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Abstract—This paper deals with the design of embedded 
systems for safety-critical applications, where both fault-
tolerance and real-time requirements should be taken into 
account at the same time. With silicon technology scaling, 
integrated circuits are implemented with smaller transistors, 
operate at higher clock frequency, and run at lower voltage 
levels. As a result, they are subject to more faults, in particu-
lar, transient faults. Additionally, in nano-scale technology, 
physics-based random variations play an important role in 
many device performance metrics, and have led to many new 
defects. We are therefore facing the challenge of how to build 
reliable and predictable embedded systems for safety-critical 
applications with unreliable components. This paper describes 
several key challenges and presents several emerging solu-
tions to the design and optimization of such systems. In par-
ticular, it discusses the advantages of using time-redundancy 
based fault-tolerance techniques that are triggered by fault 
occurrences to handle transient faults and the hard-
ware/software trade-offs related to fault detection and fault 
tolerance. 

I.  INTRODUCTION 

We are entering the era of pervasive embedded compu-
ting with massive amounts of electronics and software 
controlling virtually all devices and systems in our every-
day life. New functions and features are introduced to 
embedded computer systems on a daily basis, which has 
led to the creation of many new gadgets and the addition of 
powerful functionality to existing systems. For example, 
modern automobiles already contain a large amount of 
electronics and software for vehicle control, safety, and 
driver support, while new features such as automatic intel-
ligent parking assist, blind-spot information system, and 
navigation computers with real-time traffic updates are 
being introduced [1]. Many of such embedded systems 
implement safety-critical applications with high demands 
on fault tolerance and strict timing constraints (e.g., X-by-
wire) or contain functions that require very high computa-
tion capacity with reliability and guaranteed QoS (e.g., 
image and speech recognition, intelligent navigation, and 
high-end multimedia). 

At the same time, with continuous silicon technology 
scaling, integrated circuits are implemented with smaller 
transistors, operate at higher clock frequency, and run at 

lower voltage levels. Therefore, they are subject to more 
and more faults, especially transient faults, also called soft 
errors. Transient faults are caused by cosmic radiation, 
alpha-particles, electromagnetic interference, static elec-
trical discharges, ground loops, power supply fluctuations, 
humidity, temperature variation, pressure, vibration, loose 
connections, noise, etc. Recent studies have indicated that 
the rate of transient faults is increasing rapidly in modern 
electronic systems [2]. Previously, transient faults had 
mainly large impacts on the memory and latches of a digi-
tal system, while their impacts on the logic parts are be-
coming also significant with new CMOS technologies. 

Although transient faults do not lead to permanent dam-
age of the circuits, they often cause errors that can have 
catastrophic consequences in many safety-critical applica-
tions. Additionally, in deep submicron technology used 
nowadays to implement advanced embedded systems, 
physics-based random variations play a more and more 
important role in many device performance metrics [3]. It 
has recently been pointed out that this rise in the inherent 
systematic and random variations will have effects that are 
far-reaching in every aspect of design, manufacturing, test, 
and overall reliability [4].  

We are therefore facing the challenge of how to build re-
liable and predictable embedded systems with unreliable 
components where the reliability problem stems from tran-
sient faults as well as their interaction with random process 
variation [5].  This challenge has to be addressed at mul-
tiple levels of abstraction, including circuit, architecture, 
software, and system levels. Moreover, cross-layer optimi-
zation, in particular, hardware/software trade-off, is needed 
in order to generate high quality solutions. 

II. TRANSIENT FAULT TOLERANCE TECHNIQUES 

Traditionally, research on fault tolerance has mainly 
dealt with permanent faults. While several techniques pro-
posed to tolerate permanent faults may be used also for 
tolerating transient faults, they are only efficient if the 
number of transient faults is not large.  

A common strategy for fault tolerance is to use different 
forms of redundancy with respect to hardware, software, 
information, or time. A well-known example of hardware-
redundancy techniques is the triple modular redundancy 
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(TMR), where three copies of hardware are implemented 
and a voting mechanism is used to produce a single output. 
There are many variations in implementing the basic TMR 
concept. For example, in the MARS approach, each fault-
tolerant component is composed of three computation 
units, two main units and one shadow unit [6]. Once a 
transient fault is detected, the faulty component must res-
tart while the system is operating with the non-faulty com-
ponent. This architecture can tolerate one permanent fault 
and one transient fault at a time, or two transient faults.  

