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In this paper, we propose a strategy for the synthesis of fault-tolerant schedules and for the mapping of fault-
tolerant applications. Our techniques handle transparency/performance trade-offs and use the fault-occurrence 
information to reduce the overhead due to fault tolerance. Processes and messages are statically scheduled, and 
we use process re-execution for recovering from multiple transient faults. We propose a fine-grained transparent 
recovery, where the property of transparency can be selectively applied to processes and messages. 
Transparency hides the recovery actions in a selected part of the application so that they do not affect the 
schedule of other processes and messages. While leading to longer schedules, transparent recovery has the 
advantage of both improved debuggability and less memory needed to store the fault-tolerant schedules. 
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1. INTRODUCTION  

Modern embedded systems are complex computer systems with sophisticated software 

running on often distributed hardware platforms. Such systems can provide very high 
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levels of service and are replacing mechanical and hydraulic parts of control systems in 

aircraft, automobiles, production lines, switching systems, and medical equipment. They 

can be responsible for safety-critical operations in, for example, automatic flight control, 

electronic steering, or car braking systems. 

Safety-critical embedded systems have to deliver correct results even in the presence 

of faults. Faults can be permanent (e.g., damaged links or microcontrollers), transient, 

and intermittent [Koren and Krishna, 2007]. Transient and intermittent faults1 (or “soft 

errors”) appear for a short time, cause miscalculation in logic [Rossi et al., 2005] and/or 

corruption of data, and then disappear without physical damage to the circuit. Causes of 

transient faults can be radiation [Velazco et al., 2007; May and Woods, 1978], 

electromagnetic interference [Strauss et al., 2006; Wang, 2003], lightning storms [Heine 

et al., 2005], crosstalk [Metra et al., 1998], temperature variations [Wei et al., 2004], and 

power supply fluctuations [Junior et al., 2004]. In this paper we will deal with transient 

faults. Transient faults have become one of the main concerns in the design of modern 

embedded systems due to the increased levels of integration in semiconductors, e.g. 

smaller transistor sizes, higher frequencies, and lower voltages [Constantinescu, 2003; 

Maheshwari et al., 2004; Hareland et al., 2001; Shivakumar et al., 2002]. According to 

recent studies [Kopetz et al., 2004; Shivakumar et al., 2002], the rate of transient-to-

permanent faults can be 100:1 or even higher. 

Traditionally, transient faults have been addressed with hardware replication [Kopetz 

et al., 1990; Alstrom and Torin, 2001; Poledna, 1995; Claesson et al., 1998]. However, 

solutions based on the replication of hardware are very costly, in particular, with the 

increasing number of transient faults that have to be tolerated. In order to reduce the cost, 

other techniques are required, such as re-execution [Kandasamy et al., 2003a], replication 

[Xie et al., 2004; Xie et al., 2007; Chevochot and Puaut, 1999] and recovery with 

checkpointing [Punnekkat and Burns, 1997; Zhang and Chakrabarty, 2006; Orailoglu and 

Karri, 1994; Xu and Randell, 1996; Krishna and Singh, 1993; Lee et al., 1999; Melhem et 

al., 2004; Ayav et al., 2008]. The above techniques can also tolerate some of the software 

errors that manifest themselves as transient faults, for example, Heisenbugs [Kopetz et 

al., 2004], caused by wrongly initialized data or synchronization-related problems. 

Safety-critical embedded systems have to satisfy cost and performance constraints 

besides reliability requirements. For example, automotive applications that are 

responsible for such safety-critical functions as braking or stabilization have to be fault-

                                                           
1 We will refer to both transient and intermittent faults as “transient” faults. 
 



tolerant and, at the same time, meet cost and timing constraints. However, re-execution, 

replication and recovery with checkpointing, if applied in a straightforward manner, will 

lead to significant time overheads and, hence, to solutions that do not meet performance 

constraints. Thus, faster components or more resources will be demanded to satisfy 

performance constraints, which, on the other hand, may not be acceptable due to cost 

limitations. Therefore, efficient design approaches are needed to satisfy cost and timing 

requirements imposed on fault-tolerant embedded systems. Researchers have proposed 

design strategies for the synthesis of fault-tolerant embedded systems in the past years. 

Liberato et al. [2000] have proposed an approach for design optimization of 

monoprocessor systems in the presence of multiple transient faults and in the context of 

pre-emptive earliest-deadline-first (EDF) scheduling. Hardware/software co-synthesis 

with fault tolerance has been addressed in [Srinivasan and Jha, 1995] in the context of 

event-driven scheduling. Xie et al. [2004] have proposed a technique to decide how 

replicas are selectively inserted into the application, based on process criticality. Ayav et 

al. [2008] have achieved fault tolerance for real-time programs with automatic 

transformations, where recovery with checkpointing is used to tolerate one single fault at 

a time. Power-related optimization issues of fault-tolerant embedded systems have been 

studied in [Zhang and Chakrabarty, 2006; Melhem et al., 2004]. Ying Zhang et al. [2006] 

have studied fault tolerance and dynamic power management in the context of message-

passing distributed systems. Fault tolerance has been applied on top of a pre-designed 

system, whose process mapping and scheduling ignore the fault tolerance issue. Melhem 

et al. [2004] have considered checkpointing for rollback recovery in the context of online 

earliest-deadline-first (EDF) scheduling on a monoprocessor embedded system. We have 

proposed a number of design optimization and scheduling techniques [Pop et al., 2009; 

Izosimov et al., 2005, 2006a, 2006b], including mapping and policy assignment, that are 

able to deliver efficient fault-tolerant embedded systems under limited amount of 

resources. 

Fault tolerance techniques not only reduce the performance and increase the cost but 

also increase the complexity of embedded software. Compexity often leads to serious 

difficulties during debugging and testing of fault-tolerant embedded systems. 

A common systematic approach for debugging embedded software is to insert 

observation points into software and hardware [Vranken et al., 1997; Tripakis, 2005; 

Savor and Seviora, 1997] for observing the system behavior under various circumstances. 

The observation points are usually inserted by an expert, or can be automatically injected 

based on statistical methods [Bourret et al., 2004]. In order to efficiently trace design 



errors, the results produced with the observation points have to be easily monitored, even 

in the recovery scenarios against transient faults. Unfortunately, the number of recovery 

scenarios is often very high and, thus, monitoring observation points for all these 

scenarios is often infeasible. Moreover, due to the increased number of fault scenarios, 

the number of possible system states substantially increases. It results in a very complex 

system behavior that is difficult to test and verify. The overall number of possible 

recovery scenarios can be considerably reduced by restricting the system behavior, in 

particular, by introducing transparency requirements. 

