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Abstract—Delay defects under high temperature have been one of 
the most critical factors to affect the reliability of computer 
systems, and the current test methods don’t address this problem 
properly. In this paper, a temperature-aware software-based self-
testing (SBST) technique is proposed to self-heat the processors 
within a high temperature range and effectively test delay faults 
under high temperature. First, it automatically generates high-
quality test programs through automatic test instruction 
generation (ATIG), and avoids over-testing caused by 
nonfunctional patterns. Second, it exploits two effective power-
intensive program transformations to self-heat up the processors 
internally. Third, it applies a greedy algorithm to search the 
optimized schedule of the test templates in order to generate the 
test program while making sure that the temperature of the 
processor under test is within the specified range. Experimental 
results show that the generated program is successful to 
guarantee delay test within the given temperature range, and 
achieves high test performance with functional patterns. 

I. INTRODUCTION 
 

High temperature has been one of the most critical factors 
to affect the reliability of computer systems [1]. It is common 
that at the normal temperature a computer system works 
correctly, but once the temperature rises up, many inexplicable 
problems would happen even though it has passed rigorous 
manufacturing tests. Many of these temperature-related 
problems are related to delay faults which happen under high 
temperature. With the increasing of temperature, the delays on 
circuits also increase, so that high temperature aggravates delay 
defects in the circuits. What’s worse, the timing margin for 
high temperature or other problems shrinks significantly due to 
the increasing demand of the performance. The delay defect 
under high temperature is therefore a general problem for 
modern computer systems, and the problem has to be taken 
seriously, especially for reliability-critical systems. However, 
most current test methods don’t address this problem properly, 
and it is thus necessary to propose a suitable test method for 
delay faults under high temperature. 

The current manufacturing test methods are not suitable to 
test delay faults under high temperature. First, they often insert 
some DFT circuits into the circuit under test (CUT), and make 
CUT easy to be controlled and/or observed.  As a consequence 
of this, the tests include many non-functional patterns that 
would never happen during real application. For delay faults, 
the manufacturing test has extremely high proportion of 
nonfunctional patterns, which may easily lead to the situation 
that a function-correct chip is classified as a faulty one by 
mistake. This is called over-testing, and it would cause 

unbearable economic loss [2]. Secondly, it may be dangerous 
to apply the manufacturing test for delay faults under high 
temperature. On one hand, the manufacturing test would have 
even worse over-test problem when the temperature rises up. 
That is because these nonfunctional patterns can excite 
untestable paths with longer delays easily, and their delay 
faults would be observed firstly when the temperature rises up. 
On the other hand, the manufacturing test is often developed to 
test a circuit in normal temperature [3] [4] instead of testing 
delay faults under high temperature. In manufacturing test, its 
signal transitions are usually several times of that of the normal 
application, and these extremely high signal transitions heat up 
the chip greatly, or even burn the chip [3]. Therefore, 
traditional manufacturing test method is not suitable for test 
delay faults under high temperature. 

Software-based self-testing (SBST) has been a promising 
test method for processors that applies functional test patterns 
and can achieve comparable fault coverage as the full-scan 
method. SBST has already been proposed for delay faults 
under the transition delay fault model [5], and achieved more 
than 94% fault coverage. Meanwhile, some researchers 
propose SBST method for path-delay faults, and also achieve 
high test performance [6] [7].  Recently, automatic test 
instruction generation (ATIG) [8] [9] is presented to 
automatically generate SBST programs, and compact the test 
programs without fault coverage loss. Also, SBST is optimized 
to apply low-power or low-energy test for wireless sensor 
nodes [10]. However, SBST has not been applied for delay 
faults under high temperature.  

In this paper, temperature-aware SBST is proposed that 
self-heats the processors to a high temperature range and 
effectively tests transition delay faults under high temperature. 
First, it automatically generates high-quality test templates 
through ATIG, and avoids the over-testing problem caused by 
nonfunctional patterns. Second, it exploits two effective power-
intensive program transformations that guarantee to self-heat 
up the processors internally. Third, it applies a greedy 
algorithm to dynamically incorporate test template 
transformation with optimized test overhead and make sure that 
the temperature during test is within the specified range. To our 
knowledge, this is the first work on temperature-aware SBST 
targeting delay faults. 

