
Building Reliable Embedded Systems
with Unreliable Components

Invited Paper

Zebo Peng
Embedded Systems Laboratory (ESLAB)

Linköping University
Sweden

e-mail: Zebo.Peng@liu.se

Abstract—This paper deals with the design of embedded
systems for safety-critical applications, where both fault-
tolerance and real-time requirements should be taken into
account at the same time. With silicon technology scaling,
integrated circuits are implemented with smaller transistors,
operate at higher clock frequency, and run at lower voltage
levels. As a result, they are subject to more faults, in particu-
lar, transient faults. Additionally, in nano-scale technology,
physics-based random variations play an important role in
many device performance metrics, and have led to many new
defects. We are therefore facing the challenge of how to build
reliable and predictable embedded systems for safety-critical
applications with unreliable components. This paper describes
several key challenges and presents several emerging solu-
tions to the design and optimization of such systems. In par-
ticular, it discusses the advantages of using time-redundancy
based fault-tolerance techniques that are triggered by fault
occurrences to handle transient faults and the hard-
ware/software trade-offs related to fault detection and fault
tolerance.

I. INTRODUCTION

We are entering the era of pervasive embedded compu-
ting with massive amounts of electronics and software
controlling virtually all devices and systems in our every-
day life. New functions and features are introduced to
embedded computer systems on a daily basis, which has
led to the creation of many new gadgets and the addition of
powerful functionality to existing systems. For example,
modern automobiles already contain a large amount of
electronics and software for vehicle control, safety, and
driver support, while new features such as automatic intel-
ligent parking assist, blind-spot information system, and
navigation computers with real-time traffic updates are
being introduced [1]. Many of such embedded systems
implement safety-critical applications with high demands
on fault tolerance and strict timing constraints (e.g., X-by-
wire) or contain functions that require very high computa-
tion capacity with reliability and guaranteed QoS (e.g.,
image and speech recognition, intelligent navigation, and
high-end multimedia).

At the same time, with continuous silicon technology
scaling, integrated circuits are implemented with smaller
transistors, operate at higher clock frequency, and run at

lower voltage levels. Therefore, they are subject to more
and more faults, especially transient faults, also called soft
errors. Transient faults are caused by cosmic radiation,
alpha-particles, electromagnetic interference, static elec-
trical discharges, ground loops, power supply fluctuations,
humidity, temperature variation, pressure, vibration, loose
connections, noise, etc. Recent studies have indicated that
the rate of transient faults is increasing rapidly in modern
electronic systems [2]. Previously, transient faults had
mainly large impacts on the memory and latches of a digi-
tal system, while their impacts on the logic parts are be-
coming also significant with new CMOS technologies.

Although transient faults do not lead to permanent dam-
age of the circuits, they often cause errors that can have
catastrophic consequences in many safety-critical applica-
tions. Additionally, in deep submicron technology used
nowadays to implement advanced embedded systems,
physics-based random variations play a more and more
important role in many device performance metrics [3]. It
has recently been pointed out that this rise in the inherent
systematic and random variations will have effects that are
far-reaching in every aspect of design, manufacturing, test,
and overall reliability [4].

We are therefore facing the challenge of how to build re-
liable and predictable embedded systems with unreliable
components where the reliability problem stems from tran-
sient faults as well as their interaction with random process
variation [5]. This challenge has to be addressed at mul-
tiple levels of abstraction, including circuit, architecture,
software, and system levels. Moreover, cross-layer optimi-
zation, in particular, hardware/software trade-off, is needed
in order to generate high quality solutions.

II. TRANSIENT FAULT TOLERANCE TECHNIQUES

Traditionally, research on fault tolerance has mainly
dealt with permanent faults. While several techniques pro-
posed to tolerate permanent faults may be used also for
tolerating transient faults, they are only efficient if the
number of transient faults is not large.

A common strategy for fault tolerance is to use different
forms of redundancy with respect to hardware, software,
information, or time. A well-known example of hardware-
redundancy techniques is the triple modular redundancy

9
Copyright © 2010 by Institute of Electronics, Silesian University of Technology

(TMR), where three copies of hardware are implemented
and a voting mechanism is used to produce a single output.
There are many variations in implementing the basic TMR
concept. For example, in the MARS approach, each fault-
tolerant component is composed of three computation
units, two main units and one shadow unit [6]. Once a
transient fault is detected, the faulty component must res-
tart while the system is operating with the non-faulty com-
ponent. This architecture can tolerate one permanent fault
and one transient fault at a time, or two transient faults.

