
MathModelica
 An Extensible Modeling and Simulation Environment
with Integrated Graphics and Literate Programming

(Abridged Version∗)

Peter Fritzson1, Johan Gunnarsson2, Mats Jirstrand2
1) PELAB, Programming Environment Laboratory, Department of Computer and Information

Science, Linköping University, SE-581 83, Linköping, Sweden
petfr@ida.liu.se

2) MathCore AB, Wallenbergs gata 4, SE-583 35 Linköping, Sweden
{johan,mats}@mathcore.se

∗ The complete version of the paper can be found at http://www.mathcore.com and http://www.ida.liu.se/~pelab/modelica/

Abstract
MathModelica is an integrated interactive development
environment for advanced system modeling and simulation.
The environment integrates Modelica-based modeling and
simulation with graphic design, advanced scripting
facilities, integration of program code, test cases, graphics,
documentation, mathematical type setting, and symbolic
formula manipulation provided via Mathematica. The user
interface consists of a graphical Model Editor and
Notebooks. The Model Editor is a graphical user interface
in which models can be assembled using components from
a number of standard libraries representing different
physical domains or disciplines, such as electrical,
mechanics, block-diagram and multi-body systems.
Notebooks are interactive documents that combine
technical computations with text, graphics, tables, code,
and other elements. The accessible MathModelica internal
form allows the user to extend the system with new
functionality, as well as performing queries on the model
representation and write scripts for automatic model
generation. Furthermore, extensibility of syntax and
semantics provides additional flexibility in adapting to
unforeseen user needs.

1 Background
Traditionally, simulation and accompanying activities
[Fritzson-92a] have been expressed using heterogeneous
media and tools, with a mixture of manual and computer-
supported activities:
• A simulation model is traditionally designed on paper

using traditional mathematical notation.
• Simulation programs are written in a low-level

programming language and stored on text files.
• Input and output data, if stored at all, are saved in

proprietary formats needed for particular applications
and numerical libraries.

• Documentation is written on paper or in separate files
that are not integrated with the program files.

• The graphical results are printed on paper or saved
using proprietary formats.

When the result of the research and experiments, such as a
scientific paper, is written, the user normally gathers
together input data, algorithms, output data and its

visualizations as well as notes and descriptions. One of the
major problems in simulation development environments is
that gathering and maintaining correct versions of all these
components from various files and formats is difficult and
error-prone.

Our vision of a solution to this set of problems is to
provide integrated computer-supported modeling and
simulation environments that enable the user to work
effectively and flexibly with simulations. Users would then be
able to prepare and run simulations as well as investigate
simulation results. Several auxiliary activities accompany
simulation experiments: requirements are specified, models are
designed, documentation is associated with appropriate places
in the models, input and output data as well as possible
constraints on such data are documented and stored together
with the simulation model. The user should be able to
reproduce experimental results. Therefore input data and parts
of output data as well as the experimenter's notes should be
stored for future analysis.

1.1 Integrated Interactive Programming
Environments

An integrated interactive modeling and simulation
environment is a special case of programming environments
with applications in modeling and simulation. Thus, it should
fulfill the requirements both from general integrated
environments and from the application area of modeling and
simulation mentioned in the previous section.

The main idea of an integrated programming environment
in general is that a number of programming support functions
should be available within the same tool in a well-integrated
way. These means that the functions should operate on the
same data and program representations, exchange information
when necessary, resulting in an environment that is both
powerful and easy to use. An environment is interactive and
incremental if it gives quick feedback, e.g. without
recomputing everything from scratch, and maintains a dialogue
with the user, including preserving the state of previous
interactions with the user. Interactive environments are
typically both more productive and more fun to use.

There are many things that one wants a programming
environment to do for the programmer, particularly if it is
interactive. What functionality should be included?
Comprehensive software development environments are

expected to provide support for the major development
phases, such as:
• requirements analysis,
• design,
• implementation,
• maintenance.

A programming environment can be somewhat more
restrictive and need not necessarily support early phases
such as requirements analysis, but it is an advantage if such
facilities are also included. The main point is to provide as
much computer support as possible for different aspects of
software development, to free the developer from mundane
tasks so that more time and effort can be spent on the
essential issues. The following is a partial list of integrated
programming environment facilities, some of which are
already mentioned in [Sandewall-78], that should be
provided for the programmer:
• Administration and configuration management of

program modules and classes, and different versions
of these.

• Administration and maintenance of test examples and
their correct results.

• Administration and maintenance of formal or informal
documentation of program parts, and automatic
generation of documentation from programs.

• Support for a given programming methodology, e.g.
top-down or bottom-up. For example, if a top-down
approach should be encouraged, it is natural for the
interactive environment to maintain successive
composition steps and mutual references between
those.

• Support for the interactive session. For example,
previous interactions should be saved in an
appropriate way so that the user can refer to previous
commands or results, go back and edit those, and
possibly re-execute.

• Enhanced editing support, performed by an editor that
knows about the syntactic structure of the language. It
is an advantage if the system allows editing of the
program in different views. For example, editing of
the overall system structure can be done in the
graphical view, whereas editing of detailed properties
can be done in the textual view.

• Cross-referencing and query facilities, to help the user
understand interdependences between parts of large
systems.

• Flexibility and extensibility, e.g. mechanisms to
extend the syntax and semantics of the programming
language representation and the functionality built into
the environment.

• Accessible internal representation of programs. This is
often a prerequisite to the extensibility requirement.
An accessible internal representation means that there
is a well-defined representation of programs that are
represented in data structures of the programming
language itself, so that user-written programs may
inspect the structure and generate new programs. This
property is also known as the principle of program-
data equivalence.

1.2 Vision of Integrated Interactive
Environment for Modeling and
Simulation.

Our vision for the MathModelica integrated interactive
environment is to fulfill essentially all the requirements for
general integrated interactive environments combined with the
specific needs for modeling and simulation environments, e.g.:
• Specification of requirements, expressed as

documentation and/or mathematics;
• Design of the mathematical model;
• symbolic transformations of the mathematical model;
• A uniform general language for model design,

mathematics, and transformations;
• Automatic generation of efficient simulation code;
• Execution of simulations;
• Evaluation and documentation of numerical experiments;
• Graphical presentation.

The design and vision of MathModelica is to a large extent
based on our earlier experience in research and development of
integrated incremental programming environments, e.g. the
DICE system [Fritzson-83] and the ObjectMath environment
[Fritzson-92b,Fritzson-95], and many years of intensive use of
advanced integrated interactive environments such as the
InterLisp system [Sandewall-78], [Teitelman-69,Teitelman-
74], and Mathematica [Wolfram-88,Wolfram-97]. The
InterLisp system was actually one of the first really powerful
integrated environments, and still beats most current
programming environments in terms of powerful facilities
available to the programmer. It was also the first environment
that used graphical window systems in an effective way
[Teitelman77], e.g. before the Smalltalk environment
[Goldberg 89] and the Macintosh window system appeared.

