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• Many contemporary models contain structural changes at run time:
– ideal switching processes.
– variable number of entities or agents.
– variable level of detail.
– user interaction.

• A general modeling language supporting variable structure systems offers a 
number of important benefits. 

• Modelica is very limited in this respect. The limitations originate from 
technical points of view and from a lack of expressiveness.

• MOSILAB offers a first approach to handling variable structure systems in a 
more general sense.

Motivation I
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• We took a rather fundamental approach and decided to develop a new 
language: Sol. The motivation behind this project is twofold:

• One, Sol shall offer a platform for the development of corresponding 
technical solutions. This concerns…

• dynamic recausalization
• dynamic treatment of higher index problems
• etc…

• Two, Sol is a language experiment. We want to explore the full power of a 
declarative modeling approach and how it can handle potential, future 
problem fields.

• Sol is not a product! We don’t intend to throw another modeling language or 
dialect on the market. Sol is primarily a tool to enable principal research on 
the subject of variable structure systems.
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• Sol attempts to be a language of minimal complexity

• Sol redefines the fundamental concepts of Modelica on a dynamic basis. 

• Sol enables the creation, exchange and destruction of components at 
simulation time. 

• To this end, the modeler describes the system in a constructive way, where 
the structural changes are expressed by conditionalized declarations. These 
conditional parts can then get activated and deactivated during run-time.

• The constructive approach avoids an explicit description of modes and 
transitions and yet proves to be fairly powerful.

• The following slides provide an informal and incomplete introduction to 
Sol.
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• A model is the essential language 
element in Sol. It is of very general 
use and consists always of three 
optional parts:

• The header: Here you can define 
constants or specify inheritances or 
include sub-models.

• The interface: parameters and 
variables that are visible from outside 
are specified in the interface section.

• The implementation describes the 
actual relations between the variables 
and introduces the dynamics.

model myFirst

define minute as 60;

interface:
parameter Real tau << 1;
parameter Real sat << 1;
static Real x;

implementation:
static Real v;
when initial then

x = 0;
end

v = der(x);
x = (sat-x)*(tau/minute);

end myFirst;
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• Sol enables the hierarchic 
organization of models within 
models (e.g. packages)

• Sol offers means for type-
generation like model-
extension (extends), model-
redefinitions (redefine) or 
variable-redeclarations 
(redeclare).

• These mechanisms can be 
applied to complete packages 
as well.

package Mechanics

package Interfaces

connector Frame
interface:

static potential Real x;
static flow Real f;

end Frame;

model OnePort
interface:

static Frame f;
end OnePort;

model TwoPort
interface:

static Frame fa;
static Frame fb;

end TwoPort;

end Interfaces;

model Body extends Interfaces.OnePort;
interface:

parameter Real m;
end Body;

model Prismatic extends Interfaces.TwoPort;
interface:

parameter Real s;
…

…
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Executing…
solsim TestStruct.sol -o out.dot –struct

dot -Tps out.dot -o out.ps

produces a graph of the model hierarchy

Sol: Hierarchy and inheritance
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package Mechanics

package Interfaces

connector Frame
interface:

static potential Real x;
static flow Real f;

end Frame;

model OnePort
interface:

static Frame f;
end OnePort;

model TwoPort
interface:

static Frame fa;
static Frame fb;

end TwoPort;

end Interfaces;

model Body extends Interfaces.OnePort;
interface:

parameter Real m;
end Body;

model Prismatic extends Interfaces.TwoPort;
interface:

parameter Real s;
…

…

Sol: Type-system

• Like Modelica, Sol features a 
structural type system. Thus, 
separate lines of implementation 
can be compatible.

• The type is defined in the 
interface-section (except for the 
extensions).

• Redeclarations or redefinitions 
must provide sub-types of their 
original representation. 
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Executing…
solsim TestStruct.sol -o out.dot –types

dot -Tps out.dot -o out.ps

produces a graph of the type hierarchy
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• The implementation consists of a block.

• A block may contain…
– declarations of variables or model-instances

– equations or transmissions

– nested (conditional) blocks
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• At the declarations the identifier is 
linked either statically or 
dynamically to its model-instance.

• Members of an instance can be 
accessed through

– The . operator

– A connection statement

– The ( ) operator

• Instances can be anonymously 
declared. 

model Sinus
interface:

static Real x;
static out Real y;

implementation:
…

end Sinus;

implementation:
static Sinus s;

//1st variant

s.x = u;
s.y = v;
//2nd variant (silly here)

connection(s.x,u);
connection(s.y,v);
//3rd variant

v = s(x=u); 

v = Sinus(x=u);
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• Sol provides 3 operators for setting 
up relations
– equation (=)
– causal copy-transmission (<<)
– causal move-transmission (<-)

• The transmission operators can be 
applied to model-instances. 

