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Abstract—Recent research has shown that different defects can 

manifest themselves as failures at different temperature spectra. 

Therefore, we need multi-temperature testing which applies tests at 

different temperature levels. In this paper, we discuss the need and 

problems for testing core-based systems-on-chip at different 

temperatures. To address the long test time problem for multi-

temperature test, we propose a test scheduling technique that 

generates the shortest test schedules while keeping the cores under 

test within a temperature interval. Experimental results show the 

efficiency of the proposed technique. 

Keywords: multi-temperature testing; system-on-chip test; test 

scheduling; thermal-aware test 

I. INTRODUCTION 

Environment-sensitive defects often cause parametric 
failures that are more and more observed in very large scale 
integrated (VLSI) circuits manufactured with nanometer 
technologies. These environmental parameters include power 
supply voltage, clock frequency, temperature, radiation, etc. In 
recent years, concerns regarding parametric failures are rapidly 
rising due to widely distributed process variations and the wide 
spectrum of subtle defects introduced by new manufacturing 
processes and materials [18], [13], [14], [12]. 

Some defects are sensitive to a certain temperature level. For 
example, metal interconnect defects may pass a delay test at 
nominal temperature but fail the same test at a high temperature. 
This indicates that speed tests, such as maximum frequency 
(Fmax) tests and transition delay tests, should usually be applied 
at a high temperature in order to detect these temperature-
dependent defects. 

In [19], a closer investigation on the correlation between the 
maximum frequency and temperature was performed for 
integrated circuits (ICs) powered by ultra-low supply voltages. 
It shows that there exists a turnaround temperature point above 
which the maximum frequency no longer decreases but rather 
increases. This means that applying a speed test at a high 
temperature may not screen the defective chips because of the 
improper temperature setting for the test. Therefore, for those 
types of ICs, Fmax tests or transition delay tests should be 
applied at a critical temperature which can be obtained by 
characterization.  

Parametric failures induced by subtle defects, such as 
resistive vias/contacts and weak opens, are hard to detect even 
when the circuit operates with the lowest performance under the 
worst environmental condition. In these cases, a speed test 
needs to be applied at two temperatures (hot/cold) and at a 
particular frequency [13]. The defective chips can be screened 
as outliers by comparing the test results at the two different 
temperatures. 

The existence of complicated temperature dependences and 
defect-induced parametric failures indicates that we need to test 
a chip at multiple temperatures. Multi-temperature testing aims 
to screen chips having various defects that can only be 
efficiently sensitized at different temperatures. Different tests 
may be needed and applied at different temperatures, and each 
test targets a particular type of defects that can be detected at a 
certain temperature interval. Alternatively, the same test can 
also be applied at different temperature intervals so that outliers 
can be screened through a comparison of the test results, like in 
the case of speed tests against parametric failures induced by 
subtle defects.  

A multi-temperature test is expected to have a substantially 
long test application time (TAT), since a mono-temperature test 
is already time consuming. The long TAT problem is further 
exacerbated when multi-temperature testing is combined with 
SoC testing. Therefore, we need efficient test scheduling 
methods to reduce the TAT of multi-temperature SoC tests.  

In this paper, we demonstrate the need for multi-temperature 
testing and we propose a test scheduling technique for SoC tests 
to be applied within a temperature interval. Aiming at 
minimizing the TAT, the proposed technique generates test 
schedules such that the temperatures of the cores under test 
(CUTs) are within a certain temperature interval and the test bus 
width limit is satisfied. We employ a test set partitioning and 
interleaving technique as well as heating patterns in order to 
keep the temperatures of CUTs within the imposed interval. The 
generated test schedules guarantee that any test is scheduled for 
application when and only when the temperature of the core is 
within the given temperature interval. The scheduling algorithm 
uses a finite state machine to manage the temperatures of cores 
and a thermal simulator to obtain instantaneous temperatures of 
all individual cores. To the best of our knowledge, this is the 
first work that addresses the multi-temperature testing issue for 
system-on-chip and provides an efficient technique to minimize 
the test time of a multi-temperature SoC test.  

