
Simulation-Driven Thermal-Safe Test Time Minimization for System-on-Chip

Zhiyuan He, Zebo Peng, and Petru Eles
Embedded Systems Laboratory (ESLAB)

Linköping University, Sweden
{zhihe, zebpe, petel}@ida.liu.se

Abstract 1

Thermal safety has become a major challenge to the
testing of systems-on-chip with deep sub-micron
technologies. In order to avoid overheating the devices
under test while reducing test application times, new
techniques are needed. In this paper, we propose a test
scheduling technique to minimize the test application time
such that the temperatures of individual cores are kept
below a given limit. The proposed approach takes into
account thermal influences between cores, and thus
accurate temperature evolution information of all cores in
a system-on-chip is needed for the test scheduling. In
order to avoid overheating, we have employed a thermal
simulation driven scheduling algorithm, in which
instantaneous thermal simulation results are used to
guide the partitioning of test sets into test sub-sequences
and to determine cooling periods inserted between the
partitions. Furthermore, the partitioned test sets for
different cores are interleaved such that a cooling period
reserved for one core can be utilized for the test-data
transportations and test applications for other cores.
Experimental results have shown that by using the
proposed technique, the test application time is minimized
and the temperatures of cores under test are kept below
the temperature limit during the entire test process.

1. Introduction and related work
Nanoscale technology has become the mainstream in the
design and production of integrated circuits (ICs). In the
latest generation of IC designs, the power density has
been substantially increased [1], [2]. As a consequence of
the elevated power density, high temperature in the chip
becomes a critical challenge [3], [4]. In particular,
compared to the normal functional mode, testing has been
expected to consume more power [5], [6], which leads to
an even higher temperature on silicon dies. Therefore,
rigid temperature control during test is required in order to
prevent possible damages to the circuits under test. Some
advanced cooling techniques are proposed to reduce the
temperature in the chips, but they substantially increase
the overall cost. Other techniques such as lower frequency
and reduced speed can partly solve the high temperature
problem, while making them inapplicable to at-speed test
and leading to longer test application time.

In the case of system-on-chip (SoC) test, the problems
of long test time and high temperature become more
severe. Due to the high power consumption and high

1 This work has been partially supported by the Swedish Foundation for
Strategic Research (SSF) under the Strategic Integrated Electronic
Systems Research (STRINGENT) program.

temperature in the latest generation of SoCs, novel
techniques are proposed to tackle the test time
minimization problem in the new context. In [7], [8], low
power test techniques are proposed to reduce the power
consumption during tests. Some other works focus on
power-constrained test scheduling [9], [10], [11], [12],
targeting test time minimization restricted in a fixed
power envelope. However, only using the power-aware
techniques cannot fully avoid the overheating problem
because of the complex thermal phenomenon in modern
electronic chips [13].

Thus, thermal-aware test techniques have been
proposed in order to solve the overheating problem during
SoC test. Rosinger et al. proposed an approach [13] to
generate thermal-safe test schedules with minimized test
application time (TAT). Information about the
neighborhood relationship of the cores under test (CUTs)
is used to generate shortest test schedules which also
reduce the temperature variances among cores. In [14],
Yu et al. proposed a thermal-safe TAM/wrapper co-
optimization and test scheduling approach, in which the
thermal influences between cores are taken into account
and a thermal cost model is improved from [13] to
generate more accurate results. Despite obtaining
substantial reduction in test time, these approaches make
the strong and simplifying assumption that one test can
never produce overheating on the CUT. In our previous
works [15], [16], a test set partitioning and interleaving
technique was proposed to avoid high temperature and
minimize the TAT, assuming that continuously applying a
single test set may burn the CUT. In these works, it was
assumed that the circuit layout and the employed
technology are such that the thermal influence between
cores can be neglected. However, in many other SoC
designs, especially those which have a relatively large
contact area between cores, the lateral thermal influences
cannot be ignored.

Thus, in this paper, we address the thermal-safe test
scheduling issue in the context that continuous application
of tests for a core can lead to excessively high temperature
and that the lateral thermal influence between cores is not
negligible. Due to the temporal and spatial thermal
interdependencies [17], [18], coarse grained thermal
models cannot solve the problem. Thus, we have
employed a fast thermal simulator, ISAC [19], to obtain
accurate instantaneous temperature values and have used
them to guide the partitioning and interleaving of test sets
during the test scheduling. A finite state machine (FSM)
model has been developed to control the partitioning and
interleaving process, based on which a heuristic has been
developed to generate the shortest thermal-safe test
schedules.