Another example of hardware redundancy is the XBW
architecture [7], where hardware duplication is combined
with double process execution. Four process replicas are
therefore run in total. Such an architecture can tolerate
either two transient faults or one transient fault with one
permanent fault. Other hardware replication examples can
often be found in avionics. For example, an airborne archi-
tecture with seven hardware replicas, which can tolerate up
to three transient faults, has been studied in [8], based on
the flight control system of the JAS 39 Gripen aircraft.
Such solutions, based on a large degree of hardware redun-
dancy, are very costly and can only be used if the amount
of resources is virtually unlimited.

An example of software redundancy is N-version pro-
gramming (NVP), also known as multi-version program-
ming, where multiple functionally equivalent programs are
independently developed from the same specification [9].
If a specification is implemented with three different soft-
ware versions, together with a voting mechanism, it will be
able to tolerate transient faults occurring in one of the three
software processes or one permanent fault if the three
software processes run on three different hardware units.
An important additional advantage of NVP is that it ad-
dresses also the problem of software bug introduced in the
software development process. In the case of 3-version
programming, the system will produce correct results if
only one version of the program has bugs. However, the
overheads in terms of both additional development efforts
and run-time redundancy are very large for NVP.

In the case of information redundancy, error detection
and correction codes are used by adding some redundancy
(i.e., some extra data) to the functional data. While infor-
mation redundancy schemes are efficient in detecting and
correcting faults that occur when data are transmitted over
unreliable communication channels or stored in unreliable
memories, they cannot be used to address faults that cause
miscalculations in logic. Similar to hardware and software
redundancy, information redundancy incurs also a large
overhead in terms of extra hardware, which will be present
in the system when implemented.

Finally, time redundancy (TR) is a technique that intends
to reduce the amount of extra hardware at the expense of
additional time. When implemented in software, after a
transient fault is detected, a fault tolerance mechanism will
be invoked to deal with it. The simplest fault tolerance
technique to recover from fault occurrences is re-
execution, where a process is executed again if affected by
faults [10].

An example of software re-execution is illustrated in
Fig. 1, where we have process P1 and k = 2 transient faults
that may happen. In the worst-case fault scenario depicted
in Fig. 1, the first fault happens during P1’s first execution,

denoted as P1/1, and is detected by an error detection me-
chanism (Note that we assume here that error detection is
carried out during the software execution, and the error
detection overhead is therefore considered as part of the
process execution time; we will address this issue in Sec-
tion III). After a recovery overhead (used to restore all
initial inputs of the process) of μ = 5 ms, depicted with a
light gray rectangle, P1 will be executed again. Its second
execution P1/2 in the worst-case could also experience a
fault. Finally, the third execution P1/3 of P1 will take place
without fault, as illustrated in Fig. 1 [11].

Fig. 1. Time redundancy by software re-execution

If the real-time OS kernel used to activate re-execution is
itself fault-tolerant, and the error detection and recovery
mechanisms work, we have a reliable TR implementation
that handles k faults by software re-execution. In the case
of a distributed embedded system where several processors
are connected via a bus, which is very common in many
modern embedded systems, we assume that some fault-
tolerance communication protocols are used, such TTP
[12], to make sure that the communication is also fault
tolerant.

The TR scheme based on software re-execution is a very
efficient fault-tolerance technique for handling transient
faults, since the re-execution mechanism will only be in-
voked when a fault actually occurs. When no fault hap-
pens, only the original version of the software process will
be executed, and there is almost no overhead (except the
fault detection one). For example, for process P1 in Fig. 1,
only its first execution P1/1 will be performed, as in the case
of normal execution. This scheme is therefore called on-
demand redundancy, in contract to the always-present
redundancy based of hardware/software/information re-
dundancies. In the case of always-present redundancy,
large hardware overhead is always needed. For example,
three times of hardware resources plus a voting mechanism
are physically implemented with the TMR scheme.

While it has been noted that the rate of transient faults is
increasing rapidly and will become large in the future, still,
transient faults occur with a relatively low frequency with
the current technologies. Additionally, many transient
faults will not be propagated to the software level or will
not have an impact on the execution of a given software
process. For example, if a transient fault hits the multiplier
of the CPU, but the current software process doesn’t in-
volve any multiplication instruction, this fault will not have
any impact on the computation results of the process, and
doesn’t need to be tolerated. This means that software re-
execution will only be needed rarely, and the average time
penalty we have to pay for using a TR strategy at the soft-
ware level is very low, while it reduces very much the
amount of extra hardware.