Mathematica is a more recently developed integrated
interactive programming environment with many similarities
to InterLisp, containing comprehensive programming and
documentation facilities, accessible intermediate representation
with program-data equivalence, graphics, and support for
mathematics and computer algebra. Mathematica is more
developed than InterLisp in several areas, e.g. syntax,
documentation, and pattern-matching, but less developed in
programming support facilities.

1.3 Mathematica and Modelica
It turns out that the Mathematica is an integrated programming
environment that fulfils many of our requirements. However, it
lacks object-oriented modeling and structuring facilities as
well as generation of efficient simulation code needed for
effective modeling and simulation of large systems. These
modeling and simulation facilities are provided by the object-
oriented modeling language Modelica [MA-02a,MA-02b],
[Tiller-01], [Elmqvist-99], [Fritzson-98].

Our solution to the problem of a comprehensive modeling
and simulation environment is to combine Mathematica and
Modelica into an integrated interactive environment called
MathModelica. This environment provides an internal
representation of Modelica that builds on and extends the
standard Mathematica representation, which makes it a well
integrated with the rest of the Mathematica system.

The realization of the general goal of a uniform general
language for model design, mathematics, and symbolic
transformations is based on an integration of the two languages
Mathematica and Modelica. Mathematica provides
representation of mathematics and facilities for programming
symbolic transformations, whereas Modelica provides

language elements and structuring facilities for object-
oriented component based modeling, including a strong
type system for efficient code and engineering safety.
However, this language integration is not yet realized to its
full potential in the current release of MathModelica, even
though the current level of integration provides many
impressive capabilities.

The current MathModelica system builds on
experience from the design of the ObjectMath [Fritzson-
92b,Fritzson-95] modeling language and environment,
early prototypes [Fritzson-98b], [Jirstrand-99], as well as
on results from object-oriented modeling languages and
systems such as Dymola [Elmqvist-78,Elmqvist-96] and
Omola [Mattsson-93], [Andersson-94], which together
with ObjectMath and a few other object-oriented modeling
languages, have provided the basis for the design of
Modelica.

ObjectMath was originally designed as an object-
oriented extension of Mathematica augmented with
efficient code generation and a graphic class browser. The
ObjectMath effort was initiated 1989 and concluded in the
fall of 1996 when the Modelica Design Group was started,
later renamed to Modelica Association. At that time,
instead of developing a fifth version of ObjectMath, we
decided to join forces with the originators of a number of
other object-oriented mathematical modeling languages in
creating the Modelica language, with the ambition of
eventually making it an international standard. In many
ways the MathModelica product can be seen as a logical
successor to the ObjectMath research prototype.

2 The MathModelica Integrated
Interactive Environment.

The MathModelica system consists of three major
subsystems that are used during different phases of the
modeling and simulation process, as depicted in Figure1
below:

MathModelica
Modeling and Simulation

Notebooks Simulation
Center

Model
Editor

Environment 3D Graphics
and CAD

Figure 1. The MathModelica system architecture.

These subsystems are the following:
• The graphic Model Editor used for design of models

from library components.
• The interactive Notebook facility, for literate

programming, documentation, running simulations,
scripting, graphics, and symbolic mathematics with
Mathematica.

• The Simulation center, for specifying parameters,
running simulations and plotting curves.

Additionally, MathModelica is loosely coupled to two
optional subsystems for 3D graphics visualization and
automatic translation of CAD models to Modelica. [Bunus-
00], [Engelson-99]. [Engelson-00]. In order to provide the
best possible facilities available on the market for the user,
MathModelica integrates and extends several professional
software products that are included in the three subsystems.
For example, the model editor is a customization and
extension of the diagram and visualization tool Visio
[Visio] from Microsoft, the simulation center includes

simulation algorithms from Dynasim [Elmqvist-96], and the
Notebook facility includes the technical computing system
Mathematica [Wolfram-97] from Wolfram Research.

A key aspect of MathModelica is that the modeling and
simulation is done within an environment that also provides a
variety of technical computations. This can be utilized both in
a preprocessing stage in the development of models for
subsystems as well as for postprocessing of simulation results
such as signal processing and further analysis of simulated
data.

2.1 Graphic Model Editor.
The MathModelica Model Editor is a graphical user interface
for model diagram construction by "drag-and-drop" of model
classes from the Modelica Standard Library or from user
defined component libraries, visually represented as graphic
icons in the editor. A screen shot of the Model Editor is shown
in Figure 2. In the left part of the window three library
packages have been opened, visually represented as
overlapping windows containing graphic icons. The user can
drag models from these windows (called stencils in Visio
terminology) and drop them on the drawing area in the middle
of the tool.

The Model Editor is an extension of the Microsoft Visio
software for diagram design and schematics. This means that
the user has access not only to a well developed and user
friendly graph drawing application, but also to a vast array of
professional design features to make graphical representations
of developed models visually attractive. Since Modelica
classes often represent physical objects it is of great value to
have a sufficiently rich graphical description of these classes.

The Model Editor can be viewed as a user interface for
graphical programming in Modelica. Its basic functionality
consists of selection of components from libraries, connection
of components in model diagrams, and entering parameter
values for different components

For large and complex models it is important to be able to
intuitively navigate quickly through component hierarchies.
The Model Editor supports such navigation in several ways. A
model diagram can be browsed and zoomed. The Model Editor
is well integrated with Notebooks. A model diagram stored in a
notebook is a tree-structured graphical representation of the
Modelica code of the model, which can be converted into
textual form by a command.

2.2 Simulation Center.
The simulation center is a subsystem for running simulations,
setting initial values and model parameters, plot results, etc.
These facilities are accessible via a graphic user interface
accessible through the simulation window, e.g. see Figure 3
below. However, remember that it is also possible to run
simulations from the textual user interface available in the
notebooks. The simulation window consists of five areas or
subwindows with different functionality:
• The uppermost part of the simulation window is a control

panel for starting and running simulations. It contains two
fields for setting start and stop time for simulation,
followed by Build, Run Simulation, Plot,
and Stop buttons.

• The left subwindow in the middle section shows a tree-
structure view of the model selected and compiled for
simulation, including all its submodels and variables.
Here, variables can be selected for plotting.

• The center subwindow is used for diagrams of plotted
variables.

Figure 2. The Graphic Model Editor showing an electrical motor with the Inertia parameter J modified.

• The right subwindow in the middle section contains
the legend for the plotted diagram, i.e. the names of
the plotted variables.

• The subwindow at the bottom is divided into three
sections: Parameters, Variables, and
Messages, of which only one at a time is visible.
The Parameters section, shown in Figure 3,
allows changing parameter values, whereas the
Variables section allows modifying intial (start)
values, and the Message section to view possible
messages from the simulation process.