A transparent recovery scheme has been proposed in [Kandasamy et al., 2003a], 

where recovering from a transient fault on one computation node does not affect the 

schedule of any other node. In general, transparent recovery has the advantage of 

increased debuggability, where the occurrence of faults in a certain process does not 

affect the execution of other processes. This reduces the total number of execution 

scenarios. At the same time, with increased transparency, the amount of memory needed 

to store the schedules decreases. However, transparent recovery increases the worst-case 

delay of processes, potentially reducing the overall performance of the embedded system. 

Thus, efficient design optimization techniques are even more important in order to meet 

time and cost constraints in the context of fault-tolerant embedded systems with 

transparency requirements. However, to our knowledge, most of the design strategies 

proposed so far [Zhang and Chakrabarty, 2006; Xie et al., 2004; Pinello et al., 2008; 

Srinivasan and Jha, 1995; Melhem et al., 2004; Ayav et al., 2008]have not explicitly 

addressed the transparency requirements for fault tolerance. If at all addressed, these 

requirements have been applied, at a very coarse-grained level, to a whole computation 

node, as in the case of the original transparent re-execution proposed in [Kandasamy et 

al., 2003a]. In such a schema, system behavior can be observed only by monitoring 

messages sent to and out of the computation node. In this case, designers neither can 

observe intraprocessor process inputs nor observe intraprocessor messages. Moreover, 

the coarse-grained transparency also leads to unnecessary end-to-end delays since, by far, 

not all of the fixed interprocessor messages have to be observed. 

In this paper we propose a design optimization strategy that efficiently handles more 

elaborate transparency requirements and, at the same time, provides schedulable fault-

tolerant solutions under limited amount of resources. 

 



1.1 Related Work 

In the context of fault-tolerant real-time systems, researchers have tried to integrate fault 

tolerance techniques and task scheduling [Han et al., 2003; Bertossi and Mancini, 1994; 

Burns et al., 1996; Zhang and Chakrabarty, 2006; Xie et al., 2004; Wei et al., 2006]. 

Girault et al. [2003] have proposed a generic approach to address multiple failures with 

active replication. Ahn et al. [1997] have proposed a scheduling algorithm that generates 

efficient schedules with encapsulated primary-backup replicas against processor failures 

in a multiprocessor system. Passive replication has been used in [Al-Omari et al., 2001] 

to handle a single failure in multiprocessor systems so that timing constraints are 

satisfied. Liberato et al. [2000] have proposed an approach for design optimization of 

monoprocessor systems under presence of multiple transient faults. Conner et al. [2005] 

have introduced redundant processes into a pre-designed schedule to improve error 

detection. Hardware/software co-synthesis of fault-tolerant embedded systems has been 

addressed in [Srinivasan and Jha, 1995]. Ayav et al. [2008] have achieved fault tolerance 

for real-time programs with automatic transformations, where recovery with 

checkpointing is used to tolerate one single fault at a time. Xie et al. [2004; 2007] have 

proposed an approach to selectively insert replicas into the application with minimization 

of overall system criticality. Shye et al. [2007] have developed a process-level 

redundancy approach against multiple transient faults with active replication on multi-

core processors. Power-related optimization issues of fault-tolerant embedded systems 

have been studied in [Zhang and Chakrabarty, 2006; Han and Li, 2005; Zhu et al., 2005; 

Melhem et al., 2004; Wei et al., 2006; Pop et al., 2007]. 

Kandasamy et al. [2003a] have proposed transparent re-execution, where recovering 

from a transient fault on one computation node is hidden (masked) from other nodes, i.e., 

they have considered node-level transparency. Later this work has been extended with 

fault-tolerant transmission of messages on the bus [Kandasamy et al., 2003b]. Pinello et 

al. [2004; 2008] have addressed primarily permanent faults and have proposed mapping 

and scheduling algorithms for embedded control software. In [Izosimov et al., 2005; Pop 

et al., 2009] we have extended the approach of [Kandasamy et al., 2003a] with active 

replication and checkpointing optimization, and have proposed a fault-tolerance policy 

assignment strategy to decide which fault tolerance technique, e.g., checkpointing, active 

replication, or their combination, is the best suited for a particular process in the 

application. 

However, the scheduling approach in [Izosimov et al., 2005; Pop et al., 2009] is very 

limited in its capacity to accommodate various fault scenarios and, thus, will lead to 



unnecessary long schedules. The approach also considers only coarse-grained, node-level 

transparency and cannot handle more elaborate transparency requirements applied to a 

particular process or message, or to a set of processes and messages. Such fine-grained 

transparency approaches are needed for, e.g., a selective insertion of observation points, 

where only a particular subset of processes and messages needs to be monitored [Bourret 

et al., 2004; Tripakis, 2005]. 

 

1.2 Contributions 

In this paper, we present a novel algorithm for the synthesis of fault tolerant schedules 

that handles the transparency/performance trade-offs. The proposed algorithm not only 

handles fine-grained transparency, but, as the experimental results will show, also 

significantly reduces the schedule length compared to the previous scheduling approach 

[Izosimov et al., 2005; Pop et al., 2009]. 

A fine-grained approach to transparency, proposed in this paper, handles transparency 

requirements at the application level instead of resource level, selectively applying 

transparency to a particular process or message, or to a set of processes and messages. 

Thus, our fine-grained approach to transparency offers the designer the opportunity to 

gradually trade-off between debuggability and memory requirements on one side, and 

performance on the other side. 

Our approach makes use of the fault-occurrence information in order to adapt 

schedules to the current fault scenario and, thus, reduce the overhead due to fault 

tolerance. We use a fault-tolerant process graph representation (FTPG) to model the 

application: conditional edges are used for modelling fault occurrences, while 

synchronization nodes capture the fine-grained transparency requirements. The synthesis 

problem is formulated as an FTPG scheduling problem.  

In this work, we also present an optimization algorithm that produces a mapping of 

processes on computation nodes such that the application is schedulable and the fault 

tolerance and transparency properties imposed by the designer are satisfied. 

 

2. OVERALL SYNTHESIS FLOW 

Our overall synthesis flow is outlined in Fig. 1. The application is modelled as a set of 

processes communicating using messages, which runs on the hardware architecture 

composed of a set of computation nodes connected to a communication bus (as described 

in Section 3). The fault tolerance and real-time constraints, such as the maximum number 

k of transient faults and process deadlines, are provided as input. 



The actual synthesis and optimization is performed in several steps: 

(A) The designer introduces transparency requirements, by selecting a set of 

processes and messages to be frozen. For example, designers can select important data 

communications as frozen for observing process inputs and outputs and for evaluation of 

timing properties of processes and messages. 

(B) The application, with introduced transparency requirements, is translated into a 

fault-tolerant process graph (FTPG). The FTPG representation, presented in Section 7.1, 

captures the transparency properties and all possible combinations of fault occurrences. 

 

Fig. 1. Overall Synthesis Flow. 