This paper is organized as follows. Section II covers the 
necessary background of software-based self-testing for delay 
fault under high temperature. Section III introduces delay test 
program generation through ATIG. Later, we exploit the 
power-intensive program transformations in Section IV. 
Section V discusses the greedy algorithm for temperature-
aware test. Experimental results are analyzed in Section VI. 
Finally, we conclude this paper in Section VII. 
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II. SBST FOR DELAY FAULT UNDER HIGH TEMPERATURE 
Software-based self-testing has been a promising processor 

test method that applies normal programs to test both stuck-at 
and delay faults under the functional mode. When testing delay 
faults, SBST is executed according to Fig. 1(a) [11]. In this 
example, test data of a functional pattern pair of delay test are 
first stored in four registers via four load instructions. Second, 
it uses the first add instruction to initialize the CUT with R1 
and R2, and applies the second add instruction to test the delay 
faults at-speed with R3 and R4. Third, it uses the store 
instruction and stores the result in R6 for observation. In this 
way, SBST uses instruction pairs and tests delay faults 
successfully. The test programs generated with such instruction 
pairs are put together to form a test template, as shown in Fig. 
1(b). Note that an extra nop instruction is inserted after the last 
load instruction because the fourth load instruction has data 
dependency with the second sllv instruction, a stall would 
happen before the sllv instruction, and the test pair would fail to 
detect the given defects. 

 
SBST would be one of the most suitable methods to test 

delay faults under high temperature, if it could create and 
maintain the high test temperature in the processor just through 
executing programs. This is because, first of all, SBST does not 
make any changes to the structure of the processors at all, and 
all of its patterns are functional. In this way, it avoids the over-
testing problem, and it does not waste time to test many faults 
detected already by traditional manufacturing test methods. 
Second, SBST heats up the chip from the inside instead of the 
outside, so that it truly tests delay faults under high temperature 
conditions. In addition, it avoids the need to heat up the 
processor externally, which usually takes a long time, and it 
does not damage the insulating layer of the package, which 
would reduce the lifetime of the processor.  

However, it is difficult to create and maintain high test 
temperature just through executing programs. On one hand, it 
is still an open problem to generate power-intensive SBST 
programs. In order to increase the power of an SBST program, 
let us analyze the test template in Fig. 1(b). It includes four 
parts, controlling instructions, test instructions, observing 
instructions, and the loop checker. First, the loop checker 
brings many stalls into the pipeline and degrades the density of 
signal transition greatly. Therefore, it is reasonable to remove 
these loop checker for higher power dissipation. Second, the 
controlling and observing instructions, consisting of load and 
store, cover a large proportion of the template. If these 
instructions have more power dissipation, the whole template 
would be more power-intensive. Of course, there are also other 
ways to increase the power consumption of an SBST program. 
On the other hand, because a power-intensive program may 
heat up the processor beyond the temperature threshold and 
damage the processor, the temperature must be maintained 
within the proper range.  

Recently, several efficient test scheduling algorithms have 
been reported that control test temperature in a given range 
[12]. However, these algorithms work only in the context of 
core-based test with test access mechanisms, not for SBST. In 
the following section, we will describe our proposed technique, 
in details, to achieve temperature-aware SBST, and we will set 
the given temperature range at [105, 110] similarly as in [13], 
and use the testing of the ALU in the miniMIPS processor as 
an illustrated example, where the processor is the newest 
version without branch-prediction. 

