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Abstract—The PEPPHER component model defines an envi-
ronment for annotation of native C/C++ based components for
homogeneous and heterogeneous multicore and manycore sys-
tems, including GPU and multi-GPU based systems. For the same
computational functionality, captured as a component, different
sequential and explicitly parallel implementation variants using
various types of execution units might be provided, together with
metadata such as explicitly exposed tunable parameters. The goal
is to compose an application from its components and variants
such that, depending on the run-time context, the most suitable
implementation variant will be chosen automatically for each
invocation.

We describe and evaluate the PEPPHER composition tool,
which explores the application’s components and their im-
plementation variants, generates the necessary low-level code
that interacts with the runtime system, and coordinates the
native compilation and linking of the various code units to
compose the overall application code. With several applications,
we demonstrate how the composition tool provides a high-level
programming front-end while effectively utilizing the task-based
PEPPHER runtime system (StarPU) underneath.

Index Terms—PEPPHER project; component model; GPU-
based systems; performance portability;

I. INTRODUCTION

Heterogeneous computing has become a viable option to
provide high performance while keeping energy consumption
low. There is a growing trend of using graphics processing
units (GPUs) and other heterogeneous chip-multiprocessors
for general-purpose computations in many application do-
mains. Besides several advantages, heterogeneity has lead to
severe programmability problems on the software side. The
diversity of hardware architectures of different devices (CPU,
GPU etc.) in a system and associated programming models
has made programming these heterogeneous systems a te-
dious task. Moreover, achieving close-to-peak performance on
these systems require architecture-specific optimizations in the
source-code which restrict portability to other architectures.

PEPPHER is a 3-year European FP7 project (2010-2012)
that aims to provide a unified framework for programming
and optimizing applications for heterogeneous many-core pro-
cessors to enable performance portability. The PEPPHER
framework [1] consists of three main parts: (1) a flexible and
extensible component model for encapsulating and annotating
performance critical parts of the application, (2) adaptive

algorithm libraries that implement the same basic function-
ality across different architectures, and (3) an efficient run-
time system that schedules compiled components across the
available resources, using performance information provided
by the components layer as well as other, execution-history-
based performance information.

The PEPPHER composition tool adapts applications written
using the PEPPHER component model to the runtime system.
It gathers important information about the application and its
components from their XML-based metadata descriptors, uses
that information for static composition and generates glue code
creating tasks for the PEPPHER runtime system (which is
based on StarPU [2]) for dynamic composition.

This paper presents the PEPPHER composition tool. Sec-
tion II describes central concepts of the PEPPHER component
model. Sections III and IV describe the composition tool and
its current prototype implementation. Section V presents an
evaluation of the developed prototype. Some related work is
listed in Section VI. Section VII concludes and suggests future
work.

II. COMPONENTS, INTERFACES, IMPLEMENTATIONS

A PEPPHER component is an annotated software mod-
ule that implements a specific functionality declared in a
PEPPHER interface. A PEPPHER interface is defined by
an interface descriptor, an XML document that specifies the
name, parameter types and access types (read, write or both) of
a function to be implemented, and which performance metrics
(e.g. average case execution time) the prediction functions
of component implementations must provide. Interfaces can
be generic in static entities such as element types or code;
genericity is resolved statically by expansion, as with C++
templates.

Applications for PEPPHER are currently assumed to be
written in C/C++. Several implementation variants may im-
plement the same functionality (as defined by a PEPPHER
interface), e.g. by different algorithms or for different ex-
ecution platforms. These implementation variants can exist
already as part of some standard library1 or can be provided

1For demonstration purpose, we have used CUBLAS [3] and CUSP [4]
components for CUDA implementations as shown in Section V.
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by the programmer (called expert programmer by Asanovic et
al. [5]). Also, more component implementation variants may
be generated automatically from a common source module,
e.g. by special compiler transformations or by instantiating
or binding tunable parameters. These variants differ by their
resource requirements and performance behavior, and thereby
become alternative choices for composition whenever the
(interface) function is called.

In order to prepare and guide variant selection, component
implementations need to expose their relevant properties ex-
plicitly to a composition tool (described later). Each imple-
mentation variant thus provides its own component descriptor,
an XML document that contains meta-data such as:

• The provided PEPPHER interface, and required interfaces
(i.e., component-provided functionality called from this
component implementation).

