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Abstract 
MathModelica is an integrated interactive development 
environment for advanced system modeling and simulation. 
The environment integrates Modelica-based modeling and 
simulation with graphic design, advanced scripting 
facilities, integration of program code, test cases, graphics, 
documentation, mathematical type setting, and symbolic 
formula manipulation provided via Mathematica. The user 
interface consists of a graphical Model Editor and 
Notebooks. The Model Editor is a graphical user interface 
in which models can be assembled using components from 
a number of standard libraries representing different 
physical domains or disciplines, such as electrical, 
mechanics, block-diagram and multi-body systems. 
Notebooks are interactive documents that combine 
technical computations with text, graphics, tables, code, 
and other elements. The accessible MathModelica internal 
form allows the user to extend the system with new 
functionality, as well as performing queries on the model 
representation and write scripts for automatic model 
generation. Furthermore, extensibility of syntax and 
semantics provides additional flexibility in adapting to 
unforeseen user needs. 

1 Background 
Traditionally, simulation and accompanying activities 
[Fritzson-92a] have been expressed using heterogeneous 
media and tools, with a mixture of manual and computer-
supported activities: 
• A simulation model is traditionally designed on paper 

using traditional mathematical notation. 
• Simulation programs are written in a low-level 

programming language and stored on text files. 
• Input and output data, if stored at all, are saved in 

proprietary formats needed for particular applications 
and numerical libraries. 

• Documentation is written on paper or in separate files 
that are not integrated with the program files. 

• The graphical results are printed on paper or saved 
using proprietary formats.  

When the result of the research and experiments, such as a 
scientific paper, is written, the user normally gathers 
together input data, algorithms, output data and its 

visualizations as well as notes and descriptions. One of the 
major problems in simulation development environments is 
that gathering and maintaining correct versions of all these 
components from various files and formats is difficult and 
error-prone.  

Our vision of a solution to this set of problems is to 
provide integrated computer-supported modeling and 
simulation environments that enable the user to work 
effectively and flexibly with simulations. Users would then be 
able to prepare and run simulations as well as investigate 
simulation results. Several auxiliary activities accompany 
simulation experiments: requirements are specified, models are 
designed, documentation is associated with appropriate places 
in the models, input and output data as well as possible 
constraints on such data are documented and stored together 
with the simulation model. The user should be able to 
reproduce experimental results. Therefore input data and parts 
of output data as well as the experimenter's notes should be 
stored for future analysis. 

1.1 Integrated Interactive Programming 
Environments 

An integrated interactive modeling and simulation 
environment is a special case of programming environments 
with applications in modeling and simulation. Thus, it should 
fulfill the requirements both from general integrated 
environments and from the application area of modeling and 
simulation mentioned in the previous section. 

The main idea of an integrated programming environment 
in general is that a number of programming support functions 
should be available within the same tool in a well-integrated 
way. These means that the functions should operate on the 
same data and program representations, exchange information 
when necessary, resulting in an environment that is both 
powerful and easy to use. An environment is interactive and 
incremental if it gives quick feedback, e.g. without 
recomputing everything from scratch, and maintains a dialogue 
with the user, including preserving the state of previous 
interactions with the user. Interactive environments are 
typically both more productive and more fun to use.  

There are many things that one wants a programming 
environment to do for the programmer, particularly if it is 
interactive. What functionality should be included? 
Comprehensive software development environments are 



expected to provide support for the major development 
phases, such as: 
• requirements analysis, 
• design, 
• implementation, 
• maintenance. 

A programming environment can be somewhat more 
restrictive and need not necessarily support early phases 
such as requirements analysis, but it is an advantage if such 
facilities are also included. The main point is to provide as 
much computer support as possible for different aspects of 
software development, to free the developer from mundane 
tasks so that more time and effort can be spent on the 
essential issues. The following is a partial list of integrated 
programming environment facilities, some of which are 
already mentioned in [Sandewall-78], that should be 
provided for the programmer: 
• Administration and configuration management of 

program modules and classes, and different versions 
of these. 

• Administration and maintenance of test examples and 
their correct results. 

• Administration and maintenance of formal or informal 
documentation of program parts, and automatic 
generation of documentation from programs. 

• Support for a given programming methodology, e.g. 
top-down or bottom-up. For example, if a top-down 
approach should be encouraged, it is natural for the 
interactive environment to maintain successive 
composition steps and mutual references between 
those. 

• Support for the interactive session. For example, 
previous interactions should be saved in an 
appropriate way so that the user can refer to previous 
commands or results, go back and edit those, and 
possibly re-execute. 

• Enhanced editing support, performed by an editor that 
knows about the syntactic structure of the language. It 
is an advantage if the system allows editing of the 
program in different views. For example, editing of 
the overall system structure can be done in the 
graphical view, whereas editing of detailed properties 
can be done in the textual view. 

• Cross-referencing and query facilities, to help the user 
understand interdependences between parts of large 
systems. 

• Flexibility and extensibility, e.g. mechanisms to 
extend the syntax and semantics of the programming 
language representation and the functionality built into 
the environment.  

• Accessible internal representation of programs. This is 
often a prerequisite to the extensibility requirement. 
An accessible internal representation means that there 
is a well-defined representation of programs that are 
represented in data structures of the programming 
language itself, so that user-written programs may 
inspect the structure and generate new programs. This 
property is also known as the principle of program-
data equivalence. 

 

1.2 Vision of Integrated Interactive 
Environment for Modeling and 
Simulation. 

Our vision for the MathModelica integrated interactive 
environment is to fulfill essentially all the requirements for 
general integrated interactive environments combined with the 
specific needs for modeling and simulation environments, e.g.: 
• Specification of requirements, expressed as 

documentation and/or mathematics; 
• Design of the mathematical model; 
• symbolic transformations of the mathematical model; 
• A uniform general language for model design, 

mathematics, and transformations; 
• Automatic generation of efficient simulation code; 
• Execution of simulations; 
• Evaluation and documentation of numerical experiments; 
• Graphical presentation. 

