a single reduce skeleton instance, which is repeated 100
times for the measurements.

For the target architecture 1, we construct manually an
execution plan with empirically found intervals:

skepu::Reduce<plus> globalSum(new plus);

skepu::ExecPlan plan;

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 2e+06 4e+06 6e+06 8e+06 1e+07 1.2e+07 1.4e+07 1.6e+07 1.8e+07 2e+07

T
im

e
(m

s)

Vector Size (# elements)

Comparing tuned configuration with hard-coded OpenCL configurations - Map skeleton

CL 65536, 128
CL 8192, 512

CL 2048, 32
TUNE

Figure 4: Tuning grid-size and block-size for
OpenCL backend for Map skeleton on target archi-
tecture 1. Numbers in titles show ‘grid-size, block-
size’ combinations used for execution.

plan.add(1,3500, skepu::CPU_BACKEND);
plan.add(3501,3200000, skepu::OMP_BACKEND, 8);
plan.add(3200001,5400000, skepu::CL_BACKEND, 65535, 128);
plan.add(5400001,MAX_INT, skepu::CLM_BACKEND, 65535, 128);

globalSum.setExecPlan(plan);

Figure 5 shows the behavior of the empirically tuned con-
figuration as it switches to the optimal backend for different
problem sizes. Note that, for technical reasons, it is not pos-
sible (without major effort) to mix OpenCL and CUDA code
within the same program. Here we decided to use OpenCL
as it allows better support for multi-GPU computing. The
tunable version (TUNE) selects the OpenMP Reduce for
small problem sizes, OpenCL on a single GPU for medium
ones, and OpenCL on two GPUs for large ones.

In order to demonstrate the potential for performance
portability, we now consider target architecture 2. For this
platform, we preset the execution plan with the following
empirically found parameters:

skepu::Reduce<plus> globalSum(new plus);

skepu::ExecPlan plan;
plan.add(1,3500, skepu::CPU_BACKEND);
plan.add(3501,900000, skepu::OMP_BACKEND, 8);
plan.add(900001,MAX_INT, skepu::CL_BACKEND, 65535, 128);

globalSum.setExecPlan(plan);

Note that the plan does not contain an entry for dual-
GPU computing because the target system only has a single
GPU. Figure 6 shows the resulting performance with the
new plan on the new target architecture.

In both cases, the tunable version (TUNE) follows the
best back-end for the current problem data size. Also, the
overhead for looking up the plan entry at run time turned
out to be negligible in the considered example.

4.3 The ODE Solver
Figure 7 shows empirical tuning for the ODE solver ap-

plication where we have different SkePU versions for the

 1

 10

 100

 1000

 10000

 0 2e+06 4e+06 6e+06 8e+06 1e+07 1.2e+07 1.4e+07 1.6e+07 1.8e+07 2e+07

T
im

e
 (

m
s
)

Vector Size (# elements)

Reduce for different vector sizes.

CPU
OpenMP

OpenCL single
OpenCL multi

TUNE

Figure 5: Vector sum with reduce, computed with
an empirically determined execution plan on target
architecture 1.

ODE solver, including one using the OpenMP backend and
another using the OpenCL backend with a default configu-
ration. The tuned configuration for the OpenCL(skepu-CL
tune) uses appropriate grid-size and block-size combinations
for different problem-sizes and gives significant improvement
in the performance. The overall tuned configuration (skepu
TUNE) uses a combination of the OpenMP and the OpenCL
backends for different skeleton calls which is determined
statically by using knowledge of the program composition.
This tuning is most-likely non-optimal as it is rather im-
possible to statically exercise all possible combinations of
different backends for each skeleton call in the program. In
future, this tuning for composition of different skeletons is
going to be done automatically.

5. FUTURE WORK
At the moment, setting up execution plans is still to be

done manually except for the tuning parameters for GPU
backends. Future work will apply machine learning tech-
niques to construct such plans automatically from training
data taken by microbenchmarks.

Currently, SkePU macro-definitions of user functions pa-
rameterizing skeleton instantiations support the same func-
tion body for all back-ends (OpenMP, CPU, CUDA, OpenCL).
This works well for simple functions, but for more complex
function definitions, SkePU may need to support different
function definitions for different back-ends.

SkePU itself is work in progress and several additions to
the skeleton library are planned for, such as support for an
STL container Matrix for two-dimensional data. We may
also consider task-parallel skeletons, such as Farm, and nest-
ing of skeletons.