(C) The FTPG is passed over to the mapping optimization algorithm (Section 6.3). 

The algorithm optimizes the placement of application processes on the computation 

nodes and uses as a cost function the estimated schedule length (Section 7.4). 

(D) Considering the mapping solution produced in the previous step, a fault-tolerant 

conditional schedule is synthesized as a set of schedule tables (Section 7.3). A distributed 

run time scheduler will use these schedule tables for execution of the application 

processes on the computation nodes. 

(E) If the application is unschedulable, the designer has to change the transparency 

setup, re-considering the transparency/performance trade-offs. 

The rest of the paper is organized as follows. Section 3 presents our application and 

system model. Section 4 introduces our fault model for multiple transient faults. Section 

5 introduces transparency and illustrates the performance/transparency trade-offs on a set 

of motivational examples. Section 6 presents our problem formulation and overall design 

optimization strategy. Section 7 introduces the FTPG representation and presents our 

conditional scheduling algorithm for synthesis of fault-tolerant schedules as well as our 

schedule length estimation heuristic. The proposed scheduling and mapping algorithms 

are evaluated on a set of synthetic applications and a real-life example in Section 8. 

Conclusions are presented in Section 9. 

 

3. APPLICATION AND SYSTEM MODEL 

We consider a set of real-time applications. Each application Ak is represented as an 

acyclic directed graph Gk(Vk, Ek). Each process graph Gk is executed with period Tk. The 

graphs for all applications are merged into a single graph with a period T obtained as a 

least common multiple (LCM) of all periods Tk [Pop et al., 2004]. This graph corresponds 

to a virtual application A, represented as a directed acyclic graph G(V, E). Each node Pi ∈  

V represents one process. An edge eij ∈  E from Pi to Pj indicates that the output of Pi is 

the input of Pj. 

Processes are not preempted during their execution. A process can be activated after 

all its inputs have arrived. The process issues its outputs, encapsulated in messages, when 

it completes. 

Time constraints are imposed with a global hard deadline D ≤  T, at which the 

application A has to complete. In addition, processes can be associated with individual 

deadlines. An individual hard deadline di of a process Pi is modelled as a dummy node 



inserted into the application graph with the execution time Cdummy = D −  di [Pop et al., 

2004]. This dummy node however, is not allocated to any resource. 

We consider that the application is running on a set of computation nodes N 

connected to a bus B. The mapping of processes in the application is determined by a 

function M: V  → N. For a process Pi ∈ V, M(Pi) is the node to which Pi is assigned for 

execution. Let N Pi ⊆  N be the set of nodes, to which Pi can be potentially mapped. We 

know the worst-case execution time (WCET) k

i

N
PC of process Pi, when executed on each 

node Nk ∈ N Pi [Puschner and Burns, 2000]. Processes mapped on different computation 

nodes communicate with a message sent over the bus. We consider that the worst-case 

size of messages is given and we implicitly translate it into the worst-case transmission 

time on the bus. If processes are mapped on the same node, the message transmission 

time between them is accounted for in the worst-case execution time of the sending 

process. 

Each computation node Nj has a real-time kernel as its main component. The kernel 

invokes processes, mapped on Nj, according to the schedule table located in this node. 

This local schedule table contains all the information that is needed for activation of 

processes and for sending and receiving communication messages [Pop et al., 2004]. We 

consider a static bus, which allows sending messages at different times as long as these 

times are specified in the bus schedule. However, our work can be also used with the 

static bus that has a limited number of mode changes such as, for example, a TTP bus 

[Kopetz and Bauer, 2003]. In this case, a frame-packing mechanism can be implemented 

for incorporating messages [Pop et al., 2005]. 

In Fig. 2 we have an application A consisting of the process graph G with four 

processes, P1, P2, P3, and P4. Processes communicate with messages m1, m2, m3, m4 and 

m5. The deadline is D = 210 ms. The execution times for the processes, if mapped on 

computation nodes N1 and N2, are shown in the table on the right side. “X” in the table 

 

Fig. 2. Application Example. 



indicates a mapping restriction, i.e., process P2 can only be mapped on node N1, and 

process P3 can only be mapped on node N2. The transmission times of messages, if 

transmitted over the bus, are also indicated in the figure. 

 

4. FAULT TOLERANCE 

In this paper we are interested in fault-tolerance techniques for transient faults. In our 

model, we consider that at most k transient faults may occur anywhere in the system 

during one operation cycle of the application. The number of faults can be larger than the 

number of computation nodes in the system. Several transient faults may occur 

simultaneously on several computation nodes as well as several faults may occur on the 

same computation node. In this paper, we assume that transient faults on the bus are 

addressed at the communication level, for example, with the use of efficient error 

correction codes [Piriouet al., 2006; Balakirsky and Vinck, 2006; Emani et al., 

2007]and/or through hardware replication of the bus [Kopetz and Bauer, 2003; Silva et 

al., 2007]. 

The fault-tolerance mechanisms against transient faults on computation nodes are part 

of the software architecture. The software architecture, including the real-time kernel, 

error detection and fault-tolerance mechanisms, are themselves fault-tolerant. 

We first need to detect the transient faults in order to apply fault tolerance techniques. 

Error detection can be hardware-based (e.g., watchdogs [Benso et al., 2003], signature 

checking [Sciuto et al., 1998]) or software-based [Oh et al., 2002a; Nicolescu et al., 2004; 

Oh et al., 2002b]. We assume that all faults can be found using the above error detection 

methods. The time needed for detection of faults is accounted for as part of the worst-

case execution time (WCET) of the process. 

We use process re-execution as a fault tolerance mechanism. The process re-

execution operation requires an additional recovery overhead denoted in this paper as µ. 

The recovery overhead includes the worst-case time that is needed in order to restore 

process inputs, clean up the node’s memory, and re-start process execution. Let us 

consider the example in Fig. 3, where we have process P1 and a fault-scenario consisting 

of k = 2 transient faults that can happen during one cycle of operation. In the worst-case 

fault scenario depicted in Fig. 3, the first fault happens during the process P1’s first 

execution, and is detected by the error detection mechanism. After a worst-case recovery 

overhead of µ1 = 5 ms, depicted with a light gray rectangle, P1 will be executed again. Its 

second execution in the worst-case could also experience a fault. Finally, the third 

execution of P1 will succeed. 



 

 

5. TRANSPARENCY 

In this paper, we propose a fine-grained approach to transparency offering the designer 

the possibility to trade-off transparency for performance. Given an application A(V, E) we 

will capture the transparency using a function T: W  →  {Frozen, Regular}, where W  is 

the set of all processes and messages. If T(wi) = Frozen, our scheduling algorithm will 

handle this transparency requirement (a) by scheduling wi, if it is a message, at the same 

transmission time in all alternative execution scenarios and (b) by scheduling the first 

execution instance of wi, if it is a process, at the same start time in all alternative 

execution scenarios. In a fully transparent system, all messages and processes are frozen. 