• The source file(s) of this component implementation.
• Deployment information such as compilation commands

and options.
• A reference to the platform, i.e. the programming mod-

el/language used for the component implementation and
the target architecture. The actual platform properties are
defined separately in another XML document [6]. Such
platform meta-data can be used at multiple levels of
the PEPPHER framework. Lookup of specific platform
properties may be done by composition tool, run-time or
component developers.

• Type and (min./max.) amount of resources required for
execution, in terms of the target platform description’s
name space.

• Optionally, a reference to a (usually, programmer pro-
vided) performance prediction function that is called
with a given context descriptor data structure. Prediction
functions may use performance data tables determined by
micro-benchmarking for the target platform.

• Tunable parameters of the component implementation,
such as buffer sizes.

• Additional constraints for component selectability, e.g.
parameter ranges.

The main module of a PEPPHER application is also anno-
tated by its own XML descriptor, which states e.g. the target
execution platform and the overall optimization goal. XML
descriptors are chosen over code-annotations (e.g. pragmas)
as the former are non-intrusive to the actual source code and
hence provide better separation of concerns. The potential
headache associated with writing descriptors in XML can be
eliminated to a great extent by providing tool support, as
shown later.

Composition points of PEPPHER components are restricted
to calls on general-purpose execution units only. Consequently,
all component implementations using hardware accelerators
such as GPUs must be wrapped in CPU code containing a
platform-specific call to the accelerator.

Component invocations result in tasks that are man-
aged by the PEPPHER run-time system and executed non-
preemptively. PEPPHER components and tasks are state-

less. However, the parameter data that they operate on may
have state. For this reason, parameters passed in and out of
PEPPHER components may be wrapped in special portable,
generic, STL-like container data structures such as Vector
and Matrix with platform-specific implementations that in-
ternally keep track of, e.g., in which memory modules of the
target system which parts of the data are currently located or
mirrored (smart containers). When applicable, the container
state becomes part of the call context information as it is
relevant for performance prediction.

The PEPPHER framework automatically keeps track of the
different implementation variants for the identified compo-
nents, technically by storing their descriptors in repositories
that can be explored by the composition tool. The repositories
enable organization of source-code and XML annotation files
in a structured manner and can help keeping files manageable
even for a large project.

III. COMPOSITION TOOL

Composition is the selection of a specific implementation
variant (i.e., callee) for a call to component-provided function-
ality and the allocation of resources for its execution. Com-
position is made context-aware for performance optimization
if it depends on the current call context, which consists of
selected input parameter properties (such as size) and currently
available resources (such as cores or accelerators). The context
parameters to be considered and optionally their ranges (e.g.,
minimum and maximum value) are declared in the PEPPHER
interface descriptor. We refer to this considered subset of a
call context instance’s parameter and resource values shortly
as a context instance, which is thus a tuple of concrete values
for context properties that might influence callee selection.

Composition can be done either statically or dynamically.
Static composition constructs off-line a dispatch function that
is evaluated at runtime for a context instance to return a
function pointer to the expected best implementation variant.
Dynamic composition generates code that delegates the actual
composition to a context-aware runtime system that records
performance history and constructs a dispatch mechanism on-
line to be used and updated as the application proceeds.
Composition can even be done in multiple stages: First, static
composition can narrow the set of candidates for the best
implementation variant per context instance to a few ones that
are registered with the context-aware runtime system that takes
the final choice among these at runtime.

Dynamic composition is the default composition mechanism
in PEPPHER. The PEPPHER composition tool deploys the
components and builds an executable application. It recur-
sively explores all interfaces and components that (may) occur
in the given PEPPHER application by browsing the interfaces
and components repository. It processes the set of interfaces
(descriptors) bottom-up in reverse order of their components’
required interfaces relation (lifted to the interface level). For
each interface (descriptor) and its component implementations,
it performs the following tasks:
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Fig. 1. Building a PEPPHER application from components using the composition tool, which coordinates all generation steps marked by the gearwheel
symbols. The “PEPPHER-ization” process can be incremental, starting from a sequential legacy application running on a single CPU core, identifying
components and adding implementation variants for CPU and other execution units (such as GPU) that may be available in the considered target platform(s).

1) It reads the descriptors and internally represents the
metadata of all component implementations that match
the target platform, expands generic interfaces and com-
ponents, and generates platform-specific header files
from the interface descriptor.

