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Abstract 
 

Modelica is a general equation-based object-oriented 
language for continuous and discrete-event modeling of 
physical systems for the purpose of efficient simulation. 
The language unifies and generalizes previous object-
oriented modeling languages. The Modelica modeling 
language and technology is being warmly received by the 
world community in modeling and simulation. It is 
bringing about a revolution in this area, based on its ease 
of use, visual design of models with combination of lego-
like predefined model building blocks, its ability to define 
model libraries with re-usable components and its 
support for modeling and simulation of complex 
applications involving parts from several application 
domains. In this paper we present the Modelica language 
with emphasis on its language features and one of the 
associated simulation environments. Simulation models 
can be developed in an integrated problem-solving 
environment by using a graphical editor for connection 
diagrams. Connections are established just by drawing 
lines between objects picked from a class library. The 
principles of object oriented physical systems modeling 
and the multi-domain capabilities of the language are 
presented in the paper by several examples. 

 
1. Introduction 
 

Modelica is a new language for hierarchical object-
oriented physical modeling which is developed through an 
international effort [6][3] [8][9]. The language unifies and 
generalizes previous object-oriented modeling languages. 
Modelica is intended to become a de facto standard. The 
language has been designed to allow tools to generate 
efficient simulation code automatically with the main 
objective to facilitate exchange of models, model libraries 
and simulation specifications. It allows defining 
simulation models modularly and hierarchically and 
combining various formalisms expressible in the more 
general Modelica formalism. The multidomain capability 

of Modelica gives the user the possibility to combine 
electrical, mechanical, hydraulic, thermodynamic etc, 
model components within the same application model. 
Compared to other equation based languages available 
today. Modelica is primarily a modeling language, 
sometimes called hardware description language, that 
allows the user to specify mathematical models of 
complex physical systems, e.g. for the purpose of 
computer simulation of dynamic systems where behavior 
evolves as a function of time. Modelica is also an object-
oriented equation based programming language, oriented 
towards computational applications with high complexity 
requiring high performance. The four most important 
features of Modelica are: 
• Modelica is primarily based on equations instead of 

assignment statements. This permits acausal modeling 
that gives better reuse of classes since equations do 
not specify a certain data flow direction. Thus a 
Modelica class can adapt to more than one data flow 
context. 

• Modelica has multi-domain modeling capability, 
meaning that model components corresponding to 
physical objects from several different domains such 
as e.g. electrical, mechanical, thermodynamic, 
hydraulic, biological and control applications can be 
described and connected.  

• Modelica is an object-oriented language with a 
general class concept that unifies classes, generics — 
known as templates in C++, and general subtyping 
into a single language construct. This facilitates reuse 
of components and evolution of models. 

• Modelica has a strong software component model, 
with constructs for creating and connecting 
components. Thus the language is ideally suited as an 
architectural description language for complex 
physical systems, and to some extent for software 
systems. 

The reader of the paper is referred to [9][8] and [13] 
for a complete description of the language and its 



functionality from the perspective of the motivations and 
design goals of the researchers who developed it. 

In the following section, the object oriented 
mathematical modeling principle is briefly introduced 
together some Modelica language constructs. In Section 3 
the continuous system modeling capabilities of the 
Modelica language are introduced with the help of a 
simple simulation example. Section 4 and Section 5 
present some discrete Modelica language constructs and 
corresponding discrete and hybrid simple simulation 
examples. In Section 6 the Modelica package concept is 
briefly introduced and a mechanical example is provided 
from the Modelica Standard Multi-Body Library. Section 
7 introduces MathModelica: a fully integrated program 
solving environment for full system modeling and 
simulation. Finally, future work and concluding remarks 
are given. 
 
2. Object-Oriented Mathematical Modeling 
 

Traditional object-oriented programming languages 
like Simula, C++, Java, and Smalltalk, as well as 
procedural languages such as Fortran or C, support 
programming with operations on stored data. The stored 
data of the program includes variable values and object 
data. The number of objects often changes dynamically. 
The Smalltalk view of object-orientation emphasizes 
sending messages between (dynamically) created objects.  

The Modelica view on object-orientation is different 
since the Modelica language emphasizes structured 
mathematical modeling. Object-orientation is viewed as a 
structuring concept that is used to handle the complexity 
of large system descriptions. A Modelica model is 
primarily a declarative mathematical description, which 
simplifies further analysis. Dynamic system properties are 
expressed in a declarative way through equations. 

The concept of declarative programming is inspired by 
mathematics where it is common to state or declare what 
holds, rather than giving a detailed stepwise algorithm on 
how to achieve the desired goal as is required when using 
procedural languages. This relieves the programmer from 
the burden of keeping track of such details. Furthermore, 
the code becomes more concise and easier to change 
without introducing errors. 

Thus, the Modelica view of object-orientation, from 
the point of view of object-oriented mathematical 
modeling, can be summarized as follows: 
• Object-orientation is primarily used as a structuring 

concept, emphasizing the declarative structure and 
reuse of mathematical models. 

• Dynamic model properties are expressed in a 
declarative way through equations. 

• An object is a collection of instance variables and 
equations that share a set of stored data. 

• Object orientation is not viewed as dynamic message 
passing. 

The declarative object-oriented way of describing 
systems and their behavior offered by Modelica is at a 
higher level of abstraction than the usual object-oriented 
programming since some implementation details can be 
omitted. For example, the users do not need to write code 
to explicitly transport data between objects through 
assignment statements or message passing code. Such 
code is generated automatically by the Modelica compiler 
based on the given equations.  

Just as in ordinary object-oriented languages classes 
are blueprints for creating objects. Both variables and 
equations can be inherited between classes. Function 
definitions can also be inherited. However, specifying 
behavior is primarily done through equations instead of 
via methods. There are also facilities for stating 
algorithmic code including functions in Modelica, but this 
is an exception rather than the rule. 

