
Technische Universität München

Zentrum Mathematik

Sparsing in

Real Time Simulation

Diplomarbeit

von

Anton Schiela

Themensteller: Prof. Dr. Folkmar Bornemann
Betreuer: Prof. Dr. Folkmar Bornemann

Dr. Martin Otter
Abgabetermin: Montag, 11.2.2002

Hiermit erkläre ich, daß ich die Diplomarbeit selbständig angefertigt und nur die angegebenen
Quellen verwendet habe.

München, 11. Februar 2002

1

Danksagung

Die vorliegende Diplomarbeit wurde am Institut für Robotik und Mechatronik des Deutschen
Zentrums für Luft- und Raumfahrt in Zusammenarbeit mit dem Lehrstuhl für Wissenschaftliches
Rechnen an der Technischen Universität München angefertigt.
Bedanken möchte ich mich für die Förderung und Betreuung meiner Arbeit bei Herrn Prof. Dr.
Folkmar Bornemann von der Technischen Universität München, bei Herrn Dr. Martin Otter
und Herrn Dr. Johann Bals vom Institut für Robotik und Mechatronik des Deutschen Zentrums
für Luft- und Raumfahrt, sowie bei Herrn Dr. Hilding Elmqvist und Herrn Dr. Hans Olsson
von Dynasim, Schweden. Ihre fachliche und freundliche Begleitung waren mir eine wertvolle Un-
terstützung bei der Anfertigung dieser Diplomarbeit.
Desweiteren gilt mein Dank meinen Kollegen und Freunden am Institut für Robotik und Mecha-
tronik, und an der Universität. Ihre Unterstützung und ihre Anregungen waren für mich beson-
ders wichtig.
Falls sich Fragen oder Anmerkungen ergeben, bin ich jederzeit per e-mail über die Adresse
Anton.Schiela@web.de erreichbar.

2

Contents

1 Introduction 5

2 Real Time Simulation 7
2.1 Real Time Simulation in Industrial Applications 7

2.1.1 Applications for Real Time Simulation . 7
2.1.2 Practical Issues in Real Time Simulations 8

2.2 Object Oriented Modelling . 9
2.2.1 Object oriented modelling with Modelica 9
2.2.2 Preprocessing and Simulation with Dymola 10
2.2.3 Real Time Simulation in Dymola . 11
2.2.4 Example: an industrial robot . 12

2.3 Numerical Issues in Real Time Simulation . 14
2.3.1 Specification of Real Time Simulation . 14
2.3.2 Appropriate numerical methods . 16
2.3.3 Adaptivity . 17
2.3.4 Industrial models and Stiffness . 17
2.3.5 Sparsing . 18

3 Linearly implicit Euler, Sparsing, Extrapolation 19
3.1 The linearly implicit Euler method for DAEs of Index 1 19
3.2 The linearly implicit Euler method with inexact Jacobian 20
3.3 Stability of the linearly implicit Euler method . 21
3.4 Asymptotic expansions for an inexact Jacobian matrix 23
3.5 Quasi-Linear systems with a solution dependent mass matrix 31

4 A Sparsing Criterion 33
4.1 Simultaneous block diagonalization of matrix pairs 34

4.1.1 Triangularization . 35
4.1.2 Ordering Eigenvalues in the generalized Schur form 36
4.1.3 Block diagonalization . 37
4.1.4 Block diagonalization for large systems with many algebraic equations . . 41

4.2 Results from perturbation theory . 42
4.3 Computation of a first order sparsing criterion 46

4.3.1 Sparsing of the differential part . 46
4.3.2 Sparsing of the algebraic part . 47

4.4 Discussion of the criterion . 48
4.4.1 Errors introduced by the block diagonalization and cancellation 48
4.4.2 Invariance against scaling . 49

3

4 CONTENTS

4.4.3 Sparsing by magnitude . 50

5 Implementation of a real-time simulator 51
5.1 Design overview . 51
5.2 Implementation of sparsing . 52

5.2.1 Initialization . 53
5.2.2 Testing of the sparsed Jacobian matrix . 53
5.2.3 Sparsing . 53

5.3 Evaluation of the Jacobian matrix . 55
5.4 Sparse factorizations in real-time . 55

5.4.1 Methods for sparse QR decompositions. 56
5.4.2 Predicting the structure of R in the QR Decomposition. 56
5.4.3 Row oriented QR decomposition. 57
5.4.4 Row ordering . 58
5.4.5 Implementation details . 58

5.5 Damping of algebraic variables . 58
5.6 Error estimation . 60

6 Numerical experiments 61
6.1 Preliminary considerations . 61
6.2 Differential algebraic systems with a large algebraic part 62
6.3 Differential algebraic systems with a small algebraic part 63
6.4 Ordinary differential equations . 64

7 Conclusions and Outlook 71

Chapter 1

Introduction

Real time simulation is a growing field of applications for simulation software. The possibility to
replace a device in the real world by a virtual process makes this simulation technique a powerful
tool for scientists and engineers.
Especially the so called ”Hardware in the Loop” (HIL) simulation is an application that becomes
more and more important, e.g., for testing and optimization of electronic control units. In such
a scenario, a piece of hardware (e.g., a controller) is used in a virtual environment created by
a simulation, that is running in real time. This controller communicates with the simulation
software in short time cycles so that the software is required to provide results once in a cycle.
Using new modelling techniques, such as object oriented modelling, it is possible to describe
more and more complex technical models (see, e.g., [34], [36], [17]). Many of those are multi-
domain models, which means that they contain components from more than one physical domain.
Mechanic, electric, hydraulic or thermodynamic components are often coupled together in one
model. Consequently there are several different time scales present in the model, leading to stiff
ordinary differential equations (ODEs) or differential algebraic equations (DAEs).
Besides that, we will see in Chapter 2 that stiff real time simulations require different algorithms
than classical off-line simulations. These requirements will lead us to a special method, the
linearly implicit Euler method and a special form of adaptivity, sparsing. Sparsing means zeroing
out elements of the Jacobian matrix to accelerate sparse matrix factorizations.
In Chapter 3 the theoretical properties of this method, that are important for sparsing are
reviewed. Especially the stability properties of the linearly implicit Euler method with an inexact
Jacobian are studied. This leads us to a generalized eigenproblem. Special interest is taken on
the extension of the linearly implicit Euler method to a higher order method by extrapolation.
We will see how sparsing affects the order of extrapolation methods applied to DAEs.
In Chapter 4 we will derive a criterion to choose the proper elements to be zeroed out such that
the dynamical properties of the linearly implicit Euler method are affected as little as possible.
The approach taken is via perturbation theory for matrix pairs. We apply this theory to the
generalized eigenproblem mentioned above and obtain a sparsing criterion based on a first order
estimate for the eigenvalue changes.
Chapter 5 discusses the implementation of a stiff real time simulator. Especially, the solution
of large sparse systems of equations in real time is studied and a row sequential method for a
sparse QR decomposition is chosen.
This simulator and its applicability to real life problems is tested in Chapter 6. We observe the
effects of sparsing on the structure of the matrix and the dynamics of the method.

5

6 CHAPTER 1. INTRODUCTION

Chapter 2

Real Time Simulation

Simulations become more and more important for many fields of applied and industrial science.
The increasing available computing capacities make it possible to simulate more and more com-
plex models. One large field of applications is the simulation of mechatronic systems to facilitate
and accelerate the design process. Especially in flight and automobile industries these techniques
gain growing interest.
One special industrial application is real time simulation. This is a simulation, that runs with
the same speed as the real world process. Real time simulations make it possible to establish
communication between devices and processes in the real world and the processes that are sim-
ulated. This ”hardware-in-the-loop” application is of great importance for the testing of devices
and the design of complex controllers. We will describe this application in Section 2.1.
To be able to simulate a process, one has to build a mathematical model of it. As the processes
to be simulated become more and more complicated, efficient modelling techniques are crucial
to be able to cope with the complexity. One interesting approach for this is object oriented
modelling, that we want to describe briefly in Section 2.2.
In Section 2.3 we deal with the algorithmic implications of real time simulation. We formalize
the requirements on the algorithm and discuss the applicability of common simulation tech-
niques and methods to real time simulations. This will motivate the methods presented in the
subsequent chapters.

2.1 Real Time Simulation in Industrial Applications

2.1.1 Applications for Real Time Simulation

Two application scenarios will be described, where real time simulations are crucial for the de-
velopment and enhancement of industrial products.
The first application is the so called ”hardware-in-the-loop simulation”. It is for example used
for the automatic testing and the optimization of hardware components, such as controllers. In
[26] an automatic test environment is described for the testing of an electronic control unit for
an automatic gear box. To test such a controller, a set of test situations has to be generated, in
which the controller is observed. For safety reasons, these tests have to be extensive and stan-
dardized. Especially, they have to cover extreme situations. Therefore, these tests are expensive,
if they are accomplished by test drives in a car prototype. Hardware in the loop simulations
provide a comparably cheap alternative. The controller is embedded into a virtual car. This
means that the controller is connected to a computer, where a simulation of the car is running.
This simulation is of course required to run at the speed of the real world process. It is also clear

7

8 CHAPTER 2. REAL TIME SIMULATION

that this requirement has to be fulfilled strictly. Otherwise, the timing in the communication
between the controller and the simulation breaks down. Similar applications arise also in other
fields, e.g., in aircraft industries (c.f. [25]).
A second application is real time simulation as part of a controller, e.g., for an inverse model.
Inverse models are used to compensate nonlinearities in the controlled process. This can best be
explained with an example. The quantities of interest of an industrial robot are the joint angles.
However, the manipulable quantities are the voltages at the drives. The relations between the
controlled variables and the manipulated variables are nonlinear and complicated, especially be-
cause the joints are coupled dynamically. With an inverse model, this relation can be simplified,
i.e., the process together with the inverse model can be controlled more easily. Obviously, the
computations involved in evaluating the inverse model have to be performed in real time.

2.1.2 Practical Issues in Real Time Simulations

The most important practical issue in hardware-in-the-loop simulations is a well working commu-
nication between the hardware and the simulation, especially with the right timing. To achieve
this, special hardware and special software based on special algorithms have to be employed. For
a detailed introduction into the practical issues of real time computing see, e.g., the textbook
[19].
The whole hardware set-up may contain the test hardware itself, the computer on which the
simulation is running, a personal computer as the interface to an operator, sensors to measure
the output of the test hardware and actuators to generate its input. Furthermore, all these com-
ponents have to be connected with each other, so a special network has to be built.
Depending on the test hardware, the sensors and actuators are more or less expensive. The
simplest case is the hardware being a digital controller. Then it may be sufficient to connect
the test hardware to the simulation hardware properly. In the case of an analog controller, one
has to employ digital-analog and analog-digital converters to be able to communicate. The most
expensive case is, if the inputs and outputs of the test hardware are not signals, but physical
quantities, such as forces. Then large and expensive sensor and actuator systems have to be
used. One extreme example for such a system is the test bench for the gear of a car, that was
built at the Technical University Munich by the chair ”Elektrische Antriebssysteme” (see [28]).
The ”inputs” are the torque of the engine, the friction of the wheels, and the air resistance. To
create these forces in a laboratory, large electrical drives have been mounted to the wheels and
to the flange that normally connects the engine and the gear.
The connection to the simulation hardware is accomplished by a real time capable bus. Due
to the wide applicability of such systems in control engineering, several standard systems are
available for this task.
The simulation hardware also has to be real time capable. This does not only mean that it has to
supply a sufficient amount of computing power, but that computations have to be accomplished
at a guaranteed speed. This stands in contradiction with some classical speed up concepts such
as cacheing, or branch prediction. Such features are designed to increase the overall computation
speed, but in the worst case, the computations are slowed down. A cache can speed up compu-
tations considerably if most of the data needed can be stored in the cache. Otherwise, if data
cannot be fetched from the cache, the cost is much higher. As this behavior is not predictable,
it is very difficult to combine the concept of cacheing with real time computations. Due to this
and for several similar reasons, there is special hardware necessary to provide real time capable
computing power.

2.2. OBJECT ORIENTED MODELLING 9

The same requirements as for real time hardware apply to the software. All operations have
to be accomplished during a guaranteed time span. For this reason, there are special operation
systems available equipped with special features, such as accurate timing, scheduling by priority
and special I/O functions.
Similar requirements apply to real time capable algorithms. These requirements are described
in more detail in Section 2.3.

2.2 Object Oriented Modelling

The following section will be a brief description of object oriented modelling, a modelling tech-
nique, that was explored first by H. Elmqvist [16] in the late seventies. For a more detailed
introduction see [36], [35], [17]. We will refer to the modelling language Modelica [32] as an im-
portant example for an object oriented modelling language and to the modelling and simulation
software Dymola [14] as an example for an implementation.

2.2.1 Object oriented modelling with Modelica

Object oriented modelling is a very general and powerful modelling technique especially suited
for the modelling of complex modular systems. The idea is to define classes of models, that
correspond to real physical objects. Classes of models can either be defined by their physical
equations, as an extension of a base class, or they can be constructed hierarchically from sub-
models. For this purpose (sub-)models can be connected to each other, modelling a physical
connection. The type of the connection is described by the definition of interfaces in each ob-
ject. Interfaces contain two types of variables: ”potential variables” and ”flow variables”. If two
compatible interfaces are connected, then additional equations are generated: The sum of match-
ing flow variables is required to be zero, and for all corresponding potential variables equality is
required. A description of a model built up from submodels and connections is called an object
diagram or composition diagram. Models can be stored in libraries and can so be reused easily.
Due to these features, object oriented modelling allows a convenient construction of complex
multi domain models, especially in industrial applications. Modelling can either be accomplished
using a textual language, graphically, or by a mixture of both.

Figure 2.1: Object diagrams of an electrical circuit and of a capacitor.

10 CHAPTER 2. REAL TIME SIMULATION

For example if we want to model an electric circuit we can use a library, that contains models
of electrical components, such as resistors, capacitors, and inductors. Each of them is defined
by their physical equations. A model of a capacitor, for example, contains the equation i = Cu̇.
A capacitor is defined as an extension of the base class ”OnePort”. Here the interface variables
u1, u2, i1, i2 are defined, i.e., the voltage and the electrical current at each pin of the capacitor.
It is also defined in ”OnePort”, that u = u2 −u1 and i1 = i2, and that ui are potential variables
and ii are flow variables. Connecting the interfaces ”1” and ”2” of two electrical components ”A”
and ”B” will now produce the additional equations uA

1 = uB
2 , and iA1 + iB2 = 0. These equations

correspond to Kirchhoff’s laws and can of course also be generated for multiple connections. If
several electrical components are connected to an electric circuit containing a ground potential,
and the model is physically meaningful, we obtain a non-singular system of differential algebraic
equations by gathering all equations.
Roughly speaking, an object diagram containing submodels and connections between the sub-
models can be translated into a set of algebraic, differential, and discrete equations and a set
of variables. Depending on the complexity of the object diagram, the size of such a system is
between several hundred and several ten thousand equations, and the system is sparse, i.e., the
corresponding incidence matrix is sparse. Especially, the algebraic part may be large, mostly
because of the large number of connections between the submodels.

2.2.2 Preprocessing and Simulation with Dymola

To simulate such a large differential algebraic equation system efficiently, the system of equations
has to be reduced and simplified by some symbolic preprocessing, as it is performed, e.g., by the
software package Dymola [14]. Here, the preprocessing runs in several stages and affects mostly
the algebraic equations. The goal is that for a given vector of ”state variables” x, i.e., variables
whose derivatives ẋ occur in the equations, all algebraic variables y and the state derivatives ẋ
can be computed efficiently.
First, redundancy is removed out of the system. Trivial equations, such as yi = p, or yj = yk

are identified and removed together with the variables. Then an automatic index reduction is
performed, using the ”dummy-derivative” method by Mattson and Söderlind [31].
After this, the remaining equations and variables are sorted to obtain an incidence matrix in
block lower triangular form. This ”BLT-transformation” can be performed by an algorithm,
that runs at a complexity O(nN) (see, e.g., [13]). Here n is the number of equations and N is
the number of non-zero elements of the incidence matrix. The result is a block lower triangular
matrix with diagonal blocks, that cannot be further reduced by permutations of the rows and
columns of the incidence matrix. The systems of equations corresponding to the diagonal blocks
can now be treated separately and solved in a sequence.
To reduce the size of the equation systems even further, the preprocessing routine of Dymola per-
forms a technique called tearing (see [27], [18], [3]). Tearing is a technique to split an irreducible
block B of an incidence matrix into four blocks

B =
(

L B12

B21 B22

)
, (2.1)

and sort the equations and variables such that L is lower triangular, non-singular and as large as
possible. In this case the solution of the equations corresponding to B can essentially be reduced
to the solution of a system of the size of B22 and the solution of a sequence of one-dimensional
equations corresponding to L. If the system to be solved is linear, then we can compute the

2.2. OBJECT ORIENTED MODELLING 11

solution of (
L B12

B21 B22

) (
x1

x2

)
=

(
b1

b2

)
(2.2)

by solving the sequence of equation systems

(B22 − B21L
−1B12)x2 = b2 − B21L

−1b1, (2.3)
x1 = L−1(b1 − B12)x2. (2.4)

In the non-linear case, we perform a Newton iteration over this sequence, using x2 as iteration
variables. Finding an optimal partitioning leads to non-polynomial algorithms. Therefore, heuris-
tic algorithms are used. They also take care that the system of equations is actually solvable
at all time instants in a stable way. This is possible, because the translation and preprocessing
routines have access to additional information about the equations, e.g., if an equation is linear.
Experience shows that after the preprocessing phase the size of the remaining equation systems
to be solved numerically is rather small. Hence, dense numerical linear algebra routines can be
used. The reason for this is that large irreducible blocks of algebraic equations correspond to
complex submodels with purely algebraic equations (”algebraic loops”). However, in reasonable
models these algebraic loops occur rather seldom.
The last stage of the preprocessing phase is the generation of C-code, that yields the right
hand side of the reduced DAE system. Moreover, by default Dymola provides code that numer-
ically transforms the DAE into an ODE, solving the remaining algebraic equations by Newton’s
method for each function evaluation.
Dymola provides a user interface for the interactive simulation of the models. After translation,
models can be simulated using standard stiff and non-stiff integrators such as DASSL, DEABM,
or explicit RK schemes. As many industrial system are stiff, DASSL is the default option. All
integration methods are applied to the code in ODE form. Thus, in the standard setting a state
space form method is used for the simulation.

2.2.3 Real Time Simulation in Dymola

With Dymola it is possible to generate code for the real-time simulation of stiff and non-stiff
systems. To perform this efficiently, some additional features are needed.

Inline integration. The preprocessing routines in Dymola can be considered as a sparse
solver applied to the algebraic part of the model only. This restriction is necessary, because
the preprocessing routines have no information about the discretization method applied to the
differential equations. The drawback is that using an implicit method, one step of the integration
routine contains two loops: in the inner loop the algebraic equations are solved for each function
evaluation, in the outer loop another system of equation is solved. This results in several function
evaluations, calling the inner loop. This combination of a state space form method and an implicit
integrator may lead to inefficient code.
If the preprocessing routines are applied after the discretization both algebraic and differential
equations can be treated and there is only one single system of equations to be solved at each
step. We obtain a direct method. As the preprocessing routines can only be applied before
the integration starts, the discretization formula is fixed for the whole course of integration.
However, for stiff real-time integration with its simple algorithms this technique, called ”inline
integration” (see [15]) is applicable and yields a very efficient method (see also Section 6.1).
Every state derivative is replaced by its discretization formula, for example,

ẋ → (xn+1 − xn)/τ, (2.5)

12 CHAPTER 2. REAL TIME SIMULATION

where xn+1 is unknown. The output variables are now xn+1, yn+1 and no longer f(xn), yn. The
application of an explicit method means inserting xn into the right hand side. If xn+1 is inserted
into the right hand side we obtain an implicit method suitable for stiff systems. In any case the
result is a purely algebraic system of equations, and the preprocessing routines described above
can be applied.

Mixed-mode integration. In many cases, however, we observe that in connection with im-
plicit inline integration, the preprocessing routines yield large systems of equations. The reason
for this is that the systems of equations after preprocessing do not correspond to the physical
algebraic loops in the model anymore, because the state variables subject to implicit discretiza-
tion, have to be considered as unknowns now. Hence, equations containing state variables do
not split algebraic loops any longer. So if we are forced to use an implicit discretization scheme,
the systems of equations grow large and the simulation becomes inefficient.
One idea to cope with this situation is to insert the unknown xn+1 only where it is necessary
to obtain a stable integration scheme at a certain step size. Otherwise insert xn. If a linearly
implicit integration method is used, this approach is equivalent to sparsing of the Jacobian ma-
trix, the main topic of this thesis. In the context of an implicit method and with the restriction
that each component of the state vector is inserted into the right hand side either implicitly
or explicitly, we obtain a scheme equivalent to a partitioned method (see [24]). This scheme is
implemented in Dymola under the name ”mixed-mode integration” [39].
It is not a trivial task to find out, where xn+1 has to be inserted, and a large part of this thesis
(Chapter 4) will deal with this question.

