
Temperature-Aware Software-Based Self-Testing for
Delay Faults

Ying Zhang1 Zebo Peng2 Jianhui Jiang1* Huawei Li3 Masahiro Fujita4
1 School of Software Engineering, Tongji University, China

2 Embedded Systems Lab, Linköping University, Sweden
3 State Key Laboratory of Computer Architecture, Institute of Computing Technology, Chinese Academy of Sciences, China

4VLSI Design and Education Center, University of Tokyo, Japan
yingzhang@tongji.edu.cn, zebo.peng@liu.se, jhjiang@tongji.edu.cn, lihuawei@ict.ac.cn, fujita@ee.t.u-tokyo.ac.jp

Abstract—Delay defects under high temperature have been one of
the most critical factors to affect the reliability of computer
systems, and the current test methods don’t address this problem
properly. In this paper, a temperature-aware software-based self-
testing (SBST) technique is proposed to self-heat the processors
within a high temperature range and effectively test delay faults
under high temperature. First, it automatically generates high-
quality test programs through automatic test instruction
generation (ATIG), and avoids over-testing caused by
nonfunctional patterns. Second, it exploits two effective power-
intensive program transformations to self-heat up the processors
internally. Third, it applies a greedy algorithm to search the
optimized schedule of the test templates in order to generate the
test program while making sure that the temperature of the
processor under test is within the specified range. Experimental
results show that the generated program is successful to
guarantee delay test within the given temperature range, and
achieves high test performance with functional patterns.

I. INTRODUCTION

High temperature has been one of the most critical factors
to affect the reliability of computer systems [1]. It is common
that at the normal temperature a computer system works
correctly, but once the temperature rises up, many inexplicable
problems would happen even though it has passed rigorous
manufacturing tests. Many of these temperature-related
problems are related to delay faults which happen under high
temperature. With the increasing of temperature, the delays on
circuits also increase, so that high temperature aggravates delay
defects in the circuits. What’s worse, the timing margin for
high temperature or other problems shrinks significantly due to
the increasing demand of the performance. The delay defect
under high temperature is therefore a general problem for
modern computer systems, and the problem has to be taken
seriously, especially for reliability-critical systems. However,
most current test methods don’t address this problem properly,
and it is thus necessary to propose a suitable test method for
delay faults under high temperature.

The current manufacturing test methods are not suitable to
test delay faults under high temperature. First, they often insert
some DFT circuits into the circuit under test (CUT), and make
CUT easy to be controlled and/or observed. As a consequence
of this, the tests include many non-functional patterns that
would never happen during real application. For delay faults,
the manufacturing test has extremely high proportion of
nonfunctional patterns, which may easily lead to the situation
that a function-correct chip is classified as a faulty one by
mistake. This is called over-testing, and it would cause

unbearable economic loss [2]. Secondly, it may be dangerous
to apply the manufacturing test for delay faults under high
temperature. On one hand, the manufacturing test would have
even worse over-test problem when the temperature rises up.
That is because these nonfunctional patterns can excite
untestable paths with longer delays easily, and their delay
faults would be observed firstly when the temperature rises up.
On the other hand, the manufacturing test is often developed to
test a circuit in normal temperature [3] [4] instead of testing
delay faults under high temperature. In manufacturing test, its
signal transitions are usually several times of that of the normal
application, and these extremely high signal transitions heat up
the chip greatly, or even burn the chip [3]. Therefore,
traditional manufacturing test method is not suitable for test
delay faults under high temperature.

Software-based self-testing (SBST) has been a promising
test method for processors that applies functional test patterns
and can achieve comparable fault coverage as the full-scan
method. SBST has already been proposed for delay faults
under the transition delay fault model [5], and achieved more
than 94% fault coverage. Meanwhile, some researchers
propose SBST method for path-delay faults, and also achieve
high test performance [6] [7]. Recently, automatic test
instruction generation (ATIG) [8] [9] is presented to
automatically generate SBST programs, and compact the test
programs without fault coverage loss. Also, SBST is optimized
to apply low-power or low-energy test for wireless sensor
nodes [10]. However, SBST has not been applied for delay
faults under high temperature.