2) It looks up prediction data from the performance data
repository or runs microbenchmarking code on the target
platform, as specified in the components’ performance
meta-data.

3) It generates composition code in the form of stubs
(proxy or wrapper functions) that will perform context-
aware composition at runtime. If sufficient performance
prediction metadata is available, it constructs perfor-
mance data and dispatch tables for static composition
by evaluating the performance prediction functions for
selected context scenarios which could be compacted
by machine learning techniques. Otherwise, the gener-
ated composition code contains calls to delegate variant
selection to runtime, where the runtime system can
access its recorded performance history to guide variant
selection, in addition to other criteria such as operand
data locality.

4) It calls the native compilers, as specified for each com-

ponent, to produce a binary of every patched component
source.

Finally, it links the application’s main program and its
compiled components together with the generated and com-
piled stubs, the PEPPHER library and the PEPPHER runtime
system to obtain an executable program. The linking step may
be architecture dependent (e.g., special handling of different
executable formats may be required); the necessary command
can be found in the application’s main module descriptor.

IV. PROTOTYPE IMPLEMENTATION

A prototype of the composition tool has been implemented
that covers the default case of dynamic composition where
the run-time system selects the implementation variant. The
composition tool generates low-level code to interact with the
runtime system in an effective manner. Furthermore it supports
component expansion for generic components written using
C++ templates as well as user-guided static narrowing of the
set of candidates. In this section we describe its design, main
features and implementation issues.

Figure 2 shows a high-level schematic view of the prototype.
Similar to typical compiler frameworks, we decouple com-
position processing (e.g., static composition decisions) from
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Fig. 2. Structural overview of the composition tool prototype. The features marked by + are currently only partly supported, features marked by * are not
yet implemented.

the XML schema by introducing an intermediate component-
tree representation (IR) of the metadata information for the
processed component interfaces and implementations. The IR
incorporates information not only from the XML descriptors
but also information given at composition time (i.e., composi-
tion recipe). The IR can be processed for different purposes,
including:

• Creating multiple concrete components from generic
components by expanding template types and tunable
parameters,

• Training executions to prepare for composition decisions,
• Static composition (e.g. using training executions), and
• Generating code that is executable with the PEPPHER

runtime system.

A. User-guided static composition

Static composition refers to refining the composition choices
at compile time, in the extreme case to one possible candidate
per call and context instance. In general, static composition is
supported by performance models and dispatch tables derived
off-line from training runs; see [7] for details. Here, we
consider the special case of user-guided static composition,
which provides a means for the programmer to convey to
the composition tool additional expert knowledge about the
context that may influence the composition process. For ex-
ample, a GPU implementation normally runs faster than its
CPU counterpart for data parallel problems with large problem
size; thus if such information is statically known, programmers
may explicitly specify to compose the GPU implementation,
and the overhead of the dynamic composition and the risk of
wrong dynamic selection can be removed. The composition
tool provides simple switches (e.g., disableImpls) to en-
able/disable implementations at the composition time without
requiring any modifications in the user source-code.

B. Component expansion

Component expansion supports genericity on the component
parameter types using C++ templates. This enables writing
generic components such as sorting that can be used to sort
different types of data. The expansion takes place statically.
Component expansion for multiple values of tunable parame-
ters to generate multiple implementation variants from a single
source is not supported yet and is part of the future work.

C. Code generation

For each component interface, the composition tool gener-
ates a wrapper that intercepts each invocation of the compo-
nent and implements logic to translate the call to one or more
tasks for the runtime system. It also performs packing and
unpacking of the call arguments to the PEPPHER runtime
task handler. The directory structure provides one directory
for the main component of the application and one directory
for each component used. The different available implemen-
tations of a component are organized by platform type (e.g.,
CPU/OpenMP, CUDA, OpenCL) in different subdirectories. A
global registry of interfaces, implementations and platforms
helps the composition tool to navigate this structure and
locate the necessary files automatically. Specifically, the tool
generates:

• wrapper (stub) files providing wrapper functions for
different components. Currently, one wrapper file is
generated per component, containing one entry-wrapper
and multiple backend-wrappers. The entry-wrapper for
a component intercepts the component invocation call
and implements logic to translate that component call
to one or more tasks in the runtime system. A task
execution can either be synchronous where the calling
thread blocks until the task completion or asynchronous
where the control resumes on the calling thread without
waiting for the task completion. The entry-wrapper also
performs packing and unpacking of arguments of a com-
ponent call to the PEPPHER runtime task handler. One
backend-wrapper for a component is generated for each
backend (i.e. CPU/OpenMP, CUDA, OpenCL) for which
a component implementation exists. A backend-wrapper
implements the function signature

vo id <name>( vo id ∗ b u f f e r s [ ] , vo id ∗ a r g )

that the runtime system expects for a task function2,
and internally delegates the call to the actual component
implementation which could have a different function
signature.

