
Multi-Temperature Testing for Core-based System-on-Chip

Zhiyuan He, Zebo Peng, Petru Eles

Department of Computer and Information Science

Linköping University

Linköping SE-58183, Sweden

{zhihe, zebpe, petel}@ida.liu.se

Abstract—Recent research has shown that different defects can

manifest themselves as failures at different temperature spectra.

Therefore, we need multi-temperature testing which applies tests at

different temperature levels. In this paper, we discuss the need and

problems for testing core-based systems-on-chip at different

temperatures. To address the long test time problem for multi-

temperature test, we propose a test scheduling technique that

generates the shortest test schedules while keeping the cores under

test within a temperature interval. Experimental results show the

efficiency of the proposed technique.

Keywords: multi-temperature testing; system-on-chip test; test

scheduling; thermal-aware test

I. INTRODUCTION

Environment-sensitive defects often cause parametric
failures that are more and more observed in very large scale
integrated (VLSI) circuits manufactured with nanometer
technologies. These environmental parameters include power
supply voltage, clock frequency, temperature, radiation, etc. In
recent years, concerns regarding parametric failures are rapidly
rising due to widely distributed process variations and the wide
spectrum of subtle defects introduced by new manufacturing
processes and materials [18], [13], [14], [12].

Some defects are sensitive to a certain temperature level. For
example, metal interconnect defects may pass a delay test at
nominal temperature but fail the same test at a high temperature.
This indicates that speed tests, such as maximum frequency
(Fmax) tests and transition delay tests, should usually be applied
at a high temperature in order to detect these temperature-
dependent defects.

In [19], a closer investigation on the correlation between the
maximum frequency and temperature was performed for
integrated circuits (ICs) powered by ultra-low supply voltages.
It shows that there exists a turnaround temperature point above
which the maximum frequency no longer decreases but rather
increases. This means that applying a speed test at a high
temperature may not screen the defective chips because of the
improper temperature setting for the test. Therefore, for those
types of ICs, Fmax tests or transition delay tests should be
applied at a critical temperature which can be obtained by
characterization.

Parametric failures induced by subtle defects, such as
resistive vias/contacts and weak opens, are hard to detect even
when the circuit operates with the lowest performance under the
worst environmental condition. In these cases, a speed test
needs to be applied at two temperatures (hot/cold) and at a
particular frequency [13]. The defective chips can be screened
as outliers by comparing the test results at the two different
temperatures.

The existence of complicated temperature dependences and
defect-induced parametric failures indicates that we need to test
a chip at multiple temperatures. Multi-temperature testing aims
to screen chips having various defects that can only be
efficiently sensitized at different temperatures. Different tests
may be needed and applied at different temperatures, and each
test targets a particular type of defects that can be detected at a
certain temperature interval. Alternatively, the same test can
also be applied at different temperature intervals so that outliers
can be screened through a comparison of the test results, like in
the case of speed tests against parametric failures induced by
subtle defects.

A multi-temperature test is expected to have a substantially
long test application time (TAT), since a mono-temperature test
is already time consuming. The long TAT problem is further
exacerbated when multi-temperature testing is combined with
SoC testing. Therefore, we need efficient test scheduling
methods to reduce the TAT of multi-temperature SoC tests.

In this paper, we demonstrate the need for multi-temperature
testing and we propose a test scheduling technique for SoC tests
to be applied within a temperature interval. Aiming at
minimizing the TAT, the proposed technique generates test
schedules such that the temperatures of the cores under test
(CUTs) are within a certain temperature interval and the test bus
width limit is satisfied. We employ a test set partitioning and
interleaving technique as well as heating patterns in order to
keep the temperatures of CUTs within the imposed interval. The
generated test schedules guarantee that any test is scheduled for
application when and only when the temperature of the core is
within the given temperature interval. The scheduling algorithm
uses a finite state machine to manage the temperatures of cores
and a thermal simulator to obtain instantaneous temperatures of
all individual cores. To the best of our knowledge, this is the
first work that addresses the multi-temperature testing issue for
system-on-chip and provides an efficient technique to minimize
the test time of a multi-temperature SoC test.