In this paper, temperature-aware SBST is proposed that
self-heats the processors to a high temperature range and
effectively tests transition delay faults under high temperature.
First, it automatically generates high-quality test templates
through ATIG, and avoids the over-testing problem caused by
nonfunctional patterns. Second, it exploits two effective power-
intensive program transformations that guarantee to self-heat
up the processors internally. Third, it applies a greedy
algorithm to dynamically incorporate test template
transformation with optimized test overhead and make sure that
the temperature during test is within the specified range. To our
knowledge, this is the first work on temperature-aware SBST
targeting delay faults.

This paper is organized as follows. Section II covers the
necessary background of software-based self-testing for delay
fault under high temperature. Section III introduces delay test
program generation through ATIG. Later, we exploit the
power-intensive program transformations in Section IV.
Section V discusses the greedy algorithm for temperature-
aware test. Experimental results are analyzed in Section VI.
Finally, we conclude this paper in Section VII.

∗ To whom correspondence should be addressed.
This paper is supported in part by National Natural Science Foundation of
China (NSFC) under grant No. (61432017, 61404092), in part by Jiangsu
Prospective Research Project on Future Networks, and in part by the
Fundamental Research Funds for the Central Universities (2013KJ036).

©

II. SBST FOR DELAY FAULT UNDER HIGH TEMPERATURE
Software-based self-testing has been a promising processor

test method that applies normal programs to test both stuck-at
and delay faults under the functional mode. When testing delay
faults, SBST is executed according to Fig. 1(a) [11]. In this
example, test data of a functional pattern pair of delay test are
first stored in four registers via four load instructions. Second,
it uses the first add instruction to initialize the CUT with R1
and R2, and applies the second add instruction to test the delay
faults at-speed with R3 and R4. Third, it uses the store
instruction and stores the result in R6 for observation. In this
way, SBST uses instruction pairs and tests delay faults
successfully. The test programs generated with such instruction
pairs are put together to form a test template, as shown in Fig.
1(b). Note that an extra nop instruction is inserted after the last
load instruction because the fourth load instruction has data
dependency with the second sllv instruction, a stall would
happen before the sllv instruction, and the test pair would fail to
detect the given defects.

SBST would be one of the most suitable methods to test

delay faults under high temperature, if it could create and
maintain the high test temperature in the processor just through
executing programs. This is because, first of all, SBST does not
make any changes to the structure of the processors at all, and
all of its patterns are functional. In this way, it avoids the over-
testing problem, and it does not waste time to test many faults
detected already by traditional manufacturing test methods.
Second, SBST heats up the chip from the inside instead of the
outside, so that it truly tests delay faults under high temperature
conditions. In addition, it avoids the need to heat up the
processor externally, which usually takes a long time, and it
does not damage the insulating layer of the package, which
would reduce the lifetime of the processor.

However, it is difficult to create and maintain high test
temperature just through executing programs. On one hand, it
is still an open problem to generate power-intensive SBST
programs. In order to increase the power of an SBST program,
let us analyze the test template in Fig. 1(b). It includes four
parts, controlling instructions, test instructions, observing
instructions, and the loop checker. First, the loop checker
brings many stalls into the pipeline and degrades the density of
signal transition greatly. Therefore, it is reasonable to remove
these loop checker for higher power dissipation. Second, the
controlling and observing instructions, consisting of load and
store, cover a large proportion of the template. If these
instructions have more power dissipation, the whole template
would be more power-intensive. Of course, there are also other
ways to increase the power consumption of an SBST program.
On the other hand, because a power-intensive program may
heat up the processor beyond the temperature threshold and
damage the processor, the temperature must be maintained
within the proper range.