However, even if the transient fault rate is currently low
on average, many transient faults can happen in a burst
during a short period of time. This will not be a problem
for general purpose computing, since only certain

10

processes will run a bit slower due to many re-executions,
when a burst of transient faults hits the system. The aver-
age performance reduction is still very small. However, for
embedded systems that have strict timing constraints, soft-
ware re-execution may lead to solutions where the timing
constraints are not satisfied. Therefore, we need to design
embedded systems for safety-critical applications by consi-
dering both fault-tolerance and real-time requirements at
the same time.

III. DESIGN OPTIMIZATION WITH FAULT-TOLERANCE

AND REAL-TIME REQUIREMENTS

When a fault-tolerance mechanism, such as software re-
execution, is deployed in an embedded system, it must be
taken into account in the global design-space exploration
process in order to generate solutions that fulfill all the
real-time constraints and meet the reliability objective at
the same time. Optimization should also be performed to
minimize the implementation cost since most of these em-
bedded systems are utilized in products in very competitive
market sectors such as the automotive industry. This global
optimization problem consists of several components, and
we will discuss a few important ones as follows.

A. Design Optimization Problems

Typically, the functionality of an embedded system is
given in term of a set of directed and acyclic graphs, where
a node denotes a software process, and an edge the data-
dependency relation between two processes. Each process
can be associated with a deadline, and we assume, in this
paper, that the deadlines are hard, i.e., they must always be
met even in the presence of multiple transient faults. Fig.
2(a) illustrates a simple example of such functionality (ap-
plication) with only one directed graph consisting of four
processes (P1, P2, P3, and P4) and five edges.

Fig. 2. Application and architecture example

The given functionality is to be executed on a hardware
architecture in a periodic manner with a given period. And
we assume that a distributed hardware architecture consists
of a set of nodes, which share a broadcast communication
channel (e.g., a bus), is used. The communication channel
is statically scheduled such that one node at a time has
access to it, according to a given schedule determined off-
line. The architecture can be either given or to be designed
in the design-space exploration process. In the latter case,
we have the architecture selection task, which determines
the number of nodes, selects the nodes (e.g., from a set of
available processors with different performances and
costs), and decides on the parameters and protocols for the
communication channel. Fig. 2(b) illustrates such an archi-
tecture with two nodes (N1 and N2), connected by a bus.

We should also design a software architecture that runs
on the CPU in each node, and has a real-time kernel as its
main component. Process activation on a node and mes-

sage transmission via the communication channel will be
done based on the schedule tables that are stored locally in
each node and in the communication channel controller.

Given the functionality and hardware/software architec-
ture, a key design problem is to determine the mapping of
software processes to hardware nodes such that transient
faults are tolerated and all deadlines of the application are
met. Such mapping decision can be made to optimize the
completion time of the processes (i.e., the performance of
the real-time application), which can lead to a cheaper
hardware solution, when there are slacks between the com-
pletion times and the deadlines of the processes and there-
fore a slower hardware architecture can be utilized instead
[11]. To perform this optimization, the worst-case execu-
tion times of the processes when mapped on different
hardware nodes should be given. For the above example,
the table at the right hand corner of Fig. 2 depicts these
process execution times. For example, the worst-case ex-
ecution time of P1 is 60 ms when mapped on node N1, and
80 ms when mapped on node N2. The “X” symbol in the
table is used to indicate mapping restriction. For example,
process P3 is not allowed to be mapped on node N1. This
restriction can be used by the designer to denote that a
decision has already been made, for some reason, that a
given process (e.g., P3) should always be mapped on a
given node (e.g., N2).

The mapping decision has a very large impact on the
traffic over the commutation channel. If one process sends
a large amount of data to another process, and the two
processes are mapped on different nodes, this communica-
tion is performed by message passing over the communica-
tion channel, and should be considered during the design
process. On the other hand, if these two processes are
mapped on the same node, the data can be sent via the
shared memory, and the communication time can be ac-
counted as part of the process execution time. For the ex-
ample given in Fig. 2, if P1 and P2 are mapped on N1, while
P3, and P4 on N2, there are three messages (denoted as m1,
m2, and m3) that need to be explicitly considered and sche-
duled on the communication channel. Message m1, for
example, is used to send data from process P1 mapped on
node N1 to process P4 mapped on N2. The communication
from P1 to P2, on the other hand, doesn’t need to be expli-
citly considered, since P1 and P2 are mapped on the same
node, N1.