The rest of this paper is organized as follows. The next 
section demonstrates the need for temperature-dependent testing 
for SoC. Section III presents the proposed technique for SoC 
testing within a temperature interval. Experimental results are 
described in Section IV and the paper is concluded in Section V. 

II. TEMPERATURE-DEPENDENT TESTING FOR SOC 

A. Temperature Effects in CMOS Circuits 

As one of the environmental parameters, operating 
temperature has a large impact on the electrical properties of 
transistors and their interconnects [18]. Carrier mobility usually 
decreases at high temperature since the carriers collide with the 
Si-crystal lattice more frequently. Similar effects occur in the 
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thin metal lines connecting the transistors, increasing the 
interconnect resistance. Thus, performance degradation is often 
encountered at a high operating temperature, leading design and 
test efforts focusing on the high-temperature scenarios. In 
practice, an IC is often tested at high temperatures in order to 
guarantee the functionality at all temperatures that may appear 
in the field. 

Another temperature-dependent parameter is the transistor 
threshold voltage, which increases with rising temperature. The 
increasing threshold voltage results in an elevated drain current, 
which compensates for the degraded circuit performance due to 
the reduced carrier mobility and interconnect resistance. The 
threshold voltage dominates the performance after the operating 
temperature exceeds a certain point, referred to as the CMOS 
zero-temperature-coefficient (ZTC) point [3], meaning that the 
circuit performance increases with further rising temperature. 
Thus, there exist two temperature dependence regions [3], [1], 
[20], a nominal region in which the circuit delay increases with 
rising temperature, and a reverse dependence region in which 
the circuit delay decreases with rising temperature. Figure 1 
illustrates circuit delay variation in the nominal and reverse 
dependence regions [20]. This phenomenon is usually observed 
in low power designs with ultra-low supply voltage. It indicates 
that, for those circuits in which reverse temperature dependence 
is observed, a delay test should be applied at the temperature 
point between the nominal and reverse regions where the circuit 
delay is the largest.  

 
Figure 1. Nominal and reversal temperature dependence regions 

B. Subtle Defects and Parametric Failures 

VLSI systems manufactured with nanometer technologies, 
typically below 45nm, encounter more reliability problems and 
parametric failures caused by widely distributed variations and a 
wide spectrum of subtle defects. Defect-induced parametric 
failure mechanisms include weak interconnect opens, resistive 
vias and contacts, metal mouse bites and metal slivers, with the 
first two as major causes [18]. In [12], examples of a weak 
interconnect open and a resistive via in a deep-submicron 
CMOS IC are given. 

Although most parametric failures are speed-related, some 
of them are insensitive to a single test method such as IDDQ test, 
stuck-at test, delay test, and functional test. Simply applying a 
single type of tests may not be capable to identify the outliers 
from the normal parts, resulting in either an increased amount of 
test escapes or unexpected yield loss. In order to effectively 
screen the chips having subtle defects, multiple parameters may 
need to be combined for a test making the chip out of 
specification. Temperature, transition delay, supply voltage, and 
clock frequency are important parameters to be considered in 
multi-parameter testing [18], [13], [14].  

Running at a certain given frequency, a chip with resistive 
vias may fail a speed test such as Fmax test and delay test, but 
pass the test at the same frequency when the operating 
temperature is elevated [13]. As explained in [18] and [13], the 
root cause was the voids existing in vias. When the temperature 

increases, the surrounding metal expands inwardly, forcing the 
voids to shrink. As a consequence, the metal resistance is 
reduced and the delay becomes shorter. Figure 2 illustrates that 
the shapes of two voids in a via vary at different temperatures 
[18]. This subtle-defect-induced parametric failure indicates that 
a combination of parameters (e.g. frequency and temperature) is 
needed to sensitize the defects and a comparison of test results 
at different temperatures is needed for screening defective parts. 