2.2.4 Example: an industrial robot

To obtain an idea of the possibilities of object oriented modelling, we will consider the model of
the industrial robot Manutec r3. It will also be used as a test model in the subsequent chapters.
A very detailed description of the model and its development can be found in [34].
The Manutec r3 is a classical six axis robot powered by six controlled electrical drives. To obtain

Figure 2.2: Screenshot of the simulated robot.

a detailed model it is necessary to model the dynamics of the robot as a multibody system, the
joint friction, the gears, the dynamics of the electrical motors and the controllers. This leads to

2.2. OBJECT ORIENTED MODELLING 13

Figure 2.3: Object diagram of the robot.

14 CHAPTER 2. REAL TIME SIMULATION

an overall number of 7100 equations and 78 states, i.e., variables whose derivatives occur in the
equations.
The preprocessing routines of Dymola can reduce this large system of equations in several stages.
After removing the trivial equations and variables, there are 3612 algebraic and 78 differential
variables left. This large system of equations is reduced by Dymola to an ODE of dimension 78.
The largest system of equations to solve is 6×6. If this transformation is not desired, the result-
ing DAE system to be solved is of size 354×354 without tearing and 117×117 with tearing.
In Figure 2.3 we can see nicely, how the object oriented approach works. Figure 2.3.2 shows
that the robot has got six axes, coupled together by a mechanical part, that we see in Figure
2.3.3. Each of the axes is modelled as shown in Figure 2.3.4. The large triangle to the left is
a connector to a control signal from the outside. Here the desired angle and angular speed are
provided. These values are the inputs of the controller for the motor. We see that the actual
values of angular velocity and angle are fed into the controller, so that we obtain a closed loop
control structure.
Zooming into the motor (see Figure 2.3.5) we see that it is a controlled direct current motor. A

Figure 2.4: Object diagram of a gear.

PI controller (in the left part) is modelled as an analog circuit. Its purpose is to control the motor
current and therefore the torque of the motor. The motor itself is implemented by a resistor, an
inductor, the electric/mechanic transformer and an inertia. We see that some submodels have
real physical counterparts, whereas other submodels are more of an abstract nature.
The motor is connected to a gear, whose object diagram is shown in Figure 2.4. It consists of
several submodels, modelling bearing friction, elasticity, efficiency and the transmission coeffi-
cient of the gear. Here we realize a big advantage of object oriented modelling. We can very
easily adjust the complexity of the model. If it is sufficient to model an ideal gear, we can leave
out all objects, except for the transmission, if we want to model the friction differently, we can
easily replace this submodel we use by a different one.

2.3 Numerical Issues in Real Time Simulation

In this section we are going to discuss how the special application ”real time simulation” af-
fects the design of numerical algorithms. We will see that especially conventional techniques for
adaptivity cannot be used in real time simulations.

2.3.1 Specification of Real Time Simulation

We have described the special features of real time simulations in Section 2.1. The essential
point was that the simulation communicates with devices from the real world during runtime.
Therefore, real time simulation software has to meet certain requirements, that will be formalized
in this section.

2.3. NUMERICAL ISSUES IN REAL TIME SIMULATION 15

We consider the numerical solution of a quasi-linear differential algebraic initial value problem
of index 1 with constant ”mass matrix” L and consistent initial values x0.

Lẋ = f(x, t), x(t0) = x0. (2.6)

This DAE is a model for a dynamic process, that starts at model time t0 and runs for a cer-
tain amount of model time δt. For a given time grid ∆ = {t0, t1, . . . , tN = t0 +δt} on the interval
[t0, t0 +δt] and for consistent initial values x0 we would like to obtain a numerical approximation
{x0, x1, . . . , xN} of the solution of (2.6) on ∆. For this purpose we use an algorithm that starts to
run on a computer at real time T0. The special feature of ”real time simulation” (in an abstract
sense) is that for each grid point tn there is a specified ”deadline” δTn, a time span in ”real
time”, and we require that the computation of xn is complete at the time Tn = T0 + δTn.
”Hardware in the Loop simulation” (in an abstract sense) requires that for each grid point
tn there is a time span δSn such that f(xn, tn) cannot be evaluated by the algorithm before
the time T0 + δSn. This means that for given xn the computation of the next solution point
xn+1 cannot start before Sn = T0 + δSn and is required to take no longer than the time span
Dn = δTn+1−δSn. If this ”real time” requirement is not met at each time instant the simulation
fails.
In most applications we have an equidistant time grid ∆ with a constant ”communication inter-
val” τ = t1−t0 = . . . = tN −tN−1 = T1−T0 = . . . = TN −TN−1, such that the intervals in model
time and in real time are the same, and a constant ”relative deadline” δ = D0 = . . . = DN−1.
The fact that the simulation communicates with a real world device ,e.g., a controller has got

Model Time

-
τ τ τ τ

t0 t1 t2 t3 t4

Real Time

-
δ δ δ δ

T0 T1 T2 T3 T4S1 S2 S3 S4 S5

Figure 2.5: Time scales in real time simulation

several implications. First, the right hand side f(x, t) cannot be assumed to be continuous, be-
cause f(x, t) contains input from the outside. In most cases, this input is a step function, that
changes at each time instant Ti.
Secondly, the communication interval τ is usually rather small, compared to the time scales of
interest. This is because the real world device is constructed to cope with the original physical
process in a reliable way. To obtain the necessary information the process is sampled using small
time intervals.
A third point is that performance of real time simulation codes is measured in a special way,
different from off-line simulation. We have seen that the success of real-time simulations depends
on the adherence of the deadline δ. The performance of a simulation code is therefore measured

16 CHAPTER 2. REAL TIME SIMULATION

by the minimal deadline δmin, for that the code is guaranteed to yield results before it has
expired. This ”worst case” measure affects both real time software and hardware design.

2.3.2 Appropriate numerical methods

To perform real time simulations in a reliable way we have to choose appropriate numerical
methods, that reliably fulfill the requirements we have stated in Section 2.3.1.

Multistep methods. Multistep methods use information from the past to compute high order
approximations of the solution. This implies the assumption that the differential equation to be
solved is smooth. This is however not true in the case of real time simulations, as discontinuities
at each time instant Ti may occur. Therefore, multistep methods are not suitable for this type
of application.

Explicit One-step methods. Explicit one-step methods meet all requirements stated in
Section 2.3.1. Their computational effort is low and constant for each step and they are well
suited for systems with discontinuities, as they do not use information from the past. So for
non-stiff ordinary differential equations explicit one-step methods are the method of choice. In
fact, currently there is hardly any alternative method used.
However, if the problem is stiff, explicit methods run into trouble. For mildly stiff problems
one remedy is to use integration step sizes that are a fraction of the sample interval, but then
efficiency decays for increasing stiffness. Another ”solution” to this problem is to modify the
model such that the stiffness decreases. It is of course a questionable tactic to change the
dynamics of a model in order to get it simulated.
Differential algebraic systems of the form

ẋ = f(x, y) (2.7)
0 = g(x, y) (2.8)

are often changed to an ODE by explicitly introducing a perturbation parameter ε

ẋ = f(x, y) (2.9)
εẏ = g(x, y). (2.10)

The difficulty here is to choose the ε. There will always be a trade-off between model accuracy
and the stiffness of the ODE. In many cases this will not lead to satisfactory results.

Implicit one-step methods. Implicit methods are designed to solve stiff and differential
algebraic systems efficiently. For this purpose, a non-linear system of equations is solved at each
step. This is performed by simplified Newton iterations. Therefore, the computational effort for
each step cannot be estimated reliably, as it depends on the (theoretically unbounded) number
of iterations. Hence, implicit methods as well as all methods solving non-linear equation systems
are not feasible in real time simulation.
Nevertheless algorithms based on implicit methods can be used for real time simulations, if the
number of Newton iterations is kept fixed.

2.3. NUMERICAL ISSUES IN REAL TIME SIMULATION 17

Linearly implicit one-step methods. These methods only solve one linear system of equa-
tions at each step. This makes the computational effort predictable and therefore linearly implicit
methods are well suited for the simulation of stiff and differential algebraic problems in real time.
Linearly implicit methods share one drawback with implicit methods: if the size of the problem
is very large, then the solution of the arising linear equation systems is computationally costly.

Order of Convergence. In hardware-in-the-loop applications, the sampling intervals τ are
usually small compared to the time scales of interest. The required accuracy is usually rather
low. On the one hand it is often sufficient to reflect the qualitative behavior of the simulated
system, on the other hand, controlled systems are in general asymptotically stable, and so the
error propagation is rather well behaved. Hence, we concentrate on low order methods especially
the explicit Euler method for non-stiff ODEs:

xn+1 = xn + τf(xn, tn) (2.11)

and the linearly implicit Euler method:

xn+1 = xn + τ(L − τDf |(xn,tn))
−1f(xn, tn) (2.12)

for stiff ODEs and DAEs. Here Df |(xn,tn) denotes the Jacobian matrix of f at (xn, tn). In the
following we will concentrate on the stiff and differential algebraic case, so we will deal with the
linearly implicit Euler method.

2.3.3 Adaptivity

Classically, adaptivity adjusts the behavior of the algorithm while the simulation is running.
Two examples are step size control and the reuse of the Jacobian matrix. The goal is making
the algorithm more reliable (in terms of error control) and more efficient (in terms of overall
computation time).
In real time simulations we do not have the possibility to change the step size because it is given
or severely restricted by the real time specifications of the problem. The best thing we can do
for ”controlling” the error is to estimate it and log the estimates so that the value of the results
can be judged a-posteriori.
If we want to use adaptivity to gain performance, we have to recall how performance is measured.
(see Section 2.3.1) We see that every algorithmical device that reduces the computational work
for some steps, but not for all will not lead to a better performance in real time simulations. This
rules out techniques like reusing the Jacobian matrix, or the application of sparse LU-solvers. In
off-line simulations such techniques are essential for efficient codes, as the average performance
per unit step is improved. However, the ”worst case performance” will usually decrease.
If we want to design an adaptive algorithm, we have to gather information before real time
simulation starts and then use a form of adaptivity that relies on time independent properties
of the problem. This requires an analysis of the problem performed by a preprocessing routine.
As the overall computation time is secondary in real time simulations, such a strategy makes
sense even if the preprocessing phase is quite expensive.

2.3.4 Industrial models and Stiffness

Real time simulations are mostly performed in industrial applications using models described
by large differential algebraic equation systems with stiff components. In most cases stiffness is
caused by subsystems with fast dynamics such as controllers or electric circuits compared to the

18 CHAPTER 2. REAL TIME SIMULATION

time scales of interest, e.g., the movement of mechanical parts. Systems with such a structure
are sometimes called ”separably stiff” (see, e.g., [24].). There are various ways to exploit this
structure in off-line simulation (see, e.g., [24], [44]). These methods, however, are not suitable
for real time simulation, because they use iterative techniques to adapt to the model. On the
other hand we observe that this model inherent structure is often time invariant and therefore
something we can also make use of in the real time case. Moreover, the qualitative behavior of
the dynamical system generated by the numerical discretization concerning stiffness is easy to
predict because the step size is kept constant.
We see that in industrial real-time simulation there can be a lot of time invariant structure in
the model and the discretization. This can be exploited by a form of adaptivity as described in
Section 2.3.3.

2.3.5 Sparsing

The linearly implicit Euler method for stiff simulations consumes a large part of the computation
time by the decomposition of matrix (L−τDf). If the Jacobian Df is large and sparse this effort
can be reduced by the use of direct sparse solvers (see, e.g., Duff [12]). The sparser the matrix,
the faster the factorization of the matrix. However, in real time simulations such techniques
cannot be applied directly, because the structure of the matrix may change and therefore the
performance of the factorization. Moreover, the Jacobian matrix often contains more information
than needed to stabilize the simulation.
This leads to the idea of setting selected elements of the Jacobian to zero such that - while the
integration method is still stable - a sparse matrix factorization can be performed more efficiently.
This technique leads to an approximation of the Jacobian matrix with reduced sparsity structure
and is therefore called sparsing.
An example where sparsing was performed successfully in an off-line simulation is described by
Nowak [33]. Here the matrix elements were zeroed out dynamically before each time step using
a criterion based on the magnitude of the matrix elements.
In our approach for the real time case the Jacobian Df |(xn,tn) is analyzed for several (xn, tn)
and a fixed sparsity pattern is selected during a preprocessing phase. During the simulation only
the remaining elements will be taken into account by the factorization routine. This will lead
to a reduced and fixed sparsity pattern, that can now be exploited by an appropriate sparse
factorization routine. The factorization routine itself has to meet real time requirements, too.
We will therefore use a sparse orthogonal factorization, whose performance is only dependent
on the fixed structure of the Jacobian matrix.
For a successful application of sparsing we have to deal with two questions: How does the
approximation of the Jacobian affect the stability of the integration method? How is the accuracy
of the method affected by sparsing? The next chapter deals with these questions considering the
linearly implicit Euler method and extrapolation codes based on this method.

Chapter 3

Linearly implicit Euler, Sparsing,
Extrapolation

3.1 The linearly implicit Euler method for DAEs of Index 1

The linearly implicit Euler method is the simplest example of the class of linearly implicit
methods. This is a class of methods for the solution of stiff differential equations, with the
common feature that one linear system of equations is solved during each step, which is a
simplification compared to fully implicit methods. More detailed information about this class
can be obtained, e.g., from the textbooks [9], [23], and [24].
The basic idea of the linearly implicit Euler method (and of linearly implicit methods in general)
is to avoid the solution of non-linear systems of equations by splitting the differential equation

ẋ = f(x), (3.1)

into two parts

ẋ(t) = Jx(t) + (f(x(t)) − Jx(t)), J = Df(x), (3.2)

and discretizing the linear part implicitly and the non-linear part explicitly:

xn+1 = xn + τJxn+1 + τ(f(xn) − Jxn), (3.3)

which yields
(I − τJ)xn+1 = (I − τJ)xn + τf(xn),

and hence
xn+1 = xn + τ(I − τJ)−1f(xn). (3.4)

We obtain a numerical method of convergence order 1. For linear problems the non-linear term
vanishes and the linearly implicit Euler method is identical to the implicit Euler method. Hence,
all results of the linear stability theory for the implicit Euler method can be applied immediately
to its linearly implicit counterpart.
If we apply the linearly implicit Euler method to the test problem ẋ = λx

xn+1 = xn + τ(1 − τλ)−1λxn

=
1

1 − τλ
xn, (3.5)

19

20 CHAPTER 3. LINEARLY IMPLICIT EULER, SPARSING, EXTRAPOLATION

and set z = τλ we obtain the stability function of the linearly implicit Euler method:

R(z) =
1

1 − z
. (3.6)

We will study the stability properties of the linearly implicit Euler method in Section 3.3 thor-
oughly. It is a well known fact that the method is L-stable. Therefore, it can be adapted for the
solution of differential algebraic equations of Index 1.
To construct an efficient numerical method of higher order, the linearly implicit Euler method
can be used as a basic step for an extrapolation method. For stiff ODEs such a method is im-
plemented in the code EULSIM (see [7]). However, for stiff ODEs, extrapolation of the linearly
implicit mid-point rule usually leads to more efficient codes.
Considering quasi-linear implicit differential equations of index 1

L(x)ẋ = f(x), x(0) = x0, (3.7)

with solution dependent matrix L(x) we have to use a modification of 3.4 to take into account
the left-hand-side matrix L. One possibility proposed by Deuflhard and Nowak (see [11]) is

xn+1 = xn + τ(L(xn) − τ
d

dx
(f(x0) − L(x0)ẋ0))−1f(xn). (3.8)

The extrapolation code LIMEX is based on this discretization scheme. As slightly different
discretization is used in the code SEULEX by Lubich and Hairer. For more details on this topic
see [7], [10], [11], [29], [9], and [24].

3.2 The linearly implicit Euler method with inexact Jacobian

The linearly implicit Euler method as the simplest linearly implicit method is a good candidate
for sparsing. We are going to analyze this method for the case of a quasi-linear differential
algebraic system with constant, possibly singular left hand side matrix L and constant index 1.

Lẋ = f(x), x(0) = x0. (3.9)

In Section 3.5 we will discuss briefly the case of a solution dependent mass matrix L(x). We
assume that we use an inexact Jacobian, i.e., a matrix J ≈ Df for the discretization:

xn+1 = xn + τ(L − τJ)−1f(xn, tn) (3.10)

The difference between the exact and the approximate Jacobian is denoted by ∆J := Df(0)−J .
For analysis we can always transform this system to separated form (see [24],VI.1), i.e, we can
find transformation matrices S, T such that

M = S

(
I 0
0 0

)
T, (3.11)

and transform (3.9) into

ẋ = f(x, y), x(0) = x0

0 = g(x, y). y(0) = y0
(3.12)

The condition for index 1 is now that

gy(x, y) is invertible. (3.13)

3.3. STABILITY OF THE LINEARLY IMPLICIT EULER METHOD 21

Linearly implicit methods are invariant under such coordinate transformations and therefore
results about separated DAEs can be generalized to the case of a constant mass matrix in a
straightforward way. The approximate Jacobian can now be written as a block matrix:

(
J11 J12

J21 J22

)
=

(
fx(0) fy(0)
gx(0) gy(0)

)
−

(
∆J11 ∆J12

∆J21 ∆J22

)
(3.14)

The inexact linearly implicit Euler method now reads:
(

I − τJ11 −τJ12

−τJ21 −τJ22

) (
xi+1 − xi

yi+1 − yi

)
=

(
f(xi, yi)
g(xi, yi)

)
+ O(τM+2). (3.15)

3.3 Stability of the linearly implicit Euler method

We are now going to take a closer look on the stability properties of the linearly implicit Euler
method. This will help us understand certain effects caused by sparsing of the Jacobian.
The basis of the following considerations are two well known theorems about stability of differ-
ential equations and difference equations, that we cite from the book [9].

Theorem 3.1 Let x∗ ∈ Ω0 be a fixed-point of the autonomous differential equation ẋ = f(x),
with a right hand side f , that is continuously differentiable on Ω0. If the spectral abscissa of the
Jacobian matrix in x∗ is negative, i.e.,

ν(Df(x∗)) := max
λ∈σ(Df(x∗))

<(λ) < 0, (3.16)

then x∗ is an asymptotically stable fixed point.

Proof : This is a translation of [9] Satz 3.30.

Theorem 3.2 Let Ψ : Ω0 → Ω0 be a continuously differentiable mapping on the open set
Ω0 ∈ R

d with a fixed-point x∗ = Ψ(x∗). If the spectral radius ρ of the Jacobian matrix in x∗ is
smaller than one, i.e.,

ρ(DΨ(x∗)) := max
λ∈σ(DΨ(x∗))

|λ| < 1, (3.17)

then there is a δ > 0 such that the iteration

xn+1 = Ψ(xn), n = 0, 1, 2, . . . , (3.18)

converges for all x0 ∈ Bδ(x∗) ∈ Ω0. The fixed-point x∗ is therefore asymptotically stable.

Proof : This is a translation of [9] Satz 3.38.
If we perform a discretization of a differential equation ẋ = f(x), we substitute it by a difference
equation xn+1 = Ψτ (xn). As a consequence we transform the eigenvalues of the Jacobian matrix.
The stability function describes this transformation for a linear scalar equation.
We have derived the stability function of the linearly implicit Euler method to be:

R(z) =
1

1 − z
, z = λτ. (3.19)

In Figures 3.1 and 3.2 we can study the main features of this mapping. First, we observe that
the whole negative half plane (and even a large part of the positive half plane) is mapped onto
the unit disc. Hence, the method inherits asymptotic stability from the differential equation in

22 CHAPTER 3. LINEARLY IMPLICIT EULER, SPARSING, EXTRAPOLATION

1

i

Figure 3.1: Some subsets of the complex plane.