Systems with a node-level transparency [Kandasamy et al., 2003a; Izosimov et al., 2005; 

Pop et al., 2009] support a limited transparency setup, in which all the inter-processor 

messages are frozen while all processes are regular. In such a scheme, system behavior 

can be observed only by monitoring messages sent to and out of the computation node. It 

leads to both reduced observability and unnecessary end-to-end delays. 

In the example in Fig. 4a, we introduce transparency properties into the application A 

from Fig. 2. We make process P3 and messages m2 and m3 frozen, i.e., T(m2) = Frozen, 

T(m3) = Frozen and T(P3) = Frozen. We will depict frozen processes and messages with 

squares, while the regular ones are represented by circles. The application has to tolerate 

k = 2 transient faults, and the recovery overhead µ is 5 ms. Processes P1 and P2 are 

mapped on N1, and P3 and P4 are mapped on N2. Messages m1, m2 and m3 are scheduled 

on the bus. Four alternative execution scenarios are illustrated in Fig. 4b-e. 

The schedule in Fig. 4b corresponds to the fault free scenario. Once a fault occurs in 

P4, for example, the scheduler on node N2 will have to switch to another schedule. In this 

schedule, P4 is delayed with C4 +  µ to account for the fault, where C4 is the worst-case 

execution time of process P4 and µ is the recovery overhead. If, during the second 

 

Fig. 3. Re-execution. 



execution of P4, a second fault occurs, the scheduler has to switch to another schedule 

illustrated in Fig. 4c. 

Since P3, m2 and m3 are frozen they should be scheduled at the same time in all 

alternative fault scenarios. For example, re-executions of process P4 in case of faults in 

Fig. 4c must not affect the start time of process P3. The first instance of process P3 has to 

be always scheduled at the same latest start time in all execution scenarios, as illustrated 

with a dashed line crossing Fig. 4. Even if no faults happen in process P4, in the 

execution scenarios depicted in Fig. 4d and Fig. 4b, process P3 will have to be delayed. It 

leads to a worst-case schedule as in Fig. 4d. Similarly, idle times are introduced before 

messages m2 and m3, such that possible re-executions of processes P1 and P2 do not affect 

the sending times of these messages. Message m1, however, will be sent at different times 

depending on fault occurrences in P1, as illustrated in Fig. 4e. 

In Section 5.1, we further illustrate the transparency/performance trade-offs. In 

Section 5.2, we will discuss the importance of considering transparency properties during 

mapping. 

 

 

Fig. 4. Application with Transparency. 



5.1 Transparency/Performance Trade-offs 

In Fig. 5 we illustrate three alternatives, representing different transparency/performance 

setups for the application A in Fig. 2. The entire system has to tolerate k = 2 transient 

faults in the hyperperiod of the application, and the recovery overhead µ is 5 ms. 

Processes P1 and P2 are mapped on N1, and P3 and P4 are mapped on N2. For each 

transparency alternative (a−c), we show the schedule when no faults occur (a1–c1) and 

also depict the worst-case scenario, resulting in the longest schedule (a2–c2). The end-to-

a) b) c)

 

Fig. 5. Trade-off between Transparency and Performance 



end worst-case delay of an application will be given by the maximum finishing time of 

any alternative schedule. Thus, we would like the worst-case schedules in Fig. 5a2-c2 to 

meet the deadline of 210 ms depicted with a thick vertical line. 

In Fig. 5a1 and 5a2 we show a schedule produced with a fully transparent alternative, 

in which all processes and messages are frozen. We can observe that processes and 

messages are scheduled at the same time, indifferent of the actual occurrence of faults. 

The shaded slots in the schedules indicate the intervals reserved for re-executions that are 

needed to recover from fault occurrences. In general, a fully transparent approach, as 

depicted in Fig. 5a1 and Fig. 5a2, has the drawback of producing long schedules due to 

complete lack of flexibility. The worst-case end-to-end delay in the case of full 

transparency, for this example, is 265 ms, which means that the deadline is missed. 

The alternative in Fig. 5b does not have any transparency restrictions. Fig. 5b1 shows 

the execution scenario if no fault occurs, while 5b2 illustrates the worst-case scenario. In 

the case without frozen processes/messages, a fault occurrence in a process Pi can affect 

the schedule of another process Pj. This allows to build schedules customized to the 

actual fault scenarios and, thus, are more efficient. In Fig. 5b2, for example, a fault 

occurrence in P1 on N1 will cause another node N2 to switch to an alternative schedule 

that delays the activation of P4. P4 receives message m1 from P1. This would lead to a 

worst-case end-to-end delay of only 155 ms, as depicted in Fig. 5b2, that meets the 

deadline. 

However, transparency could be highly desirable and a designer would like to 

introduce transparency at certain points of the application without violating the timing 

constraints. In Fig. 5c, we show a setup with a fine-grained, customized transparency, 

where process P3 and its input messages m2 and m3 are frozen. In this case, the worst-case 

end-to-end delay of the application is 205 ms, as depicted in Fig. 5c2, and the deadline is 

still met. 

 

5.2 Mapping with Transparency Constraints 

In Fig. 6 we consider an application consisting of six processes, P1 to P6, that have to be 

mapped on an architecture consisting of two computation nodes connected to a bus. We 

assume that there can be at most k = 2 faults during one cycle of operation. The worst-

case execution times for each process on each computation node are depicted in the 

figure. We impose a deadline of 155 ms for the application. 

If we do not impose any transparency requirements, i.e., all processes and messages 

are regular, the optimal mapping is the following: processes P2, P4 and P5 are mapped on 



node N1, while P1, P3 and P6 on node N2. For this mapping, Fig. 6a1 shows the non-fault 

scenario, while Fig. 6a2 depicts the worst-case scenario. As observed, the application is 

schedulable. 

If the same mapping determined in Fig. 6a is used with considering process P2 frozen, 

the worst-case scenario is depicted in Fig. 6b1. In order to satisfy transparency (start time 

of P2 identical in all scenarios) the start time of P2 is delayed according to the worst-case 

finishing time of P4. Thus, the deadline is violated. We will improve the schedule for the 

worst-case scenario if process P2 is inserted between re-executions of process P4, as 

 

Fig. 6. Mapping and Transparency. 



shown in Fig. 6b2. In this case, process P2 will always start at 70 ms. Even though the 

worst-case scenario depicted in Fig. 6b3 is better than the one in Fig. 6b1, the deadline is, 

as before, violated. Only another mapping will make the system schedulable with a 

frozen P2: processes P1, P2 and P5 are mapped on node N1, while processes P3, P4 and P6 

are mapped on node N2. The worst-case scenario, according to this mapping, is depicted 

in Fig. 6b4. Counterintuitively, this mapping is less balanced and the amount of 

communications is increased compared to the previous solution, since we send message 

m2 that is two times larger than m1. Nevertheless, in this case the deadline is satisfied. 