The rest of this paper is organized as follows. The next
section demonstrates the need for temperature-dependent testing
for SoC. Section III presents the proposed technique for SoC
testing within a temperature interval. Experimental results are
described in Section IV and the paper is concluded in Section V.

II. TEMPERATURE-DEPENDENT TESTING FOR SOC

A. Temperature Effects in CMOS Circuits

As one of the environmental parameters, operating
temperature has a large impact on the electrical properties of
transistors and their interconnects [18]. Carrier mobility usually
decreases at high temperature since the carriers collide with the
Si-crystal lattice more frequently. Similar effects occur in the

978-3-9810801-6-2/DATE10 © 2010 EDAA

thin metal lines connecting the transistors, increasing the
interconnect resistance. Thus, performance degradation is often
encountered at a high operating temperature, leading design and
test efforts focusing on the high-temperature scenarios. In
practice, an IC is often tested at high temperatures in order to
guarantee the functionality at all temperatures that may appear
in the field.

Another temperature-dependent parameter is the transistor
threshold voltage, which increases with rising temperature. The
increasing threshold voltage results in an elevated drain current,
which compensates for the degraded circuit performance due to
the reduced carrier mobility and interconnect resistance. The
threshold voltage dominates the performance after the operating
temperature exceeds a certain point, referred to as the CMOS
zero-temperature-coefficient (ZTC) point [3], meaning that the
circuit performance increases with further rising temperature.
Thus, there exist two temperature dependence regions [3], [1],
[20], a nominal region in which the circuit delay increases with
rising temperature, and a reverse dependence region in which
the circuit delay decreases with rising temperature. Figure 1
illustrates circuit delay variation in the nominal and reverse
dependence regions [20]. This phenomenon is usually observed
in low power designs with ultra-low supply voltage. It indicates
that, for those circuits in which reverse temperature dependence
is observed, a delay test should be applied at the temperature
point between the nominal and reverse regions where the circuit
delay is the largest.

Figure 1. Nominal and reversal temperature dependence regions

B. Subtle Defects and Parametric Failures

VLSI systems manufactured with nanometer technologies,
typically below 45nm, encounter more reliability problems and
parametric failures caused by widely distributed variations and a
wide spectrum of subtle defects. Defect-induced parametric
failure mechanisms include weak interconnect opens, resistive
vias and contacts, metal mouse bites and metal slivers, with the
first two as major causes [18]. In [12], examples of a weak
interconnect open and a resistive via in a deep-submicron
CMOS IC are given.

Although most parametric failures are speed-related, some
of them are insensitive to a single test method such as IDDQ test,
stuck-at test, delay test, and functional test. Simply applying a
single type of tests may not be capable to identify the outliers
from the normal parts, resulting in either an increased amount of
test escapes or unexpected yield loss. In order to effectively
screen the chips having subtle defects, multiple parameters may
need to be combined for a test making the chip out of
specification. Temperature, transition delay, supply voltage, and
clock frequency are important parameters to be considered in
multi-parameter testing [18], [13], [14].

Running at a certain given frequency, a chip with resistive
vias may fail a speed test such as Fmax test and delay test, but
pass the test at the same frequency when the operating
temperature is elevated [13]. As explained in [18] and [13], the
root cause was the voids existing in vias. When the temperature

increases, the surrounding metal expands inwardly, forcing the
voids to shrink. As a consequence, the metal resistance is
reduced and the delay becomes shorter. Figure 2 illustrates that
the shapes of two voids in a via vary at different temperatures
[18]. This subtle-defect-induced parametric failure indicates that
a combination of parameters (e.g. frequency and temperature) is
needed to sensitize the defects and a comparison of test results
at different temperatures is needed for screening defective parts.

Figure 2. Illustrations of via voids at different temperatures

C. System-on-Chip Testing

The ever increasing demands on system performance have
led to the integration of more and more functionalities into
modern ICs, making them highly complex. While the industry
steadily follows the Moore's law, the time between technology
nodes has been significantly shortened, intensifying the time-to-
market pressure. In order to accomplish the design and
production of highly complex systems within a shortened period,
a module-based design methodology has been widely adopted
by the industry, referred to as core-based SoCs. Naturally, the
testing of modern SoCs inherits this modular style, making the
tests of cores to be independent from each other. Nonetheless,
the modular SoC test becomes difficult and expensive, due to
inefficient test access mechanisms (TAM) [2], [11], large
volume of test data [8], [15], high power density [5], [10] and
high temperature [10], [16]. The long test application time is
one of the major contributors to the testing cost. An efficient
schedule of tests can help reduce the total test time, which is a
key issue in volume production tests. In recent years, many test
scheduling techniques have been proposed for test time
reduction [2], [7], [9].