The rest of this paper is organized as follows. The next
section presents the assumed basic test architecture. In
Section 3, the motivation for the thermal-safe test
scheduling problem is demonstrated. Section 4 gives the
problem formulation, and Section 5 illustrates the
proposed heuristic for the thermal-safe test scheduling.
Experimental results are presented in Section 6 and the
paper is concluded in Section 7.

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 0 0.0001 0.0002
 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

T
e
m
p
e
r
a
t
u
r
e

(
C
)

Test Application Time (sec)

Temperature Profiles

TL
Core 1
Core 2

2. Basic test architecture
We have assumed that the tester employed for a SoC test
is either an automatic test equipment (ATE) or an
embedded tester in the chip. In the tester, a memory is
used to store the generated test patterns and a test
schedule. A test controller integrated in the tester controls
the transportation of test data and the application of test
patterns according to the test schedule. A test bus is
employed for the test data transportation between the
tester and the CUTs, and each core is connected to the test
bus through dedicated TAM wires. Through the test bus
and TAM wires, the test controller sends test patterns to
the destination cores and receives test responses from the
cores when the test patterns have been applied.

3. Motivation
The state of the art of SoC test has shown that the large
test data volume and the long test application time
substantially increase the testing cost. When considering
SoC test in a thermal safe context, a very long test process
applied to a core may lead to a very high temperature
even before the test is completed. This means that the
CUT may be damaged if its temperature goes beyond a
certain limit and the test is not interrupted in time. Thus,
in order to prevent overheating, an individual test has to
be stopped when the temperature of the core reaches the
temperature limit, denoted with TL, and a cooling period
is needed before the test can be continued. In this paper,
we refer to the cooling as a passive cooling, meaning that
the core is not activated and does not consume dynamic
power. Thus, by partitioning an individual test set into a
number of test sub-sequences and inserting cooling
periods between them, we can avoid overheating during
the entire test process.

When test set partitioning is employed to avoid
overheating, the efficiency of the utilization of the test bus
should also be considered for test scheduling. It is obvious
that introducing long cooling periods between test sub-
sequences of a core can substantially increase the test
application time. On the other hand, during the cooling
periods of a core, the bandwidth of the test bus previously
allocated to this core is not utilized. Thus we can release
the bus bandwidth reserved for a core during its cooling
periods, and allocate the released bus bandwidth to other
cores for their test-data transportations and test
applications. In this way, the test sets of different cores
are interleaved and thus the TAT can be reduced. Figure 1
gives an example where two partitioned test sets are
interleaved such that both the bandwidth limit and
temperature limit are satisfied.

Figure 1. An example of test set partitioning and interleaving

In our previous work [16], it is assumed that lateral
heat flows between cores can be neglected. This
assumption fits a category of SoCs that have relatively
large area size and small thickness of the silicon die.
However, when the technology scales, the area size
decreases while the die thickness is not reduced in the
same order of magnitude. For such a category of SoCs,
the lateral heat flow takes a larger portion in the overall
thermal flows, and therefore cannot be ignored. Thus, in
this paper, we take into account the thermal influences
between cores and develop a new test scheduling
technique in order to guarantee the thermal safety in this
new context.

Figure 2 depicts a result of thermal simulation
performed for a SoC design with the die thickness equal
to 200 micrometers. The SoC consists of two adjacent
cores, both of which have an equal area size. In this
experiment, only Core 1 is applied with test patterns. It
can be seen that Core 2 is passively heated by Core 1 and
the temperature rise is about 19 degrees. This example
confirms our concerns that for this category of SoCs, the
lateral thermal influences should not be ignored.

 30
 35
 40
 45
 50
 55
 60
 65
 70
 75
 80
 85
 90
 95
 100
 105
 110
 115
 120
 125
 130
 135
 140
 145
 150
 155
 160

 0 0.0001 0.0002 0.0003 0.0004
 30
 35
 40
 45
 50
 55
 60
 65
 70
 75
 80
 85
 90
 95
 100
 105
 110
 115
 120
 125
 130
 135
 140
 145
 150
 155
 160

T
e
m
p
e
r
a
t
u
r
e

(
C
)

Test Application Time (sec)

Temperature Profiles

Core 1
Core 2

Figure 2. An example illustrating lateral thermal influence

A direct impact due to the thermal influence between
cores is that an inactive core at a lower temperature can be
passively heated by its neighbors which have a higher
temperature. In such cases, the temperature of the inactive
core can be elevated (see Figure 2). The temperature
elevation effect becomes more significant when the
inactive core is passively heated by a larger number of
high-temperature neighbors at the same time. Another
factor that affects the extent of the temperature elevation
is the time duration of tests applied on the neighboring

cores: the longer test time, the higher degree of
temperature elevation.