• A header file (peppher.h) which internally includes all
wrapper files and also contains certain other helping code

2As the PEPPHER runtime system is C based and the C language does
not permit to call functions with varying types depending on the actual task
being run.
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(e.g., extern declarations). The idea of this header file is
to provide a single linking point between the generated
code and the normal application code. The main program
writer only needs to include this header file to enable the
composition.

• Compilation code (Makefile) for compiling and link-
ing the selected (composed) components to build an
executable application for a given platform.

D. Usage of smart containers

A smart container can wrap operand data passed in and
out of PEPPHER components while providing a high-level
interface to access that data. Smart containers model and en-
capsulate the state of their payload data. Three smart contain-
ers are currently implemented: for scalar value (Scalar), 1D
array (Vector) and 2D array (Matrix). All three containers
are made generic in the element type, using C++ templates.
The containers internally implement interaction with the data
management API of the PEPPHER runtime system while
ensuring data consistency for data that can be accessed both by
the runtime system and the application program in an arbitrary
fashion. More precisely, these containers allow multiple copies
of the same data on different memory units (CPU, GPU
memory) at a certain time while ensuring consistency. For
example, for a vector object that was last changed by a
component call executed on a GPU, the vector data is copied
back implicitly from GPU memory (i.e. enforce consistency)
only when data is actually accessed in the application program
(e.g. detected using the [] operator for vector objects).
The containers are made portable and function as regular C++
containers outside the PEPPHER context.

Note that the composition tool also supports parameters of
any other C/C++ datatypes (including user-defined datatypes)
for components. However, for parameters passed using normal
C/C++ datatypes, the composition tool cannot reason about
their access patterns in the application program (due to pointer-
aliasing and other issues) and hence ensures data consistency
by always copying data back to the main memory before
returning control back from the component call. Although
ensuring consistency, it may prove sub-optimal as data local-
ity cannot be exploited for such parameters across multiple
component calls.

E. Inter-component parallelism

In the PEPPHER framework, a major source of parallelism
comes from exploitation of independence between different
component invocations. This can be obtained when a com-
ponent invocation is made asynchronous so that subsequent
component invocations can overlap in the actual execution. By
using the smart containers, the independence between different
asynchronous component invocations is implicitly inferred by
the PEPPHER runtime system based on data dependencies [2].

Figure 3 depicts how usage of smart containers can help
in achieving inter-component parallelism. The figure shows
a simple scenario with four component calls and one vector
operand on a system containing 1 CPU and 1 CUDA GPU.

When the vector container v0 is created, the payload data
is placed in the main memory (master copy). Subsequently,
depending upon the component calls using that data along their
respective data access pattern (read, readwrite or write), other
(partial) copies of operand data may get created in different
memory units. In this case, we have CUDA device memory
which has a separate address space than main memory. Assum-
ing that all component calls are actually executed on the GPU,
the figure also shows the effect of each instruction execution
on the vector data state, i.e., creation/update/invalidation of
data copies. As we can see, a PEPPHER container not only
keeps track of data copies on different memory units but
also helps in minimising the data communication between
different memory units by delaying the communication until it
becomes necessary. In this case, only 2 copy operations of data
are made in the shown program execution instead of 7 copy
operations which are required if one considers each component
call independently, as done in e.g., by Kicherer et al. [8], [9],
copying data each time back and forth to/from GPU device
memory.