As demonstrated in previous sections, multi-temperature
testing is needed for core-based SoCs. It is also important to
develop efficient test scheduling techniques for multi-
temperature SoC testing, in order to reduce the even longer test
application time.

D. Problem Formulation

We assume that the tester employed for a SoC test is either
an automatic test equipment (ATE) or an embedded tester in the
chip. The tester consists of two major components, a test
controller and a memory. The memory stores a test schedule and
the generated test patterns. The test controller reads the test
schedule and transports the test data to/from the CUTs
accordingly. A test bus is used for the test data transportation
between the tester and the CUTs. Each core is connected to the
test bus through dedicated TAM wires. Through the test bus and
TAM wires, test patterns are sent to the CUTs and test
responses are sent back to the tester.

Suppose that a system-on-chip, denoted with S, consists of n
cores, denoted with C1, C2, ... , Cn, respectively. The cores are
placed on a silicon die according to a floorplan F, which also
specifies the physical parameters of the silicon die and the
package. In order to test core Ci (1 i n), li test patterns are

Delay

Temperature

Nominal

Dependence

Region

Reverse

Dependence

Region

(a) Room temperature

M3

M2

Via

M3

M2

Via Voids

(b) High temperature

generated and form a test set, denoted with Si. The test
patterns/responses are transported through the test bus to/from
core Ci, if a certain amount of bus width, denoted with Wi, is
granted. The test bus can concurrently transport test data for
different cores under a width limit B (B Wi, i = 1, 2, ... , n). In
order to sensitize temperature-dependent defects, we need to
apply tests to the SoC at different temperature spectra. Each
temperature spectrum is specified as a given temperature
interval I = (TL, TH), where TL and TH are the temperature lower
limit and upper limit, respectively. In this paper, it is assumed
that a test should be applied only when the temperature of core
Ci (i = 1, 2, ... , n), denoted with Ti, is within the temperature
interval I.

The problem we address in this paper is to minimize the test
application time by generating an efficient SoC test schedule
such that the following two constraints are satisfied: (1) the
amount of bus width required for concurrently applying
different tests is less than or equal to the bus width limit, and (2)
any test has to be applied when and only when the temperature
of the core is within the given temperature interval. The
problem formulation is given in Figure 3.

A multi-temperature testing problem can be further
formulated as multiple test scheduling problems associated with
different temperature intervals.

Figure 3. Problem formulation

III. SOC TESTING WITHIN A TEMPERATURE INTERVAL

A. Test Set Partitioning and Interleaving

In order to sensitize faults at a certain temperature level, a
test should be applied to the core only when its temperature is
within a temperature interval between an upper limit and a
lower limit. Whenever the temperature of a core exceeds the
upper limit, the test should be stopped and the core is turned
into an idle state in which no dynamic power is dissipated and
the core temperature decreases. When the temperature of the
core decreases to a certain level, the test can be resumed if the
test bus has sufficient width to transport the test data for the
core. We define the subset of the test patterns continuously
applied to the core as a test sub-sequence, and we consider the
period between the applications of two test sub-sequences as a
passive cooling period. As such, we can partition the entire test
set into a number of test sub-sequences between which cooling
periods are introduced, referred to as test set partitioning [6].

Using test set partitioning substantially increases the total
test time because of the introduction of long cooling periods

between test sub-sequences and the time overhead for the test
controller to switch tests for different cores. Since no test data is
transported to/from a core during its cooling periods, the surplus
width of the test bus can be allocated to other cores for their test
data transportations and test applications, which means that we
can utilize the cooling periods for one core to test other cores. In
this way, test sets for different cores are interleaved with each
other, referred to as test set interleaving [6]. As such, we can
reduce the long test time due to introducing cooling periods
between the partitioned test sub-sequences.