Recently, several efficient test scheduling algorithms have
been reported that control test temperature in a given range
[12]. However, these algorithms work only in the context of
core-based test with test access mechanisms, not for SBST. In
the following section, we will describe our proposed technique,
in details, to achieve temperature-aware SBST, and we will set
the given temperature range at [105, 110] similarly as in [13],
and use the testing of the ALU in the miniMIPS processor as
an illustrated example, where the processor is the newest
version without branch-prediction.

III. TEST PROGRAM GENERATION FOR DELAY FAULTS
We have developed an automatic test instruction generation

(ATIG) approach to generate SBST programs with high
coverage for delay faults. The developed method imposes
functional constraint on the CUT, generates functional pattern
pairs (instead of single patterns) for delay faults, and translates
these pairs into instruction pairs, finally SBST programs. When
applying SBST on an ALU, we assume first that the instruction
pair consists of two same instructions, so that we can impose
the functional constraint of the single type on the CUT, and
then generate one test template to implement these test pairs.
Later, we consider that the instruction pair contains different
instructions.

The flowchart of the ATIG algorithm is shown in Fig. 2.

First, the algorithm sets all ALU faults as the initial fault set.
Second, it checks if there is an unselected instruction type. If
yes, it continues; or else it goes to the sixth step. Third, it

Fig. 2. Automatic Test Instruction Generation for Delay Faults on ALU

Fig. 1. Software-Based Self-Testing for Delay Faults [11]

chooses an unselected instruction type, and generates
functional test pairs under the functional constraint of the type.
Forth, it applies a related test template for all these pairs, and
stores the test data in the right address. Fifth, it starts sequential
fault simulation with the test template, removes detected faults
(DT) from the fault set, and then returns to the second step. In
addition, the template that can’t detect new faults is removed
from the final programs. Sixth, the algorithm starts to generate
programs for the test pair containing different instructions,
denoted as mut1, mut2, and mut3. Finally, the algorithm
obtains the test templates, including mut1, mut2, and mut3.

The proposed ATIG algorithm can achieve very good test
quality on the ALU component, and will never cause any over-
testing problem. As shown in Fig. 5(a), the fault coverage of
the generated SBST program for the miniMIPS ALU rises up
continuously with the increasing of the test templates, and
finally arrives at 97.91%, which is more than that of the most
advanced SBST programs [4]. Furthermore, it has higher test
performance than traditional manufacturing test, even though
the latter can achieve more than 99% fault coverage. That is
because it does not test the faults that never happen under the
functional mode, and it thus avoids the over-test problem. For
example, the falling delay fault on the signal overflow would
not happen under the functional mode, because the test
program is interrupted once an overflow happens. Additionally,
many delay faults that are excited when an instruction follows
a branch instruction would not emerge either. Because stalls
are inserted after every branch, and that delay faults cannot
happen under the functional mode.

IV. POWER-INTENSIVE PROGRAM TRANSFORMATION
To heat up the processor just through executing programs

themselves, the original SBST programs have to be
transformed so that they will be power-intensive. As the
dynamic power of programs depend on the density of signal
transitions, either the SBST programs are transformed to be
more compacted with less stalls in their pipeline, or they bring
in some extra power dissipation, in order to increase their
power consumption.

A. Unrolling Loops for High Power

Unrolling loops in programs is an effective transformation

to enhance the power dissipation. Every loop contains a
checker to decide whether or not the loop should continue, and
the checker inevitably brings some stalls in the pipeline. If

every loop is unrolled, the checker is no longer required, and
no extra stalls will be encountered. As a result, unrolling loops
can reduce the execution time of a program, and enhance the
density of signal transitions. As loops often cover a large
proportion of the executing period of programs, unrolling loops
can increase power dissipation greatly.