• Dynamic instances can be created 
by transmitting anonymous 
declarations to a dynamically-
linked identifier. Moving to the 
trash deletes instances.

parameter Real R;
static Real u;
static Real i;

u = R*i;

static Boolean open;
open << false;

dynamic Resistor currentR;
currentR <- HeatResistor{R<<100};

trash <- currentR;
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• Sol features if-else-branches and 
when-else-branches.

• If-branches are evaluated during 
an update-step.

• When branches are evaluated at 
the end of an update-procedure 
and their contents gets activated 
for the next update procedure.

• There are no syntactical 
restrictions on the content of the 
branches.

model Gain

interface:
parameter Real gf;
static out Real g_out;
static Real g_in;

implementation:
static Real h ;
h << gf * g_in;

if h < 0.5 then
g_out << Gain(g_in << h);

else then
g_out << h;

end;

end Gain;
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• Let us model a simple machine, consisting of an engine that drives a fly-
wheel. 

• Two models are provided for the engine: 

– The first model “Engine1” applies a constant torque on the flange.

– In the second model “Engine2”, the torque is dependent on the positional 
state similar to a piston-engine. 

• The machine-model connects the engine and the fly-wheel. It contains a 
structural change that is reflected by a substitution of the engine-models.

• Initially, the fly-wheel is at rest, and the more complex engine model is 
used. When the speed exceeds a certain threshold, it seems appropriate 
to average the torque. Thus, the simpler engine-model is used instead. 

• The example in the paper (shown in the next slides) had to be adapted to 
the current state of implementation.
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model FlyWheel
interface:

parameter Real inertia << 1;
static Flange f;
static Real w;

implementation:
static Real z;
w = der(f.phi);
z = der(w);
f.t = inertia*z;
when initial then w=0; f.phi=0; end;

end FlyWheel;

model Machine 
implementation:

static FlyWheel Wheel1{inertia<<10};
static Boolean fast;
if fast then
static Engine1 E{meanTorque<<100}; 
connection(E.f,Wheel1.f);

else then
static Engine2 E{meanTorque<<100};
connection(E.f,Wheel1.f);

end;
when initial then fast<<false; end;
when Wheel1.w > 50 then fast<<true; end;

end Machine;

connector Flange
interface:

static potential Real phi;
static flow Real t; 

end flange;

partial model Engine
interface:

parameter Real meanTorque<<1;
static Flange f;

end Engine;

model Engine1 extends Engine;
implementation:

f.t = meanTorque;
end Engine1;

model Engine2 extends Engine;
implementation:

static Real transm;
transm = 1+sin(f.phi);
f.t = meanTorque*transm; 

end Engine2;
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model Machine 

implementation:
static FlyWheel Wheel1{inertia<<10};
dynamic Engine E;
connection(E.f,Wheel1.f);

when initial then
E <- Engine2{meanTorque << 100}; 

end;
when Wheel1.w > 50 then
E <- Engine1{meanTorque << 100}; 

end;

end Machine;

• The previous model contained a 
separate branch for each mode. 
The transitions are modeled by 
when-statements.

• Here we present a second variant, 
where the model-instance is 
dynamically linked to the 
identifier.

• The corresponding update of the 
connection statement is treated 
automatically by the system.
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Executing…
solsim TestEngine.sol -o out.dat -sim 10 0.001

pgnuplot results.gnu

simulates through 10’000 Euler steps and draws a plot of the angular velocity
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The program solsim is an interpreter

1. The model-textfile is parsed and mapped on the internal data-structures.

2. The type generation is processed (extensions, redefinitions..).

3. The relevant model-instances are created.

4. The corresponding transmissions (and equations) are dynamically flattened 
and ordered.

5. The dynamically flattened system is then evaluated. 

6. The evaluation of branch-statements may lead to further instantiations or to 
the deletion of existing instances.

7. Thus, a structural change leads to an update (not rebuild) of the dynamically 
flattened system.

8. The evaluation continues until the end of the simulation.

Current Implementation
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The current implementation is still in an early stage and represents only an 
intermediate solution. Our future work will focus on…

• The dynamic causalization processes

• The dynamic handling of higher-index problems

• The inclusion of arrays

• Well-specified handling of discrete events

• Strict and formal presentation of the language

• Development of optimization schemes.

Obviously we have now a large playground for our research.
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• Let us model a pendulum. The mass is 
constrained in its movement by a non-
elastic, mass-less wire.

• In general this model is highly non-linear. 
The video on the right hand side displays 
a stiff but continuous  approximation of 
the model. It was modeled and simulated 
in Dymola.