This illustrates that a mapping optimal for an unrestricted design is unsuitable if 

transparency is imposed. 

 

6. FAULT-TOLERANT SCHEDULING AND DESIGN OPTIMIZATION 

In this section, we formulate the design problem and present our design optimization 

strategy. 

6.1 Problem Formulation 

As an input, we get a virtual application A, composed from a set of applications Ak (see 

Section 3). Application A runs on a bus-based architecture consisting of a set of hardware 

nodes N interconnected via a broadcast bus B. The transparency requirements T on the 

application, the deadlines, the maximum number k of transient faults, and the recovery 

overhead µ are given. We know the worst-case execution times for each process on each 

computation node. The maximum transmission time for all messages, if sent over the bus 

B, is given. 

As an output, we have to produce (1) the mapping of the processes to the computation 

nodes and (2) the fault-tolerant schedule S, such that maximum k transient faults are 

tolerated by re-execution, the transparency requirements are considered, and deadlines 

are satisfied even in the worst-case fault scenario. 

 



6.2 Overall Strategy 

The design problem outlined above is NP complete [Ullman, 1975] and is, therefore, 

addressed using heuristics. In our strategy, illustrated in Fig. 7, we start by determining 

an initial mapping Minit with the InitialMapping function (line 1). This is a straightforward 

mapping that balances computation node utilization and minimizes communications. The 

schedulability of the resulted system is evaluated with the conditional scheduling 

algorithm (lines 2–3) from Section 7.3. If the initial mapping is unschedulable, then we 

iteratively improve the mapping of processes on the critical path of the worst-case fault 

scenario aiming at finding a schedulable solution (lines 4–9). For this purpose, we use a 

hill-climbing mapping heuristic that combines a greedy algorithm and a method to 

recover from local optima. 

A new mapping alternative Mnew is obtained with a greedy algorithm, IterativeMapping 

(line 5), presented in Section 6.3. The algorithm uses as a cost function the schedule 

length estimated with the heuristic presented in Section 7.4, in order to evaluate the 

intermediate mapping decisions. This approach, where we use estimation instead of the 

actual scheduling, reduces the runtime and speeds-up the optimization. However, the 

final mapping solution obtained with the IterativeMapping has to be evaluated with the 

actual conditional scheduling algorithm (line 6) from Section 7.3. The scheduling 

algorithm will produce the schedule tables and will determine exactly if the application 

with the proposed mapping is schedulable. 

Since IterativeMapping is a greedy heuristic it will very likely end up in a local 

minimum Mnew. If Mnew is not schedulable, in order to explore other areas of the design 

space, we will restart the IterativeMapping heuristic with a new initial solution Minit. This 

OptimizationStrategy(G, T, k, N, B, D)

Mini t = InitialMapping(G, N, B)

S = FTScheduleSynthesis(G, T, k, N, B, Min it)

if deadlines are met then return Mini t

while not_termination do

Mnew = IterativeMapping(G, T, k, N, B, M)

S = FTScheduleSynthesis(G, T, k, N, B, Mnew)

if deadlines are met then return {Mnew, S }

Mini t = FindNewInit(G, N, B, Mnew)

end while

return no_solution 

end OptimizationStrategy  

Fig. 7. Optimization Strategy. 



solution is constructed such that it will reduce the likelihood of ending in the same local 

minimum again. As recommended in literature [Reevs, 1993], we perform a 

diversification of the current solution by running another mapping optimization with a 

cost function different from the “goal” cost function of the IterativeMapping algorithm. 

This optimization will produce a new mapping Minit and is implemented by the function 

FindNewInit (line 8). This function runs a simple greedy iterative mapping, which, instead 

of the schedule length, is aiming at an optimal load balancing of the nodes. 

If the solution produced by IterativeMapping is schedulable then the optimization will 

stop (line 7). However, a termination criterion is needed in order to terminate the 

mapping optimization if no solution is found. A termination criterion, which we have 

obtained empirically, is to limit the number of consecutive iterations without any 

improvement of the schedule length to Nproc× k × ln(Ncompnodes), where Nproc is the number 

of processes, Ncompnodes is the number of computation nodes, and k is the maximum 

number of faults in the system period. An increase in any of these parameters would 

contribute to the increase of the design space exploited by our mapping heuristic. In 

particular, the number of computation nodes contributes to the most significant increase 

in the design space. Thus, we use ln(Ncompnodes) to capture this issue. Note that the design 

space does not grow linearly with the increase of these parameters, i.e., it grows 

exponentially. However, formula Nproc× k × ln(Ncompnodes) allows us to efficiently capture 

this growth, yet without dramatic increase in the execution time of the algorithm. 

 

6.3 Iterative Mapping Heuristic 

Our mapping algorithm, IterativeMapping, depicted in Fig. 8 is a greedy algorithm that 

incrementally changes the mapping M until no further improvement (line 3) is produced. 

Our approach is to tentatively change the mapping of processes on the critical path of the 

application graph G. The critical path CP is found by the function FindCP (line 6). Each 

process Pi in the list CP is then tentatively moved to each node in N. We evaluate each 

move in terms of schedule length, considering transparency properties T and the number 

of faults k (line 10). 

The calculation of the schedule length should, in principle, be performed by 

conditional scheduling (FTScheduleSynthesis function, see Section 7.3). However, 

conditional scheduling takes too long time to be used inside such an iterative 

optimization loop. Therefore, we have developed a fast schedule length estimation 

heuristic, ScheduleLengthEstimation, presented in Section 7.4. This heuristic is used to 

guide the IterativeMapping algorithm. 



After evaluating possible alternatives, the best move consisting of the best process 

Pbest and the best target computation node Nbest is selected (lines 12–15). This move is 

executed if leading to an improvement (line 18). IterativeMapping will stop if there is no 

further improvement. 

The final solution produced with the IterativeMapping heuristic will have to be 

evaluated with the conditional scheduling algorithm, as discussed in the previous section 

(see line 6 in Fig. 7). If the final solution is valid according to this evaluation, we will 

conclude that the system is schedulable. If the solution is not valid, IterativeMapping will 

be run once again after performing diversification of the obtained mapping solution with 

the FindNewInit function (line 8, Fig. 7). 

 

7. CONDITIONAL SCHEDULING 

Our conditional scheduling technique is based on the fault-tolerant process graph (FTPG) 

representation and generates, as output, a set of schedule tables. Schedule tables, 

discussed in Section 7.2, are used by a distributed run time scheduler for executing 

processes on the computation nodes. 