The mapping decision can also take into account other
aspects, such as the degree of transparency, which denotes
how much impact recovering from a transient fault at one
hardware node will have on the schedules of other nodes.
A fully transparent system means that the occurrence of
faults at any node will not impact the executions on any
other nodes. The transparent property has the advantages of
fault containment and improved debugability, and it needs
less memory to store the fault-tolerant schedules [10]. In
general, a designer would like to introduce as much trans-
parency as possible. However, transparency will incur
additional delays that can lead to the violation of some
real-time deadlines. A fine-grained approach to transparen-
cy has been proposed in [13], where the designer specifies
a desired degree of transparency by declaring certain
processes and messages as frozen. A frozen process or
message will have a fixed start time (for a process, more

b)

N1 N2
60 80
40 54
X 40
45 60

11

precisely, the first execution of it will have a fixed start
time), regardless of the occurrence of faults in the rest of
the system. In Fig. 2, the frozen processes and messages
are depicted with squares, while the regular ones are drawn
as circles.

The debugability of the application is improved by
transparency because it is easier to observe the behavior of
frozen processes and messages in alternative schedules that
correspond to different fault scenarios. An optimization
algorithm has been developed to map processes to nodes
such that not only the application is schedulable (i.e., all
processes will meet their deadlines) but also the transpa-
rency properties imposed by the designer are satisfied [13].

After the mapping task is performed, processes mapped
on the same hardware node should be scheduled. The
scheduling decision should be taken to make sure that re-
execution slack is introduced in the schedule for the re-
executed processes. For this decision, we need to know
how many re-executions are needed in different fault con-
texts. It is usually assumed that at most k transient faults
may occur anywhere in the system during one operation
period, and the scheduling algorithm should make sure that
in the worst-case fault scenario, the execution of all
processes and their needed re-executions will be completed
before their respective deadlines. The basic idea to reduce
the amount of re-execution slack is to share a slack by
several processes. Note that for two processes to share the
same slack, they need to be mapped on the same node. This
means that the mapping decision has a large impact on the
scheduling results. Therefore, the mapping task and sche-
duling task should be performed together to generate a
globally optimal solution. Note also that the messages sent
over the communication channel should also be scheduled.
And again, to achieve global optimization, process sche-
duling and message scheduling should be considered at the
same time.

The maximal number of transient faults to tolerate dur-
ing an operation period can be either given by the design-
ers based on statistics data (for the example in Fig. 2, k is
given as 2) or derived by a system failure probability (SFP)
analysis technique. An SFP analysis technique is used to
ensure that the final design meets the given reliability re-
quirements, by connecting the levels of fault tolerance in
software to the levels of transient-fault rate in hardware
[14].

B. Fault detection optimization

As stated before, software re-execution is an efficient
time-redundancy technique to handle transient faults, since
re-execution is only performed if there is actually a fault.
However, a fault detection mechanism is needed to decide
if there is a fault in the first place. This mechanism will
always be present in the implementation, and it is a major
source of hardware overhead. Therefore optimization of
the fault detection mechanism is very important, and the
optimization result has a very large impact on the efficien-
cy of the overall fault tolerance implementation.

An application-aware error detection technique to identi-
fy critical variables in a program, which exhibit high sensi-
tivity to random data errors, has been proposed in [15]. The
backward program slice for each acyclic control path is

extracted for the identified critical variables, and each slice
is optimized at compile time, resulting in a series of check-
ing expressions. These will be inserted in the original code,
immediately after the computation of a critical variable.
Finally, the original program is instrumented with instruc-
tions to keep track of the control paths followed at run-time
and with checking instructions that would choose the cor-
responding checking expression, and then compare the
results obtained [15]. This technique has two main sources
of performance overhead: path tracking and variable
checking. In the context of transient faults, both of them
can be implemented either in software, potentially incur-
ring high performance overheads, or in hardware, which
can lead to costs sometimes exceeding the amount of avail-
able resources [16].

An optimization technique to make trade-offs between
hardware/software implementations of the above applica-
tion-aware error detection scheme has been developed and
reported in [16]. It minimizes the global worst-case execu-
tion length of the software processes, while meeting the
imposed hardware cost constraints and tolerating multiple
transient faults. The reported work demonstrates that it is
possible to reduce the worst-case schedule length by more
than a half with only as few as 15% hardware fractions
available [16].