There exists a time overhead when the test controller stops
one test and starts/resumes another test [4]. It is very important
to select a proper stop-cooling temperature, denoted with TC, for
test set partitioning and interleaving. If TC is too high, a test set
is partitioned into too many test sub-sequences which are further
interleaved with tests for other cores. In such cases, the overall
time overhead becomes significantly large, leading to
substantially increased test time. On the other hand, if TC is too
low, the long cooling time also leads to long test time, making
test schedules inefficient. In this paper, we use a heuristic to
find a proper stop-cooling temperature for test scheduling.

B. Heating Sequence

Ideally, we expect that the temperature of a core is always
maintained within the given temperature interval whenever a
test is applied. However, this condition does not always hold in
reality. Sometimes, the core temperature may decrease below
the lower limit of the temperature interval. One reason for the
decrease in the temperature of a core is that the test patterns
consume insufficient power and the amount of heat generated
by applying the test patterns is less than the amount of heat
dissipated by the physical cooling system. Another reason is
that no sufficient bus width is available for a test and it has to be
postponed until the bus width requirement is satisfied.

If the problem of temperature decrease is not properly
addressed in test scheduling, it can cause invalid test schedules
where tests may be applied at temperatures below the lower
limit and cannot screen the targeted defects. In order to solve
this problem, we apply a sequence of dummy patterns that
consume sufficiently high power and raise the core temperature
towards the lower limit TL. We refer to such a high-power test
pattern as a heating pattern (HP) and a sequence of heating
patterns as a heating sequence (HS). It should be noted that
transporting a heating pattern through the test bus requires the
same amount of bus width as transporting a test pattern.

The minimal length of a heating sequence (denoted with Lmin)
preceding a test sub-sequence is the number of heating patterns
needed to raise the core temperature to TL. If the test sub-
sequence following a heating sequence does not consume
sufficiently high power and causes the core temperature to
decrease, the required length of the heating sequence (denoted
with Lreq) should be larger than Lmin. The actual value of Lreq
depends on the temperature profile of the succeeding test sub-
sequence. Figure 4 shows the temperature profiles of a core
stimulated with a heating sequence and a test sub-sequence
consecutively, depicted with doted and solid curves,
respectively. The core temperature is Ts when the HS starts.
Three lengths are chosen for the HS, namely L1, L2, and L3,
while the length of the succeeding test sub-sequence is M. The
HS is too short in Figure 4(a) and too long in Figure 4(b),
causing the core temperature going out of the interval (TL, TH)
during the test application period. The HS is given a proper
length in Figure 4(c) such that the core temperature reaches a

Input:

SoC floorplan F including physical parameters of the die and package,

A set of test sets for all cores {Si | i = 1, 2, ... , n},

A set of required test-bus widths for all tests {Wi | i = 1, 2, ... , n},

Test-bus width limit B,

Temperature upper limit TH and temperature lower limit TL.

Output:

A test schedule with the minimized test application time.

Subject to the following constraints:

1. At any time moment t before the test process is terminated, the total

amount of allocated test-bus width W(t) is less than or equal to the bus width

limit B, i.e. t, W(t) ! B, where W(t) ::= "jWj(t);
2. At any time moment u when a test is applied to core Ci, the instantaneous

temperature Ti(u) of the core Ci is less than the temperature upper limit TH,

and greater than the temperature lower limit TL, i.e. TL < Ti(u) < TH.

medium value (denoted with TM) between TL and TH before the
test starts and remains inside the interval during the test
application period.

Figure 4. Impact of heating sequence length

In order to avoid frequently violating the temperature limits
due to improperly determining the lengths of heating sequences,
we propose a preprocessing approach for each test set S, before
we perform the test scheduling algorithm. We define an
observation frame (OF) for each test pattern of a test set, and the
OF contains D consecutive test patterns. For each OF, we
calculate the average power consumption POF of all test patterns
in the OF. We categorize an observation frame to be a low-
power frame (LPF) if its POF is smaller than a threshold power
value PTHD, or a high-power frame (HPF) if otherwise. PTHD is
defined as a power consumption value that ultimately causes the
core temperature to reach a steady-state at TM. We perform a
series of steady-state temperature analysis to find PTHD.