 
Figure 2. Illustrations of via voids at different temperatures 

C. System-on-Chip Testing 

The ever increasing demands on system performance have 
led to the integration of more and more functionalities into 
modern ICs, making them highly complex. While the industry 
steadily follows the Moore's law, the time between technology 
nodes has been significantly shortened, intensifying the time-to-
market pressure. In order to accomplish the design and 
production of highly complex systems within a shortened period, 
a module-based design methodology has been widely adopted 
by the industry, referred to as core-based SoCs. Naturally, the 
testing of modern SoCs inherits this modular style, making the 
tests of cores to be independent from each other. Nonetheless, 
the modular SoC test becomes difficult and expensive, due to 
inefficient test access mechanisms (TAM) [2], [11], large 
volume of test data [8], [15], high power density [5], [10] and 
high temperature [10], [16]. The long test application time is 
one of the major contributors to the testing cost. An efficient 
schedule of tests can help reduce the total test time, which is a 
key issue in volume production tests. In recent years, many test 
scheduling techniques have been proposed for test time 
reduction [2], [7], [9]. 

As demonstrated in previous sections, multi-temperature 
testing is needed for core-based SoCs. It is also important to 
develop efficient test scheduling techniques for multi-
temperature SoC testing, in order to reduce the even longer test 
application time.  

D. Problem Formulation 

We assume that the tester employed for a SoC test is either 
an automatic test equipment (ATE) or an embedded tester in the 
chip. The tester consists of two major components, a test 
controller and a memory. The memory stores a test schedule and 
the generated test patterns. The test controller reads the test 
schedule and transports the test data to/from the CUTs 
accordingly. A test bus is used for the test data transportation 
between the tester and the CUTs. Each core is connected to the 
test bus through dedicated TAM wires. Through the test bus and 
TAM wires, test patterns are sent to the CUTs and test 
responses are sent back to the tester. 

Suppose that a system-on-chip, denoted with S, consists of n 
cores, denoted with C1, C2, ... , Cn, respectively. The cores are 
placed on a silicon die according to a floorplan F, which also 
specifies the physical parameters of the silicon die and the 
package. In order to test core Ci (1   i   n), li test patterns are 
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generated and form a test set, denoted with Si. The test 
patterns/responses are transported through the test bus to/from 
core Ci, if a certain amount of bus width, denoted with Wi, is 
granted. The test bus can concurrently transport test data for 
different cores under a width limit B (B   Wi, i = 1, 2, ... , n). In 
order to sensitize temperature-dependent defects, we need to 
apply tests to the SoC at different temperature spectra. Each 
temperature spectrum is specified as a given temperature 
interval I = (TL, TH), where TL and TH are the temperature lower 
limit and upper limit, respectively. In this paper, it is assumed 
that a test should be applied only when the temperature of core 
Ci (i = 1, 2, ... , n), denoted with Ti, is within the temperature 
interval I.  

The problem we address in this paper is to minimize the test 
application time by generating an efficient SoC test schedule 
such that the following two constraints are satisfied: (1) the 
amount of bus width required for concurrently applying 
different tests is less than or equal to the bus width limit, and (2) 
any test has to be applied when and only when the temperature 
of the core is within the given temperature interval. The 
problem formulation is given in Figure 3.  

A multi-temperature testing problem can be further 
formulated as multiple test scheduling problems associated with 
different temperature intervals.  

 

Figure 3. Problem formulation 

III. SOC TESTING WITHIN A TEMPERATURE INTERVAL 

A. Test Set Partitioning and Interleaving 

In order to sensitize faults at a certain temperature level, a 
test should be applied to the core only when its temperature is 
within a temperature interval between an upper limit and a 
lower limit. Whenever the temperature of a core exceeds the 
upper limit, the test should be stopped and the core is turned 
into an idle state in which no dynamic power is dissipated and 
the core temperature decreases. When the temperature of the 
core decreases to a certain level, the test can be resumed if the 
test bus has sufficient width to transport the test data for the 
core. We define the subset of the test patterns continuously 
applied to the core as a test sub-sequence, and we consider the 
period between the applications of two test sub-sequences as a 
passive cooling period. As such, we can partition the entire test 
set into a number of test sub-sequences between which cooling 
periods are introduced, referred to as test set partitioning [6].  