1

i

Figure 3.2: The same subsets transformed by the mapping z → R(z) = 1
1−z

3.4. ASYMPTOTIC EXPANSIONS FOR AN INEXACT JACOBIAN MATRIX 23

all cases covered by Theorems 3.1 and 3.2, regardless of the step size τ . This property is known
as A-stability.
The second observation is that limz→∞ R(z) = 0. This feature is called L-stability. An L-
stable method inherits the qualitative behavior of the test equation for large negative <(z).
Figures 3.1 and 3.2 illustrate this behavior: on the one hand the grey areas in Figure 3.1:
{z ∈ C| <(z) < −M} with large positive M are mapped onto small discs (which reflects the
desired L-stability), on the other hand the subsets {z ∈ C| |z − 1| > R} with large R are also
mapped onto small discs. As a consequence, the qualitative behavior of some unstable com-
ponents of the solution is reflected in the wrong way. This often undesired property is called
superstability.
L-stability is essential for the successful numerical treatment of singular perturbation problems
and differential algebraic problems. It guarantees that for linear problems the numerical solution
is consistent with the algebraic constraints after one single step.
If we are using the linearly implicit Euler method with an exact Jacobian matrix, then the fea-
tures of this mapping generalize to higher dimensional problems: each eigenvalue is transformed
by this mapping and the stability properties are accordingly.
If we use an inexact Jacobian, then this generalization is not possible anymore, and to study
the stability of the discrete system we have to turn directly to the eigenvalues of the linearized
difference equation

(L − τJ)xn+1 = (L − τJ)xn + τDfxn = (L + τ∆J)xn,

generated by the discretization with the linearly implicit Euler method , or in abstract notation

Bxn+1 = Axn. (3.20)

As B = L − τJ is invertible due to the Index 1 assumption, we can directly apply Theorem 3.2
and conclude that we have to consider the generalized eigenvalue problem

Av − λBv = 0 (3.21)

for stability considerations. Instead of the eigenvalue problem for an exact Jacobian

Lv − λ(L − τDf)v = 0, (3.22)

we have to deal with
(L + τ∆J)v − λ(L − τDf + τ∆J)v = 0. (3.23)

The investigation of stability for the extrapolated linearly implicit Euler method can be per-
formed in a similar way. However, things become more complicated and we cannot avoid dealing
with (L − τJ)−1 directly.

3.4 Asymptotic expansions for an inexact Jacobian matrix

In general, the use of an inexact Jacobian for linearly implicit methods leads to a loss of order in
the method. However, one can construct linearly implicit methods without loss of order, so called
W-methods. They were studied first by Steinhaug and Wolfbrandt [40]. The linearly implicit
Euler method and extrapolation methods based on the linearly implicit Euler method are W-
methods. The notion of W-methods is, however only meaningful in the context of ordinary
differential equations. In this case convergence follows from consistency, because stability is

24 CHAPTER 3. LINEARLY IMPLICIT EULER, SPARSING, EXTRAPOLATION

achieved for sufficiently small step sizes.
In the differential algebraic case we have to impose assumptions on the Jacobian matrix to
achieve convergence. If we consider, for example, a purely algebraic equation, we see that the
linearly implicit Euler method applied on this problem turns into Newton’s method, which is
independent of any step size τ . Therefore, convergence can only be achieved if we assume some
kind of stability. Moreover, we will see that concerning asymptotic expansions of the global
error, an inexact Jacobian matrix has the consequence that perturbations may appear earlier
than otherwise.
We will study this by computing the asymptotic expansion of the global error. For this purpose
we will reproduce the proof of Theorem VI.5.3 in [24], that was developed originally in [10], and
turn our attention to those parts of the proof, where the assumption of an exact Jacobian is
crucial.

Theorem 3.3 Consider the problem (3.12) with consistent initial values (x0, y0) and sufficiently
smooth right hand side. Suppose that (3.13) is satisfied. The global error of the linearly implicit
Euler method with inexact Jacobian (3.15) then has an asymptotic τ -expansion of the form:

xi − x(ti) =
M∑

j=1

τ j(aj(ti) + αj
i) + O(τM+1)

yi − y(ti) =
M∑

j=1

τ j(bj(ti) + βj
i) + O(τM+1)

(3.24)

where aj(t), bj(t) are smooth functions and the perturbation terms satisfy:

α1
i = 0, i ≥ 0 (3.25)

If ∆J12 = 0, ∆J21 = 0, ∆J22 = 0 and for exact Jacobian matrix, the perturbations satisfy:

α1
i = 0, α2

i = 0, α3
i = 0 β1

i = 0 i ≥ 0 (3.26)
β2

i = 0 i ≥ 1 (3.27)
αj

i = 0 for i ≥ j − 4 and j ≥ 4 (3.28)

βj
i = 0 for i ≥ j − 2 and j ≥ 3 (3.29)

If ∆J21 = 0, ∆J22 = 0 then the perturbations satisfy:

α1
i = 0, α2

i = 0, β1
i = 0 i ≥ 0 (3.30)

α3
i = 0, β2

i = 0 i ≥ 1 (3.31)
αj

i = 0 for i ≥ j − 3 and j ≥ 4 (3.32)

βj
i = 0 for i ≥ j − 2 and j ≥ 3 (3.33)

If ∆J12 = 0, ∆J22 = 0 then the perturbations satisfy:

α1
i = 0 i ≥ 0 (3.34)

αj
i = 0 for i ≥ j − 2 and j ≥ 2 (3.35)

βj
i = 0 for i ≥ j and j ≥ 1 (3.36)

If ∆J22 = 0 then the perturbations satisfy:

3.4. ASYMPTOTIC EXPANSIONS FOR AN INEXACT JACOBIAN MATRIX 25

α1
i = 0 i ≥ 0 (3.37)

αj
i = 0 for i ≥ j − 1 and j ≥ 2 (3.38)

βj
i = 0 for i ≥ j and j ≥ 1 (3.39)

If ‖I − J−1
22 gy(0)‖ ≤ γ < 1, then the error terms in (3.24) are uniformly bounded for ti =

iτ ≤ T if T is sufficiently small.

Proof : The proof starts exactly like the proof of Theorem VI.5.3 in [24].
First we will recursively construct truncated expansions

x̂i = x(ti) +
M∑

j=1

τ j(aj(ti) + αj
i) + τM+1αM+1

i

ŷi = y(ti) +
M∑

j=1

τ j(bj(ti) + βj
i)

(3.40)

such that the defect of x̂i, ŷi inserted into the method is small. More precisely we require that
(

I − τJ11 −τJ12

−τJ21 −τJ22

) (
x̂i+1 − x̂i

ŷi+1 − ŷi

)
=

(
f(x̂i, ŷi)
g(x̂i, ŷi)

)
+ O(τM+2). (3.41)

For the initial values we require x̂0 = x0, ŷ0 = y0, or equivalently

aj(0) + αj
0 = 0, bj(0) + βj

0 = 0, (3.42)

and the perturbation terms are assumed to satisfy

αj
i → 0, βj

i → 0 for i → ∞, (3.43)

otherwise, these limits could be added to the smooth parts. The result will then follow from a
stability estimate derived in the second part.

Construction of truncated expansions. For the construction of aj(x), bj(x), αj
i , β

j
i we in-

sert the truncated expansions (3.40) into the formula for the defect (3.41), and develop

f(x̂i, ŷi) = f(x(ti), y(ti))
+ fx(τa1(ti) + τα1

i + . . .)
+ fy(ti)(τb1(ti) + τβ1

i + . . .)
+ fxx(ti)(τa1(ti) + τα1

i + . . .)2 + ...,

x̂i+1 − x̂i = x(ti+1) − x(ti) + τ(a1(ti+1) − a1(ti) + α1
i+1 − α1

i) + . . .

= τ ẋ(ti) +
τ2

2
ẍ(ti) + . . . + τ2ȧ1(ti) + τ(α1

i+1 − α1
i) + . . . ,

where fx(t) = fx(x(t), y(t)), etc. Similarly, we develop g(x̂i, ŷi) and ŷi+1 − ŷi, and compare
coefficients of τ j+1 for j = 0, . . . , M . Each power of τ will lead to two conditions - one containing

26 CHAPTER 3. LINEARLY IMPLICIT EULER, SPARSING, EXTRAPOLATION

the smooth functions and the other containing the perturbation terms. The structure of the
equations will in general be

fx(t)aj(t) + fy(t)bj(t) + r(t) = ȧj(t) (3.44)
gx(t)aj(t) + gy(t)bj(t) + s(t) = 0 (3.45)

αj+1
i+1 − αj+1

i − J11(α
j
i+1 − αj

i) − J12(β
j
i+1 − βj

i) = fx(0)αj
i + fy(0)βj

i + ρj
i (3.46)

−J21(α
j
i+1 − αj

i) − J22(β
j
i+1 − βj

i) = gx(0)αj
i + gy(0)βj

i + σj
i , (3.47)

with i ≥ 0, j ≥ 0. The terms s(t), r(t) are smooth known functions depending on derivatives
of x(t), y(t) and on al−1(t), bl−1(t) with l ≤ j. The terms ρj

i , σ
j
i are linear combinations of

expressions which contain as factors αl
i+1, α

l−1
i , βl−1

i with l ≤ j. In the first few steps and for
each assumption ∆Jij = 0 some of the terms listed here drop out, so we will have a closer look
on the first three steps.
First step (j = 0): For τ1 we obtain the equations (3.12) for the smooth part, and α1

i+1−α1
i = 0.

Because of (3.43) we get α1
i = 0 for i ≥ 0. As J does not appear in the term for τ1, this result is

independent of the quality of the approximation of J . However, we will need some assumptions
on J for further steps and in the second part of the proof.
Second step (j = 1): The coefficients of τ2 give:

ȧ1(t) +
1
2
ẍ(t) − J11ẋ(t) − J12ẏ(t) = fx(t)a1(t) + fy(t)b1(t) (3.48)

−J21ẋ(t) − J22ẏ(t) = gx(t)a1(t) + gy(t)b1(t) (3.49)
α2

i+1 − α2
i − J12(β1

i+1 − β1
i) = fy(0)β1

i (3.50)
−J22(β1

i+1 − β1
i) = gy(0)β1

i . (3.51)

The system (3.48)-(3.51) can be solved as follows. Compute b1(t) from (3.49) and insert it into
(3.48), which is possible due to the index 1 assumption: gy(t) non-singular. This gives a linear
differential equation for a1(t). Due to (3.42) and since α1

0 = 0, the initial values are a1(0) = 0.
Therefore, a1(t) and b1(t) are uniquely determined by (3.48), (3.49). Now the approximation
error of the Jacobian matrix adds a perturbation term for the first time: the right hand side of
(3.49) at t = 0 can be transformed as follows:

−J21ẋ(0) − J22ẏ(0) = ∆J21ẋ(0) + ∆J22ẏ(0) − gx(0)ẋ(0) − gy(0)ẏ(0)

= ∆J21ẋ(0) + ∆J22ẏ(0) − d

dt
g(x(t), y(t))

∣∣∣
t=0

= ∆J21ẋ(0) + ∆J22ẏ(0) + 0.

In the last step we used that g(x(t), y(t)) ≡ 0. Hence, (3.49) and (3.42) yield b1(0) = −β1
0 = 0

if (∆J21, ∆J22) = 0. In this case we obtain β1
i = 0 (for all i) by (3.51) and α1

i = 0 (for all i) by
(3.50), (3.42).
For β1

0 6= 0 the recursion
β1

i+1 = (I − J−1
22 gy(0))β1

i (3.52)

is non-trivial.
Case ∆J22 = 0: First J22 = gy(0) yields β1

i = 0 (for i ≥ 1) and with (3.50) we obtain α1
i = 0

(for i ≥ 1). Case ∆J12 = 0, ∆J22 = 0: First J22 = gy(0) yields β1
i = 0 (for i ≥ 1) and with

J12 = fy(0) in (3.50) we obtain α1
i = 0 (for i ≥ 0). For the case of a fully perturbed Jacobian

matrix, we cannot guarantee for any perturbation terms α2
i , β

1
i to be non-zero. In the higher

steps we have the same situation, so we will not consider this case anymore.

3.4. ASYMPTOTIC EXPANSIONS FOR AN INEXACT JACOBIAN MATRIX 27

Third Step (j = 2): Case ∆J12 = 0, ∆J22 = 0: For the first time we have non-zero ρ2
i =

fyy(0)(β1
i)2 and σ2

i = gyy(0)(β1
i)2. This is the situation described in the ”general step” below.

Case ∆J22 = 0: Here we also have ρ2
i 6= 0, σ2

i 6= 0 and therefore the same situation as in the
general case.
Taking into account the possible simplifications in the remaining cases we get

fx(t)a2(t) + fy(t)b2(t) + r(t) = ȧ2(t) (3.53)
gx(t)a2(t) + gy(t)b2(t) + s(t) = 0 (3.54)
α3

i+1 − α3
i − J12(β2

i+1 − β2
i) = fy(0)β2

i (3.55)
0 = gy(0)β2

i+1, (3.56)

where r(t), s(t) are known functions depending on derivatives of x(t), y(t) and on a1(t), b1(t).
We compute a2(t), b2(t) as in step 2. However, b2(0) 6= 0 in general, and therefore we are forced
to introduce a perturbation term β2

0 6= 0.
Case ∆J21 = 0, ∆J22 = 0: We have α2

i = 0 (for i ≥ 0) and β1
i = 0 (for i ≥ 0). Hence, (3.55),

(3.43) yield α3
0 = −(fy(0) − J12)β2

0 6= 0 and α3
i = 0 (for i ≥ 1)

If additionally J12 = fy(0) then α3
i = 0 (for all i ≥ 0) follows from (3.55).

Fourth Step (j = 3). Case ∆J12 = 0, ∆J22 = 0: We have the same situation as in the general
step (see below) inserting j = 3. Therefore, α4

i = 0 (for i ≥ 2) and β3
i = 0 (for i ≥ 3).

For the other cases we obtain (3.44), (3.45) for the smooth equations and

α4
i+1 − α4

i + J11α
3
i − J12(β3

i+1 − β3
i) = fx(0)α3

i + fy(0)β3
i (3.57)

0 = gy(0)β3
i+1, (3.58)

Case ∆J21 = 0, ∆J22 = 0: We have the same situation as in the third step. Therefore, α4
i = 0

(for i ≥ 1) and β3
i = 0 (for i ≥ 1)

Case ∆J12 = 0, ∆J21 = 0, ∆J22 = 0: We have the same situation as in the third step. Therefore,
α4

i = 0 (for i ≥ 0) and β3
i = 0 (for i ≥ 1)

α j-3 j-2 j-1 j j+1
i-2 0 0 0 * *
i-1 0 0 0 0 *
i

⊙ ⊙ ⊙ ⊙ ⊗
i+1

⊙ ⊙ ⊙ ⊙
?

i+2 0 0 0 0 ?
i+3 0 0 0 0 ?

β j-3 j-2 j-1 j j+1
i-2 0 * * * ?
i-1 0 0 * * ?
i

⊙ ⊙ ⊙
* ?

i+1 0 0 0
⊗

?
i+2 0 0 0 ? ?
i+3 0 0 0 ? ?

Table 3.1: The induction of the general step shown graphically.
⊙

: Element that is assumed to
be zero.

⊗
: Element that is shown to be zero.

General Step. In the first few steps, we had ρj
i = σj

i = 0 (for i ≥ 0) in (3.46), (3.47) For the
higher steps this assumption is not true anymore. The proof is now by induction on j.
Case ∆J22 = 0 (j ≥ 2): By the induction hypothesis we have ρj

i = 0, σj
i = 0, αj

i = 0 for i ≥ j−1.
(3.47) implies βj

i+1 = 0 (for i ≥ j − 1) and (3.46) together with (3.43) gives αj+1
i = 0 (for i ≥ j).

Case ∆J12 = 0, ∆J22 = 0 (j ≥ 2): By the induction hypothesis we have ρj
i = 0, σj

i = 0, αj
i = 0 for

i ≥ j − 1. (3.47) implies βj
i+1 = 0 (for i ≥ j − 1) and (3.46) together with (3.43) gives αj+1

i = 0
(for i ≥ j − 1).
Case ∆J21 = 0, ∆J22 = 0 (j ≥ 4): By the induction hypothesis we have ρj

i = 0, σj
i = 0, αj

i = 0 for

28 CHAPTER 3. LINEARLY IMPLICIT EULER, SPARSING, EXTRAPOLATION

i ≥ j − 3. (3.47) implies βj
i+1 = 0 (for i ≥ j − 3) and (3.46) together with (3.43) gives αj+1

i = 0
(for i ≥ j − 2).
Case ∆J12 = 0, ∆J21 = 0, ∆J22 = 0 (j ≥ 4): By the induction hypothesis we have ρj

i = 0, σj
i =

0, αj
i = 0 for i ≥ j − 3. (3.47) implies βj

i+1 = 0 (for i ≥ j − 3) and (3.46) together with (3.43)
gives αj+1

i = 0 (for i ≥ j − 3).

Stability estimate. We still have to estimate the remainder term, i.e., differences ∆xi =
xi − x̂i, ∆yi = yi − ŷi. The important assumption here is that the algebraic part is discretized
in a stable way. Subtracting (3.41) from (3.15) and eliminating ∆xi+1, ∆yi+1 yields
(

∆xi+1

∆yi+1

)
=

(
∆xi

∆yi

)
+

(
I + O(τ) O(τ)

O(1) J−1
22

) (
τ(f(xi, yi) − f(x̂i, ŷi))

g(xi, yi) − g(x̂i, ŷi)

)
+

(
O(τM+2)
O(τM+1)

)

The application of a Lipschitz condition for Dfx, Dfy, Dgx, Dgy yields
(‖∆xi+1‖

‖∆yi+1‖
)

≤
(

1 + O(τ) O(τ)
O(1) ρ

) (‖∆xi‖
‖∆yi‖

)
+

(
O(τM+2)
O(τM+1)

)
(3.59)

where |ρ| < 1 if T is sufficiently small: as ‖I−J−1
22 gy(0)‖ ≤ γ < 1, we also have ‖I−J−1

22 gy(t)‖ ≤
ρ < 1 for t < T . ‖∆xi‖ + ‖∆yi‖ = O(τM+1) follows from an estimate based on the stability
analysis of 3.59, bounding its eigenvalues. This technical lemma can be looked up at [24], Lemma
VI.3.9.

Remark 3.1 It is interesting to observe the role that the approximation error ∆J of the Jaco-
bian matrix plays in the construction of the asymptotic expansion. In the second step we can see
that (∆J21, ∆J22) = 0 is essential to achieve b1(0) = 0 in (3.49) and to delay the appearance of
the first perturbation term by one. Otherwise, it is at least necessary that ∆J22 = 0 to inhibit
the propagation by (3.51) of this first perturbation term. The perturbation terms αj

i appear indi-
rectly via higher order terms ρj

i or earlier, if ∆J12 6= 0 in (3.46). For inexact J12, a non-zero βj
i

directly leads to a non-zero αj+1
i . Otherwise this propagation is delayed and βj

i 6= 0 only yields a
non-zero αj+1

i−1 . We further note that J11 has no influence on the perturbed asymptotic expansion.

Remark 3.2 If we analyze the proof we can see that we do not have any perturbations in the
case of ordinary differential equations, whatever matrix J is chosen. This is a justification of
the statement above, that extrapolation methods based on the linearly implicit Euler method are
W-methods.

Orders achieved by extrapolation To construct the order tableaux for the extrapolation
methods we proceed like [24] Theorem VI.5.4.

Theorem 3.4 If we consider the harmonic sequence {1, 2, 3, 4, . . .}, then the extrapolated values
Xjk, Yjk satisfy

Xjk − x(t0 + T) = O(T rjk+1), Yjk − y(t0 + T) = O(T sjk) (3.60)

where the differential-algebraic orders rjk, sjk for the different cases are given in Tables 3.6-3.8.
For the case of a fully perturbed Jacobian matrix we have rik = sik = 1 for all i, k ≥ 0.

