
194 Department of Computer and Information Science, Linköping University 1994

22.4.6 Generation of Efficient Compilers and Interpreters from
Natural Semantics Specifications

Peter Fritzson, Mikael Pettersson

Compiler generation from Denotational Semantics was mentioned in the previous
section. However, there are still some problems associated with Denotational
Semantics, e.g. concerning modularity and when specifying concurrent languages.
For these and other reasons, we have now focused on the more recent Natural Seman-
tics formalism, and developed a first version of a system called RML (Relational Meta
Language and system) for generating efficient implementations from Natural Seman-
tics specifications. The following sections give more details of this work.

Background

Since the early eighties, a formalism known as Natural Semantics has become
increasingly popular among programming language researchers. Natural Semantics is
often used to specify type systems for the static semantics of programming languages,
or the dynamic semantics, or both, and it has even been used to specify translations
from abstract syntax to intermediate code. Lately, there has been a trend to use
augmented type systems and translations, all specified in Natural Semantics, to do
static analysis and code-improving transformations.

Figure 22-6. The semantics analysis part of compilers is generated by the RML system
from natural semantics specifications.

Natural Semantics is based on Plotkin’s Structural Operational Semantics (SOS) and
further developed at INRIA by Kahn. Specifications consist of data type declarations
(abstract syntax, environments, run-time values, types, etc.) and sets of inference
rules. The inference rules specify relations between objects, in a style akin to
Gentzen’s Sequent Calculus for Natural Deduction. (Hence the name ‘Natural’
Semantics.) In a rule like

RML Compiler

Syntax
Specification

Static Semantics
Run-time Semantics

Machine
Description

Parser
Generator

Code
Generator
Generator

Source Text

Syntax Trees

Declaration
Processor +
IL generator

IL -> Code

Parser

Machine Code

IL Code

(in an RML natural
semantics specification)

The Laboratory for Programming Environments 195

 H1 T1 : R1 . . Hn Tn : Rn
 –––––––––––––––––––––––––– if <cond>
 H T : R

the Hi are hypotheses (typically environments containing bindings of source-level
names to semantic objects), the Ti are terms (typically pieces of abstract syntax), and
the Ri are results (typically types, run-time values, or augmented environments). An
instance Hj Tj : Rj is called a sequent. The sequents above the line are the premises,
and the sequent below the line is the conclusion. The rule may be interpreted as
follows: in order to prove a sequent H T : R, one must first prove the sequents
H1 T1 : R1 . . Hn Tn : Rn. The side condition, if present, must also be satisfied.

Natural Semantics offers several advantages over classical Denotational Semantics:

• All objects are finite terms, which means that the complicated domain theory of
Denotational Semantics is not needed.

• More than one inference rule may be applicable at any given time, which means
that some non-deterministic features are easy to model. For instance, the
evaluation order of binary expressions in an imperative language can be left
unspecified.

• Modern type systems involving polymorphic type inference are much easier to
specify in Natural Semantics. A specification in Denotational Semantics would
tend to resemble a type inference algorithm expressed as a functional program.

The Centaur programming environment, developed within the Esprit GIPE and GIPE-
II projects, contains a meta-language for Natural Semantics called TYPOL. Until
recently, this was the only available implementation of a language intended specifical-
ly for Natural Semantics. The default implementation uses a simple translation from
TYPOL to the Centaur mu-Prolog sub-language for execution. It has also been shown
that a restricted class of Natural Semantics specifications is equivalent to a certain
kind of attribute grammars that can be executed by a functional evaluator.

We see several problems with the current state of affairs:

• The TYPOL implementation is very inefficient. We also feel that the Centaur
system does not lend itself to the use of Natural Semantics in stand-alone
applications.

• Coding Natural Semantics specifications in Prolog is not attractive, due to the
lack of a decent type system in Prolog. We also believe that a compiler for a
special-purpose Natural Semantics language can generate much better code than
a Prolog compiler can for Natural Semantics specifications translated to Prolog.

• Some prefer to use the higher-orderλProlog language. We feel that this language
is too complicated, both for users and implementors alike.

Objectives

In the long run, we want to see Natural Semantics being as useful in programming
language research and implementation, as are Context-Free Grammars and parser
generators today.

196 Department of Computer and Information Science, Linköping University 1994

Results

In the short run, we have defined a meta-language for Natural Semantics, and studied
its implementability and practical usefulness. We have identified statically determina-
ble properties of Natural Semantics specifications that allow (or disallow) interesting
optimizations to be applied to the implementation of Natural Semantics specifica-
tions. In particular, the following results have recently been obtained:

• The Relational Meta-Language (RML) has been defined. It is strongly typed with
a type system very much like that in Standard ML, has type-safe separate
compilation and modules, and supports Natural Semantics-style inference rules.
It has fewer non-declarative constructs than Prolog. The SML-like data types
directly support structural-induction style specifications, which are central to
Natural Semantics.

• The operational properties of RML were investigated and used to derive the
initial implementation. A key component is the use of a Continuation-Passing
Style (CPS) intermediate representation. CPS is easy to optimize, due to its
declarative nature, but is also easily translated to low-level code, due to its simple
operational semantics.

• Further observations lead to a refinement, whereby RML specifications are first
translated to a First-Order Logic. High-level equivalences are used to rewrite this
representation in order to reduce the amount of unnecessary non-determinism.
This phase has proven to be essential for the practicality of the generated code.

• A compiler generating portable ANSI-C code has been implemented. The code
runs unchanged on several different 32 and 64-bit architectures. Performance
measurements indicate that this code runs several times faster than that generated
by commercial Prolog compilers, and several orders of magnitude faster than
TYPOL.

• Recent work has concentrated on the mapping of the control flow aspects of
high-level languages to C. Results indicate that significant performance improve-
ments can be made.

Performance Figures

We have a standard benchmark consisting of a NS for the dynamic semantics of a call-
by-name functional language ‘Mini-Freja’. From this, we generate a compiled inter-
preter for the same language. Finally, we invoke the interpreter on a Mini-Freja pro-
gram computing prime numbers.

Comparing the performance of TYPOL (T) and RML2C (R) for this specification on
a Sun 10/41, gives the following results:

The Laboratory for Programming Environments 197

The Mini-Freja specification was rewritten in Prolog to allow comparisons to be made
with commercial native-code Prolog compilers: SICStus Prolog (S) and Quintus
Prolog (Q). On a Sun 4/470, we have the following results:

Further work

The pragmatic aspects of the generated code need to be improved, especially for inter-
operability with ‘foreign’ code. This is mostly a matter of design and engineering.
There is much room for improvement in the compiler. Static analysis should be used
to reduce the inefficiencies introduced by the language itself (e.g. unnecessary deref-
erencing), and those pertinent to certain classes of Natural Semantics specifications.
For instance, dynamic semantics involving states are likely to benefit from an Natural
Semantics analogy of the single-threadedness analysis of denotational semantics and
lazy purely functional programming languages.

#primes T R T/R

3 13s 0.0026s 5000

4 72s 0.0037s 19459

5 1130s 0.0063s 179365

#primes S Q R S/R Q/R

18 5.0s 4.5s 0.45s 11.1 10.0