The first component call (line 4) only writes the data and
hence no copy is made. Instead, just a memory allocation
is made in the device memory where data is written by the
component call. After the completion of the component call
(line 4), the master copy in the main memory is marked
outdated which means that any data access to this copy, in
future, would first require update of this copy with the contents
of latest copy. The next statement (line 6) is actually a read
data access3 from main memory. As the master copy was
earlier marked outdated, a copy from device memory to main
memory is implicitly invoked before the actual data access
takes place. This is managed by the container in a transparent
and consistent manner without requiring any user intervention.
The copy in the device memory remains valid as the master
copy is only read. Next, we have a component call (line 8)
that both reads and modifies the existing data. As we assume
execution of all component calls on the GPU in this scenario,
the up-to-date copy already present in the device memory is
read and modified. The master copy again becomes outdated.
Afterwards, we have two component calls (line 10 and 12)
that both only read the data. Executing these operations on
the GPU means that no copy operation is required before
or after the component call. Finally the statement in line 14
modifies the data in main memory so data is copied back
(implicitly) from the device memory to the main memory
before the actual operation takes place. Afterwards, the copy in
the device memory is marked outdated and can be de-allocated
by the runtime system if it runs short of memory space on the
device unit. Doing so would however, require re-allocation of
memory for future usage.

As all four component calls are asynchronous, the inter
component parallelism is automatically inferred by the runtime
system based on data dependencies. In this case, there exists a

3The read and write accesses to container data are distinguished by
implementing proxy classes for element data in C++ [10].
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Fig. 3. Example for usage
of PEPPHER smart contain-
ers with component calls and
other user code. The middle part
shows a code-scenario with four
component calls and one vector
operand on a system contain-
ing 1 CPU and 1 CUDA GPU.
The effect of each instruction
on the state of the data is also
shown right for each instruc-
tion, assuming the four compo-
nent calls are executed on the
GPU. The left part highlights
inter-component parallelism for
asynchronous component exe-
cutions based on data depen-
dencies.

read-after-write dependency between first (line 4) and second
(line 8) component call; however, independence exists between
third (line 10) and fourth (line 12) component call as they
access the same data but in a read only manner. Even in this
simple scenario where we assume execution of all component
calls on a GPU, this independence can still be exploited by
doing concurrent kernel executions4 on the GPU.

In the application program, the execution looks no different
to the synchronous execution as data consistency is ensured
by the smart containers. Blocking is implicitly established for
a data access from the application program to a data that is
still in use with the asynchronous component invocations made
earlier (with respect to program control flow) than the current
data access.

F. Intra-component parallelism

A common source of intra-component parallelism is a paral-
lel component implementation, e.g. a CUDA implementation.
However, for certain computations, more parallelism can be
spawned from a single component invocation by partitioning
and dividing the work into several chunks that all can be
processed concurrently, possibly on different devices. This
is achieved by mapping a single component invocation to
multiple runtime (sub-)tasks rather than a single task. This
comes in handy for data-parallel computations where the
final result can be produced by just simple concatenation of
intermediate output results produced by each sub-task (e.g.
blocked matrix multiplication).

G. Support for performance-aware component selection

In the current prototype, the actual implementation vari-
ant selection is done using the dynamic scheduling capa-
bilities of the PEPPHER runtime system. The actual im-
plementation of performance-aware selection is made trans-
parent in the prototype by providing a simple boolean flag

4Modern NVIDIA GPUs (e.g., Tesla C2050) supports this feature.

(useHistoryModels). The support can be enabled/dis-
abled both for an individual component by specifying the
boolean flag in the XML descriptor of that component in-
terface or globally for all components as a command line
argument to the composition tool.

H. Efficient repetitive execution

Normally, the generated code could be sub-optimal when
compared to an equivalent hand-written code. However, with
the usage of smart containers and other enhancements in the
current prototype, the generated code is optimized for repet-
itive and asynchronous executions. One major problem with
code generation in our case comes with registering and un-
registering operand data for usage with the runtime system as
task operands. The runtime system schedules tasks at runtime,
so data transfers for a task operand data are done automati-
cally by the runtime system when needed between different
processing units. With this data management capability, the
runtime system optimizes data communication by exploiting
data locality when scheduling a task. However, the registered
data needs to be explicitly requested before accessing it in the
application program to ensure data consistency. Un-registering
operand data after each task invocation is often undesirable
as it discards copies of the data across different memory
units and thus disables any reuse of previous data-transfers
for upcoming invocations. By using smart containers, we can
effectively exploit data locality across different component
invocations while ensuring data consistency for accesses from
the application program.