As briefly mentioned before, acausal modeling is a 
declarative modeling style meaning modeling based on 
equations instead of assignment statements. The main 
advantage is that the solution direction of equations will 
adapt to the data flow context in which the solution is 
computed. The data flow context is defined by stating 
which variables are needed as outputs, and which are 
external inputs to the simulated system. The acausality of 
Modelica library classes makes these more reusable than 
traditional classes containing assignment statements where 
the input-output causality is fixed.  

To illustrate the idea of acausal physical modeling we 
give an example of a simple electrical circuit, see Figure 
1. The connection diagram of the electrical circuit shows 
how the components are connected and roughly 
corresponds to the physical layout of the electrical circuit 
on a printed circuit board. The physical connections in the 
real circuit correspond to the logical connections in the 
diagram. Therefore the term physical modeling is quite 
appropriate. 

R1=10

C=0.01 L=0.1

R2=100

G

AC=220

 
Figure 1. Connection diagram of the acausal simple 

circuit model. 
The Modelica SimpleCircuit class below directly 

corresponds to the circuit depicted in the connection 
diagram of Figure 1. Each graphic object in the diagram 
corresponds to a declared instance in the simple circuit 
model. The model is acausal since no signal flow, i.e 



cause-and-effect flow, is specified. Connections between 
objects are specified using the connect statement, which is 
a special syntactic form of equation that we will tell more 
about later.  
 
model SimpleCircuit  
  Resistor  R1(R=10); 
  Capacitor C(C=0.01); 
  Resistor  R2(R=100); 
  Inductor  L(L=0.1); 
  VsourceAC AC; 
  Ground    G; 
equation 
  connect (AC.p, R1.p);// Capacitor circuit 
  connect (R1.n, C.p);     
  connect (C.n, AC.n);     
  connect (R1.p, R2.p);// Inductor circuit 
  connect (R2.n, L.p);      
  connect (L.n,  C.n);      
  connect (AC.n, G.p);// Ground 
end SimpleCircuit; 

 
As a comparison we show the same circuit modeled 

using causal block oriented modeling (e.g using Simulink) 
depicted as a diagram in  

Figure 2. Here the physical topology is lost – the 
structure of the diagram has no simple correspondence to 
the structure of the physical circuit board. This model is 
causal since the signal flow has been deduced and is 
clearly shown in the diagram. 
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Figure 2. The simple circuit model using causal 
block oriented modeling with explicit signal flow. 

 
2.1. Modelica Classes 
 

Modelica, like any object-oriented computer language, 
provides the notions of classes and objects, also called 
instances, as a tool for solving modeling and programming 
problems. Every object in Modelica has a class that 
defines its data and behavior. A class has three kinds of 
members: 
• Fields are data variables associated with a class and 

its instances. Fields store results of computations 

caused by solving the equations of a class together 
with equations from other classes.  

• Equations specify the behavior of a class. The way in 
which the equations interact with equations from 
other classes determines the solution process, i.e. 
program execution. 

• Classes can be members of other classes. 
Here is the declaration of a simple class that might 

represent a point in a three-dimensional space: 
 
class Point  
 "point in a three-dimensional space" 
  public Real x; 
  Real y, z; 
end Point; 

 
2.2. Inheritance 
 

One of the major benefits of object-orientation is the 
ability to extend the behavior and properties of an existing 
class. The original class, known as the superclass or base 
class, is extended to create a more specialized version of 
that class, known as the subclass or derived class. In this 
process, the behavior and properties of the original class 
in the form of field declarations, equations, and other 
contents is reused, or inherited, by the subclass. 

Let us regard an example of extending a simple 
Modelica class, e.g. the class Point introduced 
previously. First we introduce two classes named 
ColorData and Color, where  Color inherits the data 
fields to represent the color from class ColorData and 
adds an equation as a constraint. The new class 
ColoredPoint inherits from multiple classes, i.e. uses 
multiple inheritance, to get the position fields from class 
Point and the color fields together with the equation 
from class Color. 
 
record ColorData 
  Real red; 
  Real blue; 
  Real green; 
end ColorData; 
 
class Color 
  extends ColorData; 
equation 
  red + blue + green = 1; 
end Color; 
 
class Point 
  public Real x; 
  Real y, z; 
end Point; 
 
class ColoredPoint 
  extends Point; 
  extends Color; 
end ColoredPoint; 



 
2.3. Modelica Equations 
 

As we already stated, Modelica is primarily an 
equation-based language in contrast to ordinary 
programming languages where assignment statements 
proliferate. Equations are more flexible than assignments 
since they do not prescribe a certain data flow direction. 
This is the key to the physical modeling capabilities and 
increased reuse potential of Modelica classes. 

Thinking in equations is a bit unusual for most 
programmers. In Modelica the following holds: 
• Assignment statements in conventional languages are 

usually represented as equations in Modelica. 
• Attribute assignments are represented as equations. 
• Connections between objects generate equations. 

Equations are more powerful than assignment 
statements. For example, consider a resistor equation 
where the resistance R multiplied by the current i is equal 
to the voltage v: 

R*i = v; 

This equation can be used in three ways corresponding 
to three possible assignment statements:  computing the 
current from the voltage and the resistance, computing the 
voltage from the resistance and the current, or computing 
the resistance from the voltage and the current. This is 
expressed in the following three assignment statements: 
 
i := v/R; 
v := R*i; 
R := v/i; 

 
2.4. Components 
 

Components are connected via the connection 
mechanism realized by the Modelica language, which can 
be visualized in connection diagrams. A component 
framework realizes components and connections, and 
insures that communication works over the connections. 
For systems composed of acausal components the 
direction of data flow, i.e. the causality, is initially 
unspecified for connections between those components. 
Instead the causality is automatically deduced by the 
compiler when needed. Components have well-defined 
interfaces consisting of ports, also known as connectors, 
to the external world. These concepts are illustrated in   

Figure 3. 
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Interface 
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Figure 3. Connecting  two components within a 
component framework. 

 
Modelica uses a slightly different terminology 

compared to most literature on software component 
systems: connector and connection, rather than port and 
connector respectively in software component literature. 