6. RELATED WORK
A lot of work and research have been made in the area of

skeletal parallel programming. With the arrival of CUDA
and OpenCL, which has provided an easy way of utilizing the
parallel processing power of graphics hardware, the skele-
ton approach has also been tried in this fairly new area of

 10

 100

 1000

 0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06 3.5e+06 4e+06 4.5e+06 5e+06

T
im

e
 (

m
s
)

Vector Size (# elements)

Reduce for different vector sizes.

CPU
OpenMP

OpenCL single
TUNE

Figure 6: Vector sum with reduce, computed with
an empirically determined execution plan on target
architecture 2.

parallel computing. The development of SkePU, which was
presented in this paper, has been inspired by several other
similar projects such as Thrust [6], CUDPP [5], or the skele-
ton programming frameworks by Sato and Iwasaki [12] and
Kirschenmann et al. [7]. More details and references about
these and further related approaches can be found in the
Related Work section of our recent paper on SkePU [4].

So far SkePU implements one container, a vector type
which is built around the STL vector and is largely inspired
by CuPP [1].

Automated selection among different algorithmic variants
of reductions on shared-memory multiprocessors has been
considered by Yu and Rauchwerger [14].

StarPU [13] is a run-time system for accelerator based
systems including GPU based systems. It contains a history
based mechanism that, at run time, records the performance
effect of executing code units on different kinds of resources
and enables automated selection of the resource predicted
most suitable based on this performance history data.

Acknowledgments
This work was funded by EU FP7, project PEPPHER, grant
#248481 (www.peppher.eu), and SSF project ePUMA.

7. REFERENCES
[1] J. Breitbart. CuPP - A framework for easy CUDA

integration. In IPDPS’09: Proc. IEEE Int. Symposium
on Parallel&Distributed Processing, pages 1–8,
Washington, DC, USA, 2009. IEEE Computer Society.

[2] M. Cole. Algorithmic skeletons: structured
management of parallel computation. Pitman and MIT
Press, 1989.

[3] M. Cole. Bringing skeletons out of the closet: a
pragmatic manifesto for skeletal parallel programming.
Parallel Computing, 30(3):389–406, 2004.

[4] J. Enmyren and C. W. Kessler. SkePU: A
Multi-Backend Skeleton Programming Library for
Multi-GPU Systems. Proc. 4th Int. Workshop on

 0

 50

 100

 150

 200

 250

 200 300 400 500 600 700 800 900 1000

T
im

e
(S

ec
)

Problem size (N)

ODE solver

skepu-CL
skepu-OMP

skepu-CL Tune
skepu TUNE

Figure 7: The ODE libsolver application with hand-
tuning on the target architecture 1, highlighting po-
tential for composed skeleton tuning for real-world
applications.

High-Level Parallel Programming and Applications
(HLPP-2010), Baltimore, USA, Sep. 2010.

[5] M. Harris, J. Owens, S. Sengupta, Y. Zhang, and
A. Davidson. CUDPP: CUDA Data Parallel Primitives
Library. http://gpgpu.org/developer/cudpp, 2009.

[6] J. Hoberock and N. Bell. Thrust: C++ Template
Library for CUDA .
http://code.google.com/p/thrust/, 2009.

[7] W. Kirschenmann, L. Plagne, and S. Vialle.
Multi-target C++ implementation of parallel
skeletons. In POOSC ’09: Proc. 8th workshop on
Parallel/High-Performance Object-Oriented Scientific
Computing, pages 1–10, New York, NY, USA, 2009.
ACM.

[8] Christoph Kessler and Welf Löwe. A Framework for
Performance-Aware Composition of Explicitly Parallel
Components. Proc. ParCo-2007 conference,
Jülich/Aachen, Germany, Sept. 2007.

[9] A. Munshi. The OpenCL specification version 1.0.
Khronos OpenCL Working Group, 2009.

[10] Nvidia. CUDA Programming Guide Version 2.3.1.
NVIDIA Corporation, 2009.

[11] F. A. Rabhi and S. Gorlatch, editors. Patterns and
skeletons for parallel and distributed computing.
Springer-Verlag, London, UK, 2003.

[12] S. Sato and H. Iwasaki. A skeletal parallel framework
with fusion optimizer for GPGPU programming. In
APLAS ’09: Proceedings of the 7th Asian Symposium
on Programming Languages and Systems, pages 79–94,
Berlin, Heidelberg, 2009. Springer-Verlag.

[13] StarPU project.
http://runtime.bordeaux.inria.fr/StarPU/

[14] H. Yu and L. Rauchwerger. An Adaptive Algorithm
Selection Framework for Reduction Parallelization.
IEEE Trans. Parallel and Distr. Syst.
17(10):1084–1096, 2006.