III. TEST PROGRAM GENERATION FOR DELAY FAULTS 
We have developed an automatic test instruction generation 

(ATIG) approach to generate SBST programs with high 
coverage for delay faults. The developed method imposes 
functional constraint on the CUT, generates functional pattern 
pairs (instead of single patterns) for delay faults, and translates 
these pairs into instruction pairs, finally SBST programs. When 
applying SBST on an ALU, we assume first that the instruction 
pair consists of two same instructions, so that we can impose 
the functional constraint of the single type on the CUT, and 
then generate one test template to implement these test pairs. 
Later, we consider that the instruction pair contains different 
instructions. 

 
The flowchart of the ATIG algorithm is shown in Fig. 2. 

First, the algorithm sets all ALU faults as the initial fault set. 
Second, it checks if there is an unselected instruction type. If 
yes, it continues; or else it goes to the sixth step. Third, it 

 
Fig. 2.  Automatic Test Instruction Generation for Delay Faults on ALU 

   
Fig. 1.  Software-Based Self-Testing for Delay Faults [11] 



chooses an unselected instruction type, and generates 
functional test pairs under the functional constraint of the type. 
Forth, it applies a related test template for all these pairs, and 
stores the test data in the right address. Fifth, it starts sequential 
fault simulation with the test template, removes detected faults 
(DT) from the fault set, and then returns to the second step. In 
addition, the template that can’t detect new faults is removed 
from the final programs. Sixth, the algorithm starts to generate 
programs for the test pair containing different instructions, 
denoted as mut1, mut2, and mut3. Finally, the algorithm 
obtains the test templates, including mut1, mut2, and mut3. 

The proposed ATIG algorithm can achieve very good test 
quality on the ALU component, and will never cause any over-
testing problem. As shown in Fig. 5(a), the fault coverage of 
the generated SBST program for the miniMIPS ALU rises up 
continuously with the increasing of the test templates, and 
finally arrives at 97.91%, which is more than that of the most 
advanced SBST programs [4]. Furthermore, it has higher test 
performance than traditional manufacturing test, even though 
the latter can achieve more than 99% fault coverage. That is 
because it does not test the faults that never happen under the 
functional mode, and it thus avoids the over-test problem. For 
example, the falling delay fault on the signal overflow would 
not happen under the functional mode, because the test 
program is interrupted once an overflow happens. Additionally, 
many delay faults that are excited when an instruction follows 
a branch instruction would not emerge either. Because stalls 
are inserted after every branch, and that delay faults cannot 
happen under the functional mode.  

IV. POWER-INTENSIVE PROGRAM TRANSFORMATION 
To heat up the processor just through executing programs 

themselves, the original SBST programs have to be 
transformed so that they will be power-intensive. As the 
dynamic power of programs depend on the density of signal 
transitions, either the SBST programs are transformed to be 
more compacted with less stalls in their pipeline, or they bring 
in some extra power dissipation, in order to increase their 
power consumption. 

A. Unrolling Loops for High Power 

 
Unrolling loops in programs is an effective transformation 

to enhance the power dissipation. Every loop contains a 
checker to decide whether or not the loop should continue, and 
the checker inevitably brings some stalls in the pipeline. If 

every loop is unrolled, the checker is no longer required, and 
no extra stalls will be encountered. As a result, unrolling loops 
can reduce the execution time of a program, and enhance the 
density of signal transitions. As loops often cover a large 
proportion of the executing period of programs, unrolling loops 
can increase power dissipation greatly.  

The detail of the loop-unrolling transformation is shown in 
Fig. 3. At first, the algorithm removes the checker from the 
template, and it also obtains the iteration index of the loop as 
the variable N. Later, it resets the offset of the instruction store 
(or load) for the right memory address, and outputs the 
instruction sequence once. Then N is decremented, and the 
algorithm returns to the previous step. The algorithm repeats 
the steps until N is 0. For example, the algorithm replicates the 
template for instruction sllv 64 times to unroll the whole loop, 
and requires 704 words of storage space including 256 words 
for data. The additional storage space is the overhead that we 
have to pay for using this transformation. 