In the context of Modelica class libraries software 
components are Modelica classes. However when building 
particular models, components are instances of those 
Modelica classes. A component class should be defined 
independently of the environment where it is used, which 
is essential for its reusability. This means that in the 
definition of the component including its equations, only 
local variables and connector variables can be used. No 
means of communication between a component and the 
rest of the system, apart from going via a connector, is 
allowed. A component may internally consist of other 
connected components, i.e. hierarchical modeling. 
 
2.5. Connectors and Connector Classes 

 
Modelica connectors are instances of connector 

classes, i.e. classes with the keyword connector or 
classes with the class keyword that fulfill the constraints 
of connector restricted classes. Such connectors declare 
variables that are part of the communication interface of a 
component defined by the connectors of that component. 
Thus, connectors specify the interface for interaction 
between a component and its surroundings. 

 
 v + 

i 

pin 

 
Figure 4. A component with an electrical pin 

connector; i.e. an instance of a Pin 
For example, class Pin is a connector class that can be used 

to specify the external interface for electrical components that 
have pins as interaction points.  
 
connector Pin  
  Voltage       v; 
  flow Current  i; 
end Pin;     
Pin  pin; // An instance pin of class Pin 

 



Since Modelica is a multidomain language, connector 
classes can be formulated for a number of different 
application domains. The Flange connector class below, 
analogous to Pin, is used to describe interfaces for one-
dimensional interaction in the mechanical domain by 
specifying the position s and force f at a point of 
interaction. 

 
 s  

f 

flange 

 
Figure 5. A component with a mechanical flange 

connector. 
 

connector Flange   
  Position    s; 
  flow Force f; 
end Flange; 
Flange flange; // An instance flange of  
                  class Flange  

 
2.6. Connections 
 

Connections between components can be established 
between connectors of equivalent type. Modelica supports 
equation-based acausal connections, which means that 
connections are realized as equations. For acausal 
connections, the direction of data flow in the connection 
need not be known. Additionally, causal connections can 
be established by connecting a connector with an input 
attribute to a connector declared as output. 

Two types of coupling can be established by 
connections depending on whether the variables in the 
connected connectors are non-flow (default), or declared 
using the prefix flow: 
• Equality coupling, for non-flow variables, according 

to Kirchhoff's first law. 
• Sum-to-zero coupling, for flow variables, according 

to Kirchhoff's current law.  
For example, the keyword flow for the variable i of 

type Current in the Pin connector class indicates that all 
currents in connected pins are summed to zero, according 
to Kirchhoff’s current law. 
 

 
pin 1 pin 2 

+ + 

i i 

v v 

 
Figure 6. Connecting two components that have 

electrical pins. 
 

Connection statements are used to connect instances of 
connection classes. A connection statement 
connect(pin1,pin2) with pin1 and pin2 of 

connector class Pin, connects the two pins so that they 
form one node. This produces two equations, namely: 

 
pin1.v = pin2.v  
pin1.i + pin2.i = 0 
 

The first equation says that the voltages of the 
connected wire ends are the same. The second equation 
corresponds to Kirchhoff's current law saying that the 
currents sum to zero at a node (assuming positive value 
while flowing into the component). The sum-to-zero 
equations are generated when the prefix flow is used. 
Similar laws apply to flows in piping networks and to 
forces and torques in mechanical systems.  
 
3. Continuous Time Simulation 

 
As an introduction to the Modelica continuous time 

simulation capabilities we will present a model of a rocket 
landing on the moon surface adapted from [4]. 

Here is a simple class called CelestialBody that can 
be used to store data related to celestial bodies such as the 
earth, the moon, asteroids, planets, comets, and stars: 
 
class CelestialBody 
  constant  Real   g = 6.672e-11; 
  parameter Real   radius; 
  parameter String name; 
  Real             mass; 
end CelestialBody; 

 
Equations is the primary means of specifying the 

behavior of a class in Modelica, even though  algorithms 
and functions are also available. The way in which the 
equations interact with equations from other classes 
determines the solution process, i.e. program execution, 
where successive values of variables are computed over 
time. This is exactly what happens during dynamic system 
simulation. During solution of time dependent problems, 
the variables store results of the solution process at the 
current time instant. 

The class Rocket embodies the equations of vertical 
motion for a rocket which is influenced by an external 
gravitational force field gravity, and the force thrust 
from the rocket motor, acting in the opposite direction to 
the gravitational force, as in the expression for 
acceleration below: 

mass
gravitymassthrust

onaccelerati
*−

=  

The following three equations are first-order differential 
equations stating well-known laws of motion between altitude, 
vertical velocity, and acceleration: 

( )thrustabstemassLossRasmas *−=′  

velocityealtitud =′  



onacceleratiyvelocit =′  

All these equations appear in the class Rocket below, 
where the mathematical notation (') for derivative has 
been replaced by the pseudo function der() in Modelica. 
The derivative of the rocket mass is negative since the 
rocket fuel mass is proportional to the amount of thrust 
from the rocket motor. 

 
class Rocket "rocket class" 
  parameter String name; 
  Real mass(start=1038.358); 
  Real altitude (start= 59404); 
  Real velocity(start= -2003); 
  Real acceleration; 
  Real thrust; // Thrust force on rocket 
  Real gravity;// Gravity forcefield 
  parameter Real massLossRate=0.000277; 
equation 
  (thrust-mass*gravity)/mass=acceleration; 
  der(mass)  = -massLossRate * abs(thrust); 
  der(altitude) = velocity; 
  der(velocity) = acceleration; 
end Rocket; 

 
The following equation, specifying the strength of the 

gravitational force field, is placed in the class 
MoonLanding in the next section since it depends on both 
the mass of the rocket and the mass of the moon: 

( )2..
.*.

radiusmoonaltitudeapollo
massmoongmoon

gravity
+

=  

The amount of thrust to be applied by the rocket motor 
is specific to a particular class of landings, and therefore 
also belongs to the class MoonLanding: 

( )

( )

0
2

1

else
force

thenimethrustEndTtimeifelse
force

theneaseTimethrustDecrtimeifthrust

<

<=

 

Members of a Modelica class can have two levels of 
visibility: public or protected. The default is public 
if nothing else is specified, e.g. regarding the variables 
force1 and force2 in the class MoonLanding below. 
The public declaration of force1, force2, apollo, 
and moon means that any code with access to a 
MoonLanding instance can read or update those values. 
The other possible level of visibility, specified by the 
keyword protected – e.g. for the variables 
thrustEndTime and thrustDecreaseTime, means 
that only code inside the class as well as code in classes 
that inherit this class are allowed access. However, only 
code inside the class is allowed access to the same 
instance of a protected variable. 