IterativeMapping(G, T, k, N, B, M)
improvement := true

lbest := ScheduleLengthEstimation(G, T, k, N, B, M)

while improvement  do
improvement  := false

Pbest := ; Nbest := 

CP := FindCP(G )

for processes Pi ∈ CP do

for each Nj  Nc do
ChangeMapping(M, Pi , Nj )

lnew  := ScheduleLengthEstimat ion(G, T, k, N, B , M)

RestoreMapping(M)

if lnew < lbest then
Pbest := Pi;  Nbest := Nj; lbest := lnew 

improvement := true

end if

end for

end for

if improvement then ChangeMapping(M, Pbest, Nbest)

end while

return M
end IterativeMapping  

Fig. 8. Iterative Mapping Heuristic (IMH). 



7.1 Fault-Tolerant Process Graph 

The scheduling technique presented in this section is based on the fault-tolerant process 

graph (FTPG) representation. FTPG captures alternative schedules in the case of different 

fault scenarios. Every possible fault occurrence is considered as a condition that is “true” 

if the fault happens and “false” if the fault does not happen. FTPG allows to efficiently 

and correctly model recovery in the context of multiple transient faults, which is utilized 

by our conditional scheduling algorithm. 

In Fig. 9a we have an application A modelled as a process graph G. The application A 

can experience at most two transient faults (for example, one during the execution of 

process P2, and one during P4, as illustrated in the figure). Transparency requirements are 

depicted with rectangles on the application graph, where process P3, message m2 and 

message m3 are set to be frozen. For scheduling purposes we will convert the application 

A to a fault-tolerant process graph (FTPG) G, represented in Fig. 9b. In an FTPG the fault 

occurrence information is represented as conditional edges and the frozen processes/ 

messages are captured using synchronization nodes. One of the conditional edges, for 

b)

a)

 

Fig. 9. Fault-Tolerant Process Graph. 



example, is 1
1P  to 1

4P  in Fig. 9b, with the associated condition 1
1P

F denoting that 1
1P has 

no faults. Message transmission on conditional edges takes place only if the associated 

condition is satisfied. 

The FTPG in Fig. 9b captures all the fault scenarios that can happen during the 

execution of application A in Fig. 9a. The subgraph marked with thicker edges and 

shaded nodes in Fig. 9b captures the execution scenario when processes P2 and P4 

experience one fault each. We will refer to every such subgraph corresponding to a 

particular execution scenario as an alternative trace of the FTPG. The fault occurrence 

possibilities for a given process execution, for example 1
2P , the first execution of P2, are 

captured by the conditional edges 1
2P

F  (fault) and 1
2P

F  (no-fault). The transparency 

requirement that, for example, P3 has to be frozen, is captured by the synchronization 

node SP3 , which is inserted, as shown in Fig. 9b, before the copies corresponding to the 

possible executions of process P3. The first execution copy 1
3P  of process P3 has to be 

immediately scheduled after its synchronization node SP3 . In Fig. 9b, process 1
1P  is a 

conditional process because it “produces” condition 1
1P

F , while 3
1P  is a regular process. 

In the same figure, Sm2  and Sm3 , similarly to SP3 , are synchronization nodes (depicted 

with a rectangle). Messages m2 and m3 (represented with their single copies 1
2m  and 1

3m  

in the FTPG) have to be immediately scheduled after synchronization nodes Sm2  and 

Sm3 , respectively. 

Regular and conditional processes are activated when all their inputs have arrived. A 

synchronization node, however, is activated after inputs coming on one of the alternative 

paths, corresponding to a particular fault scenario, have arrived. For example, a 

transmission on the edge mSe1
12 , labeled  1

1P
F , will be enough to activate Sm2 . 

A guard is associated to each node in the graph. An example of a guard associated to 

a node is, for example, 2
2P

K  = 1
1P

F ∧ 1
2P

F , indicating that 2
2P  will be activated in the 

fault scenario where P2 will experience a fault, while P1 will not. A node is activated only 

in a scenario corresponding to which the value of the associated guard is true. 

 



Definition. Formally, an FTPG corresponding to an application A = G(V, E) is a 

directed acyclic graph G(VP∪ VC∪ VT, ES∪ EC). We will denote a node in the FTPG with  

that will correspond to the mth copy of process Pi ∈ V. Each node m
iP  ∈ VP , with simple 

edges at the output, is a regular node. A node m
iP  ∈ VC , with conditional edges at the 

output, is a conditional process that produces a condition. 

Each node vi ∈ VT is a synchronization node and represents the synchronization point 

corresponding to a frozen process or message. We denote with S
iP  the synchronization 

node corresponding to process Pi ∈ A and with S
im  the synchronization node 

corresponding to message mi ∈ A. Synchronization nodes will take zero time to execute. 

ES and EC are the sets of simple and conditional edges, respectively. An edge 

mn
ije  ∈ ES from m

iP  to n
jP  indicates that the output of m

iP  is the input of n
jP . 

Synchronization nodes S
iP  and S

im  are also connected through edges to regular and 

conditional processes and other synchronization nodes: 

•  mS
ije  ∈ ES from m

iP  to S
jP ; 

•  Sn
ije  ∈ ES from S

iP  to n
jP ; 

•  mmS
ije  ∈ ES from m

iP  to S
jm ; 

•  nS
ij

me  ∈ ES from S
im  to n

jP ; 

•  SS
ije  ∈ ES from S

iP  to S
jP ; 

•  SS
ij

me  ∈ ES from S
im  to S

jP ; 

•  mSS
ije  ∈ ES from S

iP  to S
jm ; and 

•  mm SS
ije ∈ ES from S

im  to S
jm . 

Edges mn
ije  ∈ EC, mS

ije  ∈ EC, and mmS
ije ∈ EC are conditional edges and have an 

associated condition value. The condition value produced is “true” (denoted with m
iP

F ) if  

m
iP  experiences a fault, and “false” (denoted with m

iP
F ) if m

iP  does not experience a 

fault. Alternative paths starting from such a process, which correspond to complementary 



values of the condition, are disjoint2. Note that edges Sn
ije , 

nS
ij

me , SS
ije , 

SS
ij

me , mSS
ije , and 

mm SS
ije  coming from a synchronization node cannot be conditional. 

A boolean expression m
iP

K , called guard, is associated to each node m
iP  in the 

graph. The guard captures the necessary activation conditions (fault scenario) for the 

respective node.3 

 

7.2 Schedule Table 

The output produced by the FTPG scheduling algorithm that will be discussed in the next 

section is a schedule table that contains all the information needed for a distributed run 

time scheduler to take decisions on activation of processes and sending of messages. It is 

considered that, during execution, a very simple non-preemptive scheduler located in 

each node decides on process and communication activation depending on the actual fault 

occurrences. 