When taking into account the lateral thermal influence
and the resulted temperature elevation effect for test
scheduling, the spatial distribution of cores and their
temperatures, as well as the temporal relations between
individual test applications are critically important. They
make the thermal-safe test scheduling problem highly
complex. In [16], we proposed an approach, denoted with
ALG0, which determines the initial test-set partitioning
schemes according to the thermal simulation results of
individual cores, and thereafter generates the test schedule
with minimized TAT. However, ALG0 cannot be directly
used to solve the thermal-safe test scheduling problem
when lateral thermal influence is taken into account.
Figure 3 depicts thermal simulation results for a test
schedule generated by ALG0. It can be seen that the
temperature curves of the CUTs exceed the temperature
limit at several points. This example illustrates that ALG0
no longer guarantees the thermal safety in the new context
where the lateral thermal influence becomes significant.

Figure 3. An example showing that ALG0 cannot guarantee
thermal safety when lateral thermal influence is significant

In this paper, we aim to minimize test application times
by generating efficient test schedules with temperature
and bandwidth constraints. We have proposed a thermal-
simulation driven test scheduling technique. During the
test scheduling, test sets are partitioned and interleaved
on-the-fly according to instantaneous thermal simulation
results.

As shown in Figure 1, when the temperature of a core
reaches the temperature limit, the test for this core is
interrupted and a cooling period is started. The
temperature of the core decreases until reaching a lower
temperature level, and thereafter the test for the core can
be resumed. In this paper, such a lower temperature level
is called the stop-cooling temperature, denoted with CL.
The distance between CL and TL has a large impact on the
length of cooling periods and test sub-sequences. Cooling
periods are usually started at TL, and last until the core
temperature deceases to CL. Test sub-sequences, except
the first one, usually are started from CL and stopped at
TL.

Figure 4 illustrates a scenario where the individual test
schedule for one of the cores in a SoC changes when
various stop-cooling temperatures are used for test
scheduling. When making a comparison between test
schedules 1 and 3, we can see that test schedule 1 uses a

lower CL which leads to longer but fewer test sub-
sequences and cooling periods. Test schedule 3 uses a
higher CL which results in shorter but more test sub-
sequences and cooling periods. Both test schedules have a
longer TAT than test schedule 2 with a CL between those
used for test schedules 1 and 3.

The main reason why a higher CL may lead to a longer
test schedule is the time overhead [20], [12] needed when
the test controller stops one test and starts or resumes
another. When a higher CL is employed, a larger amount
of time overhead is more likely to appear, because a larger
number of test sub-sequences are to be interleaved with
test sets for other cores. On the other hand, a lower CL
does not necessarily result in a shorter test schedule,
though the reduced number of test sub-sequences should
lead to less time overhead due to the switchings among
different cores. This is because the temperature of a core
decreases slower at lower temperature levels and the
increased cooling period may not be sufficiently
compensated by the benefits from having reduced number
of cooling periods and less time overhead. Thus, the
different stop-cooling temperatures should be explored
together with the test set partitioning and interleaving
schemes, in order to obtain efficient test schedules.

 30

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 0 0.0001 0.0002 0.0003 0.0004
 30

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

T
e
m
p
e
r
a
t
u
r
e

(
C
)

Test Application Time (sec)

Temperature Profiles

TL
Core 1
Core 2
Core 3
Core 4

 30

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 0 5e-05 0.0001 0.00015 0.0002 0.00025
 30

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

T
e
m
p
e
r
a
t
u
r
e

(
C
)

Test Application Time (sec)

