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M athematical Formalism

General representation of hybrid DAEs:
0= f (t, X(t), x(t), y(t),u(t),a(t.), e (t.). C(t,). P)

t time

X(t) vector of differentiated state variables
X(t) vector of state variables

y(t) vector of algebraic variables

u(t) vector of input variables

q(t.), dy.(t,) Vvectorsof discrete variables

c(t.) vector of condition expressions

o) vector of parameters and/or constants
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Numerical Aspectsfor Simulation
(Explicit Euler Method)

Integration of explicit ordinary differential equations (ODES):

)_((t) — i(t’l((t)’g(t)1£)) ’ l((to) — )_(O

Numerical approximation of the derivative

and/or right-hand-side: Calculating an

approximation of

x(t,) =2 ZX0) g (¢ 0 ),u@,),p) | Xtwo) besed onthe
g — T - B values of x(t,)

|teration scheme:

Here:
Explicit Euler
X(t,,1) = X(t,) +(t,., —t,) 'i(tn’l(tn)’g(tn)’_p) integration method

Convergence?
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Basic Transformation Steps
Mathematical View

Transformation to explicit state-space representation:

X(t)
0= f (£, (1), x(t). y(t). u(t). p) ()= [y(t)) =9(t.x().u(®). p)
| 4
X(t) .
0= f (t,z(t), x(t),u(t), p), z(t)= (y(t)j X(t) = h(t, x(t),u(t), p)

y(t) = k(t, x(t),u(t), p)
Implicit function theorem:

Necessary condition for the existence of the transformation is
that the following matrix isregular at the point of interest:

d
det (5 f(t,2(1), x(t), u(), g)) %0
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Symbolic Transformation T
Algorithmic Steps

0= f (t,X(t), x(t), y(t), u(t), p)
= Construct bipartite graph representation l
— Structural representation of the equation system

. X(t)
= Solve the matching problem 0= f (t,20).x®).u®). p), 20 = [y(t)J
— Assign to each variable exact one equation l a
— Same number of equations and unknowns

X(t
2(t) = [Z( )j - g(t,x(®),u(t), p)

= Construct adirected graph y(©)

— Find sinks, sources and strong components

— Sorting the equation system l
X(t) = h(t, x(t), u(t), p
y(©) =k(t, x(t),u(t), p)

SN—
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Initialization of Dynamic M odels norLica
Conventional

= |nitialization of “free” state variables 0= f (t,X(t), X(t), y(t),u(t), p)
— Transformed DAE after index-reduction
—  States can be chosen at start time l

same number of additional equations
and “free” states

= |nitialization of parameters
—  Determine parameter settings
— Parameters can be calculated at start time
z(t) = [

X(t)
0= f (t,2(t), x(t),u(t), p), z(t) :(x(t)j

« |

X(t)

same number of additional equations 0
y(t

and “free” parameters

j= g(t. x(),u(), p)

= |nitialization mechanism in Modelica

— attribute start l
— initial equation section _
attribute fixed for parameters X(t) = D(t’l((t)’ u(t), _p)

y(t) =k(t, x(t),u(t), p)
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. MODELICA
Example: 3-Phase Electrical System
| | | TestISPhalseEylsteml | . .
A ik
T L=1 R=0.5 i 3. =
g {:} & F”L—E—I-I_il-ﬁ £ {:} & '
" é "ﬂjm "éﬂ £ é 5 U U Uu

||| 5
|||—-

=2

Steady-state initialization?

- States1i1.i, I2.i, I3.i arenotconstant!