3.4. ASYMPTOTIC EXPANSIONS FOR AN INEXACT JACOBIAN MATRIX 29

i \ j 1 2 3 4 5 6 7
0 0 0 0 0 * * *
1 0 0 0 0 0 * *
2 0 0 0 0 0 0 *
3 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0

i \ j 1 2 3 4 5 6 7
0 0 * * * * * *
1 0 0 0 * * * *
2 0 0 0 0 * * *
3 0 0 0 0 0 * *
4 0 0 0 0 0 0 *

Table 3.2: Non-zero α′s and non-zero β′s in the case ∆J12 = 0, ∆J21 = 0, ∆J22 = 0 and for an
an exact Jacobian matrix

i \ j 1 2 3 4 5 6 7
0 0 0 X X * * *
1 0 0 0 0 X * *
2 0 0 0 0 0 X *
3 0 0 0 0 0 0 X
4 0 0 0 0 0 0 0

i \ j 1 2 3 4 5 6 7
0 0 * * * * * *
1 0 0 0 * * * *
2 0 0 0 0 * * *
3 0 0 0 0 0 * *
4 0 0 0 0 0 0 *

Table 3.3: Non-zero α′s and non-zero β′s in the case ∆J21 = 0, ∆J22 = 0 compared to the case
of an exact Jacobian matrix (additional perturbations are marked by ”X”)

i \ j 1 2 3 4 5 6 7
0 0 0 X X * * *
1 0 0 0 X X * *
2 0 0 0 0 X X *
3 0 0 0 0 0 X X
4 0 0 0 0 0 0 X

i \ j 1 2 3 4 5 6 7
0 X * * * * * *
1 0 X X * * * *
2 0 0 X X * * *
3 0 0 0 X X * *
4 0 0 0 0 X X *

Table 3.4: Non-zero α′s and non-zero β′s in the case ∆J12 = 0, ∆J22 = 0 compared to the case
of an exact Jacobian matrix (additional perturbations are marked by ”X”)

i \ j 1 2 3 4 5 6 7
0 0 X X X * * *
1 0 0 X X X * *
2 0 0 0 X X X *
3 0 0 0 0 X X X
4 0 0 0 0 0 X X

i \ j 1 2 3 4 5 6 7
0 X * * * * * *
1 0 X X * * * *
2 0 0 X X * * *
3 0 0 0 X X * *
4 0 0 0 0 X X *

Table 3.5: Non-zero α′s and non-zero β′s in the case ∆J22 = 0 compared to the case of an exact
Jacobian matrix (additional perturbations are marked by ”X”)

30 CHAPTER 3. LINEARLY IMPLICIT EULER, SPARSING, EXTRAPOLATION

1
1 2
1 2 3
1 2 3 4
1 2 3 4 4
1 2 3 4 4 5
1 2 3 4 4 5 5
1 2 3 4 4 5 6 5

2
2 2
2 2 3
2 2 3 4
2 2 3 4 4
2 2 3 4 5 4
2 2 3 4 5 5 4
2 2 3 4 5 6 5 4

Table 3.6: Order tableaux for rjk, sjk in the case ∆J12 = 0, ∆J21 = 0, ∆J22 = 0 and in the case
of an exact Jacobian matrix

1
1 2
1 2 2
1 2 2 3
1 2 2 3 4
1 2 2 3 4 4
1 2 2 3 4 5 4
1 2 2 3 4 5 5 4

2
2 2
2 2 3
2 2 3 4
2 2 3 4 4
2 2 3 4 5 4
2 2 3 4 5 5 4
2 2 3 4 5 6 5 4

Table 3.7: Order tableaux for rjk, sjk in the case ∆J21 = 0, ∆J22 = 0

1
1 2
1 2 2
1 2 2 3
1 2 2 3 3
1 2 2 3 4 3
1 2 2 3 4 4 3
1 2 2 3 4 5 4 3

1
1 2
1 2 2
1 2 3 2
1 2 3 3 2
1 2 3 4 3 2
1 2 3 4 4 3 2
1 2 3 4 5 4 3 2

Table 3.8: Order tableaux for rjk, sjk in the case ∆J12 = 0, ∆J22 = 0

1
1 2
1 2 2
1 2 2 2
1 2 2 3 2
1 2 2 3 3 2
1 2 2 3 4 3 2
1 2 2 3 4 4 3 2

1
1 2
1 2 2
1 2 3 2
1 2 3 3 2
1 2 3 4 3 2
1 2 3 4 4 3 2
1 2 3 4 5 4 3 2

Table 3.9: Order tableaux for rjk, sjk in the case ∆J22 = 0

3.5. QUASI-LINEAR SYSTEMS WITH A SOLUTION DEPENDENT MASS MATRIX 31

Proof : The proof is similar to the proof of [24] Theorem VI.5.4. It is based on two important
observations: first αj

0 6= 0, βj
0 6= 0 is equivalent to aj(0) 6= 0, bj(0) 6= 0. This leads to aj(t0 +T) =

O(1), bj(t0 + T) = O(1) and therefore to an order reduction of 1 for the whole column j in the
tableau.
Secondly, during the extrapolation process only the smooth parts of the expansion are eliminated
but not the perturbation terms. So if αj

i 6= 0, βj
i 6= 0 then after extrapolation using the values

Xji, Yji an error of O(T j) remains. Therefore, the i − 1st subdiagonal in the order tableaux for
rlk will be not larger than j − 1 and the i− 1st subdiagonal in the order tableaux for slk will be
not larger than j.

3.5 Quasi-Linear systems with a solution dependent mass ma-
trix

If the mass matrix is not constant anymore as in (3.7), the question of convergence order be-
comes much more difficult than before. The local error of extrapolation methods in this case was
studied in [29] and a proof of convergence for Rosenbrock methods in this case can be found in
[30]. It can be applied to linearly implicit extrapolation methods as well if the assumption of an
exact Jacobian matrix is made. However, the convergence theorem is valid only for methods of
order 2 and higher. The reason is, that for convergence in this case it is necessary that the state
derivatives ẋ converge, too. But the derivatives are in general approximated with lower order
than the states and therefore an order 1 method is not guaranteed to converge in this case. This
situation is also reflected if we consider the asymptotic expansions of the linearly implicit Euler
method (see [29]) in this case. In contrast to the expansion for a constant mass matrix, where
we had the condition τn ≤ T , we have now the additional condition τn2 ≤ K.
We have seen that for extrapolation methods applied to DAEs it is important that the algebraic
part of the Jacobian matrix J22 remains unperturbed. Otherwise, we obtain a method of order
1. In the case of a solution dependent mass matrix we cannot guarantee this property anymore.
So if we perform static sparsing, we will at most obtain a method of consistency order 1 and
this is not sufficient for convergence.
For these reasons, we cannot apply static sparsing in the case of a non-constant mass matrix,
at least if no additional assumptions about the mass matrix can be made.

32 CHAPTER 3. LINEARLY IMPLICIT EULER, SPARSING, EXTRAPOLATION

Chapter 4

A Sparsing Criterion

To find an appropriate sparsity structure of the Jacobian matrix for the linearly implicit Euler
method, a preprocessing routine is necessary to analyze the effects of sparsing on the dynamical
behavior of the numerical method. The core of such a routine is a cheap sparsing criterion that
estimates those effects for each non-zero element of the Jacobian.
In the off-line case and for ODEs it may pay off to use a very simple criterion based on the
magnitude of the entries and apply it dynamically during the simulation run (see [33]). However,
concerning differential algebraic equations, the magnitude of an element is not directly related
to its influence on the eigenvalues. A simple counter example is the linear equation

 1 0 0

0 1 0
0 0 0

 ẋ =

 α 0 ε

0 β 0
ε 0 (α − γ)−1ε2

x. (4.1)

We can transform this equation to the ordinary differential equation

˙̃x =
(

γ 0
0 β

)
x̃. (4.2)

We see that small matrix elements (for small ε) in the algebraic equations may have large
influence on the elements of the underlying differential equation (α is replaced by an arbitrary
γ) and therefore on the dynamical behavior of the continuous and the discrete system. So even
if we only perform sparsing of the differential part, we have to take into account the influence
of the algebraic equations. At the end of this chapter we will return to this point again, then
equipped with a deeper theoretical understanding.
We have seen in Chapter 3 that the stability of the numerical integration scheme applied to a
linear problem Lẋ = Dfx depends on the eigenvalues of the discrete evolution of the inexact
linearly implicit Euler method, i.e., the matrix pair

(L + τ∆J, L − τDf + τ∆J), (4.3)

where the unperturbed matrix L−τDf is non-singular, because we assume differential algebraic
equations of index 1 or lower. We have seen that if |λ| < 1 for all eigenvalues λ of (4.3) then the
discrete evolution is asymptotically stable.
For small perturbation matrices ∆J it is feasible to estimate the changes of the eigenvalues with
the help of linear perturbation theory. For this purpose the system is first transformed to block
diagonal form and then the change of the eigenvalues is estimated for each block.

33

34 CHAPTER 4. A SPARSING CRITERION

4.1 Simultaneous block diagonalization of matrix pairs

In this section we examine the generalized eigenproblem more closely and derive a numerical
algorithm to obtain a block diagonal form of a matrix pair (A, B), where both A and B are
square matrices of order n, or - more generally - representations of mappings

A : V → W,

B : V → W,

with V, W ∼= K
n(K = R, or K = C). The notation and the definitions are conformal to the text-

book ”Matrix Perturbation Theory” by Stewart and Sun ([41]) that contains a chapter about
the generalized eigenvalue problem. The only major difference to the notation there is that we
do not use the notion of a generalized eigenvalue as a pair of complex numbers. This notation
is necessary if one wants to include the case of a singular matrix B. But as stated above, our
matrix B = L−τDf is always non-singular. We will use [41] as a starting point for the following
and start with some basic definitions and standard results.

Definition 4.1 Let (A, B) be a matrix pair with non-singular B. Then the solutions λ of the
”characteristic equation” det(A−λB) = 0 are the ”eigenvalues” of (A, B). If λ is an eigenvalue
of (A, B) then a solution x 6= 0 of

Ax = λBx (4.4)

is a ”right eigenvector” of (A, B) and a solution y 6= 0 of

yHA = λyHB (4.5)

is a ”left eigenvector” of (A, B). The set of all eigenvalues of (A, B) is called the spectrum
L[(A, B)] of (A, B).

As B is non-singular we can reduce the generalized eigenproblem (4.4) to the standard eigen-
problem

B−1Ax = λx (4.6)

that has the same eigenvalues and eigenvectors. Therefore, all standard results that apply to (4.6)
also apply to (4.4). Just like in the standard eigenproblem we define a class of transformations
that preserve the eigenvalues and transform the eigenvectors in a simple manner.

Definition 4.2 If X and Y are non-singular, then the pairs (A, B) and (Y HAX, Y HBX) are
”equivalent”.

If we interpret A, B as mappings V → W , then an equivalence transformation can be interpreted
as a coordinate transformation of the spaces V and W .

Theorem 4.3 Let λ be an eigenvalue of (A, B) with right and left eigenvectors x and y. Then
λ is an eigenvalue of the equivalent pair (Y HAX, Y HBX) with right eigenvector X−1x and left
eigenvector Y −1y.

Proof : The equivalence transformation for (4.4) reduces to a similarity transformation for
(4.6) which yields the proposition for right eigenvectors. For left eigenvectors we reduce (4.4) to
yHAB−1 = λyH to obtain the proposition.

As our main interest is on block diagonal forms we define

4.1. SIMULTANEOUS BLOCK DIAGONALIZATION OF MATRIX PAIRS 35

Definition 4.4 Let (A, B) be a regular matrix pair. The subspace X is an eigenspace if

dim(AX ⊕ BX) ≤ dim(X) (4.7)

As B is non-singular this inequality is clearly an equality and AX ⊂ BX . If we restrict the pair
of mappings (A, B) on X , then B|X : X → BX is invertible and X is an invariant subspace of
B−1A. Therefore, L[(A|X , B|X)] ⊂ L[(A, B)] and intersections and direct sums of eigenspaces
are eigenspaces again.

Definition 4.5 Let X be an eigenspace of (A, B). X is called a simple eigenspace of (A, B) if
for any eigenspace X̃

L[(A|X , B|X)] = L[(A|X̃ , B|X̃)] 6= ∅ ⇒ X̃ ⊂ X .

For later use we note that for two eigenspaces X̃ ,X with disjunct spectrum we have the relation

X̃ ∩ X = 0, (4.8)

because L[(A|X̃∩X , B|X̃∩X)] = L[(A|X , B|X)] ∩ L[(A|X̃ , B|X̃)] = ∅.

4.1.1 Triangularization

The numerical solution of the non-symmetric standard eigenvalue problem is performed by
unitary similarity transformations to upper triangular form. The standard algorithm for this is
the QR-algorithm and the result is called Schur form. For the generalized eigenvalue problem
we use unitary equivalence transformations to obtain an upper triangular form for the matrix
pair (A, B), i.e., both matrices are in upper triangular form. The algorithm used is called QZ-
algorithm (an extension of the QR-algorithm) and the result is called generalized Schur form.
For a more detailed introduction to this field including references to original papers, see [22].
For existence of the generalized Schur form we cite [41] Theorem VI.1.9

Theorem 4.6 Let (A, B) be a regular matrix pair. Then there are unitary matrices Q and Z
such that the components of the equivalent pair

(AT , BT) = (QHAZ, QHBZ) (4.9)

are upper triangular. The quantities λi = (AT)ii/(BT)ii(i = 1 . . . n) are the eigenvalues of (A, B)
and may be made to appear in any order on the diagonals of AT , BT .

Proof : See [41] Theorem VI.1.9. The proof is similar to the proof for the standard Schur
form.

The columns of Q and Z are called left and right Schur vectors. They have the following property:

Lemma 4.7 Let (4.9) be the generalized Schur form of the matrix pair (A, B). Then the subspace
Z spanned by the first k (1 ≤ k ≤ n) columns of Z is a right eigenspace of (A, B) and accordingly
the subspace Q spanned by the last k (1 ≤ k ≤ n) columns of Q is a left eigenspace of (A, B).
The spectrum L[(A|Z , B|Z)] of the restriction of (A, B) to Z is given by the quotient of the first
k diagonal elements of (AT , BT):

L[(A|Z , B|Z)] = {λi|λi = (AT)ii/(BT)ii, i = 1 . . . k} (4.10)

and analogously

L[(Q|A,Q |B)] = {λi|λi = (AT)ii/(BT)ii, i = n − k + 1 . . . n}. (4.11)

36 CHAPTER 4. A SPARSING CRITERION

Proof : Let

r =
k∑

i=1

σizi = Zs

be a linear combination of the first columns of Z. Then we compute:

Ar = QAT ZHZs = QAT s.

As AT is upper triangular, the vector t = AT s has the structure t = (τ1, . . . , τk, 0, . . . , 0)T , too.
Hence,

Ar =
k∑

i=1

τiqi

. The same considerations are true for B and its triangular form BT . Thus

AZ ⊕ BZ ∈ span(q1, . . . , qk)

and therefore
dim(AZ ⊕ BZ) ≤ dim(Z),

which proofs that X is an eigenspace of (A, B). The result about the eigenvalues is due to the
fact that the left upper block of (AT , BT) is a representation of (A|Z , B|Z).
If we do the same with (AH , BH) = (ZAH

T QH , ZBH
T QH) we obtain the same results for the last

k columns of Q, as (AH
T , BH

T) is lower triangular.

We see that we obtain a pair of sequences of right and left i-dimensional eigenspaces:

Z1 ⊂ Z2 ⊂ . . . ⊂ Zi ⊂ . . . ⊂ Zn−1 ⊂ V

W ⊃ Qn−1 ⊃ . . . ⊃ Qi ⊃ . . . ⊃ Q2 ⊃ Q1

(4.12)

such that
(AZi, BZi) ⊂ (Q⊥

n−i,Q⊥
n−i), (4.13)

i.e.,
z ∈ Zi, q ∈ Qn−i ⇒ qHAz = 0, qHBz = 0. (4.14)

On the other hand, if we have a sequence (4.12) with (4.13) then the representation of (A, B)
corresponding to this sequence is upper triangular.

4.1.2 Ordering Eigenvalues in the generalized Schur form

We have seen in the last section that in the generalized Schur form the first k columns of Z span
a k-dimensional eigenspace Z of (A, B) and L[(A|Z , B|Z)] = {(AT)ii/(BT)ii, i = 1 . . . k}. So far
we had to accept the ordering of the diagonal elements as given by the QZ-algorithm restricting
the possibilities to choose Z. Theorem 4.6 states, however, that the pairs of diagonal elements
can be made to appear in any order. In this section we are going to realize this proposition
algorithmically. An algorithm for the (standard) Schur form by Givens rotations is described in
[22] Section 7.6.2 (original papers [38], [42]). This algorithm can be extended for the generalized
Schur form in a straightforward way (see [43]). We are going to derive this generalization along
the lines of [22].

4.1. SIMULTANEOUS BLOCK DIAGONALIZATION OF MATRIX PAIRS 37

The core of the algorithm, exchanging two subsequent eigenvalues, can be derived looking at the
2 × 2 problem. Suppose

(QHAZ, QHAZ) = (AT , BT) =
((

α1 a
0 α2

)
,

(
β1 b
0 β2

))
α1

β1
6= α2

β2
(4.15)

and that we wish to reverse the order of the pairs (αi, βi). Note that β2AT x = α2BT x = α2β2y,
where

x =
(

α2b − β2a
α1β2 − α2β1

)
, (4.16)

and

y =
(

α1b − β1a
α1β2 − α2β1

)
. (4.17)

Let G be a Givens rotation such that GHx2 = 0, and H be a Givens rotation such that Hy2 = 0.
Set Z̃ = GHZ,Q̃ = HHZ, then

Q̃HAZ̃‖x‖e1 = HAT GH‖x‖e1 = HAT x = Hα2y = α2‖y‖e1,

Q̃HBZ̃‖x‖e1 = HBT GH‖x‖e1 = HBT x = Hβ2y = β2‖y‖e1.

Therefore, (Q̃HAZ̃, Q̃HBZ̃) must have the form

(Q̃HAZ̃, Q̃HBZ̃) =
((

α2ρ ∗
0 α1/ρ

)
,

(
β2ρ ∗
0 β1/ρ

))
, (4.18)

with ρ = ‖y‖
‖x‖ . We see that the diagonal elements are scaled by this algorithm. However, as we

use orthogonal transformations, the norms of the matrices A and B are preserved, and therefore
the size of the diagonal elements is bounded.
We can now use this technique to interchange subsequent diagonal elements to order these
elements in a specified way. A simple strategy is implemented in Algorithm 4.1. As input it
requires the generalized Schur factorization (AT , BT) = (QHAZ, QHBZ) of the matrix pair
(A, B), namely the matrices QH = Q, Z = Z, AT = AT, BT = BT and a set J ⊂ {1, . . . , n} of the
indices of the diagonal elements to be sorted to the top. J is represented by a vector J of flags:
J(i) = 1 ⇒ i ∈ J , J(i) = 0 ⇒ i ∈ J̄ .
As long as not all diagonal elements corresponding to J are on top, Algorithm 4.1 exchanges
two pairs of diagonal elements, if the index of the upper pair is in J̄ and the index of the lower
pair is in J . This is accomplished by two Givens rotations applied to (AT , BT) and Z, Q. Then
the lower index is removed from J and the upper index is included into J .

4.1.3 Block diagonalization

If the eigenvalues are known, the next step would be to compute the eigenvectors as they con-
tain information about the behavior of the eigenvalues under perturbations. Unfortunately, for
non-symmetric matrix pairs the eigenvector problem is in general badly conditioned. Especially
if eigenvalues are close together eigenvector sensitivity becomes large (see again [41] or [22]).
In technical applications, multiple eigenvalues and non-trivial Jordan blocks are very common.
Moreover, algebraic equations lead to a multiple eigenvalue 0 with sometimes very high mul-
tiplicity. Hence, a basis of eigenvectors does not exist, or cannot be computed reliably in such
cases. To construct a robust algorithm we have to be satisfied with less: To given disjunct sub-
sets of eigenvalues (with well conditioned corresponding eigenspaces) compute right and left

38 CHAPTER 4. A SPARSING CRITERION

Algorithm 4.1 Algorithm in MATLAB notation to sort the diagonal entries of a matrix pair
in generalized Schur form by Givens rotations.

function [AT,BT,Q,Z]=sortqz(AT,BT,Q,Z,J)

sz=sum(J);
n=size(AT,2);

while sum(J(1:sz)) < sz
for k=1:n-1
if J(k)==0 & J(k+1)==1

G=planerot([BT(k+1,k+1)*AT(k,k+1) - AT(k+1,k+1)*BT(k,k+1);
BT(k,k) *AT(k+1,k+1)- BT(k+1,k+1)*AT(k,k)]);

H=planerot([BT(k,k) *AT(k,k+1) - AT(k,k) *BT(k,k+1);
BT(k,k) *AT(k+1,k+1)- BT(k+1,k+1)*AT(k,k)]);

AT(k:k+1,k:n) =H*AT(k:k+1,k:n);
AT(1:k+1,k:k+1)= AT(1:k+1,k:k+1)*G’;

BT(k:k+1,k:n) =H*BT(k:k+1,k:n);
BT(1:k+1,k:k+1)= BT(1:k+1,k:k+1)*G’;

Z(1:end,k:k+1)=Z(1:end,k:k+1)*G’;
Q(k:k+1,1:end)=H*Q(k:k+1,1:end);

J([k,k+1])=J([k+1,k]);
end

end
end

orthogonal bases. The unions of these bases yield two transformation matrices X and Y such
that

Y HAX = AB, Y HBX = BB, (4.19)

where AB and BB have the same block diagonal structure. This kind of factorization is sometimes
called ”spectral resolution”. In the following we will derive and justify an algorithm that produces
such a spectral resolution. The standard approach to obtain a block diagonal form is via solving
a Sylvester equation which is also used in [41] to proof the existence of the spectral resolution.
The columns of X and Y can be chosen in such a way that subsets of columns corresponding
to the blocks are orthogonal. However, solving the Sylvester equation does not lead to such a
structure. Hence, to obtain the block diagonal form, we use a different algorithm that preserves
orthogonality inside the blocks. To derive this algorithm we start with the generalized Schur
form (4.9) and use the eigenspaces of the matrix pair (A, B) that appear in Lemma 4.7. We can
choose the diagonal elements of (AT , BT) in arbitrary order. Therefore, we obtain:

Corollary 4.8 For a given subset S ⊂ L[(A, B)] there is a unique simple right eigenspace XS
and a unique simple left eigenspace YS such that L[(A|X , B|X)] = L[(Y |A,Y |B)] = S.