Note that an occurrence of one of the keywords 
public or protected means that all member 

declarations following that keyword assume the 
corresponding visibility until another occurrence of one of 
those keywords. 

The variables thrust, gravity and altitude 
belong to the apollo instance of the Rocket class and 
are therefore prefixed by apollo in references such as 
apollo.thrust. The gravitational constant g, the mass, 
and the radius belong to the particular celestial body 
called moon on which surface the apollo rocket is 
landing. 
 
class MoonLanding 
  parameter Real force1 = 36350; 
  parameter Real force2 = 1308; 
protected 
  parameter Real thrustEndTime = 210; 
  parameter Real thrustDecreaseTime = 43.2; 
public 
  Rocket         apollo(name="apollo13"); 
  CelestialBody moon (name="moon", 
         mass=7.382e22, 
         radius=1.738e6); 
equation 
  apollo.thrust =  
   if (time<thrustDecreaseTime) then  
     force1 
      else if (time<thrustEndTime) then  
     force2  
      else 0; 
  apollo.gravity = moon.g*moon.mass  
   /(apollo.altitude + moon.radius)^2; 
end MoonLanding; 
 

We simulate the MoonLanding model during the time 
interval {0, 230} by the following command, using the 
MathModelica simulation environment: 

 
Simulate[MoonLanding, {t, 0, 230}] 
 

Since the solution for the altitude of the Apollo rocket 
is a function of time, it can be plotted in a diagram, see 
Figure 7. It starts at an altitude of 59404 (not shown in the 
diagram) at time zero, gradually reducing it until 
touchdown at the lunar surface when the altitude is zero. 
Note that the MathModelica PlotSimulation 
command, by default, if nothing else is specified, refers to 
the results of the most recent simulation. 
 
PlotSimulation[apollo.altitude[t],  

{t, 0, 208}] 
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Figure 7. Altitude of the Apollo Rocket over the 

lunar surface. 
 

The thrust force from the rocket is initially high but is 
reduced to a low level after 43.2 seconds, i.e. the value of 
the simulation parameter thrustDecreaseTime, as 
shown in Figure 8. 
 
PlotSimulation[apollo.thrust[t],  
           {t, 0, 208}] 
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Figure 8. Thrust from the rocket motor, with an 

initial high thrust f1 followed by a lower thrust f2. 
 

The mass of the rocket decreases from initially 
1038.358 to around 540 as the fuel is consumed, see 
Figure 9. 
 
PlotSimulation[apollo.mass[t], {t, 0, 208}] 
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Figure 9. Rocket mass decreases when the fuel is 

consumed. 
 
PlotSimulation[apollo. gravity [t],  
           {t, 0, 208}] 
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Figure 10. Gradually increasing gravity when the 

rocket approaches the lunar surface. 
 
The rocket initially has a high negative velocity when 

approaching the lunar surface. This is reduced to zero at 
touchdown giving a smooth landing, as shown in Figure 
11. 

 
PlotSimulation[apollo.velocity[t],  
           {t, 0, 208}] 
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Figure 11. Vertical velocity relative to the lunar 

surface. 
 

4. Discrete Event Modeling 
 

Physical systems evolve continuously over time, 
whereas certain man-made systems evolve by discrete 
steps between states. These discrete changes, or events, 
when something happens, occur at certain points in time. 
We talk about discrete event dynamic systems as opposed 
to continuous dynamic systems directly based on the 
physical laws derived from first principles, e.g. from 
conservation of energy, matter, or momentum. One of the 
key issues concerning the use of events for modeling is 
how to express behavior associated with events. The 
traditional imperative way of thinking about a behavior at 
events is a piece of code that is activated when an event 
condition becomes true and then executes certain 
actions, e.g. as in the when-statement skeleton below: 

 
when (event_conditions) then 
  event-action1; 
  event-action2; 
  ... 
end when; 
 

On the other hand, a declarative view of behaviour can 
be based on equations. When-clauses are used to express 



equations that are only valid (become active) at events, 
e.g. at discontinuities or when certain conditions become 
true. The conditional equations automatically contain only 
discrete-time expressions since they become active only at 
event instants, i.e. at discrete points in time and may 
change. 
 
when <conditions> then 
  <equations> 
end when; 
 

For example, the two equations in the when-clause 
below become active at the event instant when the 
Boolean expression x > 2 becomes true. 
 
when x > 2 then  
  y1 = sin(x);   
  y3 = 2*x + y1+y2;    
end when; 
 

If we instead use a Boolean vector expression 
containing three elements as the conditions, then the two 
equations will be activated at event instants when either of 
the three conditions: x > 2, sample(0,2), or x < 5 
becomes true. Typically each condition in the vector 
gives rise to its own event instants. 
 
when {x > 2, sample(0,2), x < 5} then  
  y1 = sin(x);   
  y3 = 2*x + y1+y2;    
end when; 
 

So-called discrete-time variables in Modelica only 
change value at discrete points in time, i.e. at event 
instants, and keep their values constant between events. 
This is in contrast to continuous-time variables which may 
change value at any time, and usually evolve continuously 
over time. Figure 12 shows a graph of a discrete-time 
variable, and Figure 13 two evolving continuous-time 
variables.  
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Figure 12. A discrete-time variable x changes value 

only at event instants.  
 