The design and vision of MathModelica is to a large extent 
based on our earlier experience in research and development of 
integrated incremental programming environments, e.g. the 
DICE system [Fritzson-83] and the ObjectMath environment 
[Fritzson-92b,Fritzson-95], and many years of intensive use of 
advanced integrated interactive environments such as the 
InterLisp system [Sandewall-78], [Teitelman-69,Teitelman-
74], and Mathematica [Wolfram-88,Wolfram-97]. The 
InterLisp system was actually one of the first really powerful 
integrated environments, and still beats most current 
programming environments in terms of powerful facilities 
available to the programmer. It was also the first environment 
that used graphical window systems in an effective way 
[Teitelman77], e.g. before the Smalltalk environment 
[Goldberg 89] and the Macintosh window system appeared.  

Mathematica is a more recently developed integrated 
interactive programming environment with many similarities 
to InterLisp, containing comprehensive programming and 
documentation facilities, accessible intermediate representation 
with program-data equivalence, graphics, and support for 
mathematics and computer algebra. Mathematica is more 
developed than InterLisp in several areas, e.g. syntax, 
documentation, and pattern-matching, but less developed in 
programming support facilities. 

1.3 Mathematica and Modelica 
It turns out that the Mathematica is an integrated programming 
environment that fulfils many of our requirements. However, it 
lacks object-oriented modeling and structuring facilities as 
well as generation of efficient simulation code needed for 
effective modeling and simulation of large systems. These 
modeling and simulation facilities are provided by the object-
oriented modeling language Modelica [MA-02a,MA-02b], 
[Tiller-01], [Elmqvist-99], [Fritzson-98]. 

Our solution to the problem of a comprehensive modeling 
and simulation environment is to combine Mathematica and 
Modelica into an integrated interactive environment called 
MathModelica. This environment provides an internal 
representation of Modelica that builds on and extends the 
standard Mathematica representation, which makes it a well 
integrated with the rest of the Mathematica system. 

The realization of the general goal of a uniform general 
language for model design, mathematics, and symbolic 
transformations is based on an integration of the two languages 
Mathematica and Modelica. Mathematica provides 
representation of mathematics and facilities for programming 
symbolic transformations, whereas Modelica provides 



language elements and structuring facilities for object-
oriented component based modeling, including a strong 
type system for efficient code and engineering safety. 
However, this language integration is not yet realized to its 
full potential in the current release of MathModelica, even 
though the current level of integration provides many 
impressive capabilities. 

The current MathModelica system builds on 
experience from the design of the ObjectMath [Fritzson-
92b,Fritzson-95] modeling language and environment, 
early prototypes [Fritzson-98b], [Jirstrand-99], as well as 
on results from object-oriented modeling languages and 
systems such as Dymola [Elmqvist-78,Elmqvist-96] and 
Omola [Mattsson-93], [Andersson-94], which together 
with ObjectMath and a few other object-oriented modeling 
languages, have provided the basis for  the design of 
Modelica. 

ObjectMath was originally designed as an object-
oriented extension of Mathematica augmented with 
efficient code generation and a graphic class browser. The 
ObjectMath effort was initiated 1989 and concluded in the 
fall of 1996 when the Modelica Design Group was started, 
later renamed to Modelica Association. At that time, 
instead of developing a fifth version of ObjectMath, we 
decided to join forces with the originators of a number of 
other object-oriented mathematical modeling languages in 
creating the Modelica language, with the ambition of 
eventually making it an international standard. In many 
ways the MathModelica product can be seen as a logical 
successor to the ObjectMath research prototype. 

2 The MathModelica Integrated 
Interactive Environment. 

The MathModelica system consists of three major 
subsystems that are used during different phases of the 
modeling and simulation process, as depicted in Figure1 
below: 
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Figure 1. The MathModelica system architecture. 

These subsystems are the following: 
• The graphic Model Editor used for design of models 

from library components. 
• The interactive Notebook facility, for literate 

programming, documentation, running simulations, 
scripting, graphics, and symbolic mathematics with 
Mathematica. 

• The Simulation center, for specifying parameters, 
running simulations and plotting curves. 

Additionally, MathModelica is loosely coupled to two 
optional subsystems for 3D graphics visualization and 
automatic translation of CAD models to Modelica. [Bunus-
00], [Engelson-99]. [Engelson-00]. In order to provide the 
best possible facilities available on the market for the user, 
MathModelica integrates and extends several professional 
software products that are included in the three subsystems. 
For example, the model editor is a customization and 
extension of the diagram and visualization tool Visio 
[Visio] from Microsoft, the simulation center includes 

simulation algorithms from Dynasim [Elmqvist-96], and the 
Notebook facility includes the technical computing system 
Mathematica [Wolfram-97] from Wolfram Research. 

A key aspect of MathModelica is that the modeling and 
simulation is done within an environment that also provides a 
variety of technical computations. This can be utilized both in 
a preprocessing stage in the development of models for 
subsystems as well as for postprocessing of simulation results 
such as signal processing and further analysis of simulated 
data. 

2.1 Graphic Model Editor. 
The MathModelica Model Editor is a graphical user interface 
for model diagram construction by "drag-and-drop" of model 
classes from the Modelica Standard Library or from user 
defined component libraries, visually represented as graphic 
icons in the editor. A screen shot of the Model Editor is shown 
in Figure 2. In the left part of the window three library 
packages have been opened, visually represented as 
overlapping windows containing graphic icons. The user can 
drag models from these windows (called stencils in Visio 
terminology) and drop them on the drawing area in the middle 
of the tool.  

The Model Editor is an extension of the Microsoft Visio 
software for diagram design and schematics. This means that 
the user has access not only to a well developed and user 
friendly graph drawing application, but also to a vast array of 
professional design features to make graphical representations 
of developed models visually attractive. Since Modelica 
classes often represent physical objects it is of great value to 
have a sufficiently rich graphical description of these classes. 