Proof : Existence of XS follows from Lemma 4.7, as we can choose the generalized Schur
form in a way that all pairs of diagonal elements with λi = (AT)ii/(BT)ii ∈ S are sorted to the

4.1. SIMULTANEOUS BLOCK DIAGONALIZATION OF MATRIX PAIRS 39

top. Then the corresponding first columns of X are a basis of XS .
If there are two simple eigenspaces XS and X̃S then by definition we have XS ⊂ X̃S and XS ⊃ X̃S .
Therefore, they are equal.
The same argumentation is true for the left eigenspace YS .

We call XS (YS) the simple right (left) eigenspace corresponding to S. With Lemma 4.7 and
Corollary 4.8 we can now proof a theorem about block diagonalization.

Theorem 4.9 Let S ⊂ L[(A, B)]. Then there are nonsingular matrices X = (X1 X2) and
Y = (Y1 Y2) such that

(
Y H

1

Y H
2

)
A

(
X1 X2

)
=

(
A1 0
0 A2

)
(

Y H
1

Y H
2

)
B

(
X1 X2

)
=

(
B1 0
0 B2

)
(4.20)

and
L[(A1, B1)] = S, L[(A2, B2)] = S̄ = L[(A, B)] \ S.

The matrices X1, X2, Y1, Y2 can be chosen such that their columns form orthogonal bases for the
simple right and left eigenspaces XS ,XS̄ ,YS ,YS̄ corresponding to S.

Proof : We consider two Schur forms of (A, B),A, B ∈ K
n×n.

(A(1)
T , B

(1)
T) = (Q(1)HAZ(1), Q(1)HBZ(1))

(A(2)
T , B

(2)
T) = (Q(2)HAZ(2), Q(2)HBZ(2))

The first with all λ ∈ S on top of the diagonal (the first k diagonal entries) and the second with
all λ ∈ S at the bottom (the last k diagonal entries). According to Lemma 4.7 we choose the
matrices

X1 = Z(1)(: , 1 : k),
X2 = Z(2)(: , 1 : n − k),
Y1 = Q(2)(: , k + 1 : n),
Y2 = Q(1)(: , n − k + 1 : n),

(MATLAB notation) whose orthogonal columns span the unique simple right and left eigenspaces
XS ,XS̄ ,YS ,YS̄ due to Corollary 4.8. As A

(1)
T , B

(1)
T , A

(2)
T , B

(2)
T are upper triangular matrices, we

have

Y H
2 AX1 = 0 Y H

2 BX1 = 0
Y H

1 AX2 = 0 Y H
1 BX2 = 0

which proofs that we obtain block diagonal matrices. Furthermore (X1, X2) and (Y1, Y2) are
invertible due to (4.8), because XS and XS̄ as well as YS and YS̄ have disjunct spectrum.

We call X2 the complementary eigenspace and Y1 the corresponding left eigenspace to X1.
Obviously Y1 is an eigenspace of the matrix pair (AH , BH) as it is equivalent to the pair
(XHAHY, XHBHY), which is block diagonal as well. Comparing the diagonal blocks we also see

40 CHAPTER 4. A SPARSING CRITERION

that L[(A|X1 , B|X1)] = L[(AH |Y1 , B
H |Y1)]. This theorem generalizes to multiple block structures

in a straightforward way.
We observe that in Algorithm 4.1 columns of Z and Q corresponding to elements of J are only
rotated against elements of J̄ , which gives rise to the following tightening of Theorem 4.9.

Theorem 4.10 Notation and assumptions as in Theorem 4.9. If we construct the matrices
X(1), X(2), Y (1), Y (2) in the proof of Theorem 4.9 with the help of Algorithm 4.1, then the pairs
of blocks (A1, B1) and (A2, B2) are upper triangular.

Proof : With Algorithm 4.1 we construct the two sequences of eigenspaces

Z(1)
1 ⊂ Z(1)

2 ⊂ . . . ⊂ Z(1)
k = XS ⊂ . . . ⊂ Z(1)

n−1 ⊂ Z(1)
n = V

W = Q(1)
n ⊃ Q(1)

n−1 ⊃ . . . ⊃ YS̄ = Q(1)
n−k ⊃ . . . ⊃ Q(1)

2 ⊃ Q(1)
1

(4.21)

and

Z(2)
1 ⊂ Z(2)

2 ⊂ . . . ⊂ Z(2)
n−k = XS̄ ⊂ . . . ⊂ Z(2)

n−1 ⊂ Z(2)
n = V

W = Q(2)
n ⊃ Q(2)

n−1 ⊃ . . . ⊃ YS = Q(2)
k ⊃ . . . ⊃ Q(2)

2 ⊃ Q(2)
1 ,

(4.22)

both with the property (4.13). The first i columns of Z(l) span Z(l)
i and the last i columns of

Q(l) span Q(l)
i . Now we choose the matrices X1, X2, Y1, Y2 as in the proof of Theorem 4.9. Hence,

we obtain the sequences

Z(1)
1 ⊂ Z(1)

2 ⊂ . . . ⊂ Z(1)
k = XS ⊂ XS ⊕Z(2)

1 ⊂ . . . ⊂ XS ⊕Z(2)
n−k = V

W = YS̄ ⊕Q(2)
k ⊃ . . . ⊃ YS̄ ⊕Q(2)

1 ⊃ YS̄ = Q(1)
n−k ⊃ . . . ⊃ Q(1)

2 ⊃ Q(1)
1 ,

(4.23)

for which we have to proof the relation (4.13).
For this purpose it is sufficient to show that

Z(1)
k+i = XS ⊕Z(2)

i , (i = 0, . . . n − k), (4.24)

and the corresponding result for the left eigenspaces

Q(1)
n−k+i = YS̄ ⊕Q(2)

i , (i = 0, . . . k). (4.25)

Then we obtain immediately that (4.23) inherits the property (4.13) form (4.21) which proofs
that we obtain upper triangular matrices.
The relation (4.24) can be shown inductively, if we observe how Algorithm 4.1 constructs (4.22)
from (4.21). Initially, we have J = {k + 1, . . . n}. The algorithm moves the diagonal elements
corresponding to J one by one to the top, i.e., to the row with the lowest index, that is not
already an element of J . The intermediate transformation matrices at the point of computation
where the ith index of J has just been moved to the top shall be denoted by Zi and Qi.
Suppose that the subspace Z(2)

i−1 has been constructed by Algorithm 4.1 and (4.24) is true (for
i− 1). Assume furthermore that the first k + i− 1 columns of the intermediate matrix Zi−1 still
span Z(1)

k+i−1. This is trivial for i = 1, because Z(2)
0 is the trivial subspace and Z0 = Z is still

unchanged.
To construct Z(2)

i , Algorithm 4.1 changes Zi−1 to Zi while rotating z
(1)
k+i into z

(2)
i . This is per-

formed by Givens rotations involving the columns i, . . . k+ i of the intermediate Zi−1 (due to the

4.1. SIMULTANEOUS BLOCK DIAGONALIZATION OF MATRIX PAIRS 41

logic of the algorithm) and therefore involving elements of Z(1)
k+i−1 and z

(1)
k+i (due to the second

part of the induction hypothesis). Hence, the orthogonal set of the first i columns of the new Zi

still spans Z(1)
k+i. For the same reason we have

Z(1)
k+i ⊃ Z(1)

k+i−1 ⊕ Kzi
(2). (4.26)

Moreover,
Z(1)

k+i = Z(1)
k+i−1 ⊕ Kzi

(2), (4.27)

because Z(2)
i is a simple eigenspace of (A|Z(1)

k+i

, B|Z(1)
k+i

). Now (4.24) (for i) follows from (4.24)

(for i-1):

Z(1)
k+i = Z(1)

k+i−1 ⊕ Kzi
(2) = XS ⊕Z(2)

i−1 ⊕ Kzi
(2) = XS ⊕Z(2)

i . (4.28)

Relation (4.25) can be shown analogously.

4.1.4 Block diagonalization for large systems with many algebraic equations

In object oriented modelling we often have large differential algebraic systems of equations with
a specially structured left hand side matrix L:

L =
(

L1 0
0 0

)
. (4.29)

The dimension d of L1 is much lower than the dimension n of L and the Jacobian matrix J = Df
is assumed to be sparse. The matrix pair (A, B) inherits this structure:

(A, B) =
((

L1 0
0 0

)
,

(
L1 − τJ11 −τJ12

−τJ21 −τJ22

))
. (4.30)

The problem is now that the QZ-algorithm applied on this matrix pair is inefficient due to the
high dimension of the system. Moreover, we know a lot about the eigenvalues. The eigenvalue 0
has got the algebraic multiplicity n−d. This means that the QZ-algorithm takes a lot of time to
compute information we already know. In the following we derive an algorithm that transforms
(A, B) into block diagonal form by equivalence transformations

(SHAT, SHBT) =
((

Ã 0
0 0

)
,

(
B̃ 0
0 −τJ22

))
. (4.31)

The matrices Ã, B̃ are both of order d and the matrix pair (Ã, B̃) can now be treated with the
methods described in Section 4.1.3.
The idea is to transform B first to block upper triangular form without destroying the corre-
sponding block upper triangular structure of A. In this step we obtain a matrix Z. Then we
do the same with (AH , BH) and obtain a matrix Q. Then we combine those matrices in a way
similar to the procedure in Theorem 4.9 and obtain (4.31).
To transform B to block-triangular form, it is convenient to transform it to triangular form. As
we are looking for equivalence transformations, the transformations have to be applied to A as
well. Standard ways of triangularization are Gaußian elimination or elimination by Householder-
or Givens transformations. In our case none of these methods is directly applicable. Householder
transformations destroy any structure in the first step. Linear combination of rows results in

42 CHAPTER 4. A SPARSING CRITERION

fill-in in the right lower block A21 of A. But this is the block that has to be zeroed. There are
some ways to avoid this effect, e.g., permutation of the left upper block to the right lower block,
computing a lower triangular form, or using linear combinations of columns instead of rows.
Following the concept of orthogonal bases for invariant subspaces, we decided for Givens rota-
tions applied to the columns of (A, B) that yield the transformation matrix Z. Givens rotations
applied to the columns of (AH , BH) yield the transformation matrix Q. How to apply Givens
rotations to sparse matrices is discussed in Section 5.4, (see also [2], [20]).
Now we are in the following situation:

(AZ, BZ) =
((∗ ∗

0 0

)
,

(∗ ∗
0 ∗

))
, (4.32)

(QHA, QHB) =
((∗ 0

∗ 0

)
,

(∗ 0
∗ ∗

))
. (4.33)

We have to combine these two results so that we obtain (4.31). Straightforward considerations
lead to the choice of the following column matrices

T =
(
z1, . . . , zd, ed+1, . . . , en

)
, (4.34)

S =
(
e1, . . . , en−d, qn−d+1, . . . , qn

)
. (4.35)

Here zi, qi are the ith columns of Z, Q and ei is the ith unit vector. Performing block-wise matrix
multiplication we obtain

(SHAT, SHBT) =
(

SH

(∗ 0
0 0

)
, SH

(∗ B12

0 B22

))
(4.36)

=
((

Ã 0
0 0

)
,

(
B̃ 0
0 B22

))
. (4.37)

Of course, we do not have to perform this matrix multiplication explicitly, but we only have to
compute the left upper blocks Ã, B̃ and so we only need the first d columns of T and the last d
columns of S.

4.2 Results from perturbation theory

In this section the theoretical basis for the sparsing criterion is derived. We study the behavior
of the eigenvalues of a matrix pair (A, B) if a small perturbation (E, F) is applied. For the
theoretical foundation of the following we mainly refer to the book of Stewart and Sun [41]. In
contrast to the results presented in [42] our main goal is to achieve first order approximations
of eigenvalue perturbations rather than bounds. This is because a sparsing criterion is used to
comparing elements with each other rather than estimating a worst case.
As a starting point of our considerations we will cite a very general result of [41] (Theorem 4.12),
that contains all the information we will need for our purpose.
The theorem contains some technical quantities, that we have to define first: a norm ‖ · ‖F for
matrix pairs

‖(P, Q)‖F := max{‖P‖F , ‖Q‖F }, (4.38)

and the quantity

dif[(A1, B1), (A2, B2)] := inf
‖(P,Q)‖F=1

‖(QA1 + A2P, QB1 + B2P)‖F . (4.39)

4.2. RESULTS FROM PERTURBATION THEORY 43

The next lemma, cited from [41] shows that dif 6= 0 if (A1, B1) and (A2, B2) have disjunct
spectrum.

Lemma 4.11 Let (A1, B1) and (A2, B2) be regular pairs. Then the mapping

T = (P, Q) 7→ (A1P + QA2, B1P + QB2) (4.40)

is non-singular if and only if

L[(A1, B1)] ∩ L[(A2, B2)] = ∅. (4.41)

Proof : See [41] Theorem VI.1.11.

Note that dif[·] is not invariant against multiplication of (A, B) with a common factor. However,
if the perturbations are scaled with the same factor, the common factor cancels out in all relevant
quantities mentioned in Theorem 4.42.

Theorem 4.12 (Perturbations of block diagonal matrix pairs) Let the regular matrix pair
(A, B) have a spectral resolution (4.20). Given a perturbation (E, F), let

(
Y H

1

Y H
2

)
E

(
X1 X2

)
=

(
E11 E12

E21 E22

)
(

Y H
1

Y H
2

)
F

(
X1 X2

)
=

(
F11 F12

F21 F22

)
(4.42)

Set

γ = ‖(E21, F21)‖F ,

η = ‖(E12, F12)‖F ,

δ = dif[(A1, B1), (A2, B2)] − max{‖E11‖F + ‖E22‖F , ‖F11‖F + ‖F22‖F }.

If δ > 0 and
ηγ

δ2
<

1
4
, (4.43)

Then there are matrices P and Q satisfying

‖(P, Q)‖F ≤ 2γ

δ +
√

δ2 − 4γη
< 2

γ

δ
(4.44)

such that the columns of

X̃1 = X1 + X2P and Ỹ2 = Y2 + Y1Q
H

span left and right eigenspaces of (A + E, B + F) corresponding to the regular pairs

(Ã1, B̃1) = (A1 + E11 + E12P, B1 + F11 + F12P) (4.45)

and
(Ã2, B̃2) = (A2 + E22 + QE12, B2 + F22 + QF12). (4.46)

44 CHAPTER 4. A SPARSING CRITERION

Proof : This is a citation of [41] Theorem VI.2.15. The proof is a discussion of the solution
(P, Q) of the system of equations

Q(A1 + E11) + (A2 + E22)P = −E21 − QE12P

Q(B1 + F11) + (B2 + F22)P = −F21 − QF12P,

that originates from the requirement

Ỹ2AX̃1 = Ỹ2BX̃1 = 0,

which is equivalent to the requirement that the transformed perturbed matrix pair is block upper
triangular.

The transformation matrices X and Y only appear in the theorem due to (4.42). If we consider
perturbations (εE0, εF0) we obtain the following asymptotic result.

Corollary 4.13 Notation as in Theorem 4.12. Consider for a sufficiently small ε0 > 0 and
perturbations (E, F) = (εE0, εF0) the case ε0 > ε −→ 0 (ε > 0). Then there is also a block upper
triangular form of (Ã, B̃) = (A + E, B + F) with pairs of diagonal blocks:

(Ã1, B̃1) = (A1 + E11 + O(ε2), B1 + F11 + O(ε2))
(Ã2, B̃2) = (A2 + E22 + O(ε2), B2 + F22 + O(ε2)).

Proof : Consider Theorem 4.12. Obviously we have

γ = O(ε), η = O(ε), δ = O(1). (4.47)

Therefore, ‖(P, Q)‖F = O(ε) and QE12, E12P, QF12, F12P = O(ε2).

Remark 4.1 Corollary 4.13 states that the non-diagonal blocks of the transformed perturbation
matrix can be neglected up to first order. Dealing with finite perturbations the question about the
quality of this approximation arises.
One obvious factor is the norm of the transformation matrices Y H

i , Xj. The lower it is the
smaller are the transformed perturbations Eij. This should have an impact on the way of com-
puting these transformations.
We also note that for the transformed matrix pair (SAT, SBT) and transformed perturbations
(SET, SFT) we obtain first order block perturbations transformed in the same way.

If we consider only 1 × 1 blocks we obtain a result about perturbations of eigenvalues:

Corollary 4.14 Consider the diagonalizable matrix pair (A, B) with invertible B and no mul-
tiple eigenvalues. Let Y H and X be the transformation matrices containing the left and right
eigenvectors such that Y HAX and Y HBX are diagonal matrices. Furthermore consider a suf-
ficiently small O(ε) perturbation (E, F). Then the diagonal matrix Λ̃ of eigenvalues of the per-
turbed matrix pair (A + E, B + F) can be approximated as follows:

Λ̃ = diag((Y H(B + F)X)−1Y H(A + E)X) + O(ε2); (4.48)

4.2. RESULTS FROM PERTURBATION THEORY 45

Proof : From Theorem 4.12 and the non-singularity of B follows that

λ̃i =
ai + eii + O(ε2)
bi + fii + O(ε2)

=
ai + eii

bi + fii
+ O(ε2);

or written in matrix form:

Λ̃ = diag((Y H(B + F)X))−1diag(Y H(A + E)X)) + O(ε2);

Lemma 4.15 below shows that:

diag((Y H(B + F)X))−1diag(Y H(A + E)X)) = diag((Y H(B + F)X)−1Y H(A + E)X) + O(ε2);

Lemma 4.15 Let D1, D2 be diagonal matrices and E1, E2 sufficiently small O(ε) perturbations.
Then we have:

diag((D1 + E1)−1(D2 + E2)) = (diag(D1 + E1))−1diag(D2 + E2) + O(ε2); (4.49)

Proof : Without loss of generality assume that E1, E2 have zero diagonal. Otherwise the
diagonal elements of Ei can be moved to the Di. Then it remains to show:

diag((D1 + E1)−1(D2 + E2)) = D−1
1 D2 + O(ε2);

Neumann expansion of the leftmost factor yields:

diag((D1 + E1)−1(D2 + E2)) = diag(D−1
1 (I − E1D

−1
1 + O(ε2))(D2 + E2))

= diag(D−1
1 (D2 − E1D

−1
1 D2 + E2)) + O(ε2);

Due to the fact that Ei multiplied with diagonal matrices still has zero diagonal, all the terms
containing Ei drop out and the proof is complete.

With Corollary 4.14 we can proof a theorem about symmetric perturbations. It will be the
theoretical basis for the sparsing criterion in the next section.

Theorem 4.16 Let (A, B) be a diagonalizable matrix pair with eigenvalues λi and with left
and right eigenvectors yi and xi. Assume all eigenvalues to be algebraically simple and B to
be invertible. Let E be a sufficiently small O(ε) perturbation matrix. Let λ̃i be the eigenvalues
of the perturbed matrix pair (A + E, B + E). Then a first order approximation of the sum
of the differences between the original and the perturbed eigenvalues is given by the trace of
B−1E(I − B−1A):

∑
i

(λ̃i − λi) = tr(B−1E(I − B−1A)) + O(ε2) (4.50)

Proof : Corollary 4.14 and the invariance of the trace under coordinate transformation yield
∑

(λ̃i − λi) = tr((Y H(B + E)X)−1Y H(A + E)X − (Y HBX)−1Y HAX) + O(ε2)

= tr((X−1(B + E)−1(A + E)X − X−1B−1AX) + O(ε2)
= tr((B + E)−1(A + E) − B−1A) + O(ε2).

46 CHAPTER 4. A SPARSING CRITERION

If we linearize this formula using the first order Neumann expansion and sort out higher order
terms we obtain:

∑
(λ̃i − λi) = tr(B−1(I − EB−1 + O(ε2))(A + E) − B−1A) + O(ε2)

= tr(B−1(A − EB−1A + E + O(ε2) − A) + O(ε2)
= tr(B−1E(I − B−1A)) + O(ε2);

Remark 4.2 With this theorem we deduce information about the behavior of the eigenvalues
without using information about the eigenvectors. Moreover, as we see in the proof the estimate
is invariant under equivalence transformations applied to both (A, B) and (E, E).
The drawback is that if the terms λ̃i − λi of the sum cancel out, the sum might be small but the
changes in the eigenvalues might be large anyhow.