The detail of the loop-unrolling transformation is shown in
Fig. 3. At first, the algorithm removes the checker from the
template, and it also obtains the iteration index of the loop as
the variable N. Later, it resets the offset of the instruction store
(or load) for the right memory address, and outputs the
instruction sequence once. Then N is decremented, and the
algorithm returns to the previous step. The algorithm repeats
the steps until N is 0. For example, the algorithm replicates the
template for instruction sllv 64 times to unroll the whole loop,
and requires 704 words of storage space including 256 words
for data. The additional storage space is the overhead that we
have to pay for using this transformation.

B. Exciting Cache Miss for High Power
Exciting cache miss in programs is another effective

transformation to enhance the power dissipation of modern
processors. In a modern processor, as cache device often covers
a large portion of the chip area, once its page is renewed, it
would lead to large power dissipation. To excite cache miss,
the program has to set the page tag of its store or load
according to the following situations. Assume the cache has n
pages (C[0]…C[n-1]), the whole memory has m pages
(M[0]… M[m-1]), and that FIFO algorithm is used to replace
cache pages. In addition, the set associate cache contains s sets,
and each set has k pages(s*k=n). First, in the direct mapped
cache, if the tag of the page M[t] is not equal to the tag of C[(t
mod n)] in equation 1 of Fig. 4, a cache miss happens. Second,
in the fully associative cache, only if the tag of the page M[t] is
different from the tag of each cache page shown in equation 2
of Fig. 4, a cache miss would happen. Third, in the set
associate cache as the page M[t] is mapped into the pth (p=(t/k)
mod s) cache set, if the tag of the page M[t] is different from
the tag of each cache page in the cache set [p*k, p*k+k) shown
in equation 3 of Fig. 4, a cache refresh would happen.

Cache misses can be excited through modifying test programs
slightly, and thus causing large power dissipation. Assume that
a data cache based on the direct mapped style is inserted into
the miniMIPS processor. To excite cache misses, the
transformed program makes the odd load/store instruction
access one memory page M[i], and the even load/store
instruction access another memory page M[j], while these two
pages are mapped to the same cache page. As shown in Fig. 4,

[0,)
[]. ! [].

i n
M t tag C i tag
∀ ∈

=

[0,)
(/)mod

[]. ! [].

i p k p k k
where p t k s
M t tag C i tag

∀ ∈ × + × +
=
=

[]. ! [mod].M t tag C t n tag=

Fig. 4. Exciting Cache Miss in Test Template

Fig. 3. Unrolling Loop in Test Template

the first and second load instructions in the program store the
base address in the same register R10, while their offsets are
0x0000 and 0xFC04 respectively. In this case, these two
instructions access different memory pages that are mapped to

the same cache page, and thus a cache miss happens. With this
transformation, whenever load or store happens, its related
memory page is absent in the cache, and that page would
replace the related cache page.

C. Impact on Power, Test Time, and Storage Space
To analyze the impact of the transformations discussed

above, an experimental system is built up to evaluate the power
dissipation, test time, store space of the self-heating program
generated by such transformations as well as the original
program. In the experiment, the miniMIPS processor with a
direct mapped data cache unit is synthesized with a 90ns
technical lib as the experimental bench, and its frequency is set
as 10MHZ. The experiment reports the test time and storage
space repaired to execute each test template. Later, the system
extracts the power trace from the Synopsys tool Primepower,
and then calculates the average power dissipation.

As shown in Fig. 5(b), the program transformations we
have discussed increase the power dissipation obviously. First,
TF1 that unrolls all loops increases the template power
significantly by 40.2% on average. That is because TF1
removes the pipeline stalls resulted from the loops, makes the
pipeline execution more efficient, and finally increases the
density of signal transitions. Second, TF3 that excites cache
misses of the load or store instruction also enhances the power
dissipation by 40.0% on average. That is because cache access
often take a large power proportion of modern processors, and
frequent cache misses indeed bring in huge power dissipation.
Third, these two methods can work together, and achieve the
highest power dissipation, as shown by the TF2 curve. In Fig.
5(b), TF2 often doubles the power dissipation of the original
template. Finally, note also that the power dissipation varies
greatly among different templates, and some appropriate
schedule is therefore required for temperature-aware test. In
general, because the program transformations enlarge the
power dissipation greatly, it is feasible to self-heat up
processors internally.