• We present now two conceptual solutions 
in Sol  where the system is modeled in an 
ideal way by a structural change.

• The structural change is modeled at 
different levels of abstraction.
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model WirePendulum

interface
parameter Real l;
static Real[2] x;
static Real[2] v;

implementation:
static Boolean free;

if free then
static Body b{x_start<<x,

v_start<<v};
when dist(a=fa.x, b=fb.x) >= l
then

free << false;
x << b.x;
v << b.v;

end;
…

2nd Example: 1st Version

…
else then

static Fixed fix{x << [0,0]};
static Body b{};
static Revolute{w_start<<f(v),

phi_start<<g(x)}
static Translation{n<<[l,0]}
connection(fix.f,R.fa);
connection(R.fb,T.fa);
connection(T.fb,b.f );

when (x=T.f*T.r) <= 0 then
free << true;
x << b.x;
v << b.v;

end;

end;

when initial then
free << true;
x << 0.4; y << 1.0;

end;

end WirePendulum

In the first version, the structural change 
is modeled at the top level.
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model WirePendulum2
interface:

parameter Real l;
static Real[2] x;

implementation:
static Fixed f;
static Revolute r;
static LimitedPrismatic p;
static Body b;

connection(f.f,r.fa);
connection(r.fb,p.fa);
connection(p.fb,b.f);

end FreePendulum2

2nd Example: 2nd Version

• The first version simply models a 
transition between two separate 
models. 

• However, this transition is non-
physical. The actual force-impulse 
is not taken into account.

• The second variant (on the right) 
does not contain a structural change 
at the top-level. It must be in one of 
the sub-models.

• Let us examine the sub-models…
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model Body 
interface:

parameter Real m;
parameter Real I;

static IFrame f;

implementation:
static Real[2] v;  static Real[2] a;
static Real w; static Real z;
static Real Vpre;  static Real Wpre;

f = m*a;  t = I*z;
v = der(f.x); w = der(f.phi);

f.F = m*(f.Ve-Vpre);
f.T = I*(f.We-Wpre);

when f.impulse then
Vpre << pre(v);
Wpre << pre(w);
v << f.Ve;
w << f.We;

else then
a = der(v);
z = der(w);

end;

end Body;

2nd Example: 2nd Version

model Fixed
interface:

parameter Real m;
parameter Real I;
static IFrame f;

implementation:
static Real[2] v; 
static Real[2] a;
static Real w;
static Real z;

f.x = x;
f.phi = phi;
Ve = 0;
We = 0;

end Fixed;

The corresponding sub-models own 
equations and operations for the 
handling of mechanical impulses.
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model LimitedPrismatic
interface:

parameter Real l;
parameter Real[2] n;
static Real s;
static Real v;
static Real a;
static frame fa;

static frame fb;

implementation:
static Boolean free;

static Real[2] r;
r[1]=n[1]*sin(fa.phi)+n[2]*cos(fa.phi);
r[2]=n[2]*sin(fa.phi)-n[2]*cos(fa.phi);
fb.x = fa.x+s*r;
fa.phi = fb.phi;
a = der(v);
fa.t = cross(r*s,fb.f) + fb.t; 
fa.f + fb.f = 0;

fa.We = fb.Wb;
fa.Ve = fb.Ve + cross(r*s,fa.We);
fa.F + fb.F = [0,0]:

fa.T = cross(r*s,fb.F) + fb.T = 0;

2nd Example: 2nd Version

if free then
fa.f*r = 0;
when dist(a=fa.x, b=fb.x) >= l
then
fa.impulse << true;
fa.impulse << true;

end;
else then
s = l;
when (fa.f-fb.f)*r*sign(x=s) < 0
then free << true; end;

end;

when fa.impulse then
free << false;
(fa.Ve - fb.Ve)*r = 0;
v = 0;
fa.impulse << false;
fa.impulse << false;

else then
fa.F*r = 0;
v = der(s);

end;

end LimitedPrismatic
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• In the second version, the structural change was modeled in the limited 
joint and involves a force-impulse.

• The second version is a truly object-oriented solution. However, it is more 
demanding with respect to the simulator’s capabilities (dynamic handling 
of index-changes, etc. ).

• Consider the task where you want to extend your model to a double-
pendulum of the same kind. The first approach reveals to be a dead-end 
whereas the second one can easily be extended.

• However, important is that both approaches shall be possible in Sol.
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• None of the two variants is per se the better one. The decision between 
different variants depends on the current task and can only be made 
by the modeler.

• Thus, a general modeling language shall attempt to refrain from 
enforcing modeling-decisions. It should only provide the elementary 
means and let the modeler compose his solution out of them.



The End