4.3 Computation of a first order sparsing criterion

For the linearly implicit Euler method the matrix pair under consideration is (L, L − τDf).
Recall that the matrix B = L − τDf is invertible for reasonable step sizes τ . To this matrix
pair special perturbations ∆Jij (zeroing out the matrix element Dfij) are applied symmetrically
(recall Section 3.3). So the perturbed matrix pair is (L + ∆Jij , L − τDf + ∆Jij).
We will now use the numerical methods and theoretical results of the last two sections to derive
a sparsing criterion, that estimates the impact of zeroing out a matrix element on a predefined
cluster of eigenvalues.
In the following we will consider the two cases that occur: sparsing in the case of an ordinary
differential equation, where the Jacobian matrix is assumed to be of medium size such that dense
methods can be applied, and the case of a large, sparse algebraic part. The first case appears
also if we partition a DAE as described in Section 4.1.4.

4.3.1 Sparsing of the differential part

The computation of the criterion is split into two phases: first a block diagonalization as described
in Section 4.1 is performed:

Y HLX = AB Y H(L − τDf)X = BB (4.51)

and we obtain the matrices Y H , X, AB and BB. Recall that AB and BB are block diagonal
matrices with upper triangular blocks Ak and Bk. The resulting blocks can now be treated
separately which is justified by Theorem 4.12.
To evaluate equation (4.50) for each block we will now compute the matrices on the left and
the right of the perturbation matrix. Included are the transformation matrices that lead to the
block diagonal form.

U (k) = B−1
k Y H

k ; (4.52)

V (k) = Xk(I − B−1
k Ak); (4.53)

As Bk is upper triangular this can be done by solving upper triangular matrix equations. Up to
now all computations can be performed without knowledge about the perturbation. This means
that this O(n3) computation can be done once for all elements.

4.3. COMPUTATION OF A FIRST ORDER SPARSING CRITERION 47

The second phase, the computation of a sparsing criterion for each element and each block is a
simple matter now and also - as we will show - computationally cheap. To apply Theorem 4.16
we have to compute :

c
(k)
ij = |tr(U (k)τ∆JijV

(k))| (4.54)

for the kth cluster of, say, m eigenvalues. Because ∆Jij contains only one non-zero element the
matrix whose trace is computed is a rank 1 matrix:

U (k)τ∆JijV
(k) = (U (k)

1i , . . . , U
(k)
mi)T (−τDfij)(V

(k)
j1 , . . . , V

(k)
jm). (4.55)

The trace of such a rank 1 matrix can be computed very cheaply in O(m) operations:

|tr(U (k)τ∆JijV
(k))| = |τDfij ·(U (k)

1i , . . . , U
(k)
mi)(V (k)

j1 , . . . , V
(k)
jm)T | = |τDfij ·

m∑
l=1

U
(k)
li V

(k)
jl |. (4.56)

4.3.2 Sparsing of the algebraic part

After transforming (4.30) to a block diagonal form (4.31) we obtain the two matrix pairs (Ã1, B̃2)
and (A22, B22) = (0,−τDf22). The first pair can be treated with the methods described above,
the second pair will be considered here. To treat this case successfully, we have to consider
some additional factors. As we have seen in Section 3.4 sparsing of the algebraic part J22 of
the Jacobian matrix has the consequence that we cannot achieve orders higher than one. So if
sparsing shall be used in the context of an extrapolation method, it is necessary to keep this
block exact.
The application of the linearly implicit Euler method is only possible, if L − τJ is non-singular
for reasonable τ , which is guaranteed for an exact Jacobian matrix and index 1 systems. If we use
sparsing of the algebraic part, this property has to be preserved, and therefore J22 still has to be
non-singular after sparsing. So a sparsing criterion has to do both estimating the perturbations
of the eigenvalues and preserving non-singularity.
Another difficulty is that in contrast to the case of an ordinary differential equation, where I−τJ
is well conditioned for small τ , the condition of Df22 may be bad and cannot be influenced by a
parameter such as τ . But if J22 is near a singular matrix, the first order theory breaks down, due
to large higher order terms. This is obvious already in the scalar case: (b− e)−1− (b−1 + b−2e) =
e2/((b−e)b2). Obviously, the error between the exact and the approximate solution is only small
if e ¿ b. So for small b the first order approximation is valid only in a very small neighborhood
of b. In higher dimensions we will have the case that the badly conditioned mapping restricted
to some subspaces is nearly singular, on others not. A robust sparsing criterion will have to take
such phenomena into account.
Additionally, if we want to apply sparsing to the algebraic part, we have to consider the size of
this block. Although the performance in the analysis phase is not crucial in real time simulation,
it might be the case that the algebraic part is just too big for a kind of analysis similar to the
one described above. A first try might be using (4.50), that reads now

∑
k

(λ̃0
k − λ0

k) = tr(B−1
22 E) + O(ε2). (4.57)

The corresponding sparsing criterion is then

cij = |tr((τDf22)−1(−τ(∆J22)ji))| = |(Df−1
22)ij(Df22)ij |. (4.58)

48 CHAPTER 4. A SPARSING CRITERION

This criterion can be evaluated by one (sparse) LU-Decomposition of Df22 and d − n forward-
backward- substitutions to evaluate the columns (Df−1

22)(:, i).
If the algebraic part is small enough to be treated with dense linear algebra methods in the
analysis phase, we can take the effort to transform (0, Df22) to an equivalent pair. This is
facilitated by the fact that we can choose the transformation matrices freely, as Y H0X = 0.
In view of the discussion above a lot of information can be obtained via the singular value
decomposition. Then we have orthogonal transformation matrices X and Y such that S =
Y HDf22X is diagonal, and we can apply (4.50) to each singular value and obtain for the changes
of eigenvalues

λ̃0
k − λ0

k = S−1
kk E + O(ε2), (4.59)

which leads to a sparsing criterion

c
(k)
ij = |S−1

kk (Y H)ki∆JijXjk| (4.60)

for each singular value. We see that a small singular value causes a large criterion, as required.

4.4 Discussion of the criterion

In Section 4.2 some issues concerning approximation errors and the sparsing criterion itself were
mentioned briefly and shall be discussed more thoroughly in this section. Some conclusions will
be drawn on how to use the degrees of freedom that are still left in the design of the algorithm.

4.4.1 Errors introduced by the block diagonalization and cancellation

As we have already mentioned, our criterion does not take into account higher order terms.
Therefore, algorithmic decisions should be made in order to keep those terms small. This mainly
affects the choice of the blocks.
Concerning the choice of the blocks - or equivalently the clustering of the eigenvalues - there is
a tendency that close eigenvalues in different blocks lead to large higher order terms. So blocks
should be chosen in such a way that eigenvalues that are grouped together stay together in
one block. The existence of such clusters is a property of the model and models with distinct
clustering are especially well suited for sparsing.
From a theoretical point of view the least we have to require is that dif[·] 6= 0. By Theorem
4.11 this is achieved, if the spectra of all blocks are mutually disjunct. So multiple eigenvalues
have to be gathered in one block. To obtain small error bounds in Theorem 4.12 we also have
to require that dif[·] is large compared to the norm of the perturbations.
The other source of errors is cancellation. It is possible that

∣∣∣∑(λ̃i − λi)
∣∣∣ ¿ ∑

|(λ̃i − λi)|.

This means that it may happen that an element with a strong impact on the eigenvalues receives
a small criterion and is classified in the wrong way. This also suggests to use rather small blocks
when performing the block diagonalization so that this effect happens less probable.
However, at least if we consider the stiff eigenvalues, there is an heuristic argument that suggests
that the magnitude of the sum is a good estimate for the sum of magnitudes. Sparsing was de-
scribed as a way of blending implicit and explicit methods such that the result is a numerically
stable algorithm. So, the more elements of the Jacobian are deleted, the more will the method

4.4. DISCUSSION OF THE CRITERION 49

behave like an explicit one. Hence, the stiff eigenvalues will move to the left of the complex
half-plane. Therefore, they will all move into the same direction, and so the effects of cancella-
tion might not be so grave. This effect was also observed in numerical experiments. Concerning
oscillatory modes, this tendency to move into one direction is not that strong and it might well
happen that cancellation plays a role in the choice of an element.
These observations give a hint how to choose the clusters of eigenvalues. For the stiff eigenvalues
we can use few clusters but the oscillatory eigenvalues should be divided into as many clusters
as possible to avoid cancellation.
One important aspect of cancellation is that it smooths out the large first order estimates of
eigenvalues that are very close together, because the matrix is a numerically perturbed Jordan
matrix. In this case, first order estimates are very large but meaningless, because the higher order
terms are large too. Clearly a sufficiently small perturbation will not cause multiple eigenvalues
to jump to infinity as suggested by the first order criterion. To sum up, cancellation makes the
criterion more robust dealing with multiple eigenvalues. In fact the presence of multiple eigen-
values was the reason to retreat to block diagonalization.
Obviously, we have to perform a trade-off between these two sources of errors. Experience has
shown that it is a good choice to use small blocks such that only multiple eigenvalues (or very
close eigenvalues) are inside one block. In this case cancellation plays a minor role, and only
smooths out the first order terms of Jordan blocks. But for eigenvalues that are not too close
the risk of cancellation weighs higher than possible second order errors.

4.4.2 Invariance against scaling

It is a well known fact that the qualitative behavior of a solution of a differential equation ẋ =
f(x) near a fixed point x∗ : f(x∗) = 0 has the following invariance property. The transformation

x −→ Tx =⇒ ẋ −→ T ẋ =⇒ Df(x∗) −→ TDf(x∗)T−1 (4.61)

does not change the qualitative behavior of the solution near the fixed point if T is non-singular.
This gives rise to the analysis of the qualitative behavior of the solution by eigenvalue analysis
of the Jacobian. The same ”invariance against similarity transformations” is valid for difference
equations, which gives rise to the linear stability theory of numerical methods for differential
equations. An introduction to invariance principles in a more general framework is given in [8].
Any analysis routine that aims on this kind of qualitative behavior (like our sparsing method)
should also show such an invariance property.
Analogously, the qualitative behavior of differential algebraic equation systems Bẋ = f(x) at a
fixed point is invariant against equivalence transformations. The transformation

x −→ Tx, f(x) −→ Sf(x) =⇒ (B, Df(x∗)) −→ (SBT, SDf(x∗)T) (4.62)

does not change the qualitative behavior of the solution if S and T are non-singular.
However, as our sparsing criterion considers element-wise perturbations and their similarity
transforms are not elements anymore. Hence, we restrict our considerations to scaling transfor-
mations, i.e., S, T are diagonal matrices. Invariance against scaling is clearly obtained considering
Remark 4.1 and Remark 4.2, because the elements of the matrix J and therefore the perturba-
tions are also subject to the scaling transformations.

50 CHAPTER 4. A SPARSING CRITERION

4.4.3 Sparsing by magnitude

In this section we are going to review the technique of dynamic sparsing by magnitude as
described in [33]. It has been applied successfully to large systems of stiff ordinary differential
equations. The proposed criterion reads:

|D̃f ij | < σ/τ → Jij := 0 (4.63)

Here D̃f is the scaled Jacobian matrix, σ < 1 is a safety factor, and τ is the step size of one
step of the extrapolated linearly implicit Euler method. If we consider (4.50) for the case of an
ODE and if we do not perform a spectral resolution, we obtain:∑

i

(λ̃i − λi) = tr((I − τDf)−1τ∆Jij(I − (I − τDf)−1)) + O(ε2). (4.64)

If the problem is assumed to be stiff, then we cannot simplify this formula anymore, and we can
especially see that the change in the eigenvalues is not related directly to the size of the element
Dfij .
If we assume the non-stiff case: τDf ¿ I, then we can expand (I − τDf)−1 with Neumann
series, drop higher order terms, and obtain:∑

i

(λ̃i − λi) = tr((I + τDf)τ∆Jij(I − (I + τDf))) + O(ε2)

= tr(τ∆JijτDf) + O(ε2) = −τ2∆J2
ij + O(ε2) = O(ε2).

In this case, the sparsing criterion results in values that have about the size of the neglected
terms. This result was to be expected, because the linearly implicit Euler method is a W-method.
If we had a first order change of the eigenvalues, the order of the method would decrease for an
inexact Jacobian. If the matrix has some block structure such that a stiff and a non-stiff part are
present and are only weakly coupled, then the size of the elements plays a role in the following
sense: if ∆Jij is large, then it can be associated with the stiff part, but in general not the other
way round.
Clearly, in both cases (4.63) is not related to a first order criterion. We can, however, regard
(4.63) as a worst case estimate for (4.64). With the relation

tr(A) ≤ n‖A‖ (4.65)

(the factor n reflects that we estimate the sum of the changes of the eigenvalues) we can conclude
that ∑

i

(λ̃i − λi) =̇ tr((I − τDf)−1τ∆Jij(I − (I − τDf)−1))

≤ n‖(I − τDf)−1‖τ |∆Jij | ‖(I − (I − τDf)−1))‖
= Cτ |∆Jij |.

We see that we can interpret 1/C as a conservative estimate for σ. However, sparsing will only be
successful, if we can choose σ ¿ C, e.g., if the problem has some special structure, or if there are
many very small elements present. We also see that the weak point of sparsing by magnitude is,
that this technique neglects the interdependence between the elements and therefore estimates
the importance of each element only insufficiently, which is especially a drawback if differential
algebraic equations are considered. Of course, if dynamic sparsing is the goal, the evaluation of
(4.50) is too expensive, but it might be possible to design a dynamic sparsing criterion, that at
least reflects an interdependence approximately.

Chapter 5

Implementation of a real-time
simulator

The goal of the next two chapters is to study the practical applicability of sparsing in real-time
simulation. This includes several issues. On the one hand we can study the effects and benefits
of sparsing on the structure and the eigenvalue distribution of a given test matrix pair. On
the other hand, we have to explore, how the reduced structure can actually be exploited by a
real-time simulation method.

5.1 Design overview

We have seen in the preceding sections, especially in Section 2.3.1, that a simple design with
little overhead is important for a real-time integrator, and that as much work as possible should
be performed before the real-time simulation starts. Here, we will give a short outline of the
design of the simulator. In the subsequent sections, more details are presented.
We will base our integrator on the linearly implicit Euler method without extrapolation. As
already noted, this method is suitable for real-time simulation with small communication inter-
vals.

Preprocessing. The main goal of the preprocessing routine is to analyze the model to be
simulated and especially the systems of equations to be solved during the course of integration.
The efficiency of the real-time simulator depends largely on the preprocessing. Hence, emphasis
is placed on the quality of the results, rather than the speed of the routines. Therefore, this part
of the integrator will mostly be implemented in MATLAB, what allows us to use high quality
numerical subroutines and simple notation.
The preprocessing has the following tasks:

• Find a suitable sparsity pattern such that stable simulation is still possible, and the re-
maining linear equation systems can be solved efficiently.

• Analyze the remaining sparse system of equations such that the sparsity structure of this
system can be exploited.

• Allocate the memory needed during the course of integration and other preparations.

51

52 CHAPTER 5. IMPLEMENTATION OF A REAL-TIME SIMULATOR

Simulation. In this part, the integrator efficiency is crucial. The routines must be simple and
contain as little overhead as possible. All routines have to be real-time capable and should be
portable to special real-time hardware. Therefore, the programming language of choice is C.
During the simulation, the following tasks have to be performed:

• efficient evaluation of the right hand side f and the sparse Jacobian Df ,

• solution of the systems of equations,

• computation of the solution for the next time instant,

• estimation of the error.

The following operations cannot be performed in real-time simulations:

• allocation or deallocation of memory and similar system calls, as they take an unpredictable
amount of time,

• changes in the step size or similar forms of adaptivity,

• pivoting for stability in sparse matrix factorizations, because this may change the fill-in
and therefore the performance.

5.2 Implementation of sparsing

Equipped with a first order estimate for eigenvalue perturbations we turn to the implementation
of sparsing. For this purpose we use a pseudo-MATLAB notation. Furthermore we want to point
out only the principal features of the algorithm, so many details of the actual implementation
are omitted.

Algorithm 5.1 Algorithm in pseudo MATLAB notation to perform sparsing.

function [S]=Sparsing(DAE,x0,t,tau,rho,Smin)
[Sf,L]=Get_sparsity_structure(DAE);
X=Sample_consistent_states(DAE,Sf,SampleTimes);
S=0;
for(i=1:nSamples)

Jac=Get_jacobian(DAE,X(:,i),SampleTimes(i));
if(~Satisfactory_Approximation(Jac,S,rho)){

Sold=S;
C=Calculate_sparsing_criterion(Jac,L,Sold,tau);
S=Choose_structure(Jac,L,C,rho,Sold);

}
end
Prepare_for_simulation(S);

Algorithm 5.1 is a sketch of the sparsing routine as implemented in MATLAB. It requires
a description DAE of the DAE, consistent initial values x0, the time span t (as a vector) the
step size tau, and parameters rho (as a vector) to control the tradeoff between sparsity and the
quality of the Jacobian approximation (see below). The user can provide a matrix Smin to force

5.2. IMPLEMENTATION OF SPARSING 53

the algorithm to preserve those non-zero elements of Df that are also non-zero in Smin. The
result is an incidence matrix S, that describes an acceptable sparsity structure.

5.2.1 Initialization

Before the start of the sparsing routine we have to collect some information about the DAE.
This includes the full sparsity structure of the Jacobian and the left hand side matrix L, that is
obtained in Get_sparsity_structure. In an object oriented framework this may be performed
by symbolic analysis. Otherwise we may compute the Jacobian and scan the non-zero structure.
This has to be performed several times with several arguments to minimize the risk of an element
being zero accidentally.
The subroutine Sample_consistent_states provides several consistent states, e.g., by one or
several off-line simulations, where the Jacobian is evaluated. The Jacobian matrices at those
states are then subject to the sparsing routine. This is done in the for loop.

5.2.2 Testing of the sparsed Jacobian matrix

For each sample vector of states, the Jacobian is evaluated. Then it is tested, if the eigenvalues
λ̃i of the difference equation with sparse Jacobian are close enough to the original eigenvalues
λi. This is determined in the routine Satisfactory_Approximation. The criterion for this is
the following: form a set of pairs from two sets of eigenvalues such that max |λi − λ̃ĩ| is minimal.
Then with rho= (ρ, ρm) check the relation:

|λi − λ̃ĩ| ≤ ri := max (ρ(1 − |λi|), ρm). (5.1)

If this inequality is not fulfilled for at least one i we have to reconsider the sparsity structure
of J and allow for some further non-zero elements. This criterion has the effect that eigenvalues
near the stability border are judged more restrictively than eigenvalues near the origin. This
is necessary, because the errors of the latter are damped quickly, whereas errors in the larger
eigenvalues can severely affect the long time behavior of the solution. However, there are always
some ”non-stiff” eigenvalues at or very close to 1. To treat them properly we introduce a minimal
radius ρm to avoid that very small changes in these eigenvalues force the sparsing algorithm to
produce a structure with too many elements.

5.2.3 Sparsing

If necessary we recompute the sparsity structure of the Jacobian. We only have the possibility to
add non-zero elements, because the previous sparsity structure is necessary for the stability of
the differential equation in the previous steps. Therefore, we only have to consider the elements
that are not already part of the sparsity structure and calculate their criterion.
The sparsing procedure consists of two parts. First the sparsing criteria C are computed in
the routine C=Calculate_sparsing_criterion(Jac,L,Sold,tau). Then the elements to be
sparsed are selected by the routine S=Choose_structure(Jac,C,rho,Sold).
The first routine is sketched in Algorithm 5.2. Its details are derived and described in Chapter 4.
Its core is the subroutine Evaluate_Criterion(S,T,Q,Z,k,i,j) that evaluates equation (4.50)
for the block k and the element Jij of the Jacobian. We do not evaluate the criterion for elements
that were already included in the sparsity structure.