- Here: Initial values set to O (standard settings, attribute start)
- Transformation to rotating reference system necessary
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Example: 3-Phase Electrical System
Park-Transformation to rotating reference system:
- Writestatesasvector i abc[3] = {I1.i, I2.i, I3.i}
- Park-transformation to dqO-reference frame
: : 27 : A
Sin ((()t) Sin (a)t + ?j Sl n(a)t * ?j o Test3PhaseSystem |
i_dgO[] =
e[ T i_dgo[a]) =
05k Ji_dgo[3]) =
P:Q cos(at) cos(a)t+gj cos(a)t+4—”j 041
\/é 3 3 03
III:1 n )
n.o f
-0.2 )
i _dgO=P-i_abc 0 ) ) . s 10
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Example: 3-Phase Electrical System
Initialize States

Vil

MoDELICA

model Test3PhaseSystem _E)H bl | Ll -EBH
parameter Real shift=0.4; B H
Real i abc[3]={I1.1,I2.1,I3.1}; » )
Real i dqg0[3]; I S
initial equation _(;u LT e .ﬁn
der (i dqg0)={0,0,0}; | = N

equation =

1 dg0 = P*1 abc;
end Test3PhaseSystem

Steady-state initialization:
- Derivativesof i dgo areonly

Introduced during initialization
- Differentiationof i dgo = P*i abc
necessary

1. =
2=
3. =

- No higher-index problem
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Parameter initialization: o =

Example: 3-Phase Electrical System TrAGT

| nitialize Par ameters

model Test3PhaseSystem
parameter Real shift (fixed=false,start=0.1);
Real i abc[3]={I1.1i,I2.1i,I3.1i}, u abc[3]={S1.v,S82.v,S83.v};

initial equation
der (i_dg0)={0,0,0};
power = -0.12865; . 3
equation

u dg0 = P*u abc; 4 i 1 | 1 ki

1 dg0 = P*1i abc;
power = u _dgO0*i dqgo0;
end Test3PhaseSystem 5 R0
i -

Non-linear equation, no unique solution

power=u_dgO*i dg0=-0.12865
Attribute fixed (default true)
Attribute start (default o)
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Example: 3-Phase Electrical System TrAGT

Hierarchical Definition

R .
Rz .
Rz =

n R

...Relﬂﬁ'.—a"b@%a@ﬁﬂ'rl—zl i

eal i:dib[3]=ﬁfi_abc;

er (i_dgl)={0,d,0};
equakioﬂ—vﬂ“—

end LR o F T

Define new LR — Component:

- Statesarerr1.I1.i, LR1.I2.i, LR1.I3.i
- Connectors based on rotating reference system
- Initial equations defined locally

- no higher-index problem
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Higher-Index-DAES

General representation of DAES:
0= f (t, X(t), x(t), y(t),u(t), p)

t
x(t)
x(t)
y(t)
u(t)
p

time

vector of differentiated state variables
vector of state variables

vector of algebraic variables

vector of input variables
vector of parameters and/or constants

Differential index of a DAE:

MoDELICA

The minimal number of analytical differentiations of the
equation system necessary to extract by algebraic
manipulations an explicit ODE for all unknowns.
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Higher-Index-DAEs WA

DAE with differential index O:

0= f (t, x(t),x(t),u(t).p) —  x()=g(t,x(t),u(t), p)

DAE with differential index 1:

0= f (t, X(t),x(t), y(t),u(t), p)

|

X(t) = h(t, X, u@), p) X(® = h(t,x®,u(. p)

—

y(£) =k(t, x(t),u(t), p) y(t) = %k(t,x(t),g(t), p)
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Higher Index Problems T
Structurally Singular Systems

= Higher-index DAES 0= f (t,x(t), X(t), y(t),u(t), p)

— Differentia index of aDAE

— Structural singularity of the adjacence matrix l

— Index reduction method using symbolic (1)

differentiation of equations 0= f (t,z(t), x(t),u(t), p), z(t)= (; (t)j

= Numerical issues l

— Consistent initialization 20 = [X(t)j - g(t X0, p)

— Drift phenomenon yi)y) = -

— Dummy derivative method l

= State selection mechanism in Modelica

] X(t) = h(t, x(t),u(t),
— Attribute stateselect: X(t) —( X(t),u(t) P
never, avoid, default, prefer, always X(t) =K(t,l((t),g(t)’_p)