Variables in Modelica are discrete-time if they are 

declared using the discrete prefix, e.g. discrete 
Real y, or if they are of type Boolean, Integer, or 
String, or of types constructed from discrete types. A 
variable assigned in a when-statement or being on the left-

hand side of an equation in a when-clause is discrete-time. 
A Real variable not assigned in any when-statement or 
being on the left-hand side of an equation in a when-
clause is continuous-time. It is not possible to have 
continuous-time Boolean, Integer, or String 
variables. 
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Figure 13. Continuous-time variables like y and z 
may change value both between and at events. 

 
In Figure 13 above, both y and z are classified as 

continuous-time variables and are allowed to change at 
any point in time. The y variable is a continuous function 
of time whereas z is discontinuous at several points in 
time. Two of those points where z is discontinuous are 
not associated with any events, which will create some 
extra work and possibly numerical difficulties for the 
numerical equation solver. In this case it would have been 
better to have z as a discrete-time variable with events at 
all its points of discontinuity. 

 
4.1. Event-Related Built-in Functions and 
Operators 
 

Modelica provides a number of built-in functions and 
operators related to events and time, which are quite 
useful in discrete and hybrid modeling. Some functions 
generate events, some can be used to express conditions 
for triggering events, one function prevents events, and 
some operators and functions provide access to variable 
values before the current event as well as causing 
discontinuous change of variable values at an event. 

The function sample(first,interval)returns true and 
can be used to trigger triggers events at time instants first 
+ i*interval (i=0,1,...), where first is the time of the first 
event and interval is the time interval between the 
periodic events. It is typically used in models of 
periodically sampled systems. 
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Figure 14. The call sample(t0,d) returns true and 
triggers events at times t0+i*d, where i=0,1,etc.  



 
The function call pre(y) gives the “predecessor 

value” of y. For a discrete-time variable y at an event 
pre(y) is the value of y immediately preceding the event, 
as depicted in Figure 15 below. The argument y must be a 
variable and not a general expression 
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Figure 15. At an event, pre(y) gives the previous 

value of y immediately before the event, except for 
event iteration when the value is from the previous 

iteration. 
 
The pre operator can only be applied to a variable y, 

e.g. as in the expression pre(y), if the following three 
conditions are fulfilled:  
• The variable y has type Boolean, Integer, Real, 

or String, or a subtype of those. 
• The variable y is a discrete-time variable.  
• The operator is not used within a function 

At the initial time when simulation starts, pre(y) = 
y.start, i.e. it is identical to the start attribute value of 
its argument. Certain Modelica variables can be declared 
as constants or simulation parameters by using the 
prefixes constant and parameter respectively. Such 
variables do not change value during simulations. For a 
constant or parameter variable c, it is always the case that 
c = pre(c). 
 
4.2. A Simple Discrete Simulation Model. 

 
As a very simple example of discrete time simulation 

we can consider a simple server model with queue. We 
start by first defining a model which generates customers 
at random time moments. This model calls the function 
normalvariate which is a random number generator 
function used to generate the time delay until the next 
customer arrival. 
 
model CustomerGeneration 
  Random.discreteConnector dOutput; 
  parameter Real mean = 0; 
  parameter Real stDeviation = 1; 
  discrete Real normalDelta; 
  discrete Real  

nextCustomerArrivalTime(start=0); 
  discrete Random.Seed  

randomSeed(start={23,87,187}); 
equation 
  when pre(nextCustomerArrivalTime)<=time  
     then (normalDelta,randomSeed)= 

normalvariate(mean, 
stDeviation, 
pre(randomSeed)); 

     nextCustomerArrivalTime = 
pre(nextCustomerArrivalTime) +  
abs(normalDelta); 

  end when; 
   dOutput.dcon = (nextCustomerArrivalTime  

     <>pre(nextCustomerArrivalTime); 
end CustomerGeneration; 
 
Simulate[CustomerGeneration,{t,0,10}] 
PlotSimulation[nextCustomerArrivalTime[t 

],{t,0,10}] 
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Figure 16. Customers generated at random time 

moments. 
 

Based on the previously defined model, we can now 
design a server model which through one of its input ports 
will accept the arriving customers from the 
CustomerGeneration model. 
 
model ServerWithQueue 
  Random.discreteConnector dInput; 
  parameter Real serveTime=0.1; 
  discrete Real nrOfArrivedCustomers; 
  discrete Real nrOfServedCustomers; 
  discrete Real   
   nrOfCustomersInQueue(start=0); 
  discrete Boolean  
   readyCustomer(start=false); 
  discrete Boolean   
    serveCustomer(start=false); 
  Real resetTime; 
   
equation 
  when dInput.dcon then 
   nrOfArrivedCustomers =  

  pre(nrOfArrivedCustomers)+1; 
  end when; 
   
  when readyCustomer then 
  nrOfServedCustomers =  
   pre(nrOfServedCustomers)+1; 
  end when; 
   
  when (pre(nrOfCustomersInQueue)==0 and  
     dInput.dcon) or  



     (pre(nrOfCustomersInQueue)>=1 and  
     pre(readyCustomer))then 
    serveCustomer=true; 
    resetTime=time; 
  end when; 
   
  readyCustomer = (serveCustomer and  
   (serveTime < time-resetTime)); 
  nrOfCustomersInQueue =  

nrOfArrivedCustomers - 
nrOfServedCustomers; 

end ServerWithQueue; 
 

The nrOfCustomersInQueue represents the current number 
of customers in the system. The event generated by the when 
dInput.dcon statement represents the arrival of a new customer 
through the input port of the server model. The event 
readyCustomer represents completed service of a customer.   To 
serve a customer if takes serveTime time. The simulation of the 
whole system can be done by defining a test model which 
connects the CustomerGeneration model with the 
ServerWithQueue model.   
 
model testServer1 
   CustomerGeneration  customer; 
   ServerWithQueue server(serveTime=0.4); 
equation 
   connect(customer.dOutput,server.dInput); 
end testServer1; 

 
Using the MathModelica simulation environment we 

simulate the model for 10sec with the time necessary to 
serve a customer serveTime=0.4sec. 