The storage space and test time of these transformed
templates are shown in Fig. 5(c) and 5(d), respectively.
Unrolling loop is an expensive method to increase power, as it
has to replicate the template N times where N is equal to the
iteration index of the loop. In Fig. 5(c), the line of TF1 and TF2
(the same line), associated with loop unrolling, is much higher

than the line of TF0 and TF3 (the same line), corresponding to
the original program and the one with only exciting cache
misses. Exciting cache miss is a much better transformation in
this regard, since it does not cost any extra storage space. That
is because this transformation just changes the offset of
instruction load or store. Therefore, the curve for TF0 and that
for TF3 become the same line as shown in Fig. 5(c), since TF3
only changes the offset of the load and store instructions of
TF0. The same applies also to TF1 and TF2.

On the other hand, exciting cache miss brings in some test
time overhead, while unrolling loop reduces test time greatly.
In Fig. 5(d), the line indicating the test time of TF3 (exciting
cache misses only) is the highest one, and the increasing ratio
of time overhead varies greatly. That is because the cache
misses cost extra clock cycles to refresh the cache, and the
increasing ratio depends on the frequency of load and store in
the template. For instance, the sllv template (template 3) that
contains five of these memory access instructions has higher
ratio than the mfhi template (template 15) with only three of
such instructions. In Fig. 5(d), the line of TF1 (loop unrolling
only) is the lowest one. That is because unrolling loop removes
the checker, makes the pipeline more compacted, and thus
reduces test time. The test time of TF1 is so low that even if
loop unrolling and exciting cache misses work together, their
test time is still lower than that of the original template. In
conclusion, with reasonable overhead, an SBST program can
be transformed to be power-intensive with the two simple
transformations discussed in this section.

V. TEMPERATURE-AWARE SBST
The last problem to address before we will have a complete

temperature-aware SBST so that an processor will be tested for
the worst-case delay defects is to schedule all test templates so
that they will be executed when the processor temperature is
always within the specified range. This is a difficult problem,
since N templates have N different power dissipations, and the
different order of them will lead to different power curves, and
consequently different temperature traces. The total amount of
possible schedules that result in different temperature traces is

Fig. 5. The Fault Coverage, Power Dissipation, Test Time, and Instruction Amount of Self-Heating SBST Templates, where TF0 is the original program, TF1
is the program after unrolling its loops, TF2 is the program after both unrolling loops and exciting cache misses, TF3 is the program after exciting cache
misses. In addition, the original template 21, 22, and 23 (mut1, mut2, and mut3) are unrolled templates which just have one transformation TF3.

0 5 10 15 20 25
40

50

60

70

80

90

100

template number

fa
u
lt
 c

o
ve

ra
g
e(

%
)

(a)

0 5 10 15 20 25
0.5

1

1.5

2

2.5

p
o
w

er
 d

is
si

p
at

io
n
 (
w

at
t)

template number

(b)

0 5 10 15 20 25
0

200

400

600

800

1000

1200

in
st

ru
ct

io
n
 a

m
o
u
n
t(
w

o
rd

)

template number

(c)

0 5 10 15 20 25
0

50

100

150

200

250

te
st

 t
im

e(
u
s)

template number

(d)

TF0

TF1
TF2

TF3

equal to the factorial of N. Furthermore, since each test
templates can be transformed with the two transformations
discussed in Section IV, there are four different
implementations for each template. It is, in general, an NP
problem to find out a feasible schedule that satisfies the
temperature specification. On top of this, the feasible schedule
is required to be optimized for as low test overhead as possible,
and there are several different trade-offs to be made. The self-
heating transformations can be used to enhance the power
dissipation, but they usually require more cost of storage space
or test time. For instance, unrolling loops multiplies the
instruction amount of the test template, so it would make the
SBST program much bigger.