Using test set partitioning substantially increases the total 
test time because of the introduction of long cooling periods 

between test sub-sequences and the time overhead for the test 
controller to switch tests for different cores. Since no test data is 
transported to/from a core during its cooling periods, the surplus 
width of the test bus can be allocated to other cores for their test 
data transportations and test applications, which means that we 
can utilize the cooling periods for one core to test other cores. In 
this way, test sets for different cores are interleaved with each 
other, referred to as test set interleaving [6]. As such, we can 
reduce the long test time due to introducing cooling periods 
between the partitioned test sub-sequences.  

There exists a time overhead when the test controller stops 
one test and starts/resumes another test [4]. It is very important 
to select a proper stop-cooling temperature, denoted with TC, for 
test set partitioning and interleaving. If TC is too high, a test set 
is partitioned into too many test sub-sequences which are further 
interleaved with tests for other cores. In such cases, the overall 
time overhead becomes significantly large, leading to 
substantially increased test time. On the other hand, if TC is too 
low, the long cooling time also leads to long test time, making 
test schedules inefficient. In this paper, we use a heuristic to 
find a proper stop-cooling temperature for test scheduling.  

B. Heating Sequence 

Ideally, we expect that the temperature of a core is always 
maintained within the given temperature interval whenever a 
test is applied. However, this condition does not always hold in 
reality. Sometimes, the core temperature may decrease below 
the lower limit of the temperature interval. One reason for the 
decrease in the temperature of a core is that the test patterns 
consume insufficient power and the amount of heat generated 
by applying the test patterns is less than the amount of heat 
dissipated by the physical cooling system. Another reason is 
that no sufficient bus width is available for a test and it has to be 
postponed until the bus width requirement is satisfied.  

If the problem of temperature decrease is not properly 
addressed in test scheduling, it can cause invalid test schedules 
where tests may be applied at temperatures below the lower 
limit and cannot screen the targeted defects. In order to solve 
this problem, we apply a sequence of dummy patterns that 
consume sufficiently high power and raise the core temperature 
towards the lower limit TL. We refer to such a high-power test 
pattern as a heating pattern (HP) and a sequence of heating 
patterns as a heating sequence (HS). It should be noted that 
transporting a heating pattern through the test bus requires the 
same amount of bus width as transporting a test pattern.  

The minimal length of a heating sequence (denoted with Lmin) 
preceding a test sub-sequence is the number of heating patterns 
needed to raise the core temperature to TL. If the test sub-
sequence following a heating sequence does not consume 
sufficiently high power and causes the core temperature to 
decrease, the required length of the heating sequence (denoted 
with Lreq) should be larger than Lmin. The actual value of Lreq 
depends on the temperature profile of the succeeding test sub-
sequence. Figure 4 shows the temperature profiles of a core 
stimulated with a heating sequence and a test sub-sequence 
consecutively, depicted with doted and solid curves, 
respectively. The core temperature is Ts when the HS starts. 
Three lengths are chosen for the HS, namely L1, L2, and L3, 
while the length of the succeeding test sub-sequence is M. The 
HS is too short in Figure 4(a) and too long in Figure 4(b), 
causing the core temperature going out of the interval (TL, TH) 
during the test application period. The HS is given a proper 
length in Figure 4(c) such that the core temperature reaches a 

Input: 

SoC floorplan F including physical parameters of the die and package,  

A set of test sets for all cores {Si | i = 1, 2, ... , n},  

A set of required test-bus widths for all tests {Wi | i = 1, 2, ... , n},  

Test-bus width limit B,  

Temperature upper limit TH and temperature lower limit TL.  

 

Output: 

A test schedule with the minimized test application time.  

 

Subject to the following constraints: 

1. At any time moment t before the test process is terminated, the total 

amount of allocated test-bus width W(t) is less than or equal to the bus width 

limit B, i.e.  t, W(t) ! B, where W(t) ::= "jWj(t); 
2. At any time moment u when a test is applied to core Ci, the instantaneous 

temperature Ti(u) of the core Ci is less than the temperature upper limit TH, 

and greater than the temperature lower limit TL, i.e. TL < Ti(u) < TH.  



medium value (denoted with TM) between TL and TH before the 
test starts and remains inside the interval during the test 
application period. 