Only one part of the table has to be stored in each node, namely, the part concerning 

decisions that are taken by the corresponding scheduler, i.e., decisions related to 

processes located on the respective nodes. Fig. 10 presents the schedules for nodes N1 and 

N2, which will be produced by the conditional scheduling algorithm in Fig. 11 for the 

FTPG in Fig. 9. Processes P1 and P2 are mapped on node N1, while P3 and P4 on node N2. 

In each table there is one row for each process and message from application A. A 

row contains activation times corresponding to different guards, or known conditional 

values, that are depicted as a conjunction in the head of each column in the table. A 

particular conditional value in the conjunction indicates either a success or a failure of a 

certain process execution. The value, “true” or “false”, respectively, is produced at the 

end of each process execution (re-execution) and is immediately known to the 

computation node on which this process has been executed. However, this conditional 

value is not yet known to the other computation nodes. Thus, the conditional value 

generated on one computation node has to be broadcasted to the other computation 

nodes, encapsulated in a signalling message. Signalling messages have to be sent at the 

earliest possible time since the conditional values are used to take the best possible 

decisions on process activation [Eles et al., 2000]. Only when the condition is known, 

                                                           
2They can only meet in a synchronization node. 
 
3We present the algorithm for FTPG generation in Appendix I. 
 



i.e., has arrived with a signalling message, a decision will be taken that depends on this 

condition. In the schedule table, there is one row for each signalling message with the 

condition whose value has to be broadcasted to other computation nodes. 

According to the schedule for node N1 in Fig. 10a, process P1 is activated 

unconditionally at the time 0, given in the first column of the table. Activation of the rest 

of the processes, in a certain execution cycle, depends on the values of the conditions, 

i.e., the occurrence of faults during the execution of certain processes. For example, 

process P2 has to be activated at t = 30 if 1
1P

F  is true (no fault in P1), at t = 100 if 

1
1P

F ∧ 2
1P

F  is true (faults in P1 and its first re-execution), etc. 

To produce a deterministic behavior globally consistent for any combination of 

conditions (faults), the table has to fulfill several requirements:  

1. No process will be activated if, for a given activation, the conditions required 

for its activation are not fulfilled. 

2. Activation times have to be uniquely determined by the conditions. 

3. Activation of a process Pi at a certain time t has to depend only on condition 

values determined at the respective moment t and are known to the 

processing element that executes Pi. 
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7.3 Scheduling Algorithm 

According to our FTPG model, some processes will only be activated if certain 

conditions (i.e., fault occurrences), produced by previously executed processes, are 

fulfilled. Thus, at a given activation of the system, only a certain subset of the total 

amount of processes is executed and this subset differs from one activation to the other. 

As the values of the conditions are unpredictable, the decision regarding which process to 

activate and at which time has to be taken without knowing which values some of the 

conditions will later get. On the other hand, at a certain moment during execution, when 

the values of some conditions are already known, they have to be used in order to take the 

best possible decisions on when and which process to activate, in order to reduce the 

schedule length. 

Optimal scheduling has been proven to be an NP-complete problem [Ullman, 1975] 

in even simpler contexts than that of FTPG scheduling. Hence, heuristic algorithms have 

to be developed to produce a schedule of the processes such that the worst case delay is 

as small as possible. Our strategy for the synthesis of fault-tolerant schedules is presented 

in Fig. 11. The FTScheduleSynthesis function produces the schedule table S, while taking 

as input the application graph G with the transparency requirements T, the maximum 

number k of transient faults that have to be tolerated, the architecture consisting of 

computation nodes N and bus B, and the mapping M. 

FTScheduleSynthesis(G, T, k,N, B, M )
S = ∅ ; G = BuildFTPG(G, T, k)

LS
 = GetSynchronizationNodes(G)

PCPPriorityFunction(G, LS
)

if LS≡∅  then
FTPGScheduling(G, M, ∅ , S )

else
for each Si ∈  LS do

tmax = 0;KSi
 = ∅

{tmax, KSi 
} = FTPGScheduling(G, M, Si, S )

for each K
j
 ∈ KSi

 do 
Insert(S, S

i
, t

max
, K

j
)

end for
end for

end if
return S
end FTScheduleSynthesis  

 

Fig. 11. Fault-Tolerant Schedule Synthesis Strategy. 



Our synthesis approach employs a list scheduling based heuristic, FTPGScheduling, 

presented in Fig. 13, for scheduling each alternative fault-scenario. However, the fault 

scenarios cannot be independently scheduled: the derived schedule table has to fulfill the 

requirements (1) to (3) presented in Section 7.2, and the synchronization nodes have to be 

scheduled at the same start time in all alternative schedules. 

In the first line of the FTScheduleSynthesis algorithm (Fig. 11), we initialize the 

schedule table S and build the FTPG G as presented in Appendix I.4 If the FTPG does not 

contain any synchronization node (LS ≡ ∅ ), we perform the FTPG scheduling for the 

whole FTPG graph at once (lines 4–5). 

If the FTPG contains at least one synchronization node Si ∈ LS, the procedure is 

different (lines 7–13). A synchronization node Si must have the same start time ti in the 

schedule S, regardless of the guard KSi. The guard captures the necessary activation 

conditions for Si under which it is scheduled. For example, the synchronization node Sm2  

in Fig. 12 has the same start time of 105, in each corresponding column of the table in 

Fig. 10. In order to determine the start time ti of a synchronization node Si ∈ LS, where LS 

is the list of synchronization nodes, we will have to investigate all the alternative fault-

scenarios (modelled as different alternative paths through the FTPG) that lead to Si. Fig. 

12 depicts the three alternative paths that lead to Sm2  for the graph in Fig. 9b. These 

paths are generated using the FTPGScheduling function (called in line 9, Fig. 11). This 

function records the maximum start time tmax of Si over the start times in all the 

alternative paths. In addition, FTPGScheduling also records the guards KSi under which Si 

has to be scheduled. The synchronization node Si is then inserted into the schedule table 

in the columns corresponding to the guards in the set KSi at the unique time tmax (line 11 in 

Fig. 11). For example, Sm2  is inserted at time tmax = 105 in the columns corresponding to 

Km2 = { 1
1P

F , 1
1P

F ∧ 2
1P

F , 1
1P

F ∧ 2
1P

F }. 

The FTPGScheduling function is based on list scheduling and it calls itself for each 

conditional process in the FTPG G in order to separately schedule the faulty branch and 

the no fault branch (lines 21 and 23, Fig. 13). Thus, the alternative paths are not activated 

simultaneously and resource sharing is correctly achieved. Signalling messages, 

                                                           
4For efficiency reasons, the actual implementation is slightly different from the one 
presented here. In particular, the FTPG is not explicitly generated as a preliminary step of 
the scheduling algorithm. Instead, during the scheduling process, the currently used nodes 
of the FTPG are generated on the fly. 
 



transporting condition values, are scheduled (line 19), and only when the signalling 

message arrives to the respective computation node, the scheduling algorithm can 

account for the received condition value and activate processes and messages, associated 

with this computation node on the corresponding conditional branch of the FTPG. 