 
Simulate[testServer1,{t,0,10}] 
PlotSimulation[ 
 {server.nrOfArrivedCustomers[t], 
  server.nrOfServedCustomers[t], 
  
server.nrOfCustomersInQueue[t]},{t,0,10}] 
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Figure 17. Number of arrived customers, number of 

served customers, and number of customers waiting in 
the queue. 

 
 
 

 
5. Hybrid Modeling 
 

As we have mentioned previously physical systems 
evolve continuously over time, whereas certain man-made 
systems evolve by discrete steps between states. 

A hybrid system contains both discrete parts and 
continuous parts. A typical example is a digital computer 
interacting with the external physical world, as depicted 
schematically in Figure 18. This is however a very 
simplified picture since the discrete parts usually are 
distributed together with physical components in many 
technical systems. 

This subsection gives an introduction to modeling and 
simulating discrete event dynamic systems and hybrid 
dynamic systems using Modelica. 
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Figure 18.  A  hybrid system where a discrete 

computer senses and controls the continuous physical 
world. 

 
5.1. Bouncing Ball Simulation 
 

A bouncing ball is a good example of a hybrid system 
for which the when-clause is appropriate as a modeling 
construct. The motion of the ball is characterized by the 
variable height above the ground and the vertical 
velocity v. The ball moves continuously between bounces, 
whereas discrete changes occur at bounce times, as 
depicted in Figure 19 below. When the ball bounces 
against the ground its velocity is reversed. An ideal ball 
would have an elasticity coefficient of 1 and would not 
lose any energy at a bounce. A more realistic ball, as the 
one modeled below, has an elasticity coefficient of 0.9, 
making it keep 90 percent of its speed after the bounce. 

 

 
Figure 19. A bouncing ball 

 
The bouncing ball model contains the two basic 

equations of motion relating height and velocity as well as 



the acceleration caused by the gravitational force. At the 
bounce instant the velocity is suddenly reversed and 
slightly decreased, i.e. v(after bounce) = -c*v(before 
bounce), which is accomplished by the special syntactic 
form of instantaneous equation: reinit(v,-c*v). 
 
model BouncingBall "Bouncing ball model"  
  parameter Real g=9.81; 
  parameter Real c=0.90;    
     // elasticity constant of ball 
  Real height(start=0);     
     // height above ground 
  Real v(start=10);     // velocity 
equation  
  der(height) = v;  
  der(v)      = -g;  
  when height<0 then  
    reinit(v, -c*v); 
  end when;  
end BouncingBall; 

 
The reinit(v, -c*v) equation effectively 

“removes” the previous equation defining statevariable 
and “adds” a new equation statevariable = 
valueexpression that gives a new definition to 
statevariable. Neither the number of variables nor the 
number of equations is changed. The single assignment 
rule of Modelica is therefore not violated. The “single 
assignment rule” roughly means that the number of 
equations is the same as the number of variables. 

 
6. Modelica Packages and Libraries 

 
6.1. Modelica Packages 

 
Packages in Modelica may contain definitions of 

constants and classes including all kinds of restricted 
classes, functions, and subpackages. By the term 
subpackage we mean that the package is declared inside 
another package, no inheritance relationship is implied. 
Parameters and variables cannot be declared in a package. 
The definitions in a package should be related in some 
way, which is the main reason they are placed in a 
particular package. Packages are useful for number of 
reasons: 
• Definitions that are related to some particular topic 

are typically grouped into a package. This makes 
those definitions easier to find and the code more 
understandable. 

• Packages provide encapsulation and coarse grained 
structuring that reduces the complexity of large 
systems. An important example is the use of packages 
for construction of (hierarchical) class libraries. 

• Name conflicts between definitions in different 
packages are eliminated since the package name is 

implicitly prefixed to names of definitions declared in 
a package. 

• Information hiding and encapsulation can be 
supported to some extent by declaring protected 
classes, types, and other definitions that are only 
available inside the package and therefore 
inaccessible to outside code. 

• Modelica defines a method for locating a package by 
providing a standard mapping of package names to 
storage places, typically file or directory locations in a 
file system.  

• Identification of packages. A package stored 
separately, e.g. on a file, can be (uniquely) identified. 

As an example, consider the package 
ComplexNumbers below which contains a data structure 
declaration, the record Complex, and associated 
operations such as Add, Multiply, MakeComplex, 
etc. The package is declared as encapsulated which 
is the recommended software engineering practice to keep 
the system well structured as well as being easier to 
understand and maintain. 

 
encapsulated package ComplexNumbers 
 
record Complex 
  Real re; 
  Real im; 
end Complex; 
 
function Add 
  input  Complex x; 
  input  Complex y; 
  output Complex z; 
algorithm 
  z.re := x.re + y.re; 
  z.im := x.im + y.im 
end Add; 
 
function Multiply 
  input  Complex x; 
  input  Complex y; 
  output Complex z; 
algorithm 
  z.re := x.re*y.re – x.im*y.im; 
  z.im := x.re*y.im + x.im*y.re; 
end Multiply; 
 
function MakeComplex 
  input  Real    x; 
  input  Real    y; 
  output Complex z; 
algorithm 
  z.re := x; 
  z.im := y; 
end MakeComplex; 
 
// Declarations of Subtract, Divide,  
// RealPart, ImaginaryPart, etc. 
// (not shown here) 
end ComplexNumbers; 



 
The example below presents a way how one can make 

use of the package ComplexNumbers, where both the 
type Complex and the operations Multiply and Add are 
referenced by prefixing them with the package name 
ComplexNumbers. 
 
class ComplexUser 
  ComplexNumbers.Complex  a(x=1.0, y=2.0); 
  ComplexNumbers.Complex  b(x=1.0, y=2.0); 
  ComplexNumbers.Complex  z,w; 
equation 
  z = ComplexNumbers.Multiply(a,b); 
  w = ComplexNumbers.Add(a,b); 
end ComplexUser; 
 

A well-designed package structure is one the most 
important aspects that influences the complexity, 
understandability, and maintainability of a large software 
systems. There are many factors to consider when 
designing a package, e.g.: 
• The name of the package. 
• Structuring of the package into subpackages. 
• Reusability and encapsulation of the package. 
• Dependences on other packages. 