B. Exciting Cache Miss for High Power 
Exciting cache miss in programs is another effective 

transformation to enhance the power dissipation of modern 
processors. In a modern processor, as cache device often covers 
a large portion of the chip area, once its page is renewed, it 
would lead to large power dissipation. To excite cache miss, 
the program has to set the page tag of its store or load 
according to the following situations. Assume the cache has n 
pages (C[0]…C[n-1]), the whole memory has m pages 
(M[0]… M[m-1]), and that FIFO algorithm is used to replace 
cache pages. In addition, the set associate cache contains s sets, 
and each set has k pages(s*k=n). First, in the direct mapped 
cache, if the tag of the page M[t] is not equal to the tag of C[(t 
mod n)] in equation 1 of Fig. 4, a cache miss happens. Second, 
in the fully associative cache, only if the tag of the page M[t] is 
different from the tag of each cache page shown in equation 2 
of Fig. 4, a cache miss would happen. Third, in the set 
associate cache as the page M[t] is mapped into the pth (p=(t/k) 
mod s) cache set, if the tag of the page M[t] is different from 
the tag of each cache page in the cache set [p*k, p*k+k) shown 
in equation 3 of Fig. 4, a cache refresh would happen. 

 
Cache misses can be excited through modifying test programs 
slightly, and thus causing large power dissipation. Assume that 
a data cache based on the direct mapped style is inserted into 
the miniMIPS processor. To excite cache misses, the 
transformed program makes the odd load/store instruction 
access one memory page M[i], and the even load/store 
instruction access another memory page M[j], while these two 
pages are mapped to the same cache page. As shown in Fig. 4, 
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Fig. 4.  Exciting Cache Miss in Test Template 

 
Fig. 3.  Unrolling Loop in Test Template 



 
the first and second load instructions in the program store the 
base address in the same register R10, while their offsets are 
0x0000 and 0xFC04 respectively. In this case, these two 
instructions access different memory pages that are mapped to 

the same cache page, and thus a cache miss happens. With this 
transformation, whenever load or store happens, its related 
memory page is absent in the cache, and that page would 
replace the related cache page.

C. Impact on Power, Test Time, and Storage Space 
To analyze the impact of the transformations discussed 

above, an experimental system is built up to evaluate the power 
dissipation, test time, store space of the self-heating program 
generated by such transformations as well as the original 
program. In the experiment, the miniMIPS processor with a 
direct mapped data cache unit is synthesized with a 90ns 
technical lib as the experimental bench, and its frequency is set 
as 10MHZ. The experiment reports the test time and storage 
space repaired to execute each test template. Later, the system 
extracts the power trace from the Synopsys tool Primepower, 
and then calculates the average power dissipation. 

As shown in Fig. 5(b), the program transformations we 
have discussed increase the power dissipation obviously. First, 
TF1 that unrolls all loops increases the template power 
significantly by 40.2% on average. That is because TF1 
removes the pipeline stalls resulted from the loops, makes the 
pipeline execution more efficient, and finally increases the 
density of signal transitions. Second, TF3 that excites cache 
misses of the load or store instruction also enhances the power 
dissipation by 40.0% on average. That is because cache access 
often take a large power proportion of modern processors, and 
frequent cache misses indeed bring in huge power dissipation. 
Third, these two methods can work together, and achieve the 
highest power dissipation, as shown by the TF2 curve. In Fig. 
5(b), TF2 often doubles the power dissipation of the original 
template. Finally, note also that the power dissipation varies 
greatly among different templates, and some appropriate 
schedule is therefore required for temperature-aware test. In 
general, because the program transformations enlarge the 
power dissipation greatly, it is feasible to self-heat up 
processors internally. 