Temperature Profiles

TAT 1 = 2.4897E-4

TAT 2 = 1.9513E-4

TAT 3 = 2.0216E-4

TL
TAT 1 w CL 1
TAT 2 w CL 2
TAT 3 w CL 3

Figure 4. Alternative test schedules w.r.t. various CLs

4. Problem formulation
Suppose that a system-on-chip, denoted with S, consists of
n cores, denoted with C1, C2, ... , Cn, respectively, which
are placed according to a floorplan, denoted with FLP. In
order to test core Ci (1 ≤ i ≤ n), li test patterns are
generated, and the test set is denoted with TSi. The test
patterns/responses are transported through the test bus and
the dedicated TAM wires to/from core Ci, and the amount
of required test-bus bandwidth is denoted with Wi. The
test bus is designed to transport test data for different
cores in parallel and the bandwidth limit is denoted with
BL (BL ≥ Wi, i = 1, 2, ... , n). We assume that continuously
applying test patterns belonging to TSi increases the
temperature of core Ci, approaching a temperature limit,
denoted with TL. If the temperature of core Ci goes
beyond TL, the core is likely to be damaged.

In order to prevent overheating during tests, a test set
needs to be partitioned into a number of shorter test sub-
sequences and a cooling period needs to be inserted
between two partitioned test sub-sequences. The problem
that we address in this paper is to generate a test schedule

for a SoC such that the test application time is minimized
while the required amount of test-bus bandwidth of the
concurrently applied tests is constrained by the bandwidth
limit and the temperature of each core is kept below the
temperature limit. Figure 5 gives the problem formulation.

ActiveInactive

Finished

TEM = TL

TEM <= CL &
start_test = 1

TEM <= TL

test completed

TEM >= CL ||
start_test = 0

Input:
SoC floorplan FLP
Set of test set for each core {TSi | i = 1, 2, ... , n},
Set of required test-bus bandwidth for each test {Wi | i = 1, 2, ... , n},
Test-bus bandwidth limit BL,
Temperature limit TL

Output:
Test schedule with the minimized test application time (TAT)

Subject to the following two constraints:
1. At any time moment t before the test is completed, total amount of
allocated test-bus bandwidth BW(t) is less than or equal to bandwidth
limit BL, i.e. ∀t, BW(t) ≤ BL where BW(t) ::= ΣjBWj(t);
2. At any time moment t before the test is completed, instantaneous
temperature TEMi(t) of every core Ci is less than or equal to
temperature limit TL, i.e. ∀t, ∀i, TEMi(t) ≤ TL.

Figure 5. Problem formulation

5. Heuristic for thermal-safe test scheduling
As mentioned in previous sections, the lateral thermal
influence and the corresponding temperature elevation
effect make the thermal-safe test scheduling problem
highly complex. Thus, we have proposed a simulation
driven test scheduling approach, in which instantaneous
thermal simulation is employed to guide the test set
partitioning and interleaving. For thermal simulation, we
use the ISAC system [19]. ISAC takes the floorplan of a
chip and the power consumption profiles of cores as
inputs, and calculates the temperature values of cores
cycle by cycle.

We have developed a finite state machine model to
control the test set partitioning and interleaving during the
thermal-simulation driven test scheduling process, as
illustrated in Figure 6. There are three states for a core,
namely inactive, active, and finished, which correspond to
the cases that the core is not being tested, the core is being
tested, and the test application is completed on the core,
respectively. When the test scheduling process starts, we
assume that all cores are at the inactive state and their
temperatures are equal to the ambient temperature. When
a core is selected for test and the required test-bus
bandwidth is allocated for the test, a flag start_test is set
to 1 and the state of the core moves from inactive to active.
While test patterns are applied to the core, the temperature
of the core, denoted with TEM, increases, and the state of
the core remains active until the temperature reaches
temperature limit TL or the test is completed. As soon as
the test is completed, the state of the core moves from
active to finished. Otherwise, when the core temperature
reaches TL, the core state moves from active to inactive
and remains unchanged until the core temperature
decreases to stop-cooling temperature CL, from which a
new round of state transitions between active and inactive
is repeated until the test is completed. The test scheduling
process terminates when all cores are at the finished state.
Figure 7 depicts the thermal simulation result of a test
schedule generated by using the FSM model for a SoC
with 4 cores.

Figure 6. Finite state machine to control temperature

 30

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 0 0.0001 0.0002 0.0003
 30

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

T
e
m
p
e
r
a
t
u
r
e

(
C
)

Test Application Time (sec)

Temperature Profiles

TL
Core 1
Core 2
Core 3
Core 4

Figure 7. An example of test schedule for a SoC with 4 cores

Using the FSM model to control test set partitioning
can generate thermal-safe test schedules. However, the
scheduling of test sub-sequences should also take the test-
bus bandwidth constraint into account. This is solved by
the heuristic given in Figure 8.