54 CHAPTER 5. IMPLEMENTATION OF A REAL-TIME SIMULATOR

The second routine chooses the sparsity structure according to Algorithm 5.3. Recall that for

Algorithm 5.2 Algorithm in pseudo MATLAB notation to compute the sparsing criterion.

function C=Calculate_sparsing_criterion(Jac,L,Sold,tau)
[S,T,Q,Z,blocks]=Perform_block_diagonalization(Jac,L,tau);
for(i=1:size(blocks))

[I,J]=find(Jac & ~Sold);
for(j=1:nnz(Jac & ~Sold))

C(i,j)=Evaluate_Criterion(S,T,Q,Z,blocks[i],Jac(I(j),J(j)));
end

end

Algorithm 5.3 Algorithm in pseudo MATLAB notation to compute the sparsing criterion.

function S=Choose_structure(Jac,L,C,rho,Sold)
w=Find_initial_weight(rho,Jac);
S=spones(Jac & ~Sold);
while(1)

c=C*w;
[eigenvalues, errors]=Compare_Eigs(Jac.*(S | Sold),Jac);
S_test=spones(c<1);
if(BreakCriterion(S | Sold, w)

break;
end
if(Satisfactory_Approximation(eigenvalues, errors, rho) AND

nnz(S_test | S_old) < nnz(S | Sold)
S=S_test;

end
w=Choose_new_weights(w,errors);

end

each non-zero element, C provides estimates for the sum of the eigenvalue changes in each block.
To obtain a single criterion for each element, we compute a weighted sum of these. Algorithm
5.3 chooses and modifies the weights iteratively. In this way, a sparsity structure is determined
such that the eigenvalues of the perturbed difference equation satisfy equation (5.1).
This basic algorithm can be implemented in several ways. It can be regarded as an optimization
problem: ”Minimize the weights w=w under the condition that the errors ε=errors satisfy
equation (5.1)”. We assume that the components εi(w) are step functions and that εi(wj) is
increasing monotonically.
Due to this non-smooth structure, we use a simple bisection strategy to choose the new weights.
For each block we store the maximal weight w+ for which (5.1) is fulfilled and the minimal
weight w− for which (5.1) is violated. If there is no w+ yet, we set w = 2w−. If there is no w−,
we set w = 0.5w+. Otherwise, we set w = 0.5(w+ + w−). Then we test w for the adherence of
(5.1) and set w+ = w if w fulfills (5.1) and w− = w otherwise. All computations are performed
with a test matrix S_test. The algorithm stores the matrix with the lowest number of non-zero
elements that fulfills (5.1) in S.

5.3. EVALUATION OF THE JACOBIAN MATRIX 55

We choose the starting values according to equation (5.1) as

wi =
1
ri

,

and we stop the search, if the sparsity structure of S has not improved for several times.

5.3 Evaluation of the Jacobian matrix

To evaluate the sparse Jacobian matrix of the right hand side we can use the well known
technique of column grouping (see [5]), as it is, e.g., used in the MATLAB routine numjac.
We consider the non-zero structure of the columns of the Jacobian and build subsets of columns
such that their non-zeros do not overlap, i.e., each row index for a non-zero element appears
only once in each subset. There are several good heuristic algorithms available for the NP-hard
task of finding an optimal grouping. We use the MATLAB routine colgroup for this task and
pass the result vector to the real-time simulator.
Assuming that we obtained k subsets of columns, we can now evaluate the sparse Jacobian
using only k additional function evaluations. This is because we can now compute the sum of
all columns in one of the subsets by one additional function evaluation. As each element of this
vector can be associated uniquely with an entry in the Jacobian matrix, we obtain all columns
of the Jacobian contained in this group. The obtained entries can now be stored in a sparse
matrix structure, possibly performing some column pivoting.
In the context of sparsing we remark that the column grouping cannot be applied directly to
the sparsed Jacobian structure. Otherwise non-zero elements, that are sparsed out, may add to
other non-zero elements, that are important for stability. Of course, the computation of these
elements would then be wrong. However, to save function evaluations, we can use the following
method during the preprocessing phase. For each row, compare each element of the unsparsed
Jacobian with the smallest non-zero element of the sparsed Jacobian in this row. If the element
is some orders of magnitude smaller, it can be dropped. This can be especially useful, if there
are small errors perturbing the right hand side, e.g., because during its evaluation there are
equation systems to be solved.
In an integrated modelling and simulation environment, such as Dymola, more information about
the right hand side is known to the preprocessing routine. For example, linear equations can be
recognized and therefore it is possible to spot constant elements of the Jacobian. These elements
do not have to be evaluated at each step, but only at the start of the simulation. As the equations
in object oriented modelling usually do not contain very complex expressions, this concept can
be extended such that the non-zero elements of the Jacobian matrix are evaluated symbolically.
Then only those elements that are left after the sparing routine have to be computed.

5.4 Sparse factorizations in real-time

Much effort has been taken to achieve that the Jacobian matrix to be factorized during the
integration is as sparse as possible. But how can the sparsity be exploited in the real-time case?
Typical factorization routines perform sparse Gaussian elimination to obtain an LU-factorization
of the matrix. Their core feature is an intelligent pivoting strategy to reduce the fill-in, i.e., the
number of additional non-zero elements generated during the course of the factorization. Unfor-
tunately, this fill-in cannot be predicted by structural considerations alone, because Gaussian
elimination needs pivoting for numerical stability. As a consequence, time and storage require-
ments cannot be predicted exactly, too, although there are algorithms to compute upper bounds

56 CHAPTER 5. IMPLEMENTATION OF A REAL-TIME SIMULATOR

(see [21]). Sparse LU-solvers are therefore equipped with sophisticated pivoting strategies, and
with dynamic memory management. Both features are drawbacks in real-time simulation, as the
pivoting logic amounts in a large overhead and does not improve the worst case estimate. More-
over, memory allocations and deallocations take an unpredictable amount of time. Subroutines
for real-time applications need a simpler structure.

5.4.1 Methods for sparse QR decompositions.

The situation is different with orthogonal factorizations. Due to the inherent stability of orthog-
onal transformations, pivoting for stability is not necessary. Therefore, it is possible to construct
a sequence of elimination steps utilizing only the structure. Certainly, the number of required
floating point operations will usually increase, compared to Gaussian elimination. But we can
implement a factorization routine for a constant sparsity structure that takes constant effort,
uses static memory management, and has low overhead, because the pivoting strategy can be
fixed before the integration starts. In the rest of this section we will summarize briefly the facts
presented in the monograph [2] that are relevant for the design of our factorization routine.
There are three main approaches mentioned in [2] for sparse QR decompositions. The first
approach is via solving the normal equation:

AT Ax =: Bx = c := AT b. (5.2)

Here we have the well known problem that the condition number of B = AT A is the square of
the condition number of A.
The second approach uses Givens rotations and pivoting strategies to reduce the fill-in. This
approach has been taken, e.g., in [20] performing row by row elimination. Alternatively, elimi-
nation can be performed column by column, as described in [37].
The third approach is the multifrontal QR decomposition a more complex, but in general more
efficient approach.

5.4.2 Predicting the structure of R in the QR Decomposition.

For real time simulations it is essential to use static storage. Therefore, we have to allocate
all the required memory before the real time simulation starts. For this purpose we need the
structure of the upper triangular factor R of the QR decomposition of A = QR. As described in
[2] this can be performed by ”symbolic factorization” of AT A or by symbolic Givens rotations
applied to A. Application of a symbolic method means here that the fill-in of the numerical
method is computed, assuming that no numerical cancellation occurs. This can be performed in
cases where pivoting for stability is not necessary. Due to [20], we have the following theorem,
cited from [2].

Theorem 5.1 The structure of R as predicted by symbolic factorization of AT A includes the
structure of R as predicted by the symbolic Givens method, which includes the structure of R.

Proof : For details see [20]. The proof is based on a connection between the Cholesky fac-
torization of R̃T R̃ = B = AT A and the QR decomposition of A = QR.

R̃T R̃ = B = AT A = AT QQT A = RT R (5.3)

5.4. SPARSE FACTORIZATIONS IN REAL-TIME 57

Due to the uniqueness of the Cholesky factor R̃ of B, the structures of R and R̃ are the same.
However, the symbolic factorization routine applied to AT A may produce more non-zero elements
than R̃ actually has, independent of the numerical values of the entries of A. The reason for
this is that there are correlations between the numerical values of C = AT A. This information
is lost for the symbolic factorization routine, because it is designed to handle matrices C with
arbitrary and independent entries.

According to [4] we can improve the result, if we assume that A has the ”strong Hall property”:

Definition 5.2 A matrix of order n is said to have the strong Hall property if for every subset
of k columns, 0 < k < n, the corresponding submatrix has non-zeros in at least k + 1 rows.

Theorem 5.3 Let A have the strong Hall property. Then the structure of AT A will correctly
predict that of R, excluding numerical cancellations.

Proof : See [4].

It is an interesting and useful fact that the diagonal blocks of the block lower triangular form
mentioned in Section 2.2 have the strong Hall property (see [2], originally [4]), provided the
matrix A is square and structurally non-singular.

5.4.3 Row oriented QR decomposition.

As stated above, a row sequential algorithm for a sparse QR decomposition was developed by
George and Heath in [20]. We will summarize the most important features (see also [20], [2])
with special emphasis on real-time capability.
When solving the system Ax = b for sparse matrices, we can improve efficiency by pivoting of
columns and rows. This means that we can replace A by PrAPc, where Pr describes the row
permutations and Pc the column permutations. Then we solve the system PrAPcP

T
c x = Prb.

We can now factorize PrAPc = QR, while we may choose Pr and Pc properly. Concerning the
minimization of fill-in, we note that (PrAPc)T PrAPc = P T

c AT APc. Hence, the structure of R is
not dependent on row permutations. The column permutations can be obtained with the help
of one of the well known column orderings, such as the minimum degree ordering, or the ap-
proximate minimum degree ordering. Experience shows that the approximate minimum degree
ordering usually yields the best results, so it is used in our algorithm. By symbolic factorization
of P T

c AT APc we obtain the structure of R to be able to allocate the needed amount of memory.
Then we can choose Pr (see next paragraph) and perform the following algorithm, that we cite
from [2].

Algorithm 5.4 (Row Sequential QR Algorithm.) Assume that R0 is initialized to have
the structure of the final R and has all elements equal to zero. The rows aT

k of A are processed
sequentially, k = 1, 2, . . . , m, and we denote by Rk−1 ∈ R

n×n the upper triangular matrix ob-
tained after processing rows aT

1 , . . . , aT
k−1. The kth row aT

k = (ak1, ak2, . . . , akn) is processed as
follows: we uncompress this row into a full vector v and scan the non-zero elements from left
to right. For each vj 6= 0 a Givens rotation involving row j in Rk−1 is used to annihilate vj.
This may create new non-zeros both in Rk−1 and in v. We continue until the whole row v has
been annihilated. If rjj = 0, this means that this row of Rk−1 has not yet been touched by any
rotation and hence the entire jth row must be zero. When this occurs, the remaining part of v is
inserted as the jth row in R.

58 CHAPTER 5. IMPLEMENTATION OF A REAL-TIME SIMULATOR

Although the vector v is stored as a full vector, we can make use of the sparsity of v. This is
easily possible if we use the non-zero structure of R to find potential non-zeros in v.

5.4.4 Row ordering

We still have the freedom to choose Pr. This will not affect the fill-in finally obtained, but it may
affect the time, this fill-in occurs and therefore the number of arithmetic operations necessary
for the decomposition.
For row ordering we use the algorithm described in [2] (Algorithm 6.6.4). Let the first non-zero
index of row i be denoted by fi and the last non-zero index be denoted by li. Sort the rows
according to increasing fi. All groups of rows with equal fi are sorted after increasing li.

5.4.5 Implementation details

As standard software for the sparse QR decomposition is not primarily designed for real-time
simulations, we implement a QR decomposition routine for ourselves. To minimize the overhead
and the programming effort, the design is chosen in a hybrid way. As much as possible is
implemented in MATLAB. This is the symbolic analysis of the sparse matrix and the choice of
the permutation matrices Pr and Pc. Both can be performed once, before real-time simulation
starts. The rest of the routine is written in C to ensure efficiency and real-time capabilities.
In MATLAB we first compute permutations such that the matrix is in block upper triangular
form using the MATLAB standard routine dmperm. The diagonal blocks have the strong Hall
property and are now treated separately by column and row permutations. They are applied
to each block as described above to obtain sparse R factors. The vectors of permutations, the
structures of A and R and the block sizes are passed to the factorization routine.
In each time step, the factorization routine obtains the numerical entries of the sparsed Jacobian
matrix A = L − τJn and the right hand side b = f(xn). After permutation, the solution of the
system Ax = b is obtained by solving a sequence of smaller systems corresponding to the diagonal
blocks of A with the help of the row sequential QR-decomposition. For this we use recursively
that the blocked system (

A11 A12

0 A22

) (
x1

x2

)
=

(
b1

b2

)
(5.4)

can be solved as follows:

A22 = Q2R2 −→ R2x2 = Q2b2 −→ A11 = Q1R1 −→ R1x1 = Q1(b1 − A12x2). (5.5)

So the routine performs a sequence of QR-decompositions, back-substitutions and block matrix
multiplications.
Consequently, we do not really obtain an orthogonal factorization of A. We will later talk about
”the factor R of the QR-factorization of A”, but this is rather the sequence of right upper tri-
angular matrices obtained by our block algorithm, displayed as a block diagonal matrix.

5.5 Damping of algebraic variables

Newton’s method is the standard way of solving non-linear algebraic equations f(x) = 0. How-
ever, convergence is only guaranteed in a neighborhood of the solution, whose size depends on
a Lipschitz constant for the Jacobian. To obtain convergence for starting values outside this

5.5. DAMPING OF ALGEBRAIC VARIABLES 59

neighborhood, various globalization techniques have been developed (see, e.g., [6], [8]).
One important technique is damping: the Newton correction ∆x is multiplied by a factor λ ≤ 1
to prevent the method from diverging.
A simple, but effective strategy for choosing a damping factor is the Amiijo strategy.

Select an optimal λ from a set {1, 1/2, 1/4, 1/8, . . . , λmin} such that the monotonicity test
‖f(x + λ∆x)‖ ≤ (1 − λ/2) ‖f(x)‖ is fulfilled.

Implicit and linearly implicit methods for differential algebraic systems may suffer from sim-
ilar difficulties. Especially, if the algebraic equations are highly non-linear, the intrinsic Newton
iteration may have difficulties to converge. The standard cure in off-line simulation is step size
reduction. The consequence is that the starting values are always close enough to the solution
to allow convergence. In real-time simulation we do not have this possibility and so we have to
resort to other techniques, such as introducing a damping factor λ.
The situation of highly non-linear equations occurs especially in the simulation of hydraulic
systems (see, e.g., [1]). Here the flow q through an orifice is proportional to the square root of
the pressure difference ∆p between both sides of the orifice: q = k · √∆p.
For small ∆p this leads to a high Lipschitz constant of the right hand side and the Jacobian
matrix. The consequence is that Newton’s method becomes unstable for small ∆p.
In the following, we describe a simple damping technique and our experience we made applying
this technique to the simulation of a hydraulic system with the linearly implicit Euler method.
Simulation with constant step-size and without damping leads to large oscillations in the solu-
tion trajectory that originate from the square root terms in the algebraic equations.
Of course, we have to adapt the damping strategy to the special structure of the DAE. We know
that for ordinary differential equations damping is not necessary. On the other hand, Newton’s
method for non-linear algebraic equations relies heavily on damping. If we combine algebraic
and differential equations to a DAE and assume that algebraic and differential variables are only
weakly coupled, then we may apply damping only to the algebraic part. For the computation
of the residual, we also consider only the algebraic part. Then we can interpret our damping
strategy as a damping strategy for the solution of a slowly changing algebraic equation system.
To construct an efficient damping strategy for real-time applications, we have to use a constant
number of function evaluations, and so we cannot compute an optimal damping parameter λ in
each step. However, if we assume that the behavior of the solution does not change much from
one step to the other, we may use the damping factor from the last step as a starting point
for the selection of the next damping factor. The damping factor must have the opportunity to
increase or to decrease and so we arrive at the strategy:

Choose λk+1 from the set {min{1, 2λk}, λk, max{λk/2, λmin}}, such that ‖f(xk +λk+1∆xk)‖
is minimal.

We cannot simply adapt the monotonicity test to DAEs, as the equations to be solved change
from step to step. This strategy needs two additional function evaluations compared to the lin-
early implicit Euler method without damping.
A damping strategy along these lines was implemented in MATLAB, and applied to a model of
a hydraulic gear box. The strategy was able to cope with the numerical oscillations and a smooth
trajectory was computed. This is an encouraging result, considering the simple algorithm that
was used. Especially, for integrated simulation environments with knowledge about the structure
of the equations, refined damping strategies may be the solution to some difficult problems that

60 CHAPTER 5. IMPLEMENTATION OF A REAL-TIME SIMULATOR

0 0.05 0.1 0.15 0.2 0.25
−1

0

1

2

3

4

5

6
x 10

−3

0 0.05 0.1 0.15 0.2 0.25
−0.5

0

0.5

1

1.5

2

2.5

3

3.5
x 10

−3

0 0.05 0.1 0.15 0.2 0.25
0

0.2

0.4

0.6

0.8

1

Figure 5.1: Numerical solution trajectory without damping, with damping and the damping
factor λ.

occur especially in hydraulic simulations.

5.6 Error estimation

In real time simulations, accuracy is only a minor consideration, because in most cases it is
sufficient to reproduce the qualitative behavior of the model. Furthermore, the error propagation
is well behaved in most cases of industrial simulations, because the model is stable or stabilized
by a controller. This leads to the choice of low order methods, such as the linearly implicit Euler
method.
However, to be able to judge the quality of the solution and to detect potential instabilities
in the solution, it is necessary to implement a local error estimator, at least in a simple form.
In the context of higher order methods this is performed by comparing the integration method
with a method of lower order, which leads to embedded methods, such as Runge-Kutta-Fehlberg
methods (see, e.g., [9], [24]). If we apply this idea to a first order method we have to compare it
to a zero order method, which is:

xn+1 = xn.

We therefore can estimate the error by considering the absolute change in the variables

errest = ‖xn+1 − xn‖. (5.6)

To obtain a relative error concept, we divide each component err
(i)
est by xi

n if xi
n is not zero.

Then we compare the estimated error with a user prescribed relative tolerance and with a user
prescribed absolute tolerance. If both tests fail, then a warning will be issued, or optionally the
simulation will be stopped. The absolute tolerance can be scaled by the user.

Chapter 6

Numerical experiments

To test sparsing on a practical problem we consider the detailed model of an industrial robot
with six degrees of freedom, that we discussed in Section 2.2.4. In this test example many aspects
of simulation with sparsing can be observed. Especially, the robot shows the structure discussed
in Section 2.3.4. The dynamics of the components are on different time scales, and so we obtain
a separably stiff system. Our model is available as a C-code in three versions.

• As a differential algebraic system with 354 variables (without ”tearing”).

• As a differential algebraic system in 117 variables. (with ”tearing”, see Section 2.2.2).

• As an ordinary differential equation in 78 variables. The transformation from a DAE to
an ODE is performed numerically.

The three versions of the model will help us to draw conclusions about the performance of spars-
ing in the context of stiff ODEs, of DAEs with a small algebraic part and of DAEs with a large
algebraic part. Our aim is to simulate the movement of the robot for one second at a step size
of 1 ms. At this step size, the simulation of the ODE model by an explicit method fails due to
stiff components in the model.
We use a personal computer with an AMD Athlon processor, that runs at 700 MHz. The code
is generated by the Visual C++ 6.0 compiler for a Windows NT environment with optimization
for speed. Time measurements were performed with the help of the C-routine clock(), that
measures time with an accuracy of 1 ms. To obtain more reliable and accurate timing results,
we measured the overall execution time over a large number of steps. This makes it possible to
measure the very short times that occur here and average out delays caused by the operating
system. This technique is feasible, because in our algorithm every step takes essentially the same
time.