The Model Editor can be viewed as a user interface for 
graphical programming in Modelica. Its basic functionality 
consists of selection of components from libraries, connection 
of components in model diagrams, and entering parameter 
values for different components 

For large and complex models it is important to be able to 
intuitively navigate quickly through component hierarchies. 
The Model Editor supports such navigation in several ways. A 
model diagram can be browsed and zoomed. The Model Editor 
is well integrated with Notebooks. A model diagram stored in a 
notebook is a tree-structured graphical representation of the 
Modelica code of the model, which can be converted into 
textual form by a command. 

2.2 Simulation Center. 
The simulation center is a subsystem for running simulations, 
setting initial values and model parameters, plot results, etc. 
These facilities are accessible via a graphic user interface 
accessible through the simulation window, e.g. see Figure 3 
below. However, remember that it is also possible to run 
simulations from the textual user interface available in the 
notebooks. The simulation window consists of five areas or 
subwindows with different functionality: 
• The uppermost part of the simulation window is a control 

panel for starting and running simulations. It contains two 
fields for setting start and stop time for simulation, 
followed by Build, Run Simulation, Plot, 
and Stop buttons. 

• The left subwindow in the middle section shows a tree-
structure view of the model selected and compiled for 
simulation, including all its submodels and variables. 
Here, variables can be selected for plotting.  

• The center subwindow is used for diagrams of plotted 
variables.



 
Figure 2. The Graphic Model Editor showing an electrical motor with the Inertia parameter J modified.

• The right subwindow in the middle section contains 
the legend for the plotted diagram, i.e. the names of 
the plotted variables. 

• The subwindow at the bottom is divided into three 
sections: Parameters, Variables, and 
Messages, of which only one at a time is visible. 
The Parameters section, shown in Figure 3, 
allows changing parameter values, whereas the 
Variables section allows modifying intial (start) 
values, and the Message section to view possible 
messages from the simulation process. 

If a model parameter or initial value has been changed, it 
is possible to rerun the simulation without rebuilding the 
executable code if no parameter influencing the equation 
structure has been changed. Such parameters are 
sometimes called structural parameters. 

2.3 Interactive Notebooks with Literate 
Programming. 

In addition to purely graphical programming of models using 
the Model Editor MathModelica also provides a text based 
programming environment for building textual models using 
Modelica. This is done using Notebooks, which is documents 
that may contain technical computations, text, and graphics. 
Hence, these documents are suitable to be used both as 
simulation scripting tools, model documentation and storage, 
model analysis and control system design, etc. In fact, this 
article is written as such a notebook and in the live version the 
examples can be run interactively. A sample notebooks is 
shown in Figure 4. 

 
Figure 3. The Simulate window with plots of the signals Inertia1.flange_a.tau and Inertia1.w . 



 

 
Figure 4. Examples of MathModelica notebooks.. 

The MathModelica Notebook facility is actually an 
interactive WYSIWYG (What-You-See-Is-What-You-Get) 
realization of Literate Programming, a form of programming 
where programs are integrated with documentation in the 
same document, originally proposed in [Knuth-84]. A 
noninteractive prototype implementations of Literate 
Programming in combination with the document processing 
system LaTex has been realized [Knuth-94]. However, 
MathModelica is one of very few interactive WYSIWYG 
systems so far realized for Literate Programming, and to our 
knowledge the only one yet for Literate Programming in 
Modeling. 

Integrating Mathematica with MathModelica does not 
only give access to the Notebook interface but also to 
thousands of available functions and many application 
packages, as well as the ability of communicating with other 
programs and import and export of different data formats. 
These capabilities make MathModelica more of a complete 
workbench for the innovative engineer than just a modeling 
and simulation tool. Once a model has been developed there 
is often a need for further analysis such as linearization, 
sensitivity analysis, transfer functions computations, control 
system design, parametric studies, Monte Carlo simulations, 
etc. 

In fact, the combination of the ability of making user 
defined libraries of reusable components in Modelica and the 
Notebook concept of living technical documents provides an 
integrated approach to model and documentation 
management for the evolution of models of large systems 

2.3.1 Tree Structured Hierarchical Document 
Representation. 

Traditional documents, e.g. books and reports, essentially 
always have a hierarchical structure. They are divided into 
sections, subsections, paragraphs, etc. Both the document 
itself and its sections usually have headings as labels for 
easier navigation. This kind of structure is also reflected in 
MathModelica notebooks. Every notebook corresponds to 
one document (one file) and contains a tree structure of cells. 
A cell can have different kinds of contents, and can even 

contain other cells. The notebook hierarchy of cells thus 
reflects the hierarchy of sections and subsections in a 
traditional document. 

 
Figure 5. The package Mypackage in a notebook 

In the MathModelica system, Modelica packages including 
documentation and test cases are primarily stored as 
notebooks, e.g. as in Figure 4. Those cells that contain 
Modelica model classes intended to be used from other 
models, e.g. library components or certain application 
models, should be marked as exports cells. This means that 
when the notebook is saved, such cells are automatically 
exported into a Modelica package file in the standard 
Modelica textual representation (.mo file) that can be 
processed by any Modelica compiler and imported into other 
models. For example, when saving the notebook 
MyPackage.nb of Figure 5, a file MyPackage.mo 
would be created with the following contents: 

package MyPackage
model class3
...
end class3;
model class2 ...
model class1 ...
package MySubPackage

model class1
...
end class1;

end MySubPackage;
end MyPackage;

2.3.2 Program Cells, Documentation Cells, and 
Graphic Cells. 

A notebook cell can include other cells and/or arbitrary text 
or graphics. In particular a cell can include a code fragment 
or a graph with computational results. 

The contents of cells can for example be one of the 
following forms: 
• Model classes and parts of models, i.e. formal 

descriptions that can be used for verification, 
compilation and execution of simulation models. 

• Mathematical formulas in the traditional mathematical 
two dimensional syntax. 

• Text/documentation, e.g. used as comments to 
executable formal model specifications. 



• Dialogue forms for specification and modification of 
input data. 

• Result tables. The results can be automatically 
represented in (live) tables, which can even be 
automatically updated after recomputation. 

• Graphical result representation, e.g. with 2D vector and 
raster graphics as well as 3D vector and surface 
graphics. 

• 2D structure graphs, that for example are used for 
various model structure visualizations such as 
connection diagrams and data structure diagrams. 