Another example of hardware redundancy is the XBW 
architecture [7], where hardware duplication is combined 
with double process execution. Four process replicas are 
therefore run in total. Such an architecture can tolerate 
either two transient faults or one transient fault with one 
permanent fault. Other hardware replication examples can 
often be found in avionics. For example, an airborne archi-
tecture with seven hardware replicas, which can tolerate up 
to three transient faults, has been studied in [8], based on 
the flight control system of the JAS 39 Gripen aircraft. 
Such solutions, based on a large degree of hardware redun-
dancy, are very costly and can only be used if the amount 
of resources is virtually unlimited.  

An example of software redundancy is N-version pro-
gramming (NVP), also known as multi-version program-
ming, where multiple functionally equivalent programs are 
independently developed from the same specification [9]. 
If a specification is implemented with three different soft-
ware versions, together with a voting mechanism, it will be 
able to tolerate transient faults occurring in one of the three 
software processes or one permanent fault if the three 
software processes run on three different hardware units. 
An important additional advantage of NVP is that it ad-
dresses also the problem of software bug introduced in the 
software development process. In the case of 3-version 
programming, the system will produce correct results if 
only one version of the program has bugs. However, the 
overheads in terms of both additional development efforts 
and run-time redundancy are very large for NVP. 

In the case of information redundancy, error detection 
and correction codes are used by adding some redundancy 
(i.e., some extra data) to the functional data. While infor-
mation redundancy schemes are efficient in detecting and 
correcting faults that occur when data are transmitted over 
unreliable communication channels or stored in unreliable 
memories, they cannot be used to address faults that cause 
miscalculations in logic. Similar to hardware and software 
redundancy, information redundancy incurs also a large 
overhead in terms of extra hardware, which will be present 
in the system when implemented. 

Finally, time redundancy (TR) is a technique that intends 
to reduce the amount of extra hardware at the expense of 
additional time. When implemented in software, after a 
transient fault is detected, a fault tolerance mechanism will 
be invoked to deal with it. The simplest fault tolerance 
technique to recover from fault occurrences is re-
execution, where a process is executed again if affected by 
faults [10].  

An example of software re-execution is illustrated in 
Fig. 1, where we have process P1 and k = 2 transient faults 
that may happen. In the worst-case fault scenario depicted 
in Fig. 1, the first fault happens during P1’s first execution, 

denoted as P1/1, and is detected by an error detection me-
chanism (Note that we assume here that error detection is 
carried out during the software execution, and the error 
detection overhead is therefore considered as part of the 
process execution time; we will address this issue in Sec-
tion III). After a recovery overhead (used to restore all 
initial inputs of the process) of μ = 5 ms, depicted with a 
light gray rectangle, P1 will be executed again. Its second 
execution P1/2 in the worst-case could also experience a 
fault. Finally, the third execution P1/3 of P1 will take place 
without fault, as illustrated in Fig. 1 [11]. 

 

Fig. 1. Time redundancy by software re-execution  

If the real-time OS kernel used to activate re-execution is 
itself fault-tolerant, and the error detection and recovery 
mechanisms work, we have a reliable TR implementation 
that handles k faults by software re-execution. In the case 
of a distributed embedded system where several processors 
are connected via a bus, which is very common in many 
modern embedded systems, we assume that some fault-
tolerance communication protocols are used, such TTP 
[12], to make sure that the communication is also fault 
tolerant. 

The TR scheme based on software re-execution is a very 
efficient fault-tolerance technique for handling transient 
faults, since the re-execution mechanism will only be in-
voked when a fault actually occurs. When no fault hap-
pens, only the original version of the software process will 
be executed, and there is almost no overhead (except the 
fault detection one). For example, for process P1 in Fig. 1, 
only its first execution P1/1 will be performed, as in the case 
of normal execution. This scheme is therefore called on-
demand redundancy, in contract to the always-present 
redundancy based of hardware/software/information re-
dundancies. In the case of always-present redundancy, 
large hardware overhead is always needed. For example, 
three times of hardware resources plus a voting mechanism 
are physically implemented with the TMR scheme.  

While it has been noted that the rate of transient faults is 
increasing rapidly and will become large in the future, still, 
transient faults occur with a relatively low frequency with 
the current technologies. Additionally, many transient 
faults will not be propagated to the software level or will 
not have an impact on the execution of a given software 
process. For example, if a transient fault hits the multiplier 
of the CPU, but the current software process doesn’t in-
volve any multiplication instruction, this fault will not have 
any impact on the computation results of the process, and 
doesn’t need to be tolerated. This means that software re-
execution will only be needed rarely, and the average time 
penalty we have to pay for using a TR strategy at the soft-
ware level is very low, while it reduces very much the 
amount of extra hardware.  