If a model parameter or initial value has been changed, it
is possible to rerun the simulation without rebuilding the
executable code if no parameter influencing the equation
structure has been changed. Such parameters are
sometimes called structural parameters.

2.3 Interactive Notebooks with Literate
Programming.

In addition to purely graphical programming of models using
the Model Editor MathModelica also provides a text based
programming environment for building textual models using
Modelica. This is done using Notebooks, which is documents
that may contain technical computations, text, and graphics.
Hence, these documents are suitable to be used both as
simulation scripting tools, model documentation and storage,
model analysis and control system design, etc. In fact, this
article is written as such a notebook and in the live version the
examples can be run interactively. A sample notebooks is
shown in Figure 4.

Figure 3. The Simulate window with plots of the signals Inertia1.flange_a.tau and Inertia1.w .

Figure 4. Examples of MathModelica notebooks..

The MathModelica Notebook facility is actually an
interactive WYSIWYG (What-You-See-Is-What-You-Get)
realization of Literate Programming, a form of programming
where programs are integrated with documentation in the
same document, originally proposed in [Knuth-84]. A
noninteractive prototype implementations of Literate
Programming in combination with the document processing
system LaTex has been realized [Knuth-94]. However,
MathModelica is one of very few interactive WYSIWYG
systems so far realized for Literate Programming, and to our
knowledge the only one yet for Literate Programming in
Modeling.

Integrating Mathematica with MathModelica does not
only give access to the Notebook interface but also to
thousands of available functions and many application
packages, as well as the ability of communicating with other
programs and import and export of different data formats.
These capabilities make MathModelica more of a complete
workbench for the innovative engineer than just a modeling
and simulation tool. Once a model has been developed there
is often a need for further analysis such as linearization,
sensitivity analysis, transfer functions computations, control
system design, parametric studies, Monte Carlo simulations,
etc.

In fact, the combination of the ability of making user
defined libraries of reusable components in Modelica and the
Notebook concept of living technical documents provides an
integrated approach to model and documentation
management for the evolution of models of large systems

2.3.1 Tree Structured Hierarchical Document
Representation.

Traditional documents, e.g. books and reports, essentially
always have a hierarchical structure. They are divided into
sections, subsections, paragraphs, etc. Both the document
itself and its sections usually have headings as labels for
easier navigation. This kind of structure is also reflected in
MathModelica notebooks. Every notebook corresponds to
one document (one file) and contains a tree structure of cells.
A cell can have different kinds of contents, and can even

contain other cells. The notebook hierarchy of cells thus
reflects the hierarchy of sections and subsections in a
traditional document.

Figure 5. The package Mypackage in a notebook

In the MathModelica system, Modelica packages including
documentation and test cases are primarily stored as
notebooks, e.g. as in Figure 4. Those cells that contain
Modelica model classes intended to be used from other
models, e.g. library components or certain application
models, should be marked as exports cells. This means that
when the notebook is saved, such cells are automatically
exported into a Modelica package file in the standard
Modelica textual representation (.mo file) that can be
processed by any Modelica compiler and imported into other
models. For example, when saving the notebook
MyPackage.nb of Figure 5, a file MyPackage.mo
would be created with the following contents:

package MyPackage
model class3
...
end class3;
model class2 ...
model class1 ...
package MySubPackage

model class1
...
end class1;

end MySubPackage;
end MyPackage;

2.3.2 Program Cells, Documentation Cells, and
Graphic Cells.

A notebook cell can include other cells and/or arbitrary text
or graphics. In particular a cell can include a code fragment
or a graph with computational results.

The contents of cells can for example be one of the
following forms:
• Model classes and parts of models, i.e. formal

descriptions that can be used for verification,
compilation and execution of simulation models.

• Mathematical formulas in the traditional mathematical
two dimensional syntax.

• Text/documentation, e.g. used as comments to
executable formal model specifications.

• Dialogue forms for specification and modification of
input data.

• Result tables. The results can be automatically
represented in (live) tables, which can even be
automatically updated after recomputation.

• Graphical result representation, e.g. with 2D vector and
raster graphics as well as 3D vector and surface
graphics.

• 2D structure graphs, that for example are used for
various model structure visualizations such as
connection diagrams and data structure diagrams.

A number of examples of these different forms of cells are
available throughout this paper.

2.3.3 Mathematics with 2D-syntax, Greek
letters, and Equations

MathModelica uses the syntactic facilities of Mathematica to
allow writing formulas in the standard mathematical notation
well-known, e.g. from textbooks in mathematics and physics.
Certain parts of the Mathematica language syntax are
however a bit unusual compared to many common
programming languages. The reason for this design choice is
to make it possible to use traditional mathematical syntax.
The following three syntactic features are unusual:
• Implied multiplication is allowed, i.e. a space between

two expressions, e.g. x and f(x), means
multiplication just as in mathematics. A multiplication
operator * can be used if desired, but is optional.

• Square brackets are used around the arguments at
function calls. Round parentheses are only used for
grouping of expressions. The exception is
Traditional Form, see below.

• Support for two-dimensional mathematical syntactic
notation such as integrals, division bars, square roots,
matrices, etc.

The reason for the unusual choice of square brackets around
function arguments is that the implied multiplication makes
the interpretation of round parenthesis ambiguous. For
example, f(x+1) can be interpreted either as a function call
to f with the argument x+1, or f multiplied by (x+1).
The integral in the cell below contains examples of both
implied multiplication and two-dimensional integral syntax.
The cell style is called MathModelica input form (called
standard form in Mathematica) and is used for mathematics
and Modelica code in Mathematica syntax: ‡ x f@xD

1 + x2 + x3
 Åx

There is also a purely textual input form using a linear
sequence of characters. This is for example used for entering
Modelica models in the standard Modelica syntax, and is
currently the only cell format in MathModelica that can
interpret standard Modelica syntax. However, all
mathematics can also be represented in this syntax. The
above example in this textual format appears as follows:

Integrate[(x*f[x])/(1 + x^2 + x^3), x]

Finally, there is also a cell format called traditionalform
which is very close to traditional mathematical syntax,
avoiding the square brackets. The above-mentioned syntactic
ambiguities can be avoided if the formula is first entered
using one of the above input forms, and then converted to
traditional form.

‡ x f HxL
x3 + x2 + 1

 ‚ x

The MathModelica environment allows easy conversion
between these forms using keyboard or menu commands.
Below we show a small example of a Modelica model class
SimpleDAE represented in the Mathematica style syntax of
Modelica that allows greek characters and two dimensional
syntax. The apostrophe (') is used for the derivatives just as
in traditional mathematics, corresponding to the Modelica
der() operator.