N —
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Higher-Index-DAEs-- Numerical Problems

= Consistent initial conditions
— Relation between states are eliminated when differentiating

— Initia conditions need to be determined using the algebraic
constrains

— Automatic procedure possible using assign algorithm on the
constrained equations

= Drift phenomenon

— Algebraic constrained no longer fulfilled during simulation
— Even worse when simulating stiff problems

=> Dummy-Derivative method
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Principles of the Dummy-Derivative Method  wos7rts

= Matching algorithm fails
— System is structurally singular
— Find minimal subset of equations
* more equations than unknown variables
— Singularity is due to equations constraining states

= Differentiate subset of equations

— Static state selection during compile time
» choose one state and corresponding derivative as purely algebraic variable
0 so-caled dummy-state and dummy derivative
» by differentiation introduced variables are algebraic
 continue matching algorithm
» check initial conditions
— Dynamic state selection during simulation time
 store information on constrained states
» make selection dynamically based on heuristic criteria
* new state selection triggers an event (re-initialize states)
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Initialization of Higher-Index Problems

0

Initialization (conventional) LCEORONONTON.)
— Transformed DAE after index-reduction l

— Defineinitial eguations on system level
same number of additional equations

X(t)
and “free” States 0= f (t,z(t), x(1),u(t), p), z(t)= (y(t)j

« |

— Transformed DAE after index-reduction (t)

— Defineinitial equations on component level

same number of additional equations
and “free” stateslocally

consistent overdetermined system

Initialization (advanced) t) (X(t)j (t, x(t),u(t), p)
2(t) = =g(LX(1),u), p
v =9 p

X(t) = h(t, x(t), u(t), p
y(t) =k(t, x(t),u(t), p)

N —
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Solving Overdeter mined Systems

Nonlinear system of equations f.(z,..,2)=0
- m, number of equations .

- n, number of variables '
 mEn fo(Z2,) =0

Corresponding minimization problem
- solution solves the nonlinear system of
eguations

F (zl,...,zn)zi f(z,....,2)°> — min

Derivative-free methods implemented in OpenModelica
- Simplex method of Nelder and Mead
- Minimization method of Brent
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Example: 3-Phase Electrical System TrAGT

Higher - ndex-Problem (Conventional)

Test3PhaseSystem

= ;

- Algebraic dependency between differentiated variables.r1.11 .1,
LR1.I2.i, LR1.I3.i and LR2.I1.i, LR2.I2.i, LR2.I3.i

- Only 3 states are |eft after index-reduction

- Defineinitial equations globally (Cumbersome)
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model Test3PhaseSystem

014

initial equation mw

der (LR1.i dg0)={0,0,0}; 005
equation ”Dl“

LR1.11.i =
LR1]2i =
| LRI =

-0.05[

end Test3PhaseSystem

-0.10

-0.15

[y

=
[



Example: 3-Phase Electrical System TrAGT

Higher-1ndex-Problem (Advanced)

Test3PhaseSystem

= ;

- Algebraic dependency between differentiated variables.r1.11 .1,
LR1.I2.i, LR1.I3.i and LR2.I1.i, LR2.I2.i, LR2.I3.i

- Initial equations still defined locally

- Overdetermined eguation system during initial time!
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LR1.11.i =
LR1]2i =
| LRI =

-0.05[

end LR -0.10

-0.15

model LR 0.15 |
0.10 |
initial equation MJ
der (i dg0)={0,0,0}; |
equation oo ‘

[y

=
[



Conclusions and Future Work

= Advanced Initialization of DAES

— System versus component initialization
— Weéll-posed overdetermined systems

= Prototype in OpenModelica
— Implementation of concept
* derivative-free minimization algorithms
— Thorough testing necessary
— Improve efficiency

— Use advanced numerical minimization algorithms
» Globally convergent methods
» Calculation of Jacobian matrix of the equation system
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