The storage space and test time of these transformed 
templates are shown in Fig. 5(c) and 5(d), respectively. 
Unrolling loop is an expensive method to increase power, as it 
has to replicate the template N times where N is equal to the 
iteration index of the loop. In Fig. 5(c), the line of TF1 and TF2 
(the same line), associated with loop unrolling, is much higher 

than the line of TF0 and TF3 (the same line), corresponding to 
the original program and the one with only exciting cache 
misses. Exciting cache miss is a much better transformation in 
this regard, since it does not cost any extra storage space.  That 
is because this transformation just changes the offset of 
instruction load or store. Therefore, the curve for TF0 and that 
for TF3 become the same line as shown in Fig. 5(c), since TF3 
only changes the offset of the load and store instructions of 
TF0. The same applies also to TF1 and TF2.  

On the other hand, exciting cache miss brings in some test 
time overhead, while unrolling loop reduces test time greatly. 
In Fig. 5(d), the line indicating the test time of TF3 (exciting 
cache misses only) is the highest one, and the increasing ratio 
of time overhead varies greatly. That is because the cache 
misses cost extra clock cycles to refresh the cache, and the 
increasing ratio depends on the frequency of load and store in 
the template. For instance, the sllv template (template 3) that 
contains five of these memory access instructions has higher 
ratio than the mfhi template (template 15) with only three of 
such instructions. In Fig. 5(d), the line of TF1 (loop unrolling 
only) is the lowest one. That is because unrolling loop removes 
the checker, makes the pipeline more compacted, and thus 
reduces test time. The test time of TF1 is so low that even if 
loop unrolling and exciting cache misses work together, their 
test time is still lower than that of the original template.  In 
conclusion, with reasonable overhead, an SBST program can 
be transformed to be power-intensive with the two simple 
transformations discussed in this section. 

V. TEMPERATURE-AWARE SBST 
The last problem to address before we will have a complete 

temperature-aware SBST so that an processor will be tested for 
the worst-case delay defects is to schedule all test templates so 
that they will be executed when the processor temperature is 
always within the specified range. This is a difficult problem, 
since N templates have N different power dissipations, and the 
different order of them will lead to different power curves, and 
consequently different temperature traces. The total amount of 
possible schedules that result in different temperature traces is 

 
Fig. 5.  The Fault Coverage, Power Dissipation, Test Time, and Instruction Amount of Self-Heating SBST Templates, where TF0 is the original program, TF1
is  the program after unrolling its loops, TF2 is the program after both unrolling loops and exciting cache misses, TF3 is the program after exciting cache
misses. In addition, the original template 21, 22, and 23 (mut1, mut2, and mut3) are unrolled templates which just have one transformation TF3. 
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equal to the factorial of N. Furthermore, since each test 
templates can be transformed with the two transformations 
discussed in Section IV, there are four different 
implementations for each template. It is, in general, an NP 
problem to find out a feasible schedule that satisfies the 
temperature specification. On top of this, the feasible schedule 
is required to be optimized for as low test overhead as possible, 
and there are several different trade-offs to be made. The self-
heating transformations can be used to enhance the power 
dissipation, but they usually require more cost of storage space 
or test time. For instance, unrolling loops multiplies the 
instruction amount of the test template, so it would make the 
SBST program much bigger.  

A greedy algorithm is therefore proposed to dynamically 
incorporate test template transformation with optimized test 
overhead, and guarantee the test temperature range. The basic 
idea is “low-overhead transformation first, and high 
temperature first”. Specifically, the algorithm first searches the 
feasible templates from the low-overhead transformations, 
where the overhead of storage space has priority over the time 
overhead because an SBST program is executed at speed. It 
selects then the template that can heat the processor to the 
highest temperature (HT), because it provides more margins for 
the low-power templates, and this helps to find out a feasible 
schedule quickly.  

 
The flowchart of the greedy algorithm is shown in Fig. 6. 