ModelASimpleDAE,
Real β1;

Real x2;

EquationA
β1'

1 + Hβ1'L2 +
sin@x2'D
1 + Hβ1'L2 + β1 x2 + β1 m 1;

sin@β1'D −
x2'

1 + Hβ1'L2 − 2 β1 x2 + β1 m 0;EE
We simulate the model for ten seconds by giving a
Simulate command:

Simulate[SimpleDAE,{t,0,10}];

We use the command PlotSimulation for plotting the
solutions for the two state variables, which of course both are
functions of time, here denoted by t in Mathematica syntax:

PlotSimulation@8β1@tD, x2@tD<, 8t, 0, 10<D;

2 4 6 8 10
t

0.1

0.2

0.3

0.4

0.5

0.6

x2 t
β1 t

2.4 Environment and Language
Extensibility

Programming environments need to be flexible to adapt to
changing user needs. Without flexibility, a programming tool
will become too hard to use for practical needs, and stopped
to be used. Adaptability and flexibility is especially
important for integrated environments, since they need to
interact with a number of external tools and data formats,
contain many different functions, and usually need to add
new ones.

There are two major ways to extend a programming
environment
• Extension of functionality, e.g. through user-defined

commands, user-extensible menus, and a scripting
languages for programmability.

• Extension of language and notation, e.g. by facilities to
add new syntactic constructs and new notation, or
extend the meaning of existing ones.

Mathematica has been designed from the start to be an
inherently extensible environment, which is what is used in
MathModelica. Almost anything can be redefined, extended,
or added.

2.4.1 Scripting for Extension of Functionality
An interactive scripting language is a common way of
providing extensibility of flexibility in functionality. The
MathModelica environment primarily uses the Mathematica
language and its interpreter as a scripting language, as can be
seen from a number of examples in this paper. Another
possibility would be to use the Modelica language itself as a
scripting language, e.g. by providing an interpreter for the
algorithmic and expression parts of the language. This can
easily be realized in MathModelica since the intermediate
form has been designed to be compatible with Mathematica,
and we already have Modelica input cells: just use Modelica
input cells also for commands, which are sent to the
Mathematica interpreter instead of the simulator.

2.4.2 Extensible Syntax and Semantics
As was already apparent in the section on mathematical
syntax, MathModelica provides a Mathematica-like input
syntax for Modelica in addition to the usual Modelica syntax.
One reason is to give support for mathematical notation, as
explained previously. Another reason is to provide user
extensible syntax.

This is easy since syntactic constructs in Mathematica
apart from the operators use a simple prefix syntax: a
keyword followed by square brackets surrounding the
contents of the construct, i.e. the same syntax as for function
calls. If there is a need to add a new construct no changes are
needed in the parser, and no reserved words need to be
added. Just define a Mathematica function to do the desired
symbolic or numeric processing.

The other major class of syntactic constructs are
operators. There are special facilities in Mathematica to add
new operators by defining their priority, operator syntax, and
internal representation. It is also possible to extend the
meaning of existing operators like +, *, -, etc.

2.4.3 Mathematica vs Modelica syntax.
In order to to show the difference between the standard
Modelica textual syntax and the extensible Mathematica-like
syntax, we first show a simple model in a Modelica-style
input cell:

model secondordersystem
Real x(start=0);
Real xdot(start=0);
parameter Real a=1;

equation
xdot=der(x);
der(xdot)+a*der(x)+x=1;

end secondordersystem;

The same model in the Mathematica-like Modelica
syntax appears below. Note the use of the simple prefix
syntax: a keyword followed by square brackets surrounding
the contents of the construct. All reserved words, predefined
functions, and types in MathModelica start with an upper-
case letter just as in Mathematica. Equation equality is
represented by the == operators since = is the assignment
operator in Mathematica. The derivative operator is the
mathematical apostrophe (') notation rather than der(). The

semicolon (;) is a sequencing operator to group more than
one declaration, statement, or expression together.

Model[secondordersystem,
Real x[{Start == 0}];
Real xdot[{Start == 0}];
Parameter Real a == 1;

Equation[
xdot == x';
xdot' + a*x' + x == 1

]
]

3 Application Examples
This section gives a number of application examples of the
use of the Mathmodelica environment. The intent is to
demonstrate the power of integration and interactivity - the
interplay between the object-oriented modeling and
simulation capabilities of Modelica integrated with the
powerful scripting facilities of Mathematica within
MathModelica. This includes the representation of
simulation results as 1D and 2D interpolating functions of
time being combined with arithmetic operations and
functions in expressions, advanced plotting facilities, and
computational capabilities such as design optimization,
fourier analysis, and solution of time-dependent PDEs. For
the PDEs see the long version of the paper.

3.1 Advanced Plotting and Interpolating
Functions

This section illustrates the flexible usage of simulation
results represented as interpolating functions, both for further
computations that may include simulation results in
expressions, and for both simple and advanced plotting. The
simple bouncing ball model below from [MA-02a] is used in
the simulation and plotting examples.

3.1.1 Interpolating Function Representation of
Simulation Results

The following simulation of the above BouncingBall
model is done for a short time period using very few points:

res1=Simulate[BouncingBall,{t,0,0.5},
NumberOfIntervals->10]

<SimulationData: BouncingBall: 2002-2-26
10:48:10 : {0., 0.5} : 15 data points : 1
events : 7 variables>
{c, g, height, radius, velocity, height'
velocity'}

The results returned by Simulate are represented by an
access descriptor or handle. Some of the contents of such
descriptor is shown as the result of the above call to
Simulate. At this stage the simulation data is stored on
disk and referenced by res1 which acts as a handle to the
simulation data. When one of the variables from the last
simulation is referenced, e.g. height, radius, etc., the
data for that variable is loaded into the system in an load-by-
need manner, and represented as an
InterPolatingFunction.

3.1.2 PlotSimulation
First we simulate the bouncing ball for eight seconds and
store the results in the variable res1 for subsequent use in
the plotting examples.

res1=Simulate[BouncingBall,{t,0,8}];

The command PlotSimulation is used for simple
standard plots. If nothing else is specified, i.e. by the optional
SimulationResult parameter, the command refers to
the results from the last simulation.

Plotting several arbitrary functions can be done using a list of
function expressions instead of a single expression:

PlotSimulationA9height@tD +
è
3,

Abs@velocity@tDD=, 8t, 0, 8<E;

2 4 6 8
t

1

2

3

4

Abs@velocity@tDDè!!!!3 +height@tD

Figure 6. Plotting arbitrary functions in the same diagram.

3.1.3 ParametricPlotSimulation
Parametric plots can be done using
 ParametricPlotSimulation.

ParametricPlotSimulation@8height@tD, velocity@tD<,8t, 0, 8<D;

0.2 0.4 0.6 0.8

-4

-2

2

4

Figure 7. A parametric plot.