 
Figure 4. Impact of heating sequence length 

In order to avoid frequently violating the temperature limits 
due to improperly determining the lengths of heating sequences, 
we propose a preprocessing approach for each test set S, before 
we perform the test scheduling algorithm. We define an 
observation frame (OF) for each test pattern of a test set, and the 
OF contains D consecutive test patterns. For each OF, we 
calculate the average power consumption POF of all test patterns 
in the OF. We categorize an observation frame to be a low-
power frame (LPF) if its POF is smaller than a threshold power 
value PTHD, or a high-power frame (HPF) if otherwise. PTHD is 
defined as a power consumption value that ultimately causes the 
core temperature to reach a steady-state at TM. We perform a 
series of steady-state temperature analysis to find PTHD.  

Before scheduling a test sub-sequence, we must determine 
the required length Lreq of its preceding HS. If the OF associated 
with the first test pattern of the test sub-sequence is a LPF, Lreq 
should be equal to the number of heating patterns that heats the 
core to TM. Otherwise, Lreq should be equal to Lmin.  

C. Finite State Machine for Thermal Management 

As a part of the test scheduling algorithm, we develop a 
finite state machine to control the states of cores. A core has the 
following states: heating, testing, cooling, waiting, and complete, 
defined as follows.  
(1) Testing: the core is tested within the temperature interval 

(TL, TH). 
(2) Cooling: the core is passively cooled down without any test 

pattern applied, and its temperature is decreasing from TH 
towards TL.  

(3) Heating: the core is actively heated by heating patterns and 
its temperature is increasing. 

(4) Waiting: the core is waiting for allocation of sufficient 
amount of test-bus width for its test and the temperature of 
the core is usually below TL.  

(5) Complete: the core has finished its test.  
Figure 5 depicts the temperature profile of a core and illustrates 
the relation of core state and temperature. 

When the test scheduling process starts, we assume that all 
cores are at the waiting state and their temperatures are equal to 
the ambient temperature TA (TA < TL). Each core is associated 
with a dedicated flag start, indicating that the core is chosen for 
test if it is equal to 1, or is not chosen for test if otherwise. A 
core remains within the waiting state until it is selected for test. 
From the waiting state, a core can move to the heating state if 
its temperature T is below TL, or to the testing state if T is 

already within the imposed temperature interval. In the heating 
state, a core is applied with heating patterns and its temperature 
increases to TL or TM, depending on whether the observation 
frame of the succeeding test pattern is an HPF or LPF, 
respectively. As soon as the core temperature T exceeds TL or 
TM, the state of the core is changed to the testing state. The core 
stays in the testing state as long as its temperature T remains 
inside the temperature interval if the test is not finished. 
Otherwise, the core moves to the cooling state when T exceeds 
TH, or the waiting state when T falls below TL, or the complete 
state when the test is finished. In the cooling state, a core is 
supposed to be cooled down until T reaches to a stop-cooling 
temperature TC (TC   TL), after which the core moves to the 
testing state if it is selected for test, or remains in the cooling 
state until it is moved to the waiting state if it is not selected for 
test. The entire SoC test finishes after all cores reach the 
complete state. Figure 6 illustrates the five states and the 
transitions between the states. 

It should be noted that a cooling period ends at the stop-
cooling temperature TC where TC   TL. The purpose of 
introducing TC is to further reduce test time, especially when 
cooling a core to TL needs substantially long time. We have 
developed a heuristic, denoted with ALG0, to search for the best 
TC between TL and TH. The heuristic is an iterative algorithm 
that sets a new TC for each iteration step and invokes the 
proposed test scheduling algorithm to calculate the TAT with 
respect to the current TC. The heuristic returns the TC with which 
the TAT is the shortest among all iterations.  

 
Figure 5. Core states w.r.t. changes of temperatures 

 
Figure 6. Finite state machine model for temperature management 
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D. Test Scheduling Algorithm 

We propose a test scheduling algorithm to generate a test 
schedule that meets the temperature and test-bus width 
requirements. The algorithm employs a thermal simulator ISAC 
[21] to obtain instantaneous temperature values which are used 
by the proposed finite state machine to control state transitions 
for every core. The ISAC thermal simulator takes the floorplan 
of a chip and the power consumption of every core as inputs, 
considers the thermal influence between neighborhood cores, 
and calculates the temperatures of all cores at every simulation 
cycle. The scheduling algorithm uses the FSM to update the 
state of every core at every simulation cycle, and maintains a 
queue of cores in the waiting state in order to activate some 
cores for test, if available. The scheduling algorithm terminates 
when all cores reach the complete state.  