A number of examples of these different forms of cells are 
available throughout this paper.  

2.3.3 Mathematics with 2D-syntax, Greek 
letters, and Equations 

MathModelica uses the syntactic facilities of Mathematica to 
allow writing formulas in the standard mathematical notation 
well-known, e.g. from textbooks in mathematics and physics. 
Certain parts of the Mathematica language syntax are 
however a bit unusual compared to many common 
programming languages. The reason for this design choice is 
to make it possible to use traditional mathematical syntax. 
The following three syntactic features are unusual: 
• Implied multiplication is allowed, i.e. a space between 

two expressions, e.g. x and f(x), means 
multiplication just as in mathematics. A multiplication 
operator * can be used if desired, but is optional. 

• Square brackets are used around the arguments at 
function calls. Round parentheses are only used for 
grouping of expressions. The exception is 
Traditional Form, see below. 

• Support for two-dimensional mathematical syntactic 
notation such as integrals, division bars, square roots, 
matrices, etc. 

The reason for the unusual choice of square brackets around 
function arguments is that the implied  multiplication makes 
the interpretation of round parenthesis ambiguous. For 
example, f(x+1) can be interpreted either as a function call 
to f with the argument x+1, or f multiplied by (x+1).
The integral in the cell below contains examples of both 
implied multiplication and two-dimensional integral syntax. 
The cell style is called MathModelica input form (called 
standard form in Mathematica) and is used for mathematics 
and Modelica code in Mathematica syntax: ‡ x f@xD

1 + x2 + x3
 Åx

 
There is also a purely textual input form using a linear 
sequence of characters. This is for example used for entering 
Modelica models in the standard Modelica syntax, and is 
currently the only cell format in MathModelica that can 
interpret standard Modelica syntax. However, all 
mathematics can also be represented in this syntax. The 
above example in this textual format appears as follows: 

Integrate[(x*f[x])/(1 + x^2 + x^3), x]

Finally, there is also a cell format called traditionalform 
which is very close to traditional mathematical syntax, 
avoiding the square brackets. The above-mentioned syntactic 
ambiguities can be avoided if the formula is first entered 
using one of the above input forms, and then converted to 
traditional form. 

‡ x f HxL
x3 + x2 + 1

 ‚ x
 

The MathModelica environment allows easy conversion 
between these forms using keyboard or menu commands. 
Below we show a small example of a Modelica model class 
SimpleDAE represented in the Mathematica style syntax of 
Modelica that allows greek characters and two dimensional 
syntax. The apostrophe (') is used for the derivatives just as 
in traditional mathematics, corresponding to the Modelica 
der() operator. 

ModelASimpleDAE,
Real β1;

Real x2;

EquationA
β1'

1 + Hβ1'L2 +
sin@x2'D
1 + Hβ1'L2 + β1 x2 + β1 m 1;

sin@β1'D −
x2'

1 + Hβ1'L2 − 2 β1 x2 + β1 m 0;EE  
We simulate the model for ten seconds by giving a 
Simulate command: 

Simulate[SimpleDAE,{t,0,10}];

We use the command PlotSimulation for plotting the 
solutions for the two state variables, which of course both are 
functions of time, here denoted by t in Mathematica syntax: 

PlotSimulation@8β1@tD, x2@tD<, 8t, 0, 10<D;  
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2.4 Environment and Language 
Extensibility 

Programming environments need to be flexible to adapt to 
changing user needs. Without flexibility, a programming tool 
will become too hard to use for practical needs, and stopped 
to be used. Adaptability and flexibility is especially 
important for integrated environments, since they need to 
interact with a number of external tools and data formats, 
contain many different functions, and usually need to add 
new ones. 

There are two major ways to extend a programming 
environment 
• Extension of functionality, e.g. through user-defined 

commands, user-extensible menus, and a scripting 
languages for programmability. 

• Extension of language and notation, e.g. by facilities to 
add new syntactic constructs and new notation, or 
extend the meaning of existing ones. 



Mathematica has been designed from the start to be an 
inherently extensible environment, which is what is used in 
MathModelica. Almost anything can be redefined, extended, 
or added. 

2.4.1 Scripting for Extension of Functionality 
An interactive scripting language is a common way of 
providing extensibility of flexibility in functionality. The 
MathModelica environment primarily uses the Mathematica 
language and its interpreter as a scripting language, as can be 
seen from a number of examples in this paper. Another 
possibility would be to use the Modelica language itself as a 
scripting language, e.g. by providing an interpreter for the 
algorithmic and expression parts of the language. This can 
easily be realized in MathModelica since the intermediate 
form has been designed to be compatible with Mathematica, 
and we already have Modelica input cells: just use Modelica 
input cells also for commands, which are sent to the 
Mathematica interpreter instead of the simulator. 

2.4.2 Extensible Syntax and Semantics 
As was already apparent in the section on mathematical 
syntax, MathModelica provides a Mathematica-like input 
syntax for Modelica in addition to the usual Modelica syntax. 
One reason is to give support for mathematical notation, as 
explained previously. Another reason is to provide user 
extensible syntax.  

This is easy since syntactic constructs in Mathematica 
apart from the operators use a simple prefix syntax: a 
keyword followed by square brackets surrounding the 
contents of the construct, i.e. the same syntax as for function 
calls. If there is a need to add a new construct no changes are 
needed in the parser, and no reserved words need to be 
added. Just define a Mathematica function to do the desired 
symbolic or numeric processing. 

The other major class of syntactic constructs are 
operators. There are special facilities in Mathematica to add 
new operators by defining their priority, operator syntax, and 
internal representation. It is also possible to extend the 
meaning of existing operators like +, *, -, etc. 