IV. HARDWARE/SOFTWARE TRADE-OFFS

A different approach to address the problem of transient
faults is to improve the hardware technology and/or archi-
tecture to reduce the fault rate, and, hence, the number of
faults propagated to the software level [17]. Researchers
have proposed a variety of hardware hardening techniques.
For example, Zhang et al. have proposed an approach to
harden flip-flops, resulting in a small area overhead and
significant reduction in the transient fault rate [18]. Moha-
nram and Touba have studied hardening of combinatorial
circuits [19]. Finally, a hardening approach to be applied in
early design stages has been presented in [17], which is
based on transient fault detection probability analysis.

Hardware hardening comes, however, with a significant
overhead in terms of cost and speed [20]. The main factors
which affect the cost are the increased silicon area, addi-
tional design effort, lower production quantities, excessive
power consumption, and protection mechanisms against
radiation (such as shields). Hardened circuits are also sig-
nificantly slower than the regular ones. Manufacturers of
hardened circuits are often forced to use technologies a few
generations back [20]. Hardening also enlarges the critical
path of the circuit, because of a voting mechanism [21] and
increased silicon area. Therefore careful trade-offs must be
made in respect to how much hardware hardening should
be done vs. how many software re-execution should be
implemented, in order to meet time and cost constraints
within the given resources, and at the same time, deliver
the reliability goals.

The input to the design-space exploration process with
such trade-offs consists of the application (captured as a set
of acyclic directed graph) mapped on a bus-based architec-
ture (as discussed in Section III.A), a given reliability goal,
and the recovery overhead μ. For each node in the hard-
ware architecture, a set of available hardware implementa-

12

tions with different hardening level and their corresponding
costs is also given. It is assumed that the worst-case execu-
tion times and the failure probabilities for each process on
each hardening version of the nodes are known. And the
maximum transmission time of messages if sent over the
bus is given. A design-space exploration algorithm should
select an implementation from the available hardening
alternatives for each node, determine the mapping of the
processes on the nodes with the selected implementation,
and schedule the processes together with their required re-
executions and the needed communications (it is assumed
that communication are fault-free due to the use of fault-
tolerance protocol).

An algorithm to perform this design-space exploration
so as to minimize the total cost of the hardware nodes,
while achieving the reliability goal and meeting all timing
constraints given with the application, is presented in [14].
The algorithm is based on a sequence of iterative design
optimization heuristics, and utilizes a system failure proba-
bility analysis approach, which connects the level of har-
dening in hardware with the number of re-executions in
software [14].

V. CONCLUSIONS

Transient-fault or soft-error rates have been increasing
rapidly due to the continuous device scaling, increased
clock frequency, high temperature, voltage scaling, and
process variation. How to handle transient faults in the
context when an embedded system is used for safety-
critical applications, which have a high reliability require-
ment, is therefore becoming a critical issue. This paper
discusses the advantages of using the time-redundancy
strategy at the software level to handle these transient
faults. It presents also several design optimization prob-
lems with respect to time-redundancy by software re-
execution and several emerging solutions to solve them.

Many issues discussed in this paper, including transient
faults and their tolerance, error detection, software re-
execution, and hardware hardening, are not new, taken
individually. However, the interplay of these issues and
their increased impacts have led to great challenges to the
research community. In particular, there are still many
open problems in how to develop efficient global optimiza-
tion techniques to consider both fault-tolerance and real-
time requirements at the same time, to make hard-
ware/software trade-offs for systems affected by transient
faults and large process variation, and to build reliable and
predictable embedded systems with unreliable components.

ACKNOWLEDGMENTS

 I thank Petru Eles, Viacheslav Izosimov, Adrian Lifa,
and Paul Pop for the cooperation and help they have pro-
vided. Many ideas presented in this paper are inspired by
the results of several joint research projects with their par-
ticipations.

REFERENCES

[1] B. Bouyssounouse and J. Sifakis (Eds.), Embedded Systems Design:
The ARTIST Roadmap for Research and Development, Springer,
2005.

[2] A. Maheshwari, W. Burleson, and R. Tessier, “Trading Off Tran-
sient Fault Tolerance and Power Consumption in Deep Submicron
(DSM) VLSI Circuits,” IEEE Trans. on VLSI Systems, 12(3), 2004,
pp. 299-311.