A greedy algorithm is therefore proposed to dynamically
incorporate test template transformation with optimized test
overhead, and guarantee the test temperature range. The basic
idea is “low-overhead transformation first, and high
temperature first”. Specifically, the algorithm first searches the
feasible templates from the low-overhead transformations,
where the overhead of storage space has priority over the time
overhead because an SBST program is executed at speed. It
selects then the template that can heat the processor to the
highest temperature (HT), because it provides more margins for
the low-power templates, and this helps to find out a feasible
schedule quickly.

The flowchart of the greedy algorithm is shown in Fig. 6.

First, it applies extra power-intensive templates to heat the chip
up to the lower limit of the given temperature range, which is
then used as the starting temperature Ts. Second, it checks if
there are still some unexecuted templates left to be scheduled.
If there are no such templates, the algorithm has obtained an
optimized schedule and it will terminate; or else, the algorithm
continues. Third, according to the “low-overhead
transformation first” policy, it searches, from the original
template TF0, the feasible templates that keep the temperature
within the specified range. Specifically, it applies the 4th order
runge-kutta method (RK4) in Hotspot [14], and calculates the
ending temperature Te of each unexecuted template in TF0. As
shown in the upper subfigure of Fig. 6, the algorithm gets the
test time time[i, j] of the ith template in TF0 (j=0), and sets the

cycle index N as time[i, j]/interval, where interval is the
sampling interval of RK4. Later, the algorithm uses the power
power[i,j] of the ith template in TF0 (j=0), and calculates Te
after the first interval. Then, it sets Te as Ts for the next interval.
After repeating these steps N times, it obtains Te of the
template. In addition, the template that makes Te within that
range is called feasible template (FET). If there is only one
feasible template, it is chosen and inserted into the schedule
immediately. If there are several feasible templates, the rule
“high temperature first” is then used. In the lower subfigure of
Fig. 6, the algorithm checks these feasible templates one by
one. If Te of one template is higher than the current max Te
(Temax), it labels the template and its Te. Finally, it finds out the
template with the highest Te, chooses that template, and inserts
it into the schedule. In the above two situations, the chosen
template is marked as “executed”, its Te is used as the new Ts
for the next scheduling step, and the algorithm returns to the
second step. Or else, if there are no feasible templates, the
algorithm continues. Because storage space has higher priority
to test time, the algorithm searches first feasible templates from
TF3. After that, the algorithm will search feasible templates
from TF1 to TF2. Finally, if none of the template is feasible,
there would be no schedule satisfying the requirement of the
given temperature-aware test.

VI. EXPERIMENTAL RESULTS
In this section, the experiment on the miniMIPS ALU and

its results of the proposed temperature-aware SBST technique
are described in detail. In the experiment, the processor at the
room temperature (25 degree) is heated up to 105.02 degree by
executing a 2-watt program. The proposed algorithm generates
a feasible schedule that makes the temperature within the
specified temperature range of [105, 110]. For comparison
purpose, three references are used: the first executes the
original templates starting directly from the room temperature;
the second execute the templates in TF2 after the temperature
arrives at 105.02 degree; and the third applies Hotspot to
simulate the temperature of the generated schedule by the
proposed algorithm.