Modelica defines a standard mapping of hierarchical 
package structures onto file systems or other storage 
mechanisms such as databases, which provides the user 
with a simple and unambiguous way of locating a 
package. The Modelica library path mechanism makes it 
possible to make multiple packages and package 
hierarchies simultaneously available for lookup.  

All these mechanisms give the user a considerable 
flexibility and power in structuring a package. This 
freedom should however be used in an appropriate way. 

The name of a package should be descriptive and relate 
to the topic of the definitions in the package. The name 
can be chosen to be unique within a project, within an 
organization, or sometimes in the whole world, depending 
on the typical usage scope of the package. 

Since classes can be placed in packages, and packages 
is a restricted form of class, Modelica allows packages to 
contain subpackages, i.e. packages declared within some 
other package. This implies that a package name can be 
composed of several simple names appended through dot 
notation, e.g. “Root package”.” Package level two”.” 
Package level three”, etc. Typical examples can be found 
in the Modelica standard library, where all level zero 
subpackages are placed within the root package called 
Modelica. This is an extensive library containing 
predefined subpackages from several application domains 
as well as subpackages containing definitions of common 
constants and mathematical functions. A few examples of 
names of subpackages in this library follow here: 
Modelica.Mechanics.Rotational.Interfaces    
Modelica.Electrical.Analog.Basic            
Modelica.Blocks.Interfaces                  

6.2. Modelica Libraries 
 
The equation-based foundation of the Modelica 

language enables simulation in an extremely broad range 
of scientific and engineering areas. For this reason an 
extensive Modelica base library is under continuous 
development and improvement being an intrinsic part of 
the Modelica effort (see www.modelica.org). Some of the 
model libraries include application areas such as 
mechanics, electronics, hydraulics and pneumatics. These 
libraries are primarily intended to tailor Modelica toward 
a specific domain by giving modelers access to common 
model elements and terminology from that domain. 

We briefly present the multi-body system library 
together with a simple modeling example. The MBS 
(Multi Body System) library has been developed in [11], 
An overview can be found in [10]. Our modeling example 
consists of a mass hanging from a spring in a gravity field. 
When the spring-mounted body is disturbed from its 
equilibrium position, its ensuing motion in the absence of 
any imposed external forces is called free vibration. 
However, in the real world, every mechanical system 
possesses some inherent degree of friction which will act 
as a consumer of mechanical energy. Therefore, we 
should add to our system a viscous damper for the 
purpose of limiting or retarding the vibration. A schematic 
diagram of the system under consideration is shown in 
Figure 20. 
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Figure 20. Schematic diagram of a damped free 

vibration mass system 
The Modelica code for the model considered above is 

shown below: 
 

import Modelica.Aditions.MultiBody; 
model Model1 
  Parts.InertialSystem inertial;         
  Joints.Prismatic prismS(n={0,-1,0}); 
  Parts.Body2 body(r={0,-1,0},m=1); 
  Forces.Spring spring1(c=300);    
  Forces.Damper damper1(d=2); 
 
equation  
connect(inertial.frame_b,prismS.frame_a;    
connect(prismS.frame_b,body.frame_a);    



connect(prismS.frame_b,spring1.frame_b; 
connect(spring1.frame_a,prismS.frame_a; 
connect(spring.frame_b,damper1.frame_b);      
connect(damper1.frame_a,spring1.frame_a); 
end Model1; 

An instance of the Inertial class defines the global 
coordinate system and gravitational forces (the inertial 
frame). All parameter vectors and tensors are given in the 
home position of the multi-body system with respect to the 
inertial frame. One instance of class Inertial must 
always be present for every multi-body model. All other 
objects are in some way connected to the inertia system, 
either directly or through other objects. 

Every basic mechanical component from the MBS 
library has at least one or two interfaces to connect the 
element rigidly to an other mechanical elements. A 
distinguishing feature of multi-body systems is the 
presence of joints, which impose different types of 
kinematic constrains between the various bodies of the 
kinematic chain. The motions between links of the 
mechanism must to be constrained to produce the proper 
relative motion, i.e. the motion chosen by the designer for 
the particular task to be performed. 

A Prismatic joint has been introduced in order to 
produce the relative motion in the Y-direction. The 
relative motion direction is specified by the parameter 
vector n=[0,-1,0] which is the axis of translation 
resolved in frame_a. 
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Figure 21. Plot of Mass1.s(t) absolute position of the 

center of the mass1 component. 
 

7. The MathModelica Simulation 
Environment. 
 

MathModelica[16] is an integrated problem-solving 
environment (PSE) for full system modeling and 
simulation using Modelica. The environment integrates 
Modelica-based modeling and simulation with graphic 
design, advanced scripting facilities, integration of code 
and documentation, and symbolic formula manipulation 
provided via Mathematica. These capabilities give the 
environment considerable power, combined with easy of 
use. Import and export of Modelica code between internal 
structured and external textual representation is supported 

by MathModelica. For example, the system is typically 
used for the creation of “virtual prototypes”, computer 
simulations that behave like a real physical object or 
system, e.g., an electrical network, a turbo engine, an 
aircraft, or an industrial robot. 

 
 
 
 
 
 
 

 
Figure 22. The MathModelica Environment 

structure. 
 
The environment uses extensively the principles of 

literate programming [7], and integrates most activities 
needed in simulation design: modeling, symbolic 
processing, transformation and formula manipulation, 
storage of simulation models, version control, input and 
output data visualization, storage and generation of 
documentation. The Mathematica[14] system is part of 
the MathModelica environment. The interpreted 
Mathematica language integrates several features into a 
unified integrated environment: numerical and symbolic 
calculations, functional, procedural, rule-based and 
graphical programming. Additionally, the language 
incorporates many features of traditional mathematical 
notation and the goal of the language is to provide a 
precise and consistent way to specify computations. 