Before scheduling a test sub-sequence, we must determine
the required length Lreq of its preceding HS. If the OF associated
with the first test pattern of the test sub-sequence is a LPF, Lreq
should be equal to the number of heating patterns that heats the
core to TM. Otherwise, Lreq should be equal to Lmin.

C. Finite State Machine for Thermal Management

As a part of the test scheduling algorithm, we develop a
finite state machine to control the states of cores. A core has the
following states: heating, testing, cooling, waiting, and complete,
defined as follows.
(1) Testing: the core is tested within the temperature interval

(TL, TH).
(2) Cooling: the core is passively cooled down without any test

pattern applied, and its temperature is decreasing from TH
towards TL.

(3) Heating: the core is actively heated by heating patterns and
its temperature is increasing.

(4) Waiting: the core is waiting for allocation of sufficient
amount of test-bus width for its test and the temperature of
the core is usually below TL.

(5) Complete: the core has finished its test.
Figure 5 depicts the temperature profile of a core and illustrates
the relation of core state and temperature.

When the test scheduling process starts, we assume that all
cores are at the waiting state and their temperatures are equal to
the ambient temperature TA (TA < TL). Each core is associated
with a dedicated flag start, indicating that the core is chosen for
test if it is equal to 1, or is not chosen for test if otherwise. A
core remains within the waiting state until it is selected for test.
From the waiting state, a core can move to the heating state if
its temperature T is below TL, or to the testing state if T is

already within the imposed temperature interval. In the heating
state, a core is applied with heating patterns and its temperature
increases to TL or TM, depending on whether the observation
frame of the succeeding test pattern is an HPF or LPF,
respectively. As soon as the core temperature T exceeds TL or
TM, the state of the core is changed to the testing state. The core
stays in the testing state as long as its temperature T remains
inside the temperature interval if the test is not finished.
Otherwise, the core moves to the cooling state when T exceeds
TH, or the waiting state when T falls below TL, or the complete
state when the test is finished. In the cooling state, a core is
supposed to be cooled down until T reaches to a stop-cooling
temperature TC (TC TL), after which the core moves to the
testing state if it is selected for test, or remains in the cooling
state until it is moved to the waiting state if it is not selected for
test. The entire SoC test finishes after all cores reach the
complete state. Figure 6 illustrates the five states and the
transitions between the states.

It should be noted that a cooling period ends at the stop-
cooling temperature TC where TC TL. The purpose of
introducing TC is to further reduce test time, especially when
cooling a core to TL needs substantially long time. We have
developed a heuristic, denoted with ALG0, to search for the best
TC between TL and TH. The heuristic is an iterative algorithm
that sets a new TC for each iteration step and invokes the
proposed test scheduling algorithm to calculate the TAT with
respect to the current TC. The heuristic returns the TC with which
the TAT is the shortest among all iterations.

Figure 5. Core states w.r.t. changes of temperatures

Figure 6. Finite state machine model for temperature management

Temperature

heat

test

cool

test

cool

wait
heat

test

cool

wait

test

TH

TL

complete

Time

TM

TC

cooling

waiting heating

testing

complete

T TH

start = 1 &

T ! TL

start = 0 &

T > TL

start = 0 &

T ! TL

start = 1 & T < TH &
TL < T (HPF) or

TM < T (LPF)

start = 0 &

T !"TL

start = 1 &

TC < T < TH

start = 1 &

T ! TL (HPF) or

T ! TM (LPF)

Finished start = 1 &

TL < T < TH

T ! TL

start = 1 &

TL < T < TH

Temperature

L3

TH

TL

Time

TM

M L1 M L2 M
TS

(a) (b) (c)

D. Test Scheduling Algorithm

We propose a test scheduling algorithm to generate a test
schedule that meets the temperature and test-bus width
requirements. The algorithm employs a thermal simulator ISAC
[21] to obtain instantaneous temperature values which are used
by the proposed finite state machine to control state transitions
for every core. The ISAC thermal simulator takes the floorplan
of a chip and the power consumption of every core as inputs,
considers the thermal influence between neighborhood cores,
and calculates the temperatures of all cores at every simulation
cycle. The scheduling algorithm uses the FSM to update the
state of every core at every simulation cycle, and maintains a
queue of cores in the waiting state in order to activate some
cores for test, if available. The scheduling algorithm terminates
when all cores reach the complete state.