The proposed greedy algorithm is successful in finding out
a feasible schedule for the given temperature-aware test for the
miniMIPS ALU which consists of 23 test templates. It takes
advantage of the RK4 function to calculate Te of the
unexecuted templates in TF0 first. For this, its executing time
is 107 times of the RK4 sampling interval, so the algorithm
loads in its average power, repeats RK4 107 times, and finally
gets the maximal value of Te. Unfortunately, after calculating
each template in TF0, the algorithm finds no feasible template
that keep the temperature Te within the given temperature
range [105, 110]. According to “low overhead transformation
first”, it searches then feasible templates in TF3, and finds out
6 feasible templates that satisfy the temperature requirement.
According to “high temperature first”, template 20 that raise up
the temperature with the maximal value of 1.67 degree is
chosen to the schedule, and its Te (105.02+1.67=106.69 degree)
would be set as Ts for the next scheduling step. For the new
starting temperature of 106.69 degree, the algorithm finds out
several feasible templates in TF0. The same to the previous
steps, it selects template 18 in TF0 that does not bring in any
extra overhead, but the temperature falls to 106.19 degree,
since executing this temperate leads to a temperature reduction
of 0.5 degree. For this example, the algorithm quickly find out
an optimized feasible schedule, as shown in Fig. 7(a).

The experimental results also show that the proposed
algorithm guarantees the temperature of the processor to be
within the given range during the whole execution of the test
templates, and implements therefore temperature-aware SBST

Fig. 6. The Greedy Algorithm for Temperature-Aware SBST, where HT,
FETs, CALC, and interval stand for “Highest-Temperature”, “feasible
template”, “calculate”, and “sample interval in RK4”, respectively, while
Time[i, j] and Power[i, j] stand for the executing time and power of the ith
template in the jth transformation.

successfully. Fig. 7(b) shows the temperature traces of the
temperature-aware SBST program generated by the proposed
algorithm and the three references. First of all, the temperature
trace of the proposed algorithm (red) is within [105, 110]
completely, which satisfies therefore the temperature
specification. Additionally, this trace is only slightly above the
105 degree line. This means the algorithm guarantees the lower
temperature limit, and, at the same time, avoids using the high-
overhead transformations that will lead to large temperature
increase. It thus finds an optimized schedule without too much
overhead. Second, the temperature trace of the first reference
rises up, but it is far away from the given temperature range.
This means that, without temperature-aware SBST, the original
test templates, will be applied at a very low temperature level,
and therefore some delay defects will be not detected. Third,
the temperature trace of the second reference is mostly above
the specified upper temperature limit. Therefore it is harmful to
use always the power-intensive test templates directly, because
this will lead to too high temperature for the processor and it
may even burn it. It is thus necessary to control the temperature
of the SBST program. Finally, the temperature trace of the
third reference, generated directly by the Hotspot simulator is
coincident with the temperature trace of the proposed algorithm.
It means that the temperature prediction of the proposed
algorithm is accurate and therefore the proposed temperature-
aware SBST technique will be able to deliver the temperature
guarantee with the same accuracy as Hotspot can provide.

The limitation of the proposed algorithm is that it may not

obtain the most optimized schedule that requires the lowest
overhead. The greedy algorithm can find out the best solution
only when the previous scheduling step does not affect the
latter one. However, Te is based on Ts, so that the current
scheduling result relies on the previous one, and the greedy
algorithm may fail to obtain the best schedule.

However, the algorithm is very efficient. On one hand, the
algorithm only takes 8.484s to obtain a feasible schedule for
generating the temperature-aware test for the miniMIPS ALU,

even though the RK4 function is very time-consuming (0.01s
on average). This is because the algorithm is based on two
simple rules. Furthermore, the rule “high temperature first”
provides a larger temperature margin for, and simplifies, the
next scheduling step, thus speeding up also the whole
scheduling process. On the other hand, the algorithm has
optimized the storage space of the schedule greatly. Due to the
rule “low overhead first”, the algorithm mostly chooses the
templates of TF0 and TF3, as shown in Fig. 7 (a). In this way,
it avoids to bring in large overhead of storage space. As the
result, the algorithm brings 60.6% extra storage space in total
for this example, while the power-intensive only SBST solution
would requires 118%storage overhead.