The Mathematica system is divided into two distinct 
parts: the computer algebra engine (“kernel”) that receives 
and evaluates all expressions sent to it and the user 
interface (“front-end”). The front-end provides the 
programming interface to the user and is concerned with 
such issues as how input is entered and how computation 
results are displayed to the user. 

MathModelica uses Mathematica’s front-end 
documents that are called notebooks, Figure 23. They 
combine text, executable commands, numerical results, 
graphics, and sound in a single document. A notebook 
provides users with a medium in which they can document 
their solution along with the computation itself. To 
provide these powerful integrated capabilities without 
reinventing the wheel, MathModelica integrates and 
extends a number of software products such as the 
technical computing system Mathematica [14] from 
Wolfram Research, the diagram and visualization tool 
Visio from Microsoft, and Dymola the simulation engine 
from Dynasim[15] grouped in three modules: Notebooks, 
Model Editor, and Simulation Center, as it is shown in 
Figure 22. 
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Figure 23. The MathModelica Simulation Environment: Notebook, Model Editor and Simulation Center screen 
captures.  

 
7.1. The Model Editor 
 

The MathModelica Model Editor is a graphical user 
interface for model diagram construction by “drag-and-
drop” of ready made components from model libraries 
graphically represented by Visio stencils. The libraries 
correspond to the physical domains represented in the 
Modelica Standard Library or components from user 
defined component libraries. A screen shot of the Model 
Editor is shown in the middle of  Figure 23. The Model 
Editor is an extension of the Microsoft software Visio for 
diagram design and schematics. This means that the user 
has access to a well-developed and user-friendly 
application but also a vast array of design features to make 
graphical representations of developed models look 
professional. Since Modelica components often represents 

physical objects it is of great value to have a sufficiently 
rich graphical description of these objects. 

  The Model Editor can be viewed as a user interface 
for graphical programming in Modelica. Its basic 
functionality is the selection of components from ready-
made libraries, connection of components in model 
diagrams, and to entering parameter values for different 
components. 

For large and complex models it is important to be able 
to intuitively navigate quickly through component 
hierarchies. The Model Editor supports this in several 
ways. A model diagram can be browsed and zoomed. 
Aggregate components can be opened in separate 
windows by double-clicking on their icons. 

   Parameter values of a component can be accessed by 
right-clicking on a component and open the Custom 



Properties form. The complete textual Modelica model is 
stored in a so-called Notebook, which also can be opened 
by right-clicking a component. 

  The Model Editor is well integrated with Notebooks. 
A model diagram in a notebook is a graphical 
representation of the Modelica code, which can be 
converted into textual form by a command. Double-
clicking on a model diagram in a notebook will open the 
Model Editor and the model can be graphically edited. 

   The combination of the ability of making user 
defined libraries of reusable components in Modelica and 
the Notebook concept of living technical documents 
supports model management and evolution of models of 
large systems. MathModelica is also an open environment 
both with respect to the ability of communicating with 
other programs as well as import and export of different 
data formats. A key aspect of MathModelica is that the 
modeling and simulation activities are done within an 
environment that also provides a variety of technical 
computations. This can be utilized both in a preprocessing 
stage in the development of models for subsystems as well 
as for post processing of simulation results such as signal 
processing and further analysis of simulated data with the 
help of the environment component called Simulation 
Center shown in the lower right corner of Figure 23. 

The symbolic computer-algebra capabilities can be 
applied to equations from Modelica models. For example, 
below a list of equations is extracted from a Modelica 
model, a new equation is appended to the list, and 
Mathematica pattern matching and transformation rules 
are used to transform the list of equations to a list of 
equations in Laplace form, which can be Laplace 
transformed, to be used as input for further analysis or a 
new Modelica-based simulation. 
 
eqnlist = GetFlatEquations[Model1]; 
AppendTo[eqnlist,Inertia.flange_b.tau ==0]; 
laplaceeqns = eqnlist /.  

{1/der[a_] :> a/s, der[b_] :> s*b}; 
 

8. Future Work 
 

The work by the Modelica Association on the further 
development of Modelica and tools is continuing. Several 
companies and research institutes are pursuing or planning 
development of tools based on Modelica. In our case we 
focus on interactive implementation of Modelica 
integrated with Mathematica to provide integration of 
model design, coding, documentation, simulation and 
graphics. 

 
8.1. Partial Differential Equation Extension 
 

In order to specify models containing partial 
differential equations, the concept of geometric domains 

and domain boundaries are needed in the Modelica 
language, as well as multi-variable functions and 
equations that are defined over such domains and 
boundaries. Furthermore, the connection mechanism need 
to be generalized to use domains or domain boundaries as 
connection regions between components with separate 
domains[11]. 

 
8.2. Debugging of Simulation Models 
 

Determining the cause of errors in models of physical 
systems is hampered by the limitations of the current 
techniques of debugging declarative equation based 
languages. Improved debugging and verification tools 
need to be developed in order to statically detect a broad 
range of errors without having to execute the simulation 
model. Since the simulation system execution is 
expensive, static debugging tools should greatly reduce 
the number of test cases usually needed to validate a 
simulation model. The user should be presented to the 
original source code of the program and not burdened 
with understanding the intermediate code or the numerical 
artifacts for solving the underlying system of equations. 
When a simulation model fails to compile, the errors 
should be reported consistent with the user’s perception of 
the simulation model or source code and possible repair 
strategies should also be provided [2]. 

 
8.3. Parallel Simulation 
 

To deal with the growing complexity of modeled 
systems in the Modelica language, the need for 
parallelisation becomes increasingly important in order to 
keep simulation time within reasonable limits. A Modelica 
compiler usually performs many optimizations to reduce 
the number of equations and to increase the efficiency of 
the simulation code. However, for large and complex 
models there are also opportunities to successfully exploit 
parallelism in the simulation code. Current research is on 
an automatic parallelisation tool for Modelica models that 
reads the automatic generated simulation code produced 
by the standard Modelica compiler and by using specially 
adapted scheduling algorithms produces parallel 
simulation code for execution in a multiprocessor 
environment [1]. 
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