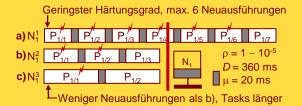
Analyse und Optimierung von fehlertoleranten Eingebetteten Systemen mit gehärteten Prozessoren

Viacheslav Izosimov, Ilia Polian, Paul Pop, Petru Eles, Zebo Peng Universität Linköping (S), Universität Freiburg, TU Lungby (DK)

Integration von Software- und Hardware-Fehlertoleranz

- Multiprozessorsysteme, Kommunikation über einen Bus
- Prozessoren in unterschiedlichen Härtungsgraden verfügbar
- Fehlerbehandlung in Software: Prozessneuausführungen
- Minimiere Kosten unter Echtzeit- und Zuverlässigkeitsvorgaben


Systemmodell

- Anwendung: gerichteter, azyklischer Graph
- Ecken: Prozesse, Kanten: Abhängigkeiten
- Abgebildet auf ein Multiprozessorsystem
- Fehlerbehandlung durch Prozess-Neuausführung
- Beispiel: 4 Prozesse, 2 Prozessoren;
 WCET, Fehlerrate, Kosten für 3 Härtungsgrade

A							
Anwendung: 4 Prozesse	N ₁	h = 1		h = 2		h = 3	
	7.41	t	р	t	р	t	р
m ₁	P ₁	60	1.2·10 ⁻³	75	1.2.10-5	90	1.2-10-10
(P_2) (P_4)	P_2	75	1.3·10 ⁻³	90	1.3-10-5	105	1.3·10 ⁻¹⁰
D = 360 ms	P ₃	60	1.4·10 ⁻³	75	1.4-10-5	90	1.4·10 ⁻¹⁰
D = 300 IIIS	P_4	75	1.6·10 ⁻³	90	1.6-10-5	105	1.6-10 ⁻¹⁰
	Kost	Kosten 16		32		64	
	_		10		UZ	_	0-7
Architektur: 2 Prozessoren	F		= 1	ŀ	1 = 2	h) = 3
2 Prozessoren	N ₂			t		t	
	F		= 1	_	1 = 2	t 75	i = 3
2 Prozessoren	N ₂	h t	= 1 p	t 60	n = 2 p	t	n = 3
2 Prozessoren	<i>N</i> ₂	<i>h t</i> 50	= 1 p 1·10 ⁻³	t 60	p 1.10-5	<i>t</i> 75 90	$p = 3$ p 1.10^{-10}
2 Prozessoren	N ₂ P ₁ P ₂	65	= 1 p 1.10 ⁻³ 1.2·10 ⁻³	t 60 75 60	$p = 2$ p 1.10^{-5} $1.2.10^{-5}$	<i>t</i> 75 90 75	$p = 3$ p 1.10^{-10} $1.2.10^{-10}$

Software- vs. Hardware-Fehlertoleranz

- Zuverlässigkeitsvorgabe ρ (Wahrscheinlichkeit eines unbehandelten Fehlers)
- Systemausfallwahrscheinlichkeits-Analyse: Berechnet notwendige Anzahl von Neu-Ausführungen, um ρ zu erreichen

Entwurfs- und Optimierungsstrategie

- Ermittelt Architektur, Härtungsgrade der Knoten, Allokation von Prozessen, maximal erforderliche Anzahl von Neuausführungen pro Knoten, quasistatischen Ablaufplan
- Iteratives, heuristisches Vorgehen
- 55% Verbesserung (Anteil von zulässigen Anwendungen), synthetische Benchmarks
- 66% Kostenreduktion auf einem Vehicle Cruise Controller