VII. CONCLUSIONS
In this paper, a temperature-aware SBST technique is

proposed for testing delay faults under high temperature by
self-heating the processor within the given temperature range.
First, it automatically generates SBST program templates by
ATIG, and avoids the serious over-testing program associated
with traditional manufacturing test. Second, we propose some
transformations of the SBST program templates to enhance
their power intensity, which makes it possible to self-heat up
the processor internally by just executing programs. Third, the
technique applies a greedy algorithm to search the optimized
schedule of the SBST templates, while maintaining the high
temperature with reduced overhead. Experimental results on
the ALU of the miniMIPS processor show the generated SBST
test program is successful to guarantee delay test within the
given temperature range, and achieves very good test
performance with functional patterns.

REFERENCES
[1] N. Aghaee, Z. Peng, P. Eles, “An Efficient Temperature-Gradient Based

Burn-in Technique for 3D Stacked ICs”, DATE’2014, pp.1-4.
[2] A. Krstic, et al., “Embedded Software-Based Self-Test for Programable

Core-Based Designs”, IEEE Design & Test of Computers, Vol.19,
2002, pp.18-27.

[3] C. P. Ravikumar, M. Hirech, X. Wen, “Test Strategies for Low-Power
Devices”, Jounal of Low Power Electronics, Vol. 4, 2008, pp.127-138.

[4] X. Liu, Q. Xu, “On X-Variable Filling and Flipping for Capture-Power
Reduction in Linear Decompressor-Based Test Compression
Environment”, IEEE. Trans. on CAD, Vol.11, pp.1743-1753.

[5] D. Gizopoulos, et al., “Systematic Software-Based Self-Test for
Pipelined Processors”, IEEE Trans on VLSI Systems, Vol. 16, 2008,
pp.1441-1452.

[6] V. Singh, M. Inoue, K.K. Saluja, H. Fujiwara, “Instruction-Based Self-
Testing of Delay Faults in Pipeline Processors”, IEEE Trans. on VLSI
Systems, Vol.11, 2006, pp.1203-1215.

[7] K. Christou, et al., “A Noval SBST Generation Technique for Path-
Delay Faults in Microprocessors Exploiting Gate- and RT- Level
Description”, VTS’2008, pp.389-394.

[8] Y. Zhang, H. Li, X. Li, “Automatic Test Program Generation using
Executing-Trace Based Constraint Extraction for Embedded Processors”,
IEEE Trans. on VLSI Systems, Vol.21, 2013, pp.1220-1233.

[9] Y. Zhang, A. Rezine, P. Eles, Z. Peng, “Automatic Test Program
Generation for Out-of-Order Superscalar Processors”, ATS’2012,
pp.338-343.

[10] A. Merentitis, N. Kranitis, A. M. Paschalis, D. Gizopoulos, “Low
Energy Online Self-Test of Embedded Processsors in Dependable WSN
Nodes”, IEEE Trans. on DSC, Vol.8, 2011, pp.207-217.

[11] M. Psarakis, et al., “Microprocessor Software-Base Self-Testing”, IEEE
Design & Test of Computers, Vol.27, 2010, pp.4-19.

[12] Z. He, Z. Peng, P. Eles, “A Heuristic for Thermal-Safe SoC Test
Scheduling”, ITC’2007, pp.1-10.

[13] Z. He, Z. Peng, P. Eles, “Multi-Temperature Testing for Core-based
System-on-Chip”, DATE’2010, pp. 208-213.

[14] http://lava.cs.virginia.edu/HotSpot.

Fig. 7. Experimental Results of Temperature-Aware SBST, while in (a) the
red, green, blue, and pink bar stands for TF0, TF1, TF2, and TF3, and the
number is the template number; in (b) the pink, blue, red, and black line
stands for the temperature trace of the original program, power-intensive
program, feasible schedule on hotspot and on the algorithm, respectively.