However, even if the transient fault rate is currently low 
on average, many transient faults can happen in a burst 
during a short period of time. This will not be a problem 
for general purpose computing, since only certain 
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processes will run a bit slower due to many re-executions, 
when a burst of transient faults hits the system. The aver-
age performance reduction is still very small. However, for 
embedded systems that have strict timing constraints, soft-
ware re-execution may lead to solutions where the timing 
constraints are not satisfied. Therefore, we need to design 
embedded systems for safety-critical applications by consi-
dering both fault-tolerance and real-time requirements at 
the same time. 

III. DESIGN OPTIMIZATION WITH FAULT-TOLERANCE 

AND REAL-TIME REQUIREMENTS 

When a fault-tolerance mechanism, such as software re-
execution, is deployed in an embedded system, it must be 
taken into account in the global design-space exploration 
process in order to generate solutions that fulfill all the 
real-time constraints and meet the reliability objective at 
the same time. Optimization should also be performed to 
minimize the implementation cost since most of these em-
bedded systems are utilized in products in very competitive 
market sectors such as the automotive industry. This global 
optimization problem consists of several components, and 
we will discuss a few important ones as follows. 

A. Design Optimization Problems 

Typically, the functionality of an embedded system is 
given in term of a set of directed and acyclic graphs, where 
a node denotes a software process, and an edge the data-
dependency relation between two processes. Each process 
can be associated with a deadline, and we assume, in this 
paper, that the deadlines are hard, i.e., they must always be 
met even in the presence of multiple transient faults. Fig. 
2(a) illustrates a simple example of such functionality (ap-
plication) with only one directed graph consisting of four 
processes (P1, P2, P3, and P4) and five edges. 

 
Fig. 2. Application and architecture example  

The given functionality is to be executed on a hardware 
architecture in a periodic manner with a given period. And 
we assume that a distributed hardware architecture consists 
of a set of nodes, which share a broadcast communication 
channel (e.g., a bus), is used. The communication channel 
is statically scheduled such that one node at a time has 
access to it, according to a given schedule determined off-
line. The architecture can be either given or to be designed 
in the design-space exploration process. In the latter case, 
we have the architecture selection task, which determines 
the number of nodes, selects the nodes (e.g., from a set of 
available processors with different performances and 
costs), and decides on the parameters and protocols for the 
communication channel. Fig. 2(b) illustrates such an archi-
tecture with two nodes (N1 and N2), connected by a bus. 

We should also design a software architecture that runs 
on the CPU in each node, and has a real-time kernel as its 
main component. Process activation on a node and mes-

sage transmission via the communication channel will be 
done based on the schedule tables that are stored locally in 
each node and in the communication channel controller. 

Given the functionality and hardware/software architec-
ture, a key design problem is to determine the mapping of 
software processes to hardware nodes such that transient 
faults are tolerated and all deadlines of the application are 
met. Such mapping decision can be made to optimize the 
completion time of the processes (i.e., the performance of 
the real-time application), which can lead to a cheaper 
hardware solution, when there are slacks between the com-
pletion times and the deadlines of the processes and there-
fore a slower hardware architecture can be utilized instead 
[11]. To perform this optimization, the worst-case execu-
tion times of the processes when mapped on different 
hardware nodes should be given. For the above example, 
the table at the right hand corner of Fig. 2 depicts these 
process execution times. For example, the worst-case ex-
ecution time of P1 is 60 ms when mapped on node N1, and 
80 ms when mapped on node N2. The “X” symbol in the 
table is used to indicate mapping restriction. For example, 
process P3 is not allowed to be mapped on node N1. This 
restriction can be used by the designer to denote that a 
decision has already been made, for some reason, that a 
given process (e.g., P3) should always be mapped on a 
given node (e.g., N2). 