2.4.3 Mathematica vs Modelica syntax. 
In order to to show the difference between the standard 
Modelica textual syntax and the extensible Mathematica-like 
syntax, we first show a simple model in a Modelica-style 
input cell: 

model secondordersystem
Real x(start=0);
Real xdot(start=0);
parameter Real a=1;

equation
xdot=der(x);
der(xdot)+a*der(x)+x=1;

end secondordersystem;

The same model in the Mathematica-like Modelica 
syntax appears below. Note the use of the simple prefix 
syntax: a keyword followed by square brackets surrounding 
the contents of the construct. All reserved words, predefined 
functions, and types in MathModelica start with an upper-
case letter just as in Mathematica. Equation equality is 
represented by the == operators since = is the assignment 
operator in Mathematica. The derivative operator is the 
mathematical apostrophe (') notation rather than der(). The 

semicolon (;) is a sequencing operator to group more than 
one declaration, statement, or expression together. 

Model[secondordersystem,
Real x[{Start == 0}];
Real xdot[{Start == 0}];
Parameter Real a == 1;

Equation[
xdot == x';
xdot' + a*x' + x == 1

]
]

3 Application Examples 
This section gives a number of application examples of the 
use of the Mathmodelica environment. The intent is to 
demonstrate the power of integration and interactivity - the 
interplay between the object-oriented modeling and 
simulation capabilities of Modelica integrated with the 
powerful scripting facilities of Mathematica within 
MathModelica. This includes the representation of 
simulation results as 1D and 2D interpolating functions of 
time being combined with arithmetic operations and 
functions in expressions, advanced plotting facilities, and 
computational capabilities such as design optimization, 
fourier analysis, and solution of time-dependent PDEs. For 
the PDEs see the long version of the paper. 

3.1 Advanced Plotting and Interpolating 
Functions 

This section illustrates the flexible usage of simulation 
results represented as interpolating functions, both for further 
computations that may include simulation results in 
expressions, and for both simple and advanced plotting. The 
simple bouncing ball model below from [MA-02a] is used in 
the simulation and plotting examples. 

3.1.1 Interpolating Function Representation of 
Simulation Results 

The following simulation of the above BouncingBall 
model is done for a short time period using very few points: 

res1=Simulate[BouncingBall,{t,0,0.5},
NumberOfIntervals->10]

<SimulationData: BouncingBall: 2002-2-26
10:48:10 : {0., 0.5} : 15 data points : 1
events : 7 variables>
{c, g, height, radius, velocity, height'
velocity'}

The results returned by Simulate are represented by an 
access descriptor or handle. Some of the contents of such 
descriptor is shown as the result of the above call to 
Simulate. At this stage the simulation data is stored on 
disk and referenced by res1 which acts as a handle to the 
simulation data. When one of the variables from the last 
simulation is referenced, e.g. height, radius, etc., the 
data for that variable is loaded into the system in an load-by-
need manner, and represented as an 
InterPolatingFunction. 



3.1.2 PlotSimulation 
First we simulate the bouncing ball for eight seconds and 
store the results in the variable res1 for subsequent use in 
the plotting examples. 

res1=Simulate[BouncingBall,{t,0,8}];

The command PlotSimulation is used for simple 
standard plots. If nothing else is specified, i.e. by the optional 
SimulationResult parameter, the command refers to 
the results from the last simulation.  

Plotting several arbitrary functions can be done using a list of 
function expressions instead of a single expression: 

PlotSimulationA9height@tD +
è
3,

Abs@velocity@tDD=, 8t, 0, 8<E;  
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Figure 6. Plotting arbitrary functions in the same diagram. 

3.1.3 ParametricPlotSimulation 
Parametric plots can be done using 
 ParametricPlotSimulation. 

ParametricPlotSimulation@8height@tD, velocity@tD<,8t, 0, 8<D;  
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Figure 7. A parametric plot. 

3.1.4 ParametricPlotSimulation3D 
In this example we are going to use the Rossler attractor to 
show the ParametricPlotSimula-tion3D command. 
The Rossler attractor is named after Otto Rossler from his 
work in chemical kinetics. The system is described by three 
coupled non-linear differential equations: 

zx
dt
dz

yx
dt
dy

xy
dt
dx

)( γβ

α

−+=

+=

−−=

 

Here βα, and γ are constants. The attractor never forms 
limit circles nor does it ever reach a steady state. The model 
is shown in Mathematica syntax, enabling the use of greek 
characters: 

Model@Rossler, "Rossler attractor",

Parameter Real α m 0.2;

Parameter Real β m 0.2;

Parameter Real γ m 8;

Real x@8Start m 1<D;
Real y@8Start m 3<D;
Real z@8Start m 0<D;
Equation@
x' m −y − z;

y' m x + α y;

z' m β + x z − γ zDD  
The model is simulated using different initial values. 
Changing these can considerably influence the appearance of 
the attractor. 

Simulate@Rossler, 8t, 0, 40<,
InitialValues → 8x m 2, y m 2.5, z m 0<,
NumberOfIntervals → 1000D;  

The Rossler attractor is easy to plot using 
ParametricPlotSimulation3D: 

ParametricPlotSimulation3D@8x@tD, y@tD, z@tD<,8t, 0, 40<,
AxesLabel → 8X, Y, Z<D;  
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Figure 8. 3-D parametric plot of curve with many data points 
from the Rossler attractor simulation. 

3.2 Design Optimization 
This is an example of how the powerful scripting language of 
MathModelica can be utilized to solve non-trivial 
optimization problems that contain dynamic simulations. 



First we will define a Modelica model of a linear actuator 
with spring damped stopping and then a first order system. 
Using MathModelica scripting we will then find a damping 
for the translational spring-damper such that the step 
response is as "close" as possible to the step response from a 
first order system. 

Consider the following model of a linear actuator with a 
spring damped connection to an anchoring point: 

 
SlidingMass1 SpringDamper1 Fixed1 IdealGearR2T1 

Inertia1 
SpringDamper2 
Inertia2 

tau 
Torque1 Step1  

Figure 9. A LinearActuator model containing a spring 
damped connection to an achoring point. 

Assume that we have some freedom in choosing the damping 
in the translational spring-damper. A number of simulation 
runs show what kind of behavior we have for different values 
of the dampingparameter d. The Mathematica Table[] 
function is used in Simulate[] to collect the results into 
an array res. This array then contains the results from 
simulations of LinearActuator with a damping of 2 to 
14 with a step size of 2, i.e. seven simulations are performed. 

res = Table@Simulate@LinearActuator,8t, 0, 4<,
ParameterValues →8SpringDamper1.d m s<D,8s, 2, 15, 2<D;  

PlotSimulation@SlidingMass1.s@tD,8t, 0, 4<,
SimulationResult → res,

Legend → FalseD;  
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Figure 10. Plots of step responses from seven simulations of 
the linear actuator with different camping coefficients. 