ALG1. ACTIVATE(Queue of inactive cores ready for test :: Q)
01 if (IsNotEmpty(Q) then
02 Sort Q decreasingly according to the ratio of the remaining
 number of test patterns to the current temperature;
03 while (GetRemainingBandwidth() > 0 & IsNotEmpty(Q)) loop
04 CurrentCore = GetFirstElement(Q);
05 ReqBwd = GetBandwidthRequirement(CurrentCore);
06 if (ReqBwd <= GetRemainingBandwidth()) then
07 Transit the state of CurrentCore to active;
08 ReduceRemainingBandwidth(ReqBwd);
09 Remove(CurrentCore, Q);
10 else
11 break loop;
12 end if-then-else
13 end while
14 end if

Figure 8. Pseudo-code of the heuristic that allocates

bandwidth to and activates the cores ready to be tested

The heuristic takes a queue of all inactive cores that are
ready for test as input and allocates the bus bandwidth to
some of the cores and change their states to active. The
heuristic first sorts the queue decreasingly according to
the ratio of the remaining number of test patterns to the
current temperature of the core (Line 2). This means that a
higher priority is given to a core which has a larger
number of remaining test patterns and a lower temperature.
Then the heuristic allocates all the currently available
bandwidth to the cores according to their priorities in the
queue (Lines 3 to 13).

The overall strategy to solve the test time minimization
problem is illustrated in Figure 9. The test scheduling
algorithm iteratively explores alternative solutions by
using different stop-cooling temperatures. Within one

iterative step, the test-set partitioning and interleaving
scheme is determined according to the result of the
instantaneous thermal simulation with the imposed TL and
CL, and a test schedule is generated by using ALG1. We
have used a counter, denoted with CNT, to count the
number of consecutive iteration steps in which no TAT
reduction is larger than a small positive number, denoted
with e. If the TAT of the newly generated test schedule is
smaller than the minimal TAT of the best solution
obtained through previous iteration steps, the current
solution is recorded as the best solution. Furthermore, if
the reduction in TAT is larger than e, counter CNT is reset
to 0. In the cases that the current TAT is larger than the
minimal TAT or the reduction is smaller than e, CNT is
incremented by 1. This procedure repeats until CNT is
larger than a given threshold, denoted with THD, and
thereafter the optimized test schedule is output and the
test scheduling process terminates.

Figure 9. Illustration of the overall solution strategy

During test scheduling, the thermal simulation results
are checked at every cycle such that the temperature of
core Ci (1 ≤ i ≤ n) should be restricted between stop-
cooling temperature CL and temperature limit TL, except
for the first test sub-sequences. By using different CL,
various test partitioning schemes are generated and
consequently alternative test schedules are explored.
Figure 10 shows experimental results for a SoC with four
cores. The TATs with respect to the stop-cooling
temperatures used for test scheduling are depicted. The
optimal CL is 84.065°C and the corresponding minimal
TAT is 2.4629×10-4 seconds.

Figure 10. Test application time vs. stop-cooling temperature

6. Experimental results
We have performed experiments for SoC designs
consisting of cores randomly selected from the ISCAS’89
benchmarks. The numbers of cores in these designs varies
from 4 to 36. The amount of power consumption of a test
is obtained through a cycle accurate method proposed in
[21] which takes the amount of switching activity as an
input and calculates the power consumption in watt. With
the obtained power consumption values, the thermal
simulator ISAC has been used to calculate instantaneous
temperatures at every cycle during test. The imposed
temperature limit (TL) is 90°C and the assumed frequency
of test application is 100MHz. Thermal simulation results
have confirmed that the temperatures of all cores under
test are below the imposed temperature limit.