The mapping decision has a very large impact on the 
traffic over the commutation channel. If one process sends 
a large amount of data to another process, and the two 
processes are mapped on different nodes, this communica-
tion is performed by message passing over the communica-
tion channel, and should be considered during the design 
process. On the other hand, if these two processes are 
mapped on the same node, the data can be sent via the 
shared memory, and the communication time can be ac-
counted as part of the process execution time. For the ex-
ample given in Fig. 2, if P1 and P2 are mapped on N1, while 
P3, and P4 on N2, there are three messages (denoted as m1, 
m2, and m3) that need to be explicitly considered and sche-
duled on the communication channel. Message m1, for 
example, is used to send data from process P1 mapped on 
node N1 to process P4 mapped on N2. The communication 
from P1 to P2, on the other hand, doesn’t need to be expli-
citly considered, since P1 and P2 are mapped on the same 
node, N1.  

The mapping decision can also take into account other 
aspects, such as the degree of transparency, which denotes 
how much impact recovering from a transient fault at one 
hardware node will have on the schedules of other nodes. 
A fully transparent system means that the occurrence of 
faults at any node will not impact the executions on any 
other nodes. The transparent property has the advantages of 
fault containment and improved debugability, and it needs 
less memory to store the fault-tolerant schedules [10]. In 
general, a designer would like to introduce as much trans-
parency as possible. However, transparency will incur 
additional delays that can lead to the violation of some 
real-time deadlines. A fine-grained approach to transparen-
cy has been proposed in [13], where the designer specifies 
a desired degree of transparency by declaring certain 
processes and messages as frozen. A frozen process or 
message will have a fixed start time (for a process, more 

b) 

N1   N2 
60 80 
40   54 
X 40 
45 60 
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precisely, the first execution of it will have a fixed start 
time), regardless of the occurrence of faults in the rest of 
the system. In Fig. 2, the frozen processes and messages 
are depicted with squares, while the regular ones are drawn 
as circles. 

The debugability of the application is improved by 
transparency because it is easier to observe the behavior of 
frozen processes and messages in alternative schedules that 
correspond to different fault scenarios. An optimization 
algorithm has been developed to map processes to nodes 
such that not only the application is schedulable (i.e., all 
processes will meet their deadlines) but also the transpa-
rency properties imposed by the designer are satisfied [13].  

After the mapping task is performed, processes mapped 
on the same hardware node should be scheduled. The 
scheduling decision should be taken to make sure that re-
execution slack is introduced in the schedule for the re-
executed processes. For this decision, we need to know 
how many re-executions are needed in different fault con-
texts. It is usually assumed that at most k transient faults 
may occur anywhere in the system during one operation 
period, and the scheduling algorithm should make sure that 
in the worst-case fault scenario, the execution of all 
processes and their needed re-executions will be completed 
before their respective deadlines. The basic idea to reduce 
the amount of re-execution slack is to share a slack by 
several processes. Note that for two processes to share the 
same slack, they need to be mapped on the same node. This 
means that the mapping decision has a large impact on the 
scheduling results. Therefore, the mapping task and sche-
duling task should be performed together to generate a 
globally optimal solution. Note also that the messages sent 
over the communication channel should also be scheduled. 
And again, to achieve global optimization, process sche-
duling and message scheduling should be considered at the 
same time. 

The maximal number of transient faults to tolerate dur-
ing an operation period can be either given by the design-
ers based on statistics data (for the example in Fig. 2, k is 
given as 2) or derived by a system failure probability (SFP) 
analysis technique. An SFP analysis technique is used to 
ensure that the final design meets the given reliability re-
quirements, by connecting the levels of fault tolerance in 
software to the levels of transient-fault rate in hardware 
[14]. 

B.   Fault detection optimization 

As stated before, software re-execution is an efficient 
time-redundancy technique to handle transient faults, since 
re-execution is only performed if there is actually a fault. 
However, a fault detection mechanism is needed to decide 
if there is a fault in the first place. This mechanism will 
always be present in the implementation, and it is a major 
source of hardware overhead. Therefore optimization of 
the fault detection mechanism is very important, and the 
optimization result has a very large impact on the efficien-
cy of the overall fault tolerance implementation. 

An application-aware error detection technique to identi-
fy critical variables in a program, which exhibit high sensi-
tivity to random data errors, has been proposed in [15]. The 
backward program slice for each acyclic control path is 

extracted for the identified critical variables, and each slice 
is optimized at compile time, resulting in a series of check-
ing expressions. These will be inserted in the original code, 
immediately after the computation of a critical variable. 
Finally, the original program is instrumented with instruc-
tions to keep track of the control paths followed at run-time 
and with checking instructions that would choose the cor-
responding checking expression, and then compare the 
results obtained [15]. This technique has two main sources 
of performance overhead: path tracking and variable 
checking. In the context of transient faults, both of them 
can be implemented either in software, potentially incur-
ring high performance overheads, or in hardware, which 
can lead to costs sometimes exceeding the amount of avail-
able resources [16].  