3.1.4 ParametricPlotSimulation3D
In this example we are going to use the Rossler attractor to
show the ParametricPlotSimula-tion3D command.
The Rossler attractor is named after Otto Rossler from his
work in chemical kinetics. The system is described by three
coupled non-linear differential equations:

zx
dt
dz

yx
dt
dy

xy
dt
dx

)(γβ

α

−+=

+=

−−=

Here βα, and γ are constants. The attractor never forms
limit circles nor does it ever reach a steady state. The model
is shown in Mathematica syntax, enabling the use of greek
characters:

Model@Rossler, "Rossler attractor",

Parameter Real α m 0.2;

Parameter Real β m 0.2;

Parameter Real γ m 8;

Real x@8Start m 1<D;
Real y@8Start m 3<D;
Real z@8Start m 0<D;
Equation@
x' m −y − z;

y' m x + α y;

z' m β + x z − γ zDD
The model is simulated using different initial values.
Changing these can considerably influence the appearance of
the attractor.

Simulate@Rossler, 8t, 0, 40<,
InitialValues → 8x m 2, y m 2.5, z m 0<,
NumberOfIntervals → 1000D;

The Rossler attractor is easy to plot using
ParametricPlotSimulation3D:

ParametricPlotSimulation3D@8x@tD, y@tD, z@tD<,8t, 0, 40<,
AxesLabel → 8X, Y, Z<D;

-10
0

10

X

-10

0

10Y

0

10

20

30

40

Z

-10

0

10Y

Figure 8. 3-D parametric plot of curve with many data points
from the Rossler attractor simulation.

3.2 Design Optimization
This is an example of how the powerful scripting language of
MathModelica can be utilized to solve non-trivial
optimization problems that contain dynamic simulations.

First we will define a Modelica model of a linear actuator
with spring damped stopping and then a first order system.
Using MathModelica scripting we will then find a damping
for the translational spring-damper such that the step
response is as "close" as possible to the step response from a
first order system.

Consider the following model of a linear actuator with a
spring damped connection to an anchoring point:

SlidingMass1 SpringDamper1 Fixed1 IdealGearR2T1

Inertia1
SpringDamper2
Inertia2

tau
Torque1 Step1

Figure 9. A LinearActuator model containing a spring
damped connection to an achoring point.

Assume that we have some freedom in choosing the damping
in the translational spring-damper. A number of simulation
runs show what kind of behavior we have for different values
of the dampingparameter d. The Mathematica Table[]
function is used in Simulate[] to collect the results into
an array res. This array then contains the results from
simulations of LinearActuator with a damping of 2 to
14 with a step size of 2, i.e. seven simulations are performed.

res = Table@Simulate@LinearActuator,8t, 0, 4<,
ParameterValues →8SpringDamper1.d m s<D,8s, 2, 15, 2<D;

PlotSimulation@SlidingMass1.s@tD,8t, 0, 4<,
SimulationResult → res,

Legend → FalseD;

1 2 3 4

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Figure 10. Plots of step responses from seven simulations of
the linear actuator with different camping coefficients.

Now assume that we would like to choose the damping d so
that the resulting system behaves as closely as possible to a
certain first order system response.,

We simulate for different values of d and interpolate the
result

fpre = Interpolation@res2D;
Plot@fpre@aD, 8a, 2, 10<D;

4 6 8 10

0.00015

0.0002

0.00025

0.0003

Figure 11. Plot of the error function for finding a minimum
deviation from the desired step response.

The minimizing value of a can be computed using
FindMinimum:
FindMinimum@fpre@sD, 8s, 4<D 80.0000832564 , 8s → 5.28642 <<

3.3 Fourier Analysis of Simulation Data
Consider a weak axis excited by a torque pulse train. The
axis is modeled by three segments joined by two torsion
springs. The following diagram is imported from the
MathModelica Model Editor where the model was defined.

tau

Torque1 Inertia1 Spring1 Inertia2 Spring2 Inertia3Pulse1
Figure 12. A WeakAxis model excited by a torque pulse
train.

We simulate the model during 200 seconds:

Simulate@WeakAxis , 8t, 0, 200<D;
The plot of the angular velocity of the rightmost axis
segment appears as follows:

PlotSimulation@8Inertia3.w@tD,
Torque1.τ@tD<, 8t, 0, 200<D;

50 100 150 200
t

0.5

1

1.5

HTorque1.τL@tDHInertia3.wL@tD

Figure 13. Plot of the angular velocity of the rightmost axis
segment of the WeakAxis model.

Now, let us sample the interpolated function Inertia3.w
using a sample frequency of 4Hz, and put the result into an
array using the Mathematica Table array constructor:

data1 = Table@Inertia3.w@tD,8t, 0, 200, .25<D;
Compute the absolute values of the discrete Fourier
transform of data1 with the mean removed:

fdata1 = Abs@Fourier@data1 −

MeanValue@data1DDD;
Plot the 80 first points of the data.

ListPlot@fdata1@@Range@80DDD,
PlotStyle → 8Red, PointSize@0.015D<D;

20 40 60 80

2

4

6

8

10

Figure 14. Plot of the data points of the Fourier transformed
angular velocity.

It can be shown that the frequencies of the eigenmodes of the
system is given by the imaginary parts of the eigenvalues of
the following matrix (c1 and c2 are the spring constants)

1

2 π
 EigenvaluesAik

0 1 0 0 0 0
−c1 0 −c1 0 0 0
0 0 0 1 0 0

−c1 0 −c1 − c2 0 −c2 0
0 0 0 0 0 1
0 0 −c2 0 −c2 0

y
{ ê.

8c1 → 0.7, c2 → 1<E êê Chop 80.256077 Ç, −0.256077 Ç,

0.143343 Ç, −0.143343 Ç, 0, 0<
These values, 0.256077, 0.143344, fit very well with the
peaks in the above diagram.

4 Using the Symbolic Internal
Representation

In order to satisfy the requirement of a well integrated
environment and language, the new MathModelica internal
representation was designed with a Mathematica compatible
version of the syntax. Note that the Mathematica version of
the syntax has the same internal abstract syntax tree
representation and the same semantics as Modelica, but
different concrete syntax. Which syntax to use, the standard
Modelica textual syntax, or the Mathematica-style syntax for
Modelica is however largely a matter of taste.

The fact that the Modelica abstract syntax tree
representation is compatible with the Mathematica standard
representation means that a number of symbolic operations
such as simplifying model equations, performing Laplace
transformations, and performing queries on code as well as
automatically constructing new code is available to the user.
The capability of automatically generating new code is
especially useful in the area of model diagnosis, where there
is often a need for generating a number of erroneous models
for diagnosis based on corresponding fault scenarios.

4.1 Mathematica Compatible Internal Form
An inherent property of Mathematica is that models or code
is normally not written as free formatted text. Instead,
Mathematica expressions (also called terms) are used,
internally represented as abstract syntax trees. These can be
conveniently written in a tree-like prefix form, or entered
using standard mathematical notation. Every term is a
number, an identifier, or a form such as:

[]ntermtermhead ,,1 K

For example, an expression: a+b is represented as
Plus[a,b] in prefix form, also called FullForm
syntax. A while loop is represented as the term
While[test,body].