I. Utility mode

Porting existing applications to PEPPHER framework
(PEPPHER-ization) requires writing XML descriptors for in-
terface and implementations as well as adding new implemen-
tation variants. To facilitate this process, the current prototype
can generate a basic skeleton of these XML and C/C++ source
files required for writing PEPPHER components from a simple
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Before After

Fig. 4. Directory structure before and after generation of the basic PEPPHER
component skeleton files from a simple C/C++ header file containing a
method declaration. The main work left for the programmer is now to fill
in the implementation details in the XML descriptor fields and provide the
implementation variants’ code, which can be facilitated by the existence of
architecture-specific algorithms and libraries.

C/C++ method declaration. This can be really advantageous
as writing XML files from scratch can become a tedious task.
Our experience with porting several applications shows that
the XML skeleton generation by the tool is quite useful as we
are required to only fill in certain missing information. For
example, the tool can successfully detect template parameters
as well as suggest values for the data access pattern field of
the descriptors by analyzing ‘const’ and ‘pass by reference’
semantics of the function arguments.

V. EVALUATION

For evaluation, we implemented (PEPPHERized) several
applications from the RODINIA benchmark suite [11], two
scientific kernels (dense matrix-matrix and sparse matrix-
vector multiplication) and a Runge-Kutta ODE Solver from
the LibSolve library [12], using the composition tool. The
main evaluation platform is a system with Intel(R) Xeon(R)
CPUs E5520 running at 2.27GHz and a NVIDIA C2050 GPU
with L1/L2 cache support. Furthermore, another platform with
the same CPUs configuration as in the first platform but
with a lower-end GPU (NVIDIA C1060 GPU) is used for
performance evaluation later in this section.

A. Composition example

In the following, we will use the sparse matrix-vector mul-
tiplication to describe the complete composition (PEPPHER-
ization) process.

The process starts with generation of basic skeleton files
for components from a C/C++ header file that includes the
method signature

vo id spmv ( f l o a t ∗ v a l u e s , i n t nnz , i n t
nrows , i n t n c o l s , i n t f i r s t ,
s i z e t ∗ c o l i d x s , s i z e t ∗ rowPtr ,

TABLE I
COMPARISON OF TOTAL SOURCE LOC (LINES OF CODE) WRITTEN BY

THE PROGRAMMER WHEN USING THE COMPOSITION TOOL COMPARED TO
AN EQUIVALENT CODE WRITTEN DIRECTLY USING THE RUNTIME SYSTEM.

Application Tool (LOC) Direct (LOC) Difference (LOC, %)
SpMV 293 376 83, 29
SGEMM 140 229 89, 63
bfs 256 364 108, 42
cfd 200 323 123, 62
hotspot 327 447 120, 37
lud 510 586 76, 15
nw 359 449 90, 25
particlefilter 652 748 96, 15
pathfinder 186 275 89, 48
ODE Solver 800 1252 452, 57

f l o a t ∗x , f l o a t ∗y ) ;

The composition tool can be invoked to generate component
skeleton files from this method declaration: As shown in
Figure 4, the command

compose −g e n e r a t e C o m p F i l e s =”spmv . h ”

generates the XML descriptors with most information pre-
filled as well as basic skeletons for implementation files. The
programmer can then fill in the remaining details both in the
XML descriptors (e.g. preferences for partitioning of input
operands etc.) as well as the implementation files. For this
example application, we used one serial C++ implementa-
tion for the CPU and a highly optimized CUDA algorithm
provided by NVIDIA as part of their CUSP library [4]. In
the application’s main module main.cpp, we only need
to add one include statement for peppher.h and calls to
PEPPHER_INITIALIZE() and PEPPHER_SHUTDOWN()
macros in the beginning and end of the main function, which
in this case contains just a call to the spmv component. The
last step is writing of the XML descriptor (main.xml) for
the main function. The composition tool can now be called
for generating composition code, by giving a reference to the
main descriptor:

compose main . xml

This generates all the wrapper files and compilation code
(makefile), necessary to compile and build the executable with
the runtime support. The resulting executable can then be
executed on the given platform.

B. Productivity evaluation

The current composition tool prototype generates low-level
glue-code to use the runtime system. This essentially allows
application programs to run using the runtime system without
requiring the programmer to actually write code for the
runtime system. In the following, we compare how much we
gain in terms of programming effort with this code generation
functionality.