We compare our heuristic with a straight-forward
approach, in short SFA, which is based on ALG0. The
basic idea of the SFA is the following. Since ALG0
ignores lateral thermal influence and directly applying
ALG0 cannot generate thermal safe test schedules, we
need to compensate the high temperature by reducing the
originally imposed temperature limit, denoted with TLorig,
to a lower level. We assume that the reduction from TLorig
is corresponding to the heating during test. By running the
thermal simulation with generated test schedules, we can
obtain the maximum temperature, denoted with MAXTEM.
The degree of the temperature-limit reduction, denoted
with D, should equal MAXTEM – TLorig. Thereafter, ALG0
is invoked again with the newly imposed temperature
limit, denoted with TLnew, and the new test schedule is
check by thermal simulation in order to ensure the thermal
safety. This procedure is repeated until the first thermal-
safe test schedule is generated. However, the thermal-safe
test schedule generated in this way can be pessimistically
long because the adjusted temperature limit may be lower
than needed. In order to reduce the pessimism in terms of
the TAT, we use the same procedure to increase the
temperature limit until MAXTEM is sufficiently close to
but still below TLorig. Figure 11 depicts the flowchart of
SFA, where d, CNT, THD denotes the given limit for D,
the number of iteration steps, and the threshold for the
total number of iteration steps, respectively. It should be
noted that D can be either a positive or negative number,
corresponding to cases that MAXTEM is higher or lower
than TLorig, respectively.

TATcurr < TATmin

Thermal-simulation driven test scheduling

Record current solution as the best solution

End

Begin

Set a new stop-cooling temperature CLnew

Y

Y

N

N

Output the optimized test schedule

CNT := CNT + 1

CNT > THD

TATmin – TATcurr > e

CNT := 0

N

Y

Thermal simulation and obtain MAXTEM

D := MAXTEM – TLorig ; TLnew := TLnew – D

End

Begin

Apply ALG0 with TLnew

Output the thermal-safe test schedule

TLnew := TLorig ; CNT := 1

D <= 0

|D| < d || CNT > THD

CNT := CNT + 1

Y
N

N

Y

 0.00022

 0.00023

 0.00024

 0.00025

 0.00026

 0.00027

 0.00028

 0.00029

 0.0003

 0.00031

 0.00032

 72 74 76 78 80 82 84 86 88 90 92

T
e
s
t

A
p
p
l
i
c
a
t
i
o
n

T
i
m
e

(
s
e
c
)

Stop-Cooling Temperature (C)

TAT vs. CL

OPTIMUM
(84.065, 2.4629E-4)

Alternatives
Optimum

Figure 11. Illustration of the straight-forward approach (SFA)

Experimental results are shown in Table 1. The first
column in the table lists the number of cores used in the
designs. Columns 2 and 4 show the test application times
of the generated test schedules for the corresponding
designs, by using the SFA and the proposed heuristic,
respectively. Columns 3, 5 list the CPU times needed for
executing the corresponding algorithms. Column 6 shows
the percentage of TAT reduction by using our heuristic
against the SFA. It can be seen that by using our heuristic,
the TAT is reduced by about 25% to 61% for different
designs. The CPU times of the proposed heuristic are
usually shorter than those of the SFA. This is because, in
the SFA, each time when ALG0 is invoked, a thermal
simulation is performed for every core in order to
generate the initial partitioning schemes according to the
new temperature limit.

Table 1. Proposed heuristic vs. SFA

SFA Proposed Heuristic
of Cores

TAT (s) CPU Time
(s) TAT (s) CPU Time

(s)
TAT Gain

6 3.9129E-4 1078 2.1013E-4 1118 46.298%
8 3.2827E-4 4122 2.4474E-4 1222 25.446%
12 4.4911E-4 3118 2.3117E-4 1265 48.527%
18 3.6927E-4 7458 2.0832E-4 1193 43.586%
24 4.5970E-4 6681 2.1004E-4 1259 54.309%
30 5.4901E-4 12705 2.2601E-4 1357 58.833%
36 5.7715E-4 11760 2.2360E-4 1400 61.258%

7. Conclusions
In this paper, we have proposed a thermal-safe technique
to minimize test application times for systems-on-chip
while taking into account thermal influences between
cores. The test scheduling employs a thermal simulation
to partition and interleave test sets on-the-fly and a
heuristic is developed to control the scheduling procedure
such that the test application time is minimized and both
the temperature limit and test-bus bandwidth limit are not
violated. Experimental results have shown the efficiency
of the proposed technique.

References
[1] S. Borkar, “Design challenges of technology scaling,”

IEEE Micro, Vol. 19, No. 4, pp. 23-29, 1999.
[2] S. Gunther, F. Binns, D. M. Carmen, and J. C. Hall,

“Managing the impact of increasing microprocessor power
consumption,” Intel Technology J.,2001.

[3] R. Mahajan, “Thermal management of CPUs: a perspective
on trends, needs and opportunities,” Int. Workshop
THERMal INvestigations of ICs and Systems, 2002.