In order to satisfy the requirement of a well integrated
environment, we designed the new MathModelica internal
representation with a Mathematica compatible version of the
syntax. Note that MathModelica has the same abstract syntax
trees and the same semantics as Modelica, but different
concrete syntax. This means that essentially the same
language constructs are written differently, as illustrated
below.

The Mathematica language syntax uses some special
operators, see below, and arbitrary arithmetic expressions
composed from terms.

ntermterm ;;1 K //sequencing operator
{ }ntermterm ;;1 K //array/list constructor

21 termterm //Implied multiplication by space
 instead of *

21 termterm == // Equation equality

Internally the MathModelica system uses the
MathModelicaFullForm format. This format is the
abstract syntax of the MathModelica language where all the
elements of the language have been defined to be easy to
extract and compare for the functions operating on the
MathModelica language representation, as well as achieving
a high degree of compatibility with both Modelica and
Mathematica.

The following is a simple constant declaration:

model Arr
constant Real

unitarr[2,2] = {{1,0},{0,1}}
"2D Identity";

end Arr;

This definition is stored internally in the
MathModelicaFullForm format which can be retrieved
by calling the function GetDefinition which returns the
internal abstract syntax tree representation of the model:

ff2 = GetDefinition@Arr,
Format → MathModelicaFullFormD

The tree is wrapped into the node Hold[] to prevent
symbolic evaluation of the model representation while we
are manipulating it. All nodes are shown in prefix form
excepts the array/list nodes shown as {...} instead of the
prefix form List[...] for arrays.

Hold@SetType@Arr,
TYPE@Model@Declaration@TYPE@Real, 82, 2<, 8Constant<, 8<D,

VariableComponent@unitarr,
ValueBinding@881, 0<, 80, 1<<D,8<, 8<, NullDD;
"2D Identity"D, 8<, 8<, 8<D, 8<, Null, NullDD

A declaration of a variable such as unitarr is represented
by the Declaration node in the abstract syntax. This
node has two arguments: the type and the variable instance.
The type is represented by the TYPE node which stores the
name, array dimension, type attributes (Constant) and
type modifications (which is empty in this case). The
instance argument contains a VariableComponent
including the name of the variable, the initialization
(ValueBinding), at the end the comment string that is
associated with the variable.

There are several goals behind the design of the
MathModelicaFullForm format, which are fulfilled in
the current system:

• Abstract syntax. The format systematically sorts out the
different constructs in the language making the
navigation of types and code easier.

• Preserving the syntactic structure of both Modelica and
Mathematica code. This means that the mapping from
Modelica to MathModelica-FullForm format
should be injective, e.g. the source code can be recreated
from the intermediate form, and that transformations
from Modelica via MathModelicaFullForm into
Mathematica style Modelica form should be reversible.

• Explicit semantic structure. The format has reserved
fixed attribute positions for certain kinds of semantic
information, to simplify semantic analysis and queries.
There is also a canonical subset of the format which is
even simpler for semantic analysis, but does not always
recreate exactly the same source code since the same
declaration often can be stated in several ways.

• Symbol table and type representation format. The
MathModelicaFullForm format should be possible
to use in the symbol table, e.g. to represent types. Types
are represented by anonymous type expressions such as
the TYPE node in the above example. Anonymous
means that the type representation is separate from the
entity having the type.

• Internal standard.
 The MathModelicaFullForm format should be

used by all the components in the MathModelica
system.

4.2 Extracting and Simplifying Model
Equations

This section will illustrate a few user-accessible symbolic
operations on equations, such as obtaining the system of
equations and the set of variables from a Modelica model,
and symbolically simplifying this system of equations with
the intention of performing symbolic Laplace transformation.

4.2.1 Definition and Simulation of Model1
The example class Model1 has been drawn in the graphic
model editor and imported into the notebook below:

R=%R

Resistor1 L=%L

Inductor1

Ground1

k=%k
EMF1

%na
me=
%V

ConstantVoltage1
c=%c

Spring1
J=%J

Inertia1 J=%J
Inertia2

Fi
gure 15. Connection diagram of Model1.

We simulate the model, smooth the result, and make a plot.

res0 = Simulate@Model1, 8t, 0, 25<,
ParameterValues → 8Resistor1.R m 0.9<D;

res1 = SmoothInterpolation@res0D;
The plot is parametric where we plot the Resistor1
current against its derivative for both the original result and
the smoothed version:

ParametricPlotSimulation@8HResistor1.iL@tD,HResistor1.iL'@tD<, 8t, 0, 25<,
SimulationResult → 8res0, res1<D;

-0.2 0.2 0.4 0.6

-0.2

0.2

0.4

0.6

0.8

1

Figure 16. Parametric plots of the Resistor1 current against
its derivative, both original and smoothed.

4.2.2 Some Symbolic Computations
Now, flatten Model1 and extract the model equations and
the model variables as lists, and compute the lengths of these
lists:

eqn = GetFlatEquations@Model1D;
Length@eqnD
48

Length@GetFlatVariables@Model1DD
49

There is one equation less than the number of variables.
Therefore, add an equation for zero torque on the right flange
to the equation system:

eqn = Append@eqn,
Inertia2.flangeÄb.tau m 0D;

We would like to simplify the equations by eliminating the
connector variables before further symbolic processing. First
obtain the connector variables from the flattened model:

connvars = GetFlatConnectionVariables@Model1D 8Resistor1 . p . v, Resistor1 . p . i,

Resistor1.n . v, Resistor1 . n . i,

...,

Inertia2.flangeÄa . tau<
Use the Eliminate function for symbolic elimination of
some variables from the system of equations.

eqn2 = Eliminate@eqn, connvarsD
der@Inertia1 . phiD == Inertia1 . w &

der@Inertia1 . wD == Inertia1 . a &&

... ...

Inertia2.flangeÄb . tau == 0 &

derH−1L@EMF1 . wD == Inertia2 . phi −

Spring1.phiÄrel

4.3 Symbolic Laplace Transformation.
We would now like to perform a Laplace transformation of
the symbolic equation system obtained in the previous
section. This can be done by the application of two

transformation rules: [] [] sbbder
s
aader →→− _,_)1(.

Note that)1(−der is the inverse of taking a derivative, i.e. an
integration operation. Note also that the second rule contains
an implied multiplication.

eq3 = eqn2 ê. 9derH−1L@a_D →
a

s
, der@b_D → s b=

s HInertia1 . phiL == Inertia1 . w &

s HInertia1 . wL == Inertia1 . a &&

... ...
EMF1 . w

s
== Inertia2 . phi − Spring1 . phiÄrel

Introduce short names for the model parameter to obtain a
more concise symbolic notation:

shortnames =8Resistor1 . R → R, Inductor1.L → L,

EMF1.k → k, Inertia1 . J → J1,

Spring1.c → c1, Spring1 . phiÄrel0 → 0,

Inertia2.J → J2<;
Derive the relation between Inertia2.w and the input
voltage

eq4 =

Eliminate@eq3,
Complement@
GetFlatNonConnectionVariables@Model1D,8Inertia2.w<DD ê. shortnames Hk c1 HConstantVoltage1 . VL m

k2 c1 HInertia2 . wL +

... ...