Now assume that we would like to choose the damping d so 
that the resulting system behaves as closely as possible to a 
certain first order system response.,  

We simulate for different values of d and interpolate the 
result 

fpre = Interpolation@res2D;  
Plot@fpre@aD, 8a, 2, 10<D;  
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Figure 11. Plot of the error function for finding a minimum 
deviation from the desired step response. 

The minimizing value of a can be computed using 
FindMinimum: 
FindMinimum@fpre@sD, 8s, 4<D  80.0000832564 , 8s → 5.28642 <<  

3.3 Fourier Analysis of Simulation Data 
Consider a weak axis excited by a torque pulse train. The 
axis is modeled by three segments joined by two torsion 
springs. The following diagram is imported from the 
MathModelica Model Editor where the model was defined. 

 

 
tau 

Torque1 Inertia1 Spring1 Inertia2 Spring2 Inertia3Pulse1  
Figure 12. A WeakAxis model excited by a torque pulse 
train. 

We simulate the model during 200 seconds: 

Simulate@WeakAxis , 8t, 0, 200<D;  
The plot of the angular velocity of the rightmost axis 
segment appears as follows: 

PlotSimulation@8Inertia3.w@tD,
Torque1.τ@tD<, 8t, 0, 200<D;  
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Figure 13. Plot of the angular velocity of the rightmost axis 
segment of the WeakAxis model. 

Now, let us sample the interpolated function Inertia3.w 
using a sample frequency of 4Hz, and put the result into an 
array using the Mathematica Table array constructor: 



data1 = Table@Inertia3.w@tD,8t, 0, 200, .25<D;  
Compute the absolute values of the discrete Fourier 
transform of data1 with the mean removed: 

fdata1 = Abs@Fourier@data1 −

MeanValue@data1DDD;  
Plot the 80 first points of the data. 

ListPlot@fdata1@@Range@80DDD,
PlotStyle → 8Red, PointSize@0.015D<D;  
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Figure 14. Plot of the data points of the Fourier transformed 
angular velocity. 

It can be shown that the frequencies of the eigenmodes of the 
system is given by the imaginary parts of the eigenvalues of 
the following matrix (c1 and c2 are the spring constants) 

1

2 π
 EigenvaluesAik

0 1 0 0 0 0
−c1 0 −c1 0 0 0
0 0 0 1 0 0

−c1 0 −c1 − c2 0 −c2 0
0 0 0 0 0 1
0 0 −c2 0 −c2 0

y
{ ê.

8c1 → 0.7, c2 → 1<E êê Chop  80.256077 Ç, −0.256077 Ç,

0.143343 Ç, −0.143343 Ç, 0, 0<  
These values, 0.256077, 0.143344, fit very well with the 
peaks in the above diagram. 

4 Using the Symbolic Internal 
Representation 

In order to satisfy the requirement of a well integrated 
environment and language, the new MathModelica internal 
representation was designed with a Mathematica compatible 
version of the syntax. Note that the Mathematica version of 
the syntax has the same internal abstract syntax tree 
representation and the same semantics as Modelica, but 
different concrete syntax. Which syntax to use, the standard 
Modelica textual syntax, or the Mathematica-style syntax for 
Modelica is however largely a matter of taste.  

The fact that the Modelica abstract syntax tree 
representation is compatible with the Mathematica standard 
representation means that a number of symbolic operations 
such as simplifying model equations, performing Laplace 
transformations, and performing queries on code as well as 
automatically constructing new code is available to the user. 
The capability of automatically generating new code is 
especially useful in the area of model diagnosis, where there 
is often a need for generating a number of erroneous models 
for diagnosis based on corresponding fault scenarios. 

4.1 Mathematica Compatible Internal Form 
An inherent property of Mathematica is that models or code 
is normally not written as free formatted text. Instead, 
Mathematica expressions (also called terms) are used, 
internally represented as abstract syntax trees. These can be 
conveniently written in a tree-like prefix form, or entered 
using standard mathematical notation. Every term is a 
number, an identifier, or a form such as: 

[ ]ntermtermhead ,,1 K  

For example, an expression: a+b is represented as 
Plus[a,b] in prefix form, also called FullForm
syntax. A while loop is represented as the term 
While[test,body]. 

In order to satisfy the requirement of a well integrated 
environment, we designed the new MathModelica internal 
representation with a Mathematica compatible version of the 
syntax. Note that MathModelica has the same abstract syntax 
trees and the same semantics as Modelica, but different 
concrete syntax. This means that essentially the same 
language constructs are written differently, as illustrated 
below. 

The Mathematica language syntax uses some special 
operators, see below, and arbitrary arithmetic expressions 
composed from terms. 

ntermterm ;;1 K   //sequencing operator 
{ }ntermterm ;;1 K  //array/list constructor 

21 termterm   //Implied multiplication by space  
       instead of * 

21 termterm ==  // Equation equality 

Internally the MathModelica system uses the 
MathModelicaFullForm format. This format is the 
abstract syntax of the MathModelica language where all the 
elements of the language have been defined to be easy to 
extract and compare for the functions operating on the 
MathModelica language representation, as well as achieving 
a high degree of compatibility with both Modelica and 
Mathematica. 

The following is a simple constant declaration: 

model Arr
constant Real

unitarr[2,2] = {{1,0},{0,1}}
"2D Identity";

end Arr;

This definition is stored internally in the 
MathModelicaFullForm format which can be retrieved 
by calling the function GetDefinition which returns the 
internal abstract syntax tree representation of the model: 

ff2 = GetDefinition@Arr,
Format → MathModelicaFullFormD  

The tree is wrapped into the node Hold[] to prevent 
symbolic evaluation of the model representation while we 
are manipulating it. All nodes are shown in prefix form 
excepts the array/list nodes shown as {...} instead of the 
prefix form List[...] for arrays. 