Figure 7 describes an algorithm ALG1 that activates cores 
for test. ALG1 takes the queue (Q) of all cores in the waiting 
state as an input. According to the ratio r of the number of 
remaining test patterns to the current temperature of each core 
(Line 1), ALG1 selects as many cores as possible to start/resume 
their tests, if their bus width requirements can be met. A core 
that has a relatively larger number of remaining test patterns and 
is relatively colder gets a higher value of r and hence is given 
higher priority to be scheduled for test. As such, the scheduling 
algorithm takes into account the impact of the distance between 
cores on the temperature, since a core located further away from 
a hot core is more likely to have a lower temperature than the 
direct neighbors of the hot core. By allocating the required bus 
width to the selected cores (Line 5) and changing their states to 
testing (Line 6), the algorithm activates as many cores as 
possible for test. 

 
Figure 7. Pseudo-code of the algorithm activating cores for test 

IV. EXPERIMENTAL RESULTS 

We select ISCAS’89 benchmark designs as cores of 6 
different SoCs. The number of cores in these SoCs varies from 
4 to 42. The cores have different physical sizes, depending on 
their complexity. We use a cycle-accurate power estimation 
method proposed in [17] to calculate the power consumption (in 
watt) of a core according to the amount of switching activity. 
Taking the floorplan of a SoC and the power consumption 
profiles of individual cores as inputs, the thermal simulator, 
ISAC, calculates instantaneous temperatures of all individual 
cores at every cycle of the test process. The assumed scan 
frequency is 100MHz.  

We employ the proposed test scheduling technique to 
generate test schedules for the SoCs. Two groups of 
experiments are performed to generate different test schedules 
for each SoC with respect to different temperature intervals (at 
low, medium, and high temperature levels) as well as to 

different test-bus width limits (low, marginal, and high), 
respectively.  

Table 1 shows the impact of the temperature interval on the 
TAT. The first column lists the numbers of cores in the SoC 
designs. Columns 2, 4, and 6 list the TATs (in number of cycles) 
of the generated test schedules with respect to different 
temperature intervals. Columns 3, 5, and 7 list the CPU times 
(in seconds) for the generation of the corresponding test 
schedules. The test-bus width limit for the experiments in this 
group is 60 bits. The experimental results show that the test 
schedule length decreases along with increasing temperature 
level at which the tests should be applied. This is because it 
takes a longer time to cool down a core when a test is applied at 
a lower temperature level.  

 
Table 2 shows the impact of the test-bus width on the TAT. 

The first column lists the number of cores in the SoC designs. 
Columns 2, 4, and 6 list the TATs (in number of cycles) of the 
generated test schedules with respect to different test-bus width 
limits. Columns 3, 5, and 7 list the corresponding CPU times (in 
seconds) the generation of the corresponding test schedules. The 
imposed temperature interval for the experiments in this group 
is 85-100°C. It can be seen that the length of test schedule 
decreases with increasing test-bus width limit.  

 
The third group of experiments compares the TATs of test 

schedules generated using different stop-cooling temperatures, 
either TC found by ALG0 or the given lower limit TL. Table 3 
shows the impact of the stop-cooling temperature on the TAT. 
The fist column lists the number of cores in the designs. 
Columns 2 and 4 list the TATs of test schedules using TL and TC 
as the stop-cooling temperature, respectively. Columns 3 and 5 
show the CPU times (in seconds) for test scheduling. The TAT 
reduction (in percentage) is listed in Column 6. The experiments 
in this group are performed with a temperature interval 
85-100°C and a test-bus width limit of 60 bits. It is seen that 
using the TC found by ALG0 reduce the TAT by up to about 9% 
rather than using TL. Similar results are shown in Table 4 where 
the temperature interval is 65-80°C and the test-bus width limit 