6.1 Preliminary considerations

With our numerical experiments we address two main issues. How is the quality of the simula-
tion affected by sparsing? How much performance can be gained by sparsing? Both questions
can only be answered properly if we consider the setting.
As described in Section 2.2.3 Dymola provides a feature called inline integration, that is equiv-
alent to a direct approach for solving differential algebraic systems, namely the implicit Euler
method. The symbolic preprocessing routines generate a sequence of equation systems to be

61

62 CHAPTER 6. NUMERICAL EXPERIMENTS

solved. Due to the special problem structure many of these equation systems are small, and
a lot of them is even one dimensional and linear and can be solved symbolically. Calling the
resulting C-routine is performing one time step, rather than evaluating a right hand side. Time
measurements show that in this case most of the computing time during one call is spent solving
the larger systems of equations.
As an example, we consider the simulation of the robot model. Simulation of the robot for one
second with inline integration at a step size of 1 ms takes 2.7 seconds on our personal computer.
2.5 seconds are spent solving the largest equation system, which is of order 39. We see that
linear algebra constitutes the dominant part of the computational effort if Dymola and inline
integration are used. The rest of the computational time is spent to evaluate the residual and
the approximately 3700 algebraic variables. Although the time to perform this is comparatively
small, namely about 0.2 ms per function call, it is crucial for performance that this time is
not spent too often during one integration step. It is a big advantage of inline integration that
this only has to be performed once in one time step, as the Jacobian matrices for the systems
of equations can be evaluated locally. This means that in our case of a system of order 39,
only 39 and not 3700 variables have to be evaluated to compute one column of the Jacobian.
Unfortunately, this optimization cannot be accessed by external programs. This means that at
each function evaluation 3700 variables are computed, even if only a small part of them is used.
Therefore the cost for the evaluation of the Jacobian is very expensive.
The unpleasant consequence for us is that we cannot obtain meaningful time measurements
about the overall performance, as the interface to the model includes only the possibility to
evaluate the whole right hand side. In this case, the evaluation of the Jacobian is much more
expensive than the linear algebra. To obtain meaningful results, one would have to combine
sparsing, the sparse solver and inline integration into one method. However, this can only be
performed by the developers of Dymola.
The best thing we can do is measuring the time needed for the solution of the remaining systems
of equations and adding an estimated effort for the evaluation of the right hand side and the
Jacobian.

6.2 Differential algebraic systems with a large algebraic part

If we modify the code generated by Dymola such that the transformation to ODE form is not
performed and turn off tearing, we obtain a DAE of size 354 with 78 differential and 276 algebraic
equations. The matrix L − τDf contains 1306 non-zero elements before sparsing.
To study the effects of sparsing we perform sparsing with different parameters.

ρ ∈ {0.01, 0.05, 0.1, 0.5, 1.0} ρmin = 0.01 · ρ.

Table 6.1 shows the performance gains, of sparsing applied to this system. We observe that up
to one third of the elements can be set to zero if ρ is large. As a consequence the number of
non-zero elements of R (to its definition see Section 5.4.5) is halved and its largest block is 20
percent smaller. Observe the changes in the non-zero structure in Figures 6.3, 6.4, and 6.5. Due
to the reduced structure, the factorization times are halved. The details are listed in Table 6.1.
Here nnzA denotes the number of non-zeros of a matrix A, nLB is the size of the largest block
of R and tsol is the time needed to obtain a solution of the system (L − τJ)x = b.
If we look at the eigenvalue plot (Figure 6.1), we can see how the sparsing parameter ρ affects
the change of the eigenvalues. Especially, the changes in the oscillatory and the non-stiff eigen-
values are only very small. Consequently, the long time behavior of the simulation is changed

6.3. DIFFERENTIAL ALGEBRAIC SYSTEMS WITH A SMALL ALGEBRAIC PART 63

nnzL−τJ nnzR nLB tsol

no sparsing 1306 2107 302 0.63 ms
ρ = 0.01 907 1671 295 0.45 ms
ρ = 0.05 893 1622 293 0.45 ms
ρ = 0.1 897 1598 264 0.43 ms
ρ = 0.5 858 1353 246 0.34 ms
ρ = 1.0 822 1144 234 0.29 ms

Table 6.1: Results for sparsing with different parameters (DAE with large algebraic part)

only minimally. On the other hand, the stiff eigenvalues change considerably and some new
eigenvalues appear due to perturbations of the algebraic part. In simulations, these eigenvalues
play a minor role, because they represent rapidly decaying modes. So changes in the stiff eigen-
values are a desired degree of freedom.
If we take a look at one component of the solution trajectory at Figure 6.2 (the relative angle
between two flanges of an elastically modelled gear in the first joint of the robot) we see that the
differences between the sparsed and the unsparsed trajectory are small, in this example smaller
than 6 percent of the numerical range of the solution. This accuracy is sufficient for real time
applications. If we take a closer look on the errors we can see that they are phase errors, clearly
a consequence of the small changes in the eigenvalues. We also note that there is no substantial
difference in the size of the errors corresponding to ρ = 0.01 and the errors corresponding to
ρ = 1.
Concerning the overall performance, we have to say that 17 function evaluations per time step
are necessary. Each evaluation takes about 0.15 ms, so the time needed for one step is between
2.8 ms and 3.2 ms. If we were able to compute the Jacobian matrix locally in the frame of inline
integration, we might achieve times between 0.8 ms per step (without sparsing) and 0.45 ms per
step (with sparsing).

6.3 Differential algebraic systems with a small algebraic part

After the BLT-Transformation (see Section 2.2.3) Dymola can reduce the sizes of the equation
system even further by ”tearing”. If tearing is applied to the robot model, we obtain a differen-
tial algebraic equation system with 78 differential and 39 algebraic variables. Due to its reduced
size, the time for the solution of one resulting equation system is lower than without tearing.
With the help of sparsing we can reduce the time for solving the system to about two thirds.
A closer look at Table 6.2 shows that the factorization time does not necessarily decrease to-

nnzL−τJ nnzR nLB tfac

no sparsing 449 746 105 0.14 ms
ρ = 0.01 342 533 89 0.12 ms
ρ = 0.05 326 484 89 0.13 ms
ρ = 0.1 319 454 88 0.12 ms
ρ = 0.5 283 334 34 0.09 ms
ρ = 1.0 277 322 34 0.09 ms

Table 6.2: Results for sparsing with different parameters (DAE with small algebraic part)

64 CHAPTER 6. NUMERICAL EXPERIMENTS

 0.5

 1

 1.5

30

210

60

240

90

270

120

300

150

330

180 0

No sparsing
Sparsing (ρ=1)

Figure 6.1: Eigenvalue changes due to sparsing.

gether with the number of non-zero elements. It seems that some non-zero structures allow faster
factorizations than others.
The eigenvalues change in a similar way as they do in Section 6.2, and the changes in the solution
trajectory are also of similar kind.
Concerning the overall performance, we have a similar picture. 19 function evaluations per time
step are necessary. Each evaluation takes about 0.12 ms, so the time needed for one step is
between 2.7 ms and 2.8 ms. If we were able to compute the Jacobian matrix locally in the frame
of inline integration, we might achieve times between 0.3 ms per step (without sparsing) and 0.2
ms per step (with sparsing).

6.4 Ordinary differential equations

Considering the ODE model, we observe two new aspects. First, there are no algebraic variables.
This suggests that sparsing will become easier and more efficient than in the case of a DAE.
Secondly, during the evaluation of the right hand side systems of equations are solved. This means
that the Jacobian contains small non-zero elements that originate from errors in the solution of
the equation systems. Hence, the Jacobian matrix is rather dense, and therefore the performance

6.4. ORDINARY DIFFERENTIAL EQUATIONS 65

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−8

−6

−4

−2

0

2

4

6

8
x 10

−3

Sparsing (ρ=0.01)
Sparsing (ρ=1)

Figure 6.2: Test trajectory, computed with an unsparsed Jacobian and deviations from this
trajectory introduced by sparsing with two different parameters ρ.

nnzL−τJ nnzR nLB tfac

no sparsing 924 2223 66 0.45 ms
ρ = 0.01 233 314 56 0.08 ms
ρ = 0.05 226 311 56 0.09 ms
ρ = 0.1 200 244 34 0.07 ms
ρ = 0.5 181 160 10 0.05 ms
ρ = 1.0 181 160 10 0.05 ms

Table 6.3: Results for sparsing with different parameters (ODE case)

of the sparse factorization routine in the unsparsed case is rather poor. Furthermore, there are
dense rows in the matrix, which means that column grouping does not have any benefits here.
Therefore, sparsing is expected to lead to a good speedup in this case. It can be seen in Table

nnzL−τJ nnzR nLB tfac

ρ = 0.1, τ = 0.1ms 140 150 8 0.037 ms
ρ = 0.1, τ = 1.0ms 200 244 34 0.07 ms
ρ = 0.1, τ = 10.0ms 222 304 46 0.08 ms
ρ = 1.0, τ = 0.1ms 88 83 2 0.014 ms
ρ = 1.0, τ = 1.0ms 181 160 10 0.05 ms
ρ = 1.0, τ = 10.0ms 192 212 22 0.05 ms

Table 6.4: Results for sparsing with different parameters and step-sizes

6.3 that the number of non-zeros was reduced by a factor of five and the speedup for the solution
of the equation systems was about a factor of ten. The very sparse structure of the resulting
matrix shows also that sparsing is more efficient for ODEs than for DAEs. Here sparsing even
helps us to save function evaluations, because we can leave out several small non-zero elements
in the dense row, even for the estimation of the Jacobian matrix. Consequently, we do not have
to evaluate the right hand side 78 times, but only 16 times (see Section 5.3).
It is interesting to observe, how the sparsity structure changes for different steps-izes. We expect
that the number of non-zero elements decreases with the step-size. Numerical experiments verify
this conjecture. The results of this experiment can be looked up at Table 6.4. For ρ = 1.0 and

66 CHAPTER 6. NUMERICAL EXPERIMENTS

τ = 0.1ms we obtain a tridiagonal system with only 10 non-diagonal elements. Of course, the
diagonal is full anyway, because L is the identity matrix.

6.4. ORDINARY DIFFERENTIAL EQUATIONS 67

0 50 100 150 200 250 300 350

0

50

100

150

200

250

300

350

nz = 1306
0 50 100 150 200 250 300 350

0

50

100

150

200

250

300

350

nz = 2701

Figure 6.3: The Jacobian Df of the robot model before sparsing and R

0 50 100 150 200 250 300 350

0

50

100

150

200

250

300

350

nz = 907
0 50 100 150 200 250 300 350

0

50

100

150

200

250

300

350

nz = 1671

Figure 6.4: The Jacobian Df of the robot model after sparsing (ρ = 0.01) and R

0 50 100 150 200 250 300 350

0

50

100

150

200

250

300

350

nz = 822
0 50 100 150 200 250 300 350

0

50

100

150

200

250

300

350

nz = 1144

Figure 6.5: The Jacobian Df of the robot model after sparsing (ρ = 1.0) and R

68 CHAPTER 6. NUMERICAL EXPERIMENTS

0 20 40 60 80 100

0

20

40

60

80

100

nz = 449
0 20 40 60 80 100

0

20

40

60

80

100

nz = 746

Figure 6.6: The Jacobian Df of the robot model before sparsing and R.

0 20 40 60 80 100

0

20

40

60

80

100

nz = 342
0 20 40 60 80 100

0

20

40

60

80

100

nz = 533

Figure 6.7: The Jacobian Df of the robot model after sparsing (ρ = 0.01) and R.

0 20 40 60 80 100

0

20

40

60

80

100

nz = 277
0 20 40 60 80 100

0

20

40

60

80

100

nz = 322

Figure 6.8: The Jacobian Df of the robot model after sparsing (ρ = 1.0) and R.

6.4. ORDINARY DIFFERENTIAL EQUATIONS 69

0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

70

nz = 924
0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

70

nz = 2223

Figure 6.9: The Jacobian Df of the robot model before sparsing and R.

0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

70

nz = 233
0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

70

nz = 314

Figure 6.10: The Jacobian Df of the robot model after sparsing (ρ = 0.01) and R.

0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

70

nz = 181
0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

70

nz = 160

Figure 6.11: The Jacobian Df of the robot model after sparsing (ρ = 1.0) and R.

70 CHAPTER 6. NUMERICAL EXPERIMENTS

Chapter 7

Conclusions and Outlook

We have shown that sparsing of the Jacobian is a practicable way of improving efficiency in real
time simulation using one of the few possibilities of adaptivity in this field.
We have explored the theoretical relationship between sparsing and extrapolation methods based
on the linearly implicit Euler method in the case of a differential algebraic system. Results about
stability and the order of these methods were achieved.
We have derived and investigated a first order sparsing criterion, that relies on first order per-
turbation theory of matrix pairs, and that is suitable for ODEs as well as for DAEs. We have
developed and tested an algorithm for sparsing, that is based on this criterion. Experiments
have demonstrated the efficiency of this algorithm.
We have shown that it is possible to implement an efficient real time simulator for stiff differ-
ential equations and differential algebraic systems, that relies on sparse matrix methods. This
was achieved by the combination of preprocessing and simple real time capable routines with
low overhead. A key issue in this respect is the usage of linearly implicit methods together with
a sparse orthogonal factorization routine.
It may be possible to carry over the theoretical results about sparsing to classical integration
methods and to develop an efficient refined sparsing criterion for dynamic sparsing.
Moreover, the encouraging experimental results about damping of algebraic variables may lead
to further investigations in this field.

71

72 CHAPTER 7. CONCLUSIONS AND OUTLOOK

Bibliography

[1] P. Beater. Entwurf hydraulischer Maschinen. Springer, 1999.

[2] Åke Björk. Numerical Methods for Least Squares Problems. SIAM, 1996.

[3] E. Carpanzano and R. Girelli. The tearing problem: Definition, algorithm and application
to generate efficient computational code from DAE systems. In Proceedings of 2nd Mathmod
Vienna. IMACS Symposium on Mathematical Modelling, 1997.

[4] T. F. Coleman, A. Edenbrandt, and J.R. Gilbert. Predicting fill for sparse orthogonal
factorization. J. Assoc. Comput. Mach., 33:517–532, 1986.

[5] Thomas F. Coleman, Burton S. Garbow, and Jorge J. Moré. Software for estimating sparse
Jacobian matrices. ACM Transactions on Mathematical Software, 10(3):329–345, 1994.

[6] John E. Dennis and Robert B. Schnabel. Numerical Methods for Unconstrained Optimiza-
tion and Nonlinear Equations. Prentice-Hall, 1983.

[7] Peter Deuflhard. Recent progress in extrapolation methods for ordinary differential equa-
tions. SIAM Review, Vol. 27, No 4:505–535, 1985.

[8] Peter Deuflhard. Newton Methods for Nonlinear Problems. Affine Invariance Principles
and Adaptive Algorithms. Springer-Verlag, to be published.

[9] Peter Deuflhard and Folkmar Bornemann. Numerische Mathematik II : Integration
gewöhnlicher Differentialgleichungen. de Gruyter, 1994.

[10] Peter Deuflhard, Ernst Hairer, and J. Zugck. One-step and extrapolation methods for
differential-algebraic systems. Numerische Mathematik, 51:501–516, 1987.

[11] Peter Deuflhard and Ulrich Nowak. Extrapolation integrators for quasilinear implicit ODEs.
In Peter Deuflhard and Engquist B., editors, Large-Scale scientific computing. Birkhäuser,
Boston, 1987.

[12] Iain S. Duff and Ulrich Nowak. On sparse solvers in a stiff integrator of extrapolation type.
IMA Journal of Numerical Analysis, 7:391–405, 1987.

[13] I.S. Duff, A.M. Erismann, and J.K. Reid. Direct Methods for Sparse Matrices. Oxford
Science Publications, 1986.

[14] Dymola. Dynasim AB, Lund, Sweden. Homepage: http://www.dynasim.se.

[15] H. Elmqvist, F. Cellier, and M. Otter. Inline integration: A new mixed symbolic/numeric
approach for solving differential-algebraic equation systems. In Proceedings: European Sim-
ulation Multiconference Prague, pages XXIII–XXXIV, 1995.

73

74 BIBLIOGRAPHY

[16] Hilding Elmqvist. A Structured Model Language for Large Continuous Systems. PhD
thesis, Department of Automatic Control, Lund Institute of Technology, Lund, Sweden,
1978. Report CODEN:LUTFD2/(TFRT–1015).

[17] Hilding Elmqvist, Sven Erik Mattsson, and Martin Otter. Object-oriented and hybrid
modelling in Modelica. Journal Européen des systémes automatisés, 35,1:1 á X, 2001.

[18] Hilding Elmqvist and Martin Otter. Methods for tearing systems of equations in object-
oriented modelling. In Proceedings ESM’94 European Simulation Multiconference, pages
326–332, 1994.

[19] Georg Färber. Prozessrechentechnik. Springer, 3. edition, 1994.

[20] Alan George and Michael T. Heath. Solution of sparse linear least squares problems using
givens rotations. In Åke Björk, Robert J. Plemmons, and Hans Schneider, editors, Large
Scale Matrix Problems. Elsevier North Holland, 1981.

[21] John R. Gilbert and Esmond G. Ng. Predicting structure in sparse matrix computations.
SIAM Journal on Matrix Analysis and Applications, 15(1):62–79, 1994.

[22] Gene H. Golub and Charles F. van Loan. Matrix Computations. The Johns Hopkins
University Press, third edition, 1996.

[23] Ernst Hairer, S. P. Nørsett, and Gerhard Wanner. Solving Ordinary Differential Equations
I. Nonstiff Problems. Series in Computational Mathematics. Springer, third edition, 2001.

[24] Ernst Hairer and Gerhard Wanner. Solving Ordinary Differential Equations II. Stiff and
Differential Algebraic Problems. Series in Computational Mathematics. Springer, second
edition, 1996.

[25] K. Kautzsch. Hardware- / Computer-in-the-loop-Simulation. Werkzeuge zur Entwicklng
und Analyse gelenkter Flugsysteme. Technical Report 94-D4-073, DIEHL Gmbh & Co.,
Röthenbach / Peg., 1994.

[26] Frank Kessler and Gebert Jürgen. Testautomatisierung und Antriebsmodellierung an
HIL-Steuergeräteprüfständen in der BMW Getriebeentwicklung. ATZ Automobiltechnis-
che Zeitschrift, 102(5):312–323, 2000.

[27] G. Kron. Diakoptics - the piecewise solution of linear systems. MacDonald & Co., 1962.

[28] Christian Leimegger and Dierk Schröder. Hochdynamische Verbrennungsmotor-
und Rad-Straße-Simulation an einem modellgeführten hardware-in-the-loop PKW-
Antriebsstrangprüfstand. In 4. VDI Mechatronik Tagung 2001 - Innovative Produkten-
twicklung, pages 389–409. VDI-Gesellschaft - Entwicklung Konstruktion Vertrieb, 2001.

[29] Christian Lubich. Linearly implicit extrapolation methods for differential-algebraic systems.
Numerische Mathematik, 55:197–211, 1989.

[30] Christian Lubich and M. Roche. Rosenbrock methods for differential-algebraic systems
with solution dependent singular matrix multiplying the derivative. Computing, 43:325–
342, 1990.

[31] S.E. Mattsson and G. Söderlind. Index reduction in differential algebraic equations using
dummy derivatives. SIAM Journal on Scientific Computing, 14(3):677–692, 1993.

BIBLIOGRAPHY 75

[32] Modelica. a unified object-oriented language for physical systems modelling. Modelica
homepage: http://www.modelica.org.

[33] Ulrich Nowak. Dynamic sparsing in stiff extrapolation methods. Impact of Comput. in
Science and Engrg., 5:53–74, 1993.

[34] Martin Otter. Objektorientierte Modellierung mechatronischer Systeme am Beispiel geregel-
ter Roboter. Fortschrittsberichte VDI Reihe 20, 147, 1995.

[35] Martin Otter. Objektorientierte Modellierung von Antriebssystemen. In Dierk Schröder,
editor, Elektrische Antriebe - Regelung von Antriebssystemen, chapter 20, pages 894–1009.
Springer, 2001.

[36] Martin Otter et al. Objektorientierte Modellierung Physikalischer Systeme 1-17. at Au-
tomatisierungstechnik, 47/1 - 48/12, 1999/2000.

[37] Thomas H. Robey and Deborah L. Sulsky. Row ordering for a sparse QR decomposition.
SIAM Journal for Matrix Analysis and Applications, 15(4):1208–1225, 1994.

[38] A Ruhe. An algorithm for numerical determination of the structure of a general matrix.
BIT, 10:196–216, 1970.

[39] Anton Schiela and Hans Olsson. Mixed-mode integration for real-time simulation. In
Modelica 2000 Workshop Proceedings, pages 69–75. The Modelica Association, 2000.

[40] T. Steinhaug and A. Wolfbrandt. An attempt to avoid exact Jacobian and nonlinear equa-
tions in the numerical solution of stiff differential equations. Math. Comp., 33:521–534,
1979.

[41] G. W. Stewart and J. Sun. Matrix Perturbation Theory. Computer Science and Scientific
Computing. Academic Press, 1990.

[42] G.W. Stewart. Algorithm 406: HQR3 and EXCHNG: Fortran subroutines for calculating
and ordering the eigenvalues of a real upper Hessenberg matrix. ACM Trans. Math. Soft.,
2:275–280, 1976.

[43] P. Van Dooren. Algorithm 590: DSUBSP and EXCHQZ: FORTRAN subroutines for com-
puting deflating subspaces with specified spectrum. ACM Transactions on Mathematical
Software, 8(4):376–382, December 1982.

[44] M. Weiner et al. Partitioning strategies in Runge-Kutta type methods. IMA Journal of
Numerical Analysis, 13:303–319, 1993.