[3] S. Borkar, “Designing Reliable Systems from Unreliable Compo-
nents: the Challenges of Transistor Variability and Degradation,”
IEEE Micro, Nov.- Dec. 2005, pp. 10-16.

[4] T. M. Mak and S. Nassif, “Guest Editors’ Introduction: Process
Variation and Stochastic Design and Test,” IEEE Design & Test of
Computers, Vol. 23, No. 6, 2006.

[5] Y. Cao, P. Bose, and J. Tschanz, “Guest Editors’ Introduction:
Reliability Challenges in Nano-CMOS Design,” IEEE Design & Test
of Computers, Vol. 26, No. 6, 2009, pp. 6-7.

[6] H. Kopetz, et al., “Distributed Fault-Tolerant Real-Time Systems:
The MARS Approach”, IEEE Micro, 9(1), 1989, pp.25-40.

[7] V. Claesson, S. Poledna, and J. Soderberg, “The XBW Model for
Dependable Real-Time Systems”, Proc. Intl. Conf. on Parallel and
Distributed Systems, 1998, pp. 130-138.

[8] K. Alstrom and J. Torin, “Future Architecture for Flight Control
Systems”, Proc. 20th Conf. on Digital Avionics Systems, 1B5/1-
1B5/10, 2001.

[9] L. Chen and A. Avizienis, “N-Version Programming: A Fault-
Tolerance Approach to Reliability of Software Operation, Fault-
Tolerant Computing,” Proc. International Symposium on Fault-
Tolerant Computing, 1995.

[10] N. Kandasamy, J. P. Hayes, and B. T. Murray, “Transparent Recov-
ery from Intermittent Faults in Time-Triggered Distributed Systems,”
IEEE Trans. on Computers, 52(2), 2003, pp.113-125.

[11] V. Izosimov, P. Pop, P. Eles and Z. Peng, “Design Optimization of
Time- and Cost-Constrained Fault-Tolerant Distributed Embedded
Systems,” Proc. Design Automation and Test in Europe Conf.
(DATE’05), 2005, pp. 864-869.

[12] H. Kopetz and G. Bauer, “The Time-Triggered Architecture,” Proc.
of IEEE, 91(1), 2003, pp. 112–126.

[13] V. Izosimov, P. Pop, P. Eles, and Z. Peng, “Synthesis of Fault-
Tolerant Schedules with Transparency/Performance Trade-offs for
Distributed Embedded Systems,” Proc. Design, Automation and Test
in Europe Conf. (DATE’06), 2006, 706-711.

[14] V. Izosimov, I. Polian, P. Pop, P. Eles, and Z. Peng, “Analysis and
Optimization of Fault-Tolerant Embedded Systems with Hardened
Processors,” Proc. Design, Automation and Test in Europe Conf
(DATE’09), 2009, pp. 682-687.

[15] K. Pattabiraman, Z. Kalbarczyk, and R. Iyer, “Automated Deriva-
tion of Application-Aware Error Detectors using Static Analysis:
The Trusted Illiac approach,” IEEE Trans. Dependable and Secure
Computing, 2009.

[16] A. Lifa, P. Eles, Z. Peng, and V. Izosimov, “Hardware/Software
Optimization of Error Detection Implementation for Real-Time Em-
bedded Systems,” Proc. Int. Conf. on Hardware/Software Codesign
and System Synthesis (CODES+ISSS 2010), 2010.

[17] J. P. Hayes, I. Polian, and B. Becker, “An Analysis Framework for
Transient-Error Tolerance,” Proc. IEEE VLSI Test Symp., 2007, pp.
249-255.

[18] M. Zhang, et al., “Sequential Element Design With Built-In Soft
Error Resilience”, IEEE Trans. on VLSI Systems, 14(12), 2006, pp.
1368-1378.

[19] K. Mohanram and N. A. Touba, “Cost-Effective Approach for
Reducing Soft Error Failure Rate in Logic Circuits,” Proc. Intl. Test
Conf. (ITC), 2003, pp. 893-901.

[20] P. Patel-Predd, “Update: Transistors in Space”, IEEE Spectrum,
45(8), 2008, pp. 17.

[21] R. Garg, N. Jayakumar, S. P. Khatri, and G. Choi, “A Design Ap-
proach for Radiation-Hard Digital Electronics,” Proc. Design Auto-
mation Conf. (DAC), 2006, pp.773-778.

13