[4] K. Skadron, M. R. Stan, K. Sankaranarayanan, W. Huang,
S. Velusamy, and D. Tarjan, “Temperature-aware
microarchitecture: modeling and implementation,” ACM
Trans. Architecture and Code Optimization. Vol. 1, No. 1.
pp. 94-125, Mar. 2004.

[5] B. Pouya and A. Crouch, “Optimization trade-offs for
vector volume and test power,” Int. Test Conf., 2000, pp.
873-881.

[6] C. Shi and R. Kapur, “How power-aware test improves
reliability and yield,” EE Times, Sep. 15, 2004. [Online]
http://www.eetimes.com/showArticle.jhtml?articleID=472
08594.

[7] P. Girard, C. Landrault; S. Pravossoudovitch, and D.
Severac, “Reducing power consumption during test
application by test vector ordering,” Int. Symp. Circuits
and Systems, 1998, pp. 296-299.

[8] P. Rosinger, B. M. Al-Hashimi, and N. Nicolici, “Scan
architecture with mutually exclusive scan segment
activation for shift- and capture-power reduction,” IEEE
Trans. CAD of ICs and Systems, Vol. 23, No. 7, pp. 1142-
1153, July 2004.

[9] E. Larsson and Z. Peng, “Power-aware test planning in the
early system-on-chip design exploration process,” IEEE
Trans. Computers, Vol. 55, No. 2, pp. 227-239, Feb. 2006.

[10] K. Chakrabarty, “Design of system-on-a-chip test access
architectures under place-and-route and power
constraints,” IEEE/ACM Design Automation Conf., 2000,
pp. 4332-437.

[11] R. Chou, K. Saluja, and V. Agrawal, “Scheduling tests for
VLSI systems under power constraints,” IEEE Trans. VLSI
Systems, 5(2):175-184, June 1997.

[12] Z. He, Z. Peng, and P. Eles, “Power constrained and
defect-probability driven SoC test scheduling with test set
partitioning,” Design Automation and Test in Europe Conf.,
2006, pp. 291-296.

[13] P. Rosinger, B. M. Al-Hashimi, and K. Chakrabarty,
“Thermal-safe test scheduling for core-based system-on-
chip integrated circuits,” IEEE Trans. CAD of ICs and
Systems, Vol. 25, No. 11, pp. 2502-2512, Nov. 2006.

[14] T. Yu, T. Yoneda, K. Chakrabarty, and H. Fujiwara,
“Thermal-safe test access mechanism and wrapper co-
optimization for system-on-chip,” IEEE Asian Test Symp.,
2007, pp. 187-192.

[15] Z. He, Z. Peng, P. Eles, P. Rosinger, and B. M. Al-Hashimi,
“Thermal-aware SoC test scheduling with test set
partitioning and interleaving,” J. Electronic Testing;
Theory and Applications, Vol. 24, No. 1-3, pp. 247-257,
June 2008.

[16] Z. He, Z. Peng, and P. Eles, “A Heuristic for Thermal-Safe
SoC Test Scheduling,” IEEE Int. Test Conf., 2007, pp. 1-10.

[17] K. Skadron, M. R. Stan, W. Huang, S. Velusamy, K.
Sankaranarayanan, and D. Tarjan, “Temperature-aware
microarchitecture,” Int. Symp. Computer Architecture,
2003, pp. 2-13.

[18] W. Huang, M. R. Stan, K. Skadron, K. Sankaranarayanan,
S. Ghosh, and S. Velusamy, “Compact thermal modeling
for temperature-aware design,” IEEE/ACM Design
Automation Conf., 2004. pp. 878-883.

[19] Y. Yang, Z. P. Gu, C. Zhu, R. P. Dick, and L. Shang,
“ISAC: Integrated Space and Time Adaptive Chip-Package
Thermal Analysis,” IEEE Trans. CAD of ICs and Systems.
Vol. 26, No. 1, pp. 86-99, Jan. 2007.

[20] S. K. Goel and E. J. Marinissen, “Control-aware test
architecture design for modular SoC testing,” European
Test Workshop, 2003. pp. 57-62.

[21] S. Samii, E. Larsson, K. Chakrabarty, and Z. Peng, “Cycle-
accurate test power modeling and its application to SoC
test scheduling,” IEEE Int. Test Conf., 2006, pp. 1-10.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