Figure 7 describes an algorithm ALG1 that activates cores
for test. ALG1 takes the queue (Q) of all cores in the waiting
state as an input. According to the ratio r of the number of
remaining test patterns to the current temperature of each core
(Line 1), ALG1 selects as many cores as possible to start/resume
their tests, if their bus width requirements can be met. A core
that has a relatively larger number of remaining test patterns and
is relatively colder gets a higher value of r and hence is given
higher priority to be scheduled for test. As such, the scheduling
algorithm takes into account the impact of the distance between
cores on the temperature, since a core located further away from
a hot core is more likely to have a lower temperature than the
direct neighbors of the hot core. By allocating the required bus
width to the selected cores (Line 5) and changing their states to
testing (Line 6), the algorithm activates as many cores as
possible for test.

Figure 7. Pseudo-code of the algorithm activating cores for test

IV. EXPERIMENTAL RESULTS

We select ISCAS’89 benchmark designs as cores of 6
different SoCs. The number of cores in these SoCs varies from
4 to 42. The cores have different physical sizes, depending on
their complexity. We use a cycle-accurate power estimation
method proposed in [17] to calculate the power consumption (in
watt) of a core according to the amount of switching activity.
Taking the floorplan of a SoC and the power consumption
profiles of individual cores as inputs, the thermal simulator,
ISAC, calculates instantaneous temperatures of all individual
cores at every cycle of the test process. The assumed scan
frequency is 100MHz.

We employ the proposed test scheduling technique to
generate test schedules for the SoCs. Two groups of
experiments are performed to generate different test schedules
for each SoC with respect to different temperature intervals (at
low, medium, and high temperature levels) as well as to

different test-bus width limits (low, marginal, and high),
respectively.

Table 1 shows the impact of the temperature interval on the
TAT. The first column lists the numbers of cores in the SoC
designs. Columns 2, 4, and 6 list the TATs (in number of cycles)
of the generated test schedules with respect to different
temperature intervals. Columns 3, 5, and 7 list the CPU times
(in seconds) for the generation of the corresponding test
schedules. The test-bus width limit for the experiments in this
group is 60 bits. The experimental results show that the test
schedule length decreases along with increasing temperature
level at which the tests should be applied. This is because it
takes a longer time to cool down a core when a test is applied at
a lower temperature level.

Table 2 shows the impact of the test-bus width on the TAT.

The first column lists the number of cores in the SoC designs.
Columns 2, 4, and 6 list the TATs (in number of cycles) of the
generated test schedules with respect to different test-bus width
limits. Columns 3, 5, and 7 list the corresponding CPU times (in
seconds) the generation of the corresponding test schedules. The
imposed temperature interval for the experiments in this group
is 85-100°C. It can be seen that the length of test schedule
decreases with increasing test-bus width limit.

The third group of experiments compares the TATs of test

schedules generated using different stop-cooling temperatures,
either TC found by ALG0 or the given lower limit TL. Table 3
shows the impact of the stop-cooling temperature on the TAT.
The fist column lists the number of cores in the designs.
Columns 2 and 4 list the TATs of test schedules using TL and TC
as the stop-cooling temperature, respectively. Columns 3 and 5
show the CPU times (in seconds) for test scheduling. The TAT
reduction (in percentage) is listed in Column 6. The experiments
in this group are performed with a temperature interval
85-100°C and a test-bus width limit of 60 bits. It is seen that
using the TC found by ALG0 reduce the TAT by up to about 9%
rather than using TL. Similar results are shown in Table 4 where
the temperature interval is 65-80°C and the test-bus width limit

TABLE 1. TATS WITH DIFFERENT TEMPERATURE INTERVALS (B=60)

of

Cores

TL=65C, TH=80C TL=85C, TH=100C TL=105C, TH=120C

TAT
CPU

Time (s)
TAT

CPU

Time (s)
TAT

CPU

Time (s)