Hold@SetType@Arr,
TYPE@Model@Declaration@TYPE@Real, 82, 2<, 8Constant<, 8<D,

VariableComponent@unitarr,
ValueBinding@881, 0<, 80, 1<<D,8<, 8<, NullDD;
"2D Identity"D, 8<, 8<, 8<D, 8<, Null, NullDD  

A declaration of a variable such as unitarr is represented 
by the Declaration node in the abstract syntax. This 
node has two arguments: the type and the variable instance. 
The type is represented by the TYPE node which stores the 
name, array dimension, type attributes (Constant) and 
type modifications (which is empty in this case). The 
instance argument contains a VariableComponent 
including the name of the variable, the initialization 
(ValueBinding), at the end the comment string that is 
associated with the variable. 

There are several goals behind the design of the 
MathModelicaFullForm format, which are fulfilled in 
the current system: 

• Abstract syntax. The format systematically sorts out the 
different constructs in the language making the 
navigation of types and code easier.  

• Preserving the syntactic structure of both Modelica and 
Mathematica code. This means that the mapping from 
Modelica to MathModelica-FullForm format 
should be injective, e.g. the source code can be recreated 
from the intermediate form, and that transformations 
from Modelica via MathModelicaFullForm into 
Mathematica style Modelica form should be reversible.  

• Explicit semantic structure. The format has reserved 
fixed attribute positions for certain kinds of semantic 
information, to simplify semantic analysis and queries. 
There is also a canonical subset of the format which is 
even simpler for semantic analysis, but does not always 
recreate exactly the same source code since the same 
declaration often can be stated in several ways. 

• Symbol table and type representation format. The 
MathModelicaFullForm format should be possible 
to use in the symbol table, e.g. to represent types. Types 
are represented by anonymous type expressions such as 
the TYPE node in the above example. Anonymous 
means that the type representation is separate from the 
entity having the type. 

• Internal standard.  
       The MathModelicaFullForm format should be 

used by all the components in the MathModelica 
system. 

4.2 Extracting and Simplifying Model 
Equations 

This section will illustrate a few user-accessible symbolic 
operations on equations, such as obtaining the system of 
equations and the set of variables from a Modelica model, 
and symbolically simplifying this system of equations with 
the intention of performing symbolic Laplace transformation. 

4.2.1 Definition and Simulation of Model1 
The example class Model1 has been drawn in the graphic 
model editor and imported into the notebook below: 

 
R=%R 

Resistor1 L=%L

Inductor1

Ground1 

k=%k 
EMF1 

%na
me=
%V

ConstantVoltage1
c=%c 

Spring1
J=%J 

Inertia1 J=%J 
Inertia2

Fi
gure 15. Connection diagram of Model1. 

We simulate the model, smooth the result, and make a plot. 

res0 = Simulate@Model1, 8t, 0, 25<,
ParameterValues → 8Resistor1.R m 0.9<D;  

res1 = SmoothInterpolation@res0D;  
The plot is parametric where we plot the Resistor1 
current against its derivative for both the original result and 
the smoothed version: 

ParametricPlotSimulation@8HResistor1.iL@tD,HResistor1.iL'@tD<, 8t, 0, 25<,
SimulationResult → 8res0, res1<D;  
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Figure 16. Parametric plots of the Resistor1 current against 
its derivative, both original and smoothed. 

4.2.2 Some Symbolic Computations 
Now, flatten Model1 and extract the model equations and 
the model variables as lists, and compute the lengths of these 
lists: 

eqn = GetFlatEquations@Model1D;  
Length@eqnD  
48 

Length@GetFlatVariables@Model1DD  
49 

There is one equation less than the number of variables. 
Therefore, add an equation for zero torque on the right flange 
to the equation system: 

eqn = Append@eqn,
Inertia2.flangeÄb.tau m 0D;  

We would like to simplify the equations by eliminating the 
connector variables before further symbolic processing. First 
obtain the connector variables from the flattened model: 



connvars = GetFlatConnectionVariables@Model1D  8Resistor1 . p . v, Resistor1 . p . i,

Resistor1.n . v, Resistor1 . n . i,

... ....,

Inertia2.flangeÄa . tau<  
Use the Eliminate function for symbolic elimination of 
some variables from the system of equations. 

eqn2 = Eliminate@eqn, connvarsD  
der@Inertia1 . phiD == Inertia1 . w &

der@Inertia1 . wD == Inertia1 . a &&

... ...

Inertia2.flangeÄb . tau == 0 &

derH−1L@EMF1 . wD == Inertia2 . phi −

Spring1.phiÄrel  

4.3 Symbolic Laplace Transformation. 
We would now like to perform a Laplace transformation of 
the symbolic equation system obtained in the previous 
section. This can be done by the application of two 

transformation rules: [ ] [ ] sbbder
s
aader →→− _,_)1( . 

Note that )1(−der is the inverse of taking a derivative, i.e. an 
integration operation. Note also that the second rule contains 
an implied multiplication. 

eq3 = eqn2 ê. 9derH−1L@a_D →
a

s
, der@b_D → s b=

 
s HInertia1 . phiL == Inertia1 . w &

s HInertia1 . wL == Inertia1 . a &&

... ...
EMF1 . w

s
== Inertia2 . phi − Spring1 . phiÄrel

 
Introduce short names for the model parameter to obtain a 
more concise symbolic notation: 

shortnames =8Resistor1 . R → R, Inductor1.L → L,

EMF1.k → k, Inertia1 . J → J1,

Spring1.c → c1, Spring1 . phiÄrel0 → 0,

Inertia2.J → J2<;  
Derive the relation between Inertia2.w and the input 
voltage 

eq4 =

Eliminate@eq3,
Complement@
GetFlatNonConnectionVariables@Model1D,8Inertia2.w<DD ê. shortnames  Hk c1 HConstantVoltage1 . VL m

k2 c1 HInertia2 . wL +

... ...