Table I shows a simple comparison of the source code
written by the programmer when doing hand-written imple-
mentations for the runtime system compared to when using
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Short Name Kind Non-zeros
Structural Structural 2.7M
HB HB 219.8K
Convex Convex QP 0.9M
Simulation Circuit Simulation 4.6M
Network Power Network 565K
Chemistry Quantum Chemistry 758K
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Fig. 5. Sparse matrix vector product execution for different matrices from
the UF collection [14]. The performance of the PEPPHER runtime system
code generated by the composition tool, shown in green (Hybrid execution),
uses one CUDA GPU and all four CPUs in parallel. It is compared to a direct
CUDA CUSP implementation running on the same GPU (red), where the
GPU-only execution is slowed down by extensive data transfer to and from
device memory, while the hybrid variant requires less communication.

the composition tool. The comparison is done using standard
LOC (Lines Of Code) metric [13] for all applications. For the
ODE Solver application, we have considered LOC related to
the ODE solver, and not the complete LibSolve library which
contains more than 12,000 LOC. As we can see in Table I,
savings in terms of LOC are significant (up to 63% for cfd
and SGEMM). These savings become even more significant
considering the fact that the source code for the runtime
system is at a low level of abstraction (plain C) and requires
handling concurrency issues associated with asynchronous task
executions.

The above comparison does not consider the XML descrip-
tors which one needs to provide when using the composition
tool. However, this is justified as the XML descriptor skeletons
generated automatically from the C/C++ function declaration
are already quite concise. For all these applications, we have
used the XML descriptor generation feature of the composition
tool to generate the XML descriptors and have just filled in the
missing information (e.g., values for some attributes). In the
remaining part of this section, we will evaluate effectiveness
of the generated code by doing performance evaluation.

C. Hybrid execution

A key aspect of the PEPPHER component model is hybrid
execution where execution work is distributed across all de-
vices in the system (CPU, GPU). The advantage of hybrid
execution is shown in Figure 5 where we compare hand-
written CUDA code performance with the hybrid-execution
capable runtime code generated automatically with our tool,

using the matrices in Figure 5 from the UF collection [14]
as example data. Note that the hand-written GPU execution
is carried out without using our framework (marked as direct
execution in Figure 5) by using the same CUDA implemen-
tation taken from the well-optimized NVIDIA CUSP library
[4] that we have used for our component. The communication
overhead of copying data back and forth to device memory
is also included in the time measurements for GPU execution
(CUDA) [15]. The measurements for hybrid execution with
our framework includes overhead for data communication
and task partitioning. The significant speedups with hybrid
execution are due to the fact that dividing the work between
CPUs and the GPU not only divides the computation but also
decreases the data communication to GPU, which is a major
bottleneck with GPU-only execution.

D. Dynamic Scheduling

The architectural and algorithmic differences between dif-
ferent devices (e.g., CPU, GPU with/without cache) and
applications often have a profound effect on the achieved
performance. However, these execution differences are often
hard to model statically as they can originate from various
sources (hardware architecture, application/algorithm, input
data, problem size etc.). Dynamic scheduling can help in
this case by deciding which implementation/device to use
by considering previous historical execution information as
well as information about current load balance, data locality
and potential data-transfer cost (performance-aware dynamic
scheduling).

Our tool generates necessary code for using performance-
aware scheduling policies offered in the runtime system.
Figure 6 shows how the usage of dynamic scheduling can
help in achieving better performance on two heterogeneous
architectures for a variety of applications. The execution time
is averaged over different problem sizes. As we can see the
execution time with generated code closely follows the best
implementation from OpenMP and CUDA for all these appli-
cations. In some cases, the execution with dynamic scheduling
supersedes the best static selection by making appropriate
decisions for each problem size. Above all, the scheduling can
effectively adjust to the architectural differences as depicted
in Figure 6. This is achieved by effective utilization of the
performance-aware dynamic scheduling mechanism offered by
the PEPPHER runtime system.

E. PEPPHER Runtime Overhead

The main runtime overhead of the PEPPHER framework
is overhead of the PEPPHER runtime system. Measuring
overhead of the runtime system, in general, is a nontrivial task
as it depends upon the computation structure and granularity,
scheduling policy, worker types as well as hardware and
software architecture. Micro-benchmarking results reported in
[16] show that the task overhead of the runtime system is
less than two microseconds. This overhead is negligible when
considering potential gains of dynamic performance-aware
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Fig. 6. Execution times for applications from Rodinia benchmark suite, an ODE solver and sgemm with CUDA, OpenMP and our tool-generated performance-
aware code (TGPA) on two platforms.
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Fig. 7. Execution times for a Runge-Kutta ODE solver (libsolve) application
with 9 components and 10613 invocations. Due to tight data dependency
between component calls, the optimal execution results for a single powerful
GPU [17]. We see that the overhead (of generated composition code for
runtime task handling) compared to hand-written code is low.

scheduling and overlapping communication-computation of-
fered by the runtime system.