An optimization technique to make trade-offs between 
hardware/software implementations of the above applica-
tion-aware error detection scheme has been developed and 
reported in [16]. It minimizes the global worst-case execu-
tion length of the software processes, while meeting the 
imposed hardware cost constraints and tolerating multiple 
transient faults. The reported work demonstrates that it is 
possible to reduce the worst-case schedule length by more 
than a half with only as few as 15% hardware fractions 
available [16].  

IV.  HARDWARE/SOFTWARE TRADE-OFFS 

A different approach to address the problem of transient 
faults is to improve the hardware technology and/or archi-
tecture to reduce the fault rate, and, hence, the number of 
faults propagated to the software level [17]. Researchers 
have proposed a variety of hardware hardening techniques. 
For example, Zhang et al. have proposed an approach to 
harden flip-flops, resulting in a small area overhead and 
significant reduction in the transient fault rate [18]. Moha-
nram and Touba have studied hardening of combinatorial 
circuits [19]. Finally, a hardening approach to be applied in 
early design stages has been presented in [17], which is 
based on transient fault detection probability analysis. 

Hardware hardening comes, however, with a significant 
overhead in terms of cost and speed [20]. The main factors 
which affect the cost are the increased silicon area, addi-
tional design effort, lower production quantities, excessive 
power consumption, and protection mechanisms against 
radiation (such as shields). Hardened circuits are also sig-
nificantly slower than the regular ones. Manufacturers of 
hardened circuits are often forced to use technologies a few 
generations back [20]. Hardening also enlarges the critical 
path of the circuit, because of a voting mechanism [21] and 
increased silicon area. Therefore careful trade-offs must be 
made in respect to how much hardware hardening should 
be done vs. how many software re-execution should be 
implemented, in order to meet time and cost constraints 
within the given resources, and at the same time, deliver 
the reliability goals.  

The input to the design-space exploration process with 
such trade-offs consists of the application (captured as a set 
of acyclic directed graph) mapped on a bus-based architec-
ture (as discussed in Section III.A), a given reliability goal, 
and the recovery overhead μ. For each node in the hard-
ware architecture, a set of available hardware implementa-
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tions with different hardening level and their corresponding 
costs is also given. It is assumed that the worst-case execu-
tion times and the failure probabilities for each process on 
each hardening version of the nodes are known. And the 
maximum transmission time of messages if sent over the 
bus is given. A design-space exploration algorithm should 
select an implementation from the available hardening 
alternatives for each node, determine the mapping of the 
processes on the nodes with the selected implementation, 
and schedule the processes together with their required re-
executions and the needed communications (it is assumed 
that communication are fault-free due to the use of fault-
tolerance protocol). 

An algorithm to perform this design-space exploration 
so as to minimize the total cost of the hardware nodes, 
while achieving the reliability goal and meeting all timing 
constraints given with the application, is presented in [14].   
The algorithm is based on a sequence of iterative design 
optimization heuristics, and utilizes a system failure proba-
bility analysis approach, which connects the level of har-
dening in hardware with the number of re-executions in 
software [14]. 

V. CONCLUSIONS 

Transient-fault or soft-error rates have been increasing 
rapidly due to the continuous device scaling, increased 
clock frequency, high temperature, voltage scaling, and 
process variation. How to handle transient faults in the 
context when an embedded system is used for safety-
critical applications, which have a high reliability require-
ment, is therefore becoming a critical issue. This paper 
discusses the advantages of using the time-redundancy 
strategy at the software level to handle these transient 
faults. It presents also several design optimization prob-
lems with respect to time-redundancy by software re-
execution and several emerging solutions to solve them. 

Many issues discussed in this paper, including transient 
faults and their tolerance, error detection, software re-
execution, and hardware hardening, are not new, taken 
individually. However, the interplay of these issues and 
their increased impacts have led to great challenges to the 
research community. In particular, there are still many 
open problems in how to develop efficient global optimiza-
tion techniques to consider both fault-tolerance and real-
time requirements at the same time, to make hard-
ware/software trade-offs for systems affected by transient 
faults and large process variation, and to build reliable and 
predictable embedded systems with unreliable components. 
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