First, it applies extra power-intensive templates to heat the chip 
up to the lower limit of the given temperature range, which is 
then used as the starting temperature Ts. Second, it checks if 
there are still some unexecuted templates left to be scheduled. 
If there are no such templates, the algorithm has obtained an 
optimized schedule and it will terminate; or else, the algorithm 
continues. Third, according to the “low-overhead 
transformation first” policy, it searches, from the original 
template TF0, the feasible templates that keep the temperature 
within the specified range. Specifically, it applies the 4th order 
runge-kutta method (RK4) in Hotspot [14], and calculates the 
ending temperature Te of each unexecuted template in TF0. As 
shown in the upper subfigure of Fig. 6, the algorithm gets the 
test time time[i, j] of the ith template in TF0 (j=0), and sets the 

cycle index N as time[i, j]/interval, where interval is the 
sampling interval of RK4. Later, the algorithm uses the power 
power[i,j] of the ith template in TF0 (j=0), and calculates Te 
after the first interval. Then, it sets Te as Ts for the next interval. 
After repeating these steps N times, it obtains Te of the 
template. In addition, the template that makes Te within that 
range is called feasible template (FET). If there is only one 
feasible template, it is chosen and inserted into the schedule 
immediately. If there are several feasible templates, the rule 
“high temperature first” is then used. In the lower subfigure of 
Fig. 6, the algorithm checks these feasible templates one by 
one. If Te of one template is higher than the current max Te 
(Temax), it labels the template and its Te. Finally, it finds out the 
template with the highest Te, chooses that template, and inserts 
it into the schedule. In the above two situations, the chosen 
template is marked as “executed”, its Te is used as the new Ts 
for the next scheduling step, and the algorithm returns to the 
second step. Or else, if there are no feasible templates, the 
algorithm continues. Because storage space has higher priority 
to test time, the algorithm searches first feasible templates from 
TF3. After that, the algorithm will search feasible templates 
from TF1 to TF2. Finally, if none of the template is feasible, 
there would be no schedule satisfying the requirement of the 
given temperature-aware test. 

VI. EXPERIMENTAL RESULTS 
In this section, the experiment on the miniMIPS ALU and 

its results of the proposed temperature-aware SBST technique 
are described in detail. In the experiment, the processor at the 
room temperature (25 degree) is heated up to 105.02 degree by 
executing a 2-watt program. The proposed algorithm generates 
a feasible schedule that makes the temperature within the 
specified temperature range of [105, 110]. For comparison 
purpose, three references are used: the first executes the 
original templates starting directly from the room temperature; 
the second execute the templates in TF2 after the temperature 
arrives at 105.02 degree; and the third applies Hotspot to 
simulate the temperature of the generated schedule by the 
proposed algorithm. 

The proposed greedy algorithm is successful in finding out 
a feasible schedule for the given temperature-aware test for the 
miniMIPS ALU which consists of 23 test templates. It takes 
advantage of the RK4 function to calculate Te of the 
unexecuted templates in TF0 first. For this, its executing time 
is 107 times of the RK4 sampling interval, so the algorithm 
loads in its average power, repeats RK4 107 times, and finally 
gets the maximal value of Te. Unfortunately, after calculating 
each template in TF0, the algorithm finds no feasible template 
that keep the temperature Te within the given temperature 
range [105, 110]. According to “low overhead transformation 
first”, it searches then feasible templates in TF3, and finds out 
6 feasible templates that satisfy the temperature requirement. 
According to “high temperature first”, template 20 that raise up 
the temperature with the maximal value of 1.67 degree is 
chosen to the schedule, and its Te (105.02+1.67=106.69 degree) 
would be set as Ts for the next scheduling step. For the new 
starting temperature of 106.69 degree, the algorithm finds out 
several feasible templates in TF0. The same to the previous 
steps, it selects template 18 in TF0 that does not bring in any 
extra overhead, but the temperature falls to 106.19 degree, 
since executing this temperate leads to a temperature reduction 
of 0.5 degree. For this example, the algorithm quickly find out 
an optimized feasible schedule, as shown in Fig. 7(a). 