TABLE 1. TATS WITH DIFFERENT TEMPERATURE INTERVALS (B=60) 

# of 

Cores 

TL=65C, TH=80C TL=85C, TH=100C TL=105C, TH=120C 

TAT 
CPU 

Time (s) 
TAT 

CPU 

Time (s) 
TAT 

CPU 

Time (s) 

4 59887 347 29651 171 19562 115 

8 61014 404 30256 180 20194 124 

16 64658 411 31023 195 21055 138 

25 71913 433 35785 214 24798 152 

36 74886 477 37249 221 26402 168 

42 76102 490 37989 243 27031 174 

 

TABLE 2. TATS WITH DIFFERENT BUS WIDTH LIMITS (TL=85°C, TH=100°C) 

# of 

Cores 

B=40 B=60 B=80 

TAT 
CPU 

Time (s) 
TAT 

CPU 

Time (s) 
TAT 

CPU 

Time (s) 

4 29821 145 29651 171 29648 177 

8 30261 182 30256 180 29752 197 

16 31623 210 31023 195 34613 218 

25 38391 252 35785 214 35415 230 

36 38568 267 37249 221 35936 245 

42 39785 264 37989 243 36430 251 

 

ALG1.  ACTIVATE(Queue of cores in the waiting state :: Q) 

01    Sort Q decreasingly according to r 

            where r = number of remaining test patterns / core temperature 

02    C = GetFrontElement(Q); 

03    while (RemainingBusWidth() > 0 & IsNotEmpty(Q)) loop 

04        if (RequiredBusWidth(C)   RemainingBusWidth()) then 

05            AcquireBusWidth(C); 

06            ChangeState(C, testing); 

07            RemoveElement(C, Q); 

08        end if 

09        C = GetNextElement(Q); 

10    end while 



is 60 bits. With this temperature interval, the TAT reduction is 
up to about 20%.  

The third group of experimental results indicates that using 
TC rather than TL for test scheduling leads to a greater reduction 
on the TAT when the temperature interval is imposed at a lower 
temperature level. On the other hand, the CPU time for test 
scheduling becomes substantially longer because of the 
increased time for determining TC.  

 

 

V. CONCLUSIONS 

In this paper, we demonstrate the need for multi-temperature 
testing and address the problem of long test application time 
when applying multi-temperature testing to systems-on-chip. 
We propose a test scheduling technique to minimize the test 
application time such that a test is applied only when the core 
temperature is within a given interval and the test-bus width 
limit is satisfied. The proposed test scheduling technique 
employs a thermal simulator to partition and interleave test sets 
on-the-fly and uses a finite state machine to manage the state 
transitions for all cores. Experimental results show that, in 
general, the test application time is longer when a test is applied 
at a lower temperature level and/or with a lower test-bus width 
limit. Moreover, the test application time can be further reduced 
by stopping the cooling periods at an explored temperature 
rather than at the imposed temperature lower limit, especially 
for the tests applied at a low temperature level. 
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TABLE 4. TATS WITH/WITHOUT TC  (B=60, TL =65°C, TH =80°C) 

# of 

Cores 

Use TL (65°C) as TC Use TC found by ALG0 TAT 

Reduc-

tion TAT 
CPU Time 

(s) 
TAT 

CPU Time 

(s) 

4 59887 347 52691 2340 12.02% 

8 61014 404 52746 2366 13.55% 

16 64658 411 55376 2587 14.36% 

25 71913 433 59162 2830 17.73% 

36 74886 477 60701 2865 18.94% 

42 76102 490 60935 2884 19.93% 

 

TABLE 3. TATS WITH/WITHOUT TC  (B=60, TL =85°C, TH =100°C) 

# of 

Cores 

Use TL (85°C) as TC Use TC found by ALG0 TAT 

Reduc-

tion TAT 
CPU Time 

(s) 
TAT 

CPU Time 

(s) 

4 29651 171 28711 1265 3.17% 

8 30256 180 29142 1327 3.68% 

16 31023 195 29779 1402 4.01% 

25 35785 214 33654 1511 5.96% 

36 37249 221 34372 1776 7.72% 

42 37989 243 34627 1843 8.85% 

 