R s3 J1 J2 HInertia2 . wL +

L s4 J1 J2 HInertia2 . wLL && s ≠ 0

The transfer function H is obtained by symbolically solving
for Inertia2.w in the equation system eq4, and using the
obtained solution on a form Inertia2.w -> expr to
eliminate Inertia2.w, thus obtaining H:

H@s_D = FirstA Inertia2.w

ConstantVoltage1 . V
ê.

Solve@eq4, Inertia2 . wDE Hk c1LêHk2 c1 + R s c1 J1 + L s2 c1 J1 +

k2 s2 J2 + R s c1 J2 + L s2 c1 J2 +

R s3 J1 J2 + L s4 J1 J2L

4.4 Queries and Automatic Generation of
Models

This example of advanced scripting shows how the easily
accessible internal representation in the form of abstract
syntax trees can be used for automatic generation of models.
The CircuitTemplateFn is a function returning a
symbolic representation of a model. This function has two
formal pattern parameters where the second one specifies an
internal structure. The first parameter is name_, which
matches symbolic names. The underscore in name_ is not
part of the parameter identifier itself, it is just a short form of
the syntax name:_, which means that name will match
any item.

The second pattern parameter is the list
{type1_,type2_,type3_}, internally containing the
three pattern parameters type1_, type2_, type3_.
This second parameter will therefore only match lists of
length 3, thereby binding the pattern variables type1,
type2, and type3 to the three type names presumably
occurring in the list at pattern matching. For example,
matching {type1_,type2_,type3_} against the list
{Capacitor, Conductor, Resistor} will bind
the variable type1 to Capacitor, type2 to
Conductor, and type3 to Resistor.
CircuitTemplateFn@name_,8type1_, type2_, type3_<D := H

Model@name,
type1 a;

type2 b;

type3 c;

Modelica.Electrical.Analog.Basic.Ground g;

Equation@
Connect@g.p, a.pD;
Connect@a.n, b.pD;
Connect@b.p, c.pD;
Connect@b.n, g.pD;
Connect@c.n, g.pDDDL

The aim of this exercise is to automatically generate models
based on this template for all combinations of the types that
extend the type OnePort in the library package
Modelica.Electrical.Analog.Basic.

First we need to extract all the types that extends the
type OnePort in the library package
Modelica.Electrical.Analog.Basic. This is done
by performing a query operation on the internal form using
the Select function which has two arguments: the list to be
searched, and a predicate function returning true or false.

Only the elements for which the predicate is true are
returned. In this case the query is performed on the list of
model names in the package
Modelica.Electrical.Analog.Basic. This list is
returned by the function ListModelNames.

First we call GetDefinition below to load the
Modelica.Eletrical.Analog.Basic package into
the internal symbol table:
GetDefinition@Modelica.Electrical.Analog.BasicD;
Then we perform the actual query:

types=Select[
ListModelNames[
Modelica.Electrical.Analog.Basic

],
Function[

modelName,
Not[

FreeQ[
GetDefinition[

modelName,
Format->MathModelicaFullForm

],
HoldPattern[

Extends[
TYPE[Modelica.Electrical.

Analog.Interfaces.
OnePort,{},{},{}

]]]]]]]8Modelica.Electrical.Analog.Basic.Inductor,
Modelica.Electrical.Analog.Basic.Capacitor,

Modelica.Electrical.Analog.Basic.Conductor,

Modelica.Electrical.Analog.Basic.Resistor<
All 64 three-type combinations, e.g.
{Inductor,Inductor,Inductor},
{Inductor,Inductor,Capacitor}, etc., their
prefixes not shown for brevity, of these 4 types are computed
by taking a generalized outer product of the three types lists,
which is flattened.

typecombinations =

Flatten@Outer@List, types, types, typesD,
2D;

Length@typecombinationsD
64

 We generate a list of 64 synthetic model names by
concatenating the string "foo" with numbers, using the
Mathematica string concatenation operation "<>":

names = Table@ToExpression@
"foo" <> ToString@iDD, 8i, 64<D 8 foo1, foo2, foo3, foo4, foo5, foo6,

foo7, foo8, foo9, foo10, foo11, foo12,

...

foo55, foo56, foo57, foo58, foo59, foo60,

foo61, foo62, foo63, foo64 <
Here all 64 test models are created by the call to
MapThread which applies CircuitTemplateFn to
each combination.

MapThread@CircuitTemplateFn,8names, typecombinations<D;
We retrieve the definition one of the automatically generated
models, foo53, and unparse it from its internal
representation to the Modelica textual form:
GetDefinition@foo53, Format → ModelicaFormD
model foo53

Modelica.Electrical.Analog.
Basic.Resistor a;

Modelica.Electrical.Analog.
Basic.Capacitor b;

Modelica.Electrical.Analog.
Basic.Inductor c;

Modelica.Electrical.Analog.
Basic.Ground g;

equation
connect(g.p,a.p);
connect(a.n,b.p);
connect(b.p,c.p);
connect(b.n,g.p);
connect(c.n,g.p);

end foo53;

5 Conclusion
This paper has presented a number of important issues
concerning integrated interactive programming
environments, especially with respect to the MathModelica
environment for object-oriented modeling and simulation.
We have especially emphasized environment properties such
as integration and extensibility.

One of the current strong trends in software systems is
the gradual unification of documents and software.
Everything will eventually be integrated into a uniform,
perhaps XML-based, representation. The integration of
documents, model code, graphics, etc. in the MathModelica
environment is one strong example of this trend.

Another important aspect is extensibility. Experience
has shown that tools with built-in extensibility mechanisms
can cope with unforeseen user needs to a great extent, and
therefore often have a substantially longer effective usage
lifetime.

The MathModelica system is currently one of the best
existing examples of advanced integrated extensible
environments. However, as most systems, it is not perfect.
There are still a number of possible future improvements in
the system including enhanced programmability and
extensibility.

Acknowledgements
We would like to thank Peter Bunus for inspiration and great
help in MicroSoft Word formating and conversion from
notebook format when preparing this paper, and Dan
Costello for Word advice. Acknowledgements to the
following individuals for contributions the design and
implementation of the MathModelica system: Andreas
Karström, Pontus Lidman, Henrik Johansson, Yelena
Turetskaya, Mikael Adlers, Peter Aronsson, Vadim
Engelsson, and to Jan Brugård and Andreas Idebrant for
contributions to the MathModelica documentation including
a number of the examples used in this paper. Thanks to
Kristina Swenningsson for creating a nice working
athmosphere at MathCore AB. Acknowledgements also to
the members of the Modelica Association for creating the

Modelica language, and to EU under the RealSim project for
supporting part of the development of MathModelica.