4 59887 347 29651 171 19562 115

8 61014 404 30256 180 20194 124

16 64658 411 31023 195 21055 138

25 71913 433 35785 214 24798 152

36 74886 477 37249 221 26402 168

42 76102 490 37989 243 27031 174

TABLE 2. TATS WITH DIFFERENT BUS WIDTH LIMITS (TL=85°C, TH=100°C)

of

Cores

B=40 B=60 B=80

TAT
CPU

Time (s)
TAT

CPU

Time (s)
TAT

CPU

Time (s)

4 29821 145 29651 171 29648 177

8 30261 182 30256 180 29752 197

16 31623 210 31023 195 34613 218

25 38391 252 35785 214 35415 230

36 38568 267 37249 221 35936 245

42 39785 264 37989 243 36430 251

ALG1. ACTIVATE(Queue of cores in the waiting state :: Q)

01 Sort Q decreasingly according to r

 where r = number of remaining test patterns / core temperature

02 C = GetFrontElement(Q);

03 while (RemainingBusWidth() > 0 & IsNotEmpty(Q)) loop

04 if (RequiredBusWidth(C) RemainingBusWidth()) then

05 AcquireBusWidth(C);

06 ChangeState(C, testing);

07 RemoveElement(C, Q);

08 end if

09 C = GetNextElement(Q);

10 end while

is 60 bits. With this temperature interval, the TAT reduction is
up to about 20%.

The third group of experimental results indicates that using
TC rather than TL for test scheduling leads to a greater reduction
on the TAT when the temperature interval is imposed at a lower
temperature level. On the other hand, the CPU time for test
scheduling becomes substantially longer because of the
increased time for determining TC.

V. CONCLUSIONS

In this paper, we demonstrate the need for multi-temperature
testing and address the problem of long test application time
when applying multi-temperature testing to systems-on-chip.
We propose a test scheduling technique to minimize the test
application time such that a test is applied only when the core
temperature is within a given interval and the test-bus width
limit is satisfied. The proposed test scheduling technique
employs a thermal simulator to partition and interleave test sets
on-the-fly and uses a finite state machine to manage the state
transitions for all cores. Experimental results show that, in
general, the test application time is longer when a test is applied
at a lower temperature level and/or with a lower test-bus width
limit. Moreover, the test application time can be further reduced
by stopping the cooling periods at an explored temperature
rather than at the imposed temperature lower limit, especially
for the tests applied at a low temperature level.

REFERENCES

[1] B. H. Calhoun, and A. P. Chandrakasan, “Ultra-dynamic voltage scaling
using sub-threshold operation and local voltage dithering,” IEEE J. Solid-
State Circuits, Vol. 41, No. 1, pp. 238-245, Jan. 2006.

[2] K. Chakrabarty, “Design of system-on-a-chip test access architectures
under place-and-route and power constraints,” Proc. ACM/IEEE Des.
Autom. Conf., 2000, pp. 4332-437.

[3] I. M. Filanovsky, and A. Allam, “Mutual compensation of mobility and
threshold voltage temperature effects with applications in CMOS circuits,”
IEEE Trans. Circuits Syst., Vol. 48, No. 17, pp. 876-884, Jul. 2001.

[4] S. K. Goel and E. J. Marinissen, “Control-aware test architecture design
for modular SoC testing,” Proc. IEEE Eur. Test Work., 2003. pp. 57-62.

[5] S. Gunther, F. Binns, D. M. Carmen, and J. C. Hall, “Managing the
impact of increasing microprocessor power consumption,” Intel Technol.
J., Q. 1, pp. 1-9, 2001.

[6] Z. He, Z. Peng, P. Eles, P. Rosinger, and B. M. Al-Hashimi, “Thermal-
aware SoC test scheduling with test set partitioning and interleaving,” J.
Electron. Test.: Theory Appl., Vol. 24, No. 1-3, pp. 247-257, Jun. 2008.

[7] U. Ingelsson, S. Goel, E. Larsson, and E. J. Marinissen, “Test scheduling
for modular SOCs in an abort-on-fail environment,” Proc. IEEE Eur. Test
Symp., 2005, pp. 8-13.