The experimental results also show that the proposed 
algorithm guarantees the temperature of the processor to be 
within the given range during the whole execution of the test 
templates, and implements therefore temperature-aware SBST 

Fig. 6.  The Greedy Algorithm for Temperature-Aware SBST, where HT,
FETs, CALC, and interval stand for “Highest-Temperature”, “feasible
template”, “calculate”, and “sample interval in RK4”, respectively, while
Time[i, j] and Power[i, j] stand for the executing time and power of the ith
template in the jth transformation. 



successfully. Fig. 7(b) shows the temperature traces of the 
temperature-aware SBST program generated by the proposed 
algorithm and the three references. First of all, the temperature 
trace of the proposed algorithm (red) is within [105, 110] 
completely, which satisfies therefore the temperature 
specification. Additionally, this trace is only slightly above the 
105 degree line. This means the algorithm guarantees the lower 
temperature limit, and, at the same time, avoids using the high-
overhead transformations that will lead to large temperature 
increase. It thus finds an optimized schedule without too much 
overhead. Second, the temperature trace of the first reference 
rises up, but it is far away from the given temperature range. 
This means that, without temperature-aware SBST, the original 
test templates, will be applied at a very low temperature level, 
and therefore some delay defects will be not detected. Third, 
the temperature trace of the second reference is mostly above 
the specified upper temperature limit. Therefore it is harmful to 
use always the power-intensive test templates directly, because 
this will lead to too high temperature for the processor and it 
may even burn it. It is thus necessary to control the temperature 
of the SBST program. Finally, the temperature trace of the 
third reference, generated directly by the Hotspot simulator is 
coincident with the temperature trace of the proposed algorithm. 
It means that the temperature prediction of the proposed 
algorithm is accurate and therefore the proposed temperature-
aware SBST technique will be able to deliver the temperature 
guarantee with the same accuracy as Hotspot can provide. 

 
The limitation of the proposed algorithm is that it may not 

obtain the most optimized schedule that requires the lowest 
overhead. The greedy algorithm can find out the best solution 
only when the previous scheduling step does not affect the 
latter one. However, Te is based on Ts, so that the current 
scheduling result relies on the previous one, and the greedy 
algorithm may fail to obtain the best schedule.  

However, the algorithm is very efficient. On one hand, the 
algorithm only takes 8.484s to obtain a feasible schedule for 
generating the temperature-aware test for the miniMIPS ALU, 

even though the RK4 function is very time-consuming (0.01s 
on average). This is because the algorithm is based on two 
simple rules. Furthermore, the rule “high temperature first” 
provides a larger temperature margin for, and simplifies, the 
next scheduling step, thus speeding up also the whole 
scheduling process. On the other hand, the algorithm has 
optimized the storage space of the schedule greatly. Due to the 
rule “low overhead first”, the algorithm mostly chooses the 
templates of TF0 and TF3, as shown in Fig. 7 (a). In this way, 
it avoids to bring in large overhead of storage space. As the 
result, the algorithm brings 60.6% extra storage space in total 
for this example, while the power-intensive only SBST solution 
would requires 118%storage overhead. 

VII. CONCLUSIONS 
In this paper, a temperature-aware SBST technique is 

proposed for testing delay faults under high temperature by 
self-heating the processor within the given temperature range. 
First, it automatically generates SBST program templates by 
ATIG, and avoids the serious over-testing program associated 
with traditional manufacturing test. Second, we propose some 
transformations of the SBST program templates to enhance 
their power intensity, which makes it possible to self-heat up 
the processor internally by just executing programs. Third, the 
technique applies a greedy algorithm to search the optimized 
schedule of the SBST templates, while maintaining the high 
temperature with reduced overhead. Experimental results on 
the ALU of the miniMIPS processor show the generated SBST 
test program is successful to guarantee delay test within the 
given temperature range, and achieves very good test 
performance with functional patterns. 
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Fig. 7.  Experimental Results of Temperature-Aware SBST, while in (a) the
red, green, blue, and pink bar stands for TF0, TF1, TF2, and TF3, and the
number is the template number; in (b) the pink, blue, red, and black line
stands for the temperature trace of the original program, power-intensive
program, feasible schedule on hotspot and on the algorithm, respectively. 