References
 [Andersson-94] Mats Andersson. Object-Oriented Modeling
and Simulation of Hybrid Systems. Ph.D. thesis, Department of
Automatic Control, Lund Institute of Technology, Lund,
Sweden, 1994.

 [Bunus-00] Peter Bunus, Vadim Engelson, Peter Fritzson.
Mechanical Models Translation and Simulation in Modelica. In
Proceedings of Modelica Workshop 2000. Lund University,
Lund, Sweden, Oct 24-26, 2000.

[Elmqvist-78] Hilding Elmqvist. A Structured Model Language
for Large Continuous Systems. PhD thesis, Department of
Automatic Control, Lund Institute of Technology, Lund,
Sweden.

[Elmqvist-96] Hilding Elmqvist, Dag Bruck, Martin Otter.
Dymola - User's Manual. Dynasim AB, Research Park Ideon,
Lund, 1996.

[Elmqvist-99] Hilding Elmqvist, Sven-Erik Mattsson and Martin
Otter. Modelica - A Language for Physical System Modeling,
Visualization and Interaction. In Proceedings of the 1999 IEEE
Symposium on Computer-Aided Control System Design, Hawaii,
Aug. 22-27, 1999.

[Engelson-99] Vadim Engelson, Håkan Larsson, Peter Fritzson.
1999. A Design, Simulation and Visualization Environment for
Object-Oriented Mechanical and Multi-Domain Models in
Modelica. In Proceedings of the IEEE International Conference
on Information Visualization, pp 188-193, London, July 14-16,
1999.

[Engelson-00] Vadim Engelson. Tools for Design, Interactive
Simulation, and Visualization of Object-Oriented Models in
Scientific Computing. Ph.D. Thesis, Dept. of Computer and
Information Science, Linköping University, Linköping, Sweden.
2000.

 [Fritzson-83] Peter Fritzson. Symbolic Debugging through
Incremental Compilation in an Integrated Environment. The
Journal of Systems and Software, 3, 285-294, (1983).

[Fritzson-92a] Peter Fritzson, Dag Fritzson. The Need or High-
Level Programming Support in Scientific Computing - Applied
to Mechanical Analysis. Computers and Structures, Vol. 45, No.
2, pp. 387-295, 1992.

[Fritzson-92b]Peter Fritzson, Lars Viklund, Johan Herber, Dag
Fritzson: Industrial Application of Object-Oriented
Mathematical Modeling and Computer Algebra in Mechanical
Analysis, In Proc. of TOOLS EUROPE'92, Dortmund,
Germany, March 30 - April 2, 1992. Published by Prentice Hall.

[Fritzson-95] Peter Fritzson, Lars Viklund, Dag Fritzson, Johan
Herber. High Level Mathematical Modeling and Programming
in Scientific Computing. IEEE Software, pp. 77-87, July 1995.

[Fritzson-98] Peter Fritzson and Vadim Engelson. Modelica - A
Unified Object-Oriented Language for System Modeling and
Simulation. In Proceedings of the 12th European Conference on
Object-Oriented Programming, ECOOP'98 , Brussels, Belgium,
July 20-24, 1998.

[Fritzson-98b] Peter Fritzson, Vadim Engelson, Johan
Gunnarsson. An Integrated Modelica Environment for
Modeling, Documentation and Simulation. In Proceedings of
Summer Computer Simulation Conference '98, Reno, Nevada,
USA, July 19-22, 1998.

[Goldberg-89] Adele Goldberg and David Robson, Smalltalk-
80, The Language. Addison-Wesley, 1989

[Jirstrand-99] Mats Jirstrand, Johan Gunnarsson, and Peter
Fritzson. MathModelica - a new modeling and simulation
environment for Modelica. In Proceedings of the Third
International Mathematica Symposium, IMS’99, Linz, Austria,
Aug, (1999).

[Knuth-84] Donald E. Knuth. Literate Programming. The
Computer Journal, NO27(2) (May): 97-111. (1984)

[Knuth-94] Donald E. Knuth, Silvio Levy. The Cweb System of
Structured Documentation /Version 3.0. Addison-Wesley Pub
Co; 1994.

[MA-02a] Modelica Association. Modelica - A Unified Object-
Oriented Language for Physical Systems Modeling - Tutorial
and Design Rationale Version 2.0, March 2002.

[MA-02b] Modelica Association. Modelica - A Unified Object-
Oriented Language for Physical Systems Modeling - Language
Specification Version 2.0, February 2002.

[Mattsson-93] Sven-Erik Mattsson, Mats Andersson, and Karl-
Johan Åström. Object-oriented modelling and simulation. In
Linkens, Ed., CAD for Control Systems, chapter 2, pp. 31-69.
Marcel Dekker Inc, New York, 1993.

 [Otter-95] Martin Otter. Objektorientierte Modellierung
mechatronischer Systeme am Beispiel geregelter Roboter,
Dissertation, Fortshrittberichte VDI, Reihe 20, Nr 147. 1995.

[Otter-96] Martin Otter, Hilding Elmqvist, Francois E. Cellier.
Modeling of Multibody Systems with the Object-oriented
Modeling Language Dymola. Nonlinear Dynamics, 9:91-112,
Kluwer Academic Publishers. 1996.

 [Saldamli-01] Levon Saldamli, Peter Fritzson. A Modelica-
Based Language for Object-Oriented Modeling with Partial
Differential Equations. In Proceedings of the 4th International
EuroSim Congress, Delft, the Netherlands, June 26-29, 2001.

[Sandewall-78] Erik Sandewall. Programming in an Interactive
Environment: the "LISP" Experience. Computing Surveys, Vol.
10, No. 1, March 1978.

[Teitelman-69] Warren Teitelman. Toward a Programming
Laboratory. In Proc. of First Int. Jt. Conf. on Artificial
Intelligence, 1969.

[Teitelman-74] Warren Teitelman. INTERLISP Reference
Manual. Xerox Palo Alto Research Center, Palo Alto, CA, 1974.

[Teitelman-77] Teitelman, W. A display oriented programmer's
assistant. Computer, 39--50. (1977, August 22--25)

[Tiller-01] Michael M. Tiller. Introduction to Physical Modeling
with Modelica. Kluwer Academic Publishers, 2001.

[Visio] http://www.microsoft.com/office/visio/

[Wolfram-88] Stephen Wolfram. Mathematica System for Doing
Mathematics by Computer. Addison-Wesley, 1988.

[Wolfram-97] Stephen Wolfram. The Mathematica Book,
Wolfram Media, 1997.