R s3 J1 J2 HInertia2 . wL +

L s4 J1 J2 HInertia2 . wLL && s ≠ 0  

The transfer function H is obtained by symbolically solving 
for Inertia2.w in the equation system eq4, and using the 
obtained solution on a form Inertia2.w -> expr to 
eliminate Inertia2.w, thus obtaining H: 

H@s_D = FirstA Inertia2.w

ConstantVoltage1 . V
ê.

Solve@eq4, Inertia2 . wDE  Hk c1LêHk2 c1 + R s c1 J1 + L s2 c1 J1 +

k2 s2 J2 + R s c1 J2 + L s2 c1 J2 +

R s3 J1 J2 + L s4 J1 J2L  

4.4 Queries and Automatic Generation of 
Models 

This example of advanced scripting shows how the easily 
accessible internal representation in the form of abstract 
syntax trees can be used for automatic generation of models. 
The CircuitTemplateFn is a function returning a 
symbolic representation of a model. This function has two 
formal pattern parameters where the second one specifies an 
internal structure. The first parameter is name_, which 
matches symbolic names. The underscore in name_ is not 
part of the parameter identifier itself, it is just a short form of 
the syntax name:_, which means that name will match 
any item.  

The second pattern parameter is the list 
{type1_,type2_,type3_}, internally containing the 
three pattern parameters type1_, type2_, type3_. 
This second parameter will therefore only match lists of 
length 3, thereby binding the pattern variables type1,
type2, and type3 to the three type names presumably 
occurring in the list at pattern matching. For example, 
matching {type1_,type2_,type3_} against the list 
{Capacitor, Conductor, Resistor} will bind 
the variable type1 to Capacitor, type2 to 
Conductor, and type3 to Resistor. 
CircuitTemplateFn@name_,8type1_, type2_, type3_<D := H

Model@name,
type1 a;

type2 b;

type3 c;

Modelica.Electrical.Analog.Basic.Ground g;

Equation@
Connect@g.p, a.pD;
Connect@a.n, b.pD;
Connect@b.p, c.pD;
Connect@b.n, g.pD;
Connect@c.n, g.pDDDL  

The aim of this exercise is to automatically generate models 
based on this template for all combinations of the types that 
extend the type OnePort in the library package 
Modelica.Electrical.Analog.Basic. 

First we need to extract all the types that extends the 
type OnePort in the library package 
Modelica.Electrical.Analog.Basic. This is done 
by performing a query operation on the internal form using 
the Select function which has two arguments: the list to be 
searched, and a predicate function returning true or false. 



Only the elements for which the predicate is true are 
returned. In this case the query is performed on the list of 
model names in the package 
Modelica.Electrical.Analog.Basic. This list is 
returned by the function ListModelNames. 

First we call GetDefinition below to load the 
Modelica.Eletrical.Analog.Basic package into 
the internal symbol table: 
GetDefinition@Modelica.Electrical.Analog.BasicD;  
Then we perform the actual query: 

types=Select[
ListModelNames[
Modelica.Electrical.Analog.Basic

],
Function[

modelName,
Not[

FreeQ[
GetDefinition[

modelName,
Format->MathModelicaFullForm

],
HoldPattern[

Extends[
TYPE[Modelica.Electrical.

Analog.Interfaces.
OnePort,{},{},{}

]]]]]]]8Modelica.Electrical.Analog.Basic.Inductor,
Modelica.Electrical.Analog.Basic.Capacitor,

Modelica.Electrical.Analog.Basic.Conductor,

Modelica.Electrical.Analog.Basic.Resistor<  
All 64 three-type combinations, e.g. 
{Inductor,Inductor,Inductor}, 
{Inductor,Inductor,Capacitor}, etc., their 
prefixes not shown for brevity, of these 4 types are computed 
by taking a generalized outer product of the three types lists, 
which is flattened. 

typecombinations =

Flatten@Outer@List, types, types, typesD,
2D;  

Length@typecombinationsD  
64 

 We generate a list of 64 synthetic model names by 
concatenating the string "foo" with numbers, using the 
Mathematica string concatenation operation "<>": 

names = Table@ToExpression@
"foo" <> ToString@iDD, 8i, 64<D  8 foo1, foo2, foo3, foo4, foo5, foo6,

foo7, foo8, foo9, foo10, foo11, foo12,

... ... ... ... ... ... ... ... ... ... ...

foo55, foo56, foo57, foo58, foo59, foo60,

foo61, foo62, foo63, foo64 <  
Here all 64 test models are created by the call to 
MapThread which applies CircuitTemplateFn to 
each combination. 

MapThread@CircuitTemplateFn,8names, typecombinations<D;  
We retrieve the definition one of the automatically generated 
models, foo53, and unparse it from its internal 
representation to the Modelica textual form: 
GetDefinition@foo53, Format → ModelicaFormD  
model foo53

Modelica.Electrical.Analog.
Basic.Resistor a;

Modelica.Electrical.Analog.
Basic.Capacitor b;

Modelica.Electrical.Analog.
Basic.Inductor c;

Modelica.Electrical.Analog.
Basic.Ground g;

equation
connect(g.p,a.p);
connect(a.n,b.p);
connect(b.p,c.p);
connect(b.n,g.p);
connect(c.n,g.p);

end foo53;

5 Conclusion 
This paper has presented a number of important issues 
concerning integrated interactive programming 
environments, especially with respect to the MathModelica 
environment for object-oriented modeling and simulation. 
We have especially emphasized environment properties such 
as integration and extensibility.  

One of the current strong trends in software systems is 
the gradual unification of documents and software. 
Everything will eventually be integrated into a uniform, 
perhaps XML-based, representation. The integration of 
documents, model code, graphics, etc. in the MathModelica 
environment is one strong example of this trend.  

Another important aspect is extensibility. Experience 
has shown that tools with built-in extensibility mechanisms 
can cope with unforeseen user needs to a great extent, and 
therefore often have a substantially longer effective usage 
lifetime.  

The MathModelica system is currently one of the best 
existing examples of advanced integrated extensible 
environments. However, as most  systems, it is not perfect. 
There are still a number of possible future improvements in 
the system including enhanced programmability and 
extensibility. 
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