[8] A. Larsson, E. Larsson, P. Eles, and Z. Peng, “Optimized integration of
test compression and sharing for SOC testing,” Proc. Des. Autom. Test Eur.
Conf., 2007, pp. 207-212.

[9] E. Larsson and Z. Peng, “Power-aware test planning in the early system-
on-chip design exploration process,” IEEE Trans. Comput., Vol. 55, No. 2,
pp. 227-239, Feb. 2006.

[10] R. Mahajan, “Thermal management of CPUs: a perspective on trends,
needs and opportunities,” (Keynote), Proc. Int. Work. Therm. Invest. ICs
Syst., 2002.

[11] E. J. Marinissen, S. K. Goel, and M. Lousberg, “Wrapper design for
embedded core test,” Proc. IEEE Int. Test Conf., 2000, pp. 911-920.

[12] R. R. Montanes, J. P. Gyvez, and P. Volf, “Resistance characterization for
weak open defects,” IEEE Des. Test Comput., Vol. 19, No. 5, pp. 18-26,
Oct. 2002.

[13] W. Needham, C. Prunty, and E. H. Yeoh, “High volume microprocessor
test escapes, an analysis of defects our tests are missing,” Proc. IEEE Int.
Test Conf., 1998, pp. 25-34.

[14] P. Nigh, D. Vallet, A. Patel, and J. Wright, “Failure analysis of timing and
IDDq-only failures from the SEMATECH test methods experiment,” Proc.
IEEE Int. Test Conf., 1998, pp. 43-52.

[15] B. Pouya and A. Crouch, “Optimization trade-offs for vector volume and
test power,” Proc. IEEE Int. Test Conf., 2000, pp. 873-881.

[16] P. Rosinger, B. M. Al-Hashimi, and K. Chakrabarty, “Thermal-safe test
scheduling for core-based system-on-chip integrated circuits,” IEEE Trans.
Comput. Aided Des. Integr. Circuits Syst., Vol. 25, No. 11, pp. 2502-2512,
Nov. 2006.

[17] S. Samii, E. Larsson, K. Chakrabarty, and Z. Peng, “Cycle-accurate test
power modeling and its application to SoC test scheduling,” Proc. IEEE
Int. Test Conf., 2006, pp. 1-10.

[18] J. Segura, and C. F. Hawkins, “CMOS electronics: how it works, how it
fails,” Wiley-IEEE Press, Apr. 2004.

[19] G. Singer, “The challenges of nanotechnology and giga-technology,”
(Keynote), Proc. IEEE Int. Test Conf., 2007.

[20] D. Wolpert, and P. Ampadu, “A sensor to detect normal or reverse
temperature dependence in nanoscale CMOS circuits,” Proc. IEEE Int.
Symp. Defect Fault Tolerance in VLSI Syst., 2009.

[21] Y. Yang, Z. P. Gu, C. Zhu, R. P. Dick, and L. Shang, “ISAC: Integrated
Space and Time Adaptive Chip-Package Thermal Analysis,” IEEE Trans.
Comput. Aided Des. Integr. Circuits Syst., Vol. 26, No. 1, pp. 86-99, Jan.
2007.

TABLE 4. TATS WITH/WITHOUT TC (B=60, TL =65°C, TH =80°C)

of

Cores

Use TL (65°C) as TC Use TC found by ALG0 TAT

Reduc-

tion TAT
CPU Time

(s)
TAT

CPU Time

(s)

4 59887 347 52691 2340 12.02%

8 61014 404 52746 2366 13.55%

16 64658 411 55376 2587 14.36%

25 71913 433 59162 2830 17.73%

36 74886 477 60701 2865 18.94%

42 76102 490 60935 2884 19.93%

TABLE 3. TATS WITH/WITHOUT TC (B=60, TL =85°C, TH =100°C)

of

Cores

Use TL (85°C) as TC Use TC found by ALG0 TAT

Reduc-

tion TAT
CPU Time

(s)
TAT

CPU Time

(s)

4 29651 171 28711 1265 3.17%

8 30256 180 29142 1327 3.68%

16 31023 195 29779 1402 4.01%

25 35785 214 33654 1511 5.96%

36 37249 221 34372 1776 7.72%

42 37989 243 34627 1843 8.85%