Figure 7 shows the overhead of execution of the Runge-
Kutta ODE solver with our framework in comparison to a
direct implementation. This application is particularly interest-
ing to measure the runtime overhead as the component calls
in this application have tight data dependency which makes
its execution almost sequential. The runtime overhead of the
PEPPHER framework, for such a large application (10613
calls to 9 different components), is negligible in comparison
to hand-written (direct) execution, as shown in the figure.

VI. RELATED WORK

Generating stubs (wrapper or proxy functions) from formal
interface descriptions in order to intercept and translate calls

to components at runtime is a key concept in CORBA and
subsequent component frameworks to transparently bridge the
technical gaps between different languages, platforms and
network locations of caller and callee, without having to
change their source code. In our case, languages, platforms and
network locations are equal, while the stubs encapsulate the
necessary logic for determining a subset of suitable implemen-
tation variants and creating tasks for the PEPPHER runtime
system. An extension to support other languages than C/C++,
remote calls etc. following the CORBA approach would be a
straightforward extension of our stub generation method.

Several language based systems for runtime composition
of annotated implementation variants have recently been pro-
posed in the literature, such as PetaBricks [18], Merge [19]
and Elastic computing [20]. A more thorough discussion of
the related work about the PEPPHER approach is presented
in [1].

Our approach with performance-aware components is
unique in that it does not require the programmer to use a
new programming language (or a domain-specific language
[19]) to implement component implementations; PEPPHER
components may internally encapsulate arbitrarily specified
intra-component parallelism (e.g., using pthreads, OpenMP, or
arbitrary accelerator specific code) running on the resources
allocated by the runtime system to the task created for its
invocation, as long as the actual composition points (calls to
component-provided functionality) are single-threaded, C/C++
linkable, and executed on CPUs (i.e., default execution unit
with access to main memory) only. Hence, the PEPPHER
component framework is, by default, non-intrusive, i.e., all
metadata for components and the main program is specified
externally in XML based descriptors. This enables an incre-
mental ”PEPPHER-ization” process of making legacy appli-
cations performance-portable (in principle) without modifying
the existing source code.
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The single-threaded call conventions, the XML format for
external annotations, a non-preemptive task-based runtime
system and dynamic composition as the default composition
mechanism in PEPPHER are the major differences from the
Kessler/Löwe components [7] which assume SPMD calls,
off-line generated dispatch tables and nestable components
instead.

Kicherer et al. [8], [9] proposes a C-based on-line learning
solution for making dynamic selection between available im-
plementation variants for a given invocation context. However,
their approach is different as they represent each implementa-
tion variant as a dynamic library that is loaded dynamically at
runtime instead of a single binary solution. Furthermore, they
does not consider issue of memory management for CUDA
implementation variants nor do they consider simultaneous
(hybrid) computing at multiple devices present in the system.

VII. CONCLUSION AND FUTURE WORK

Writing performance-portable applications for modern het-
erogeneous architectures is a non-trivial task. The component-
based approach of the PEPPHER framework allows spec-
ification of multiple implementation variants for a single
functionality where the expected best variant for a given ex-
ecution context can be selected statically and/or dynamically.
The purpose of the PEPPHER composition tool is to build
applications from annotated components and thereby support
”PEPPHER-izing” both new and legacy applications.

We have described the current composition tool proto-
type and how it could be used to deploy applications
with performance-aware components on heterogeneous multi-
/manycore systems. The composition tool can significantly
reduce the programming complexity by transparently handling
the low-level C code that interacts with the runtime sys-
tem. Experiments have shown that the composition tool can
successfully provide high level abstraction by automatically
generating the low-level code for the runtime system. Further-
more, the generated code execute efficiently on different plat-
forms without any need for manual tuning, thanks to careful
exploitation of features provided by the runtime system.

Future versions will extend the static composition func-
tionality with support for user-provided prediction functions
[21] and enhance generic component expansion for tunable
parameters. New features recently introduced in the runtime
system (e.g. new types of performance models) also need to
be integrated in the composition tool prototype so that they
can be exploited at the component layer.
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