List scheduling heuristics use priority lists from which ready nodes (vertices) in an 

application graph are extracted in order to be scheduled at certain moments. A node in the 

graph is “ready” if all its predecessors have been scheduled. Thus, in FTPGScheduling, 

for each resource Rj ∈ R, where the set R of resources contains all the computation nodes 

Ni ∈ N and the bus B, the highest priority ready node Xi is extracted from the head of the 

local priority list LRj (line 3). We use the partial critical path (PCP) priority function 

[Eles et al., 2000] in order to assign priorities to the nodes (line 3 in 

FTScheduleSynthesis, Fig. 11). 

Xi can be a synchronization node, a copy of a process, or a copy of a message in the 

FTPG G. If the ready node Xi is the currently investigated synchronization node S (line 

8), the latest start time and the current guards are recorded (lines 10–11). If other 

unscheduled synchronization nodes are encountered, they will not be scheduled yet (lines 

14–15), since FTPGScheduling investigates one synchronization node at a time. 

Otherwise, i.e., if not a synchronization node, the current ready node Xi is placed in the 

schedule S at time t under guard K.5 The time t is the time when the resource Rj is 

                                                           
5Recall that synchronization nodes are inserted into the schedule table by the 
FTScheduleSynthesis function on line 11 in Fig. 11. 
 

 

Fig. 12. Alternative paths investigated by FTPGScheduling for the synchronization node 
Sm2 . 

. 



available (line 17). Guard K on the resource Rj is determined by the KnownConditions 

function (line 7). Our approach eliminates from K those conditions that, although known 

to Rj at time t, will not influence the execution of Xi. For example, frozen processes and 

messages are not influenced by any condition. 

Since we enforce the synchronization nodes to start at their latest time tmax to 

accommodate all the alternative paths, we might have to insert idle times on the 

resources. Thus, our ResourceAvailable function (line 6, Fig. 13) will determine the start 

time t ≥ tasap in the first continuous segment of time, available on resource Rj, large 

enough to accommodate Xi, if Xi is scheduled at this start time t. tasap is the earliest 

possible start time of Xi in the considered execution scenario. For example, as outlined in 

the schedule table in Fig. 10a, m2 is scheduled (first) at 105 on the bus, thus time 0–105 is 

idle time on the bus. We will later schedule m1 at times 31, 100 and 66, within this idle 

segment (see Fig. 10a). 

 

FTPGScheduling(G, M, S, S )
while  do

for each Rj ∈  N ∪ {B} do
LRj = LocalReadyList(S, Rj, M ) -- find unscheduled ready nodes on resource Rj
while LRj ≠ ∅ do

Xi := Head(LRj)
t = ResourceAvailable(Rj, Xi) -- the earliest time when Rj can accommodate Xi 
K = KnownConditions(Rj, t) -- the conditions known to Rj at time t
if Xi ≡ S then -- synchronization node currently under investigation

if t > tmax then 
tmax = t -- the latest start time is recorded

KSi = KSi ∪ {K} -- the guard of the synchronization node is recorded
end if
return {tmax, KSi 

} -- exploration stops at the synchronization node S
else if Xi ∈  VT and Xi is unscheduled then -- other synchronization nodes

continue -- are not scheduled at the moment
end if
Insert(S, Xi, t, K) -- the ready node Xi is placed in the schedule S under guard K
if Xi ∈  VC then -- conditional process

Insert(S, SignallingMsg(Xi), t, K) -- broadcast conditional value
-- schedule the faulty branch
FTPGScheduling(G, LRj∪ GetReadyNodes(Xi, true)) --recursive call for true  branch
-- schedule the non-faulty branch
FTPGScheduling(G,LRj∪ GetReadyNodes(Xi,false)) --recursive call for false  branch

else
LRj = LRj ∪  GetReadyNodes(Xi)

end if
end while

end for
end while
end FTPGScheduling  

Fig. 13. Conditional Scheduling. 



7.4 Schedule Length Estimation 

The worst-case fault scenario consists of a combination of k fault occurrences that leads 

to the longest schedule. The conditional scheduling algorithm, presented in Section 7.3, 

examines all fault scenarios captured by the fault-tolerant process graph (FTPG), 

produces the fault-tolerant schedule table, and implicitly determines the worst-case fault 

scenario. 

However, the number of alternative paths to investigate is growing exponentially with 

the number of faults. Hence, conditional scheduling is too slow to be used inside the 

iterative mapping loop discussed in Section 6.3 (Fig. 8). On the other hand, mapping 

optimization does not require generation of complete schedule tables. Instead, only an 

estimation of the schedule length is needed in order to evaluate the quality of the current 

design solution. Hence, in this section, we present a worst case schedule length 

estimation heuristic. 

The main idea of our estimation is to avoid investigating all fault scenarios since it is 

time-consuming. Instead, the estimation heuristic incrementally builds a fault scenario 

that is as close as possible (in terms of the resulted schedule length) to the worst case.6 

Considering a fault scenario X(m) where m faults have occurred, we construct the 

fault scenario X(m+1) with m+1 faults in a greedy fashion. Each fault scenario X(m) 

corresponds to a partial FTPG GX(m) that includes only paths corresponding to the m 

fault occurrences considered in X(m). Thus, we investigate processes from GX(m) to 

determine the process Pi ∈  GX(m), which introduces the largest delay on the critical path 

if it experiences the (m+1)th fault (and has to be re-executed). A fault occurrence in Pi is 

then considered as part of the fault-scenario X(m+1), and the iterative process continues 

until we reach k faults. 

In order to speed up the estimation, we do not investigate all the processes in GX(m). 

Instead, our heuristic selects processes whose re-executions will likely introduce the 

largest delay. Candidate processes are those which have a long worst-case execution time 

and those which are located on the critical path. 

The ScheduleLengthEstimation heuristic is outlined in Fig. 14a. The set LS is prepared, 

by extracting all synchronization nodes from the application graph G (line 2). If the 

application A does not contain frozen processes and messages, i.e., LS ≡ ∅ , we will 

                                                           
6The schedule length estimation in the present context is not required to be safe 
(pessimistic) because, in order to guarantee schedulability, we apply the actual 
conditional scheduling algorithm after the mapping has been obtained (see 
OptimizationStrategy in Fig. 7, line 6). 
 



directly estimate the latest start time of the last process ψ in the graph G with the 

StartTimeEstimation heuristic (line 10).  

The StartTimeEstimation heuristic is outlined in Fig. 14b. It implements our idea for 

fast estimation discussed above. StartTimeEstimation receives as an input a Target node, 

the start time of which has to be estimated. At first, StartTimeEstimation selects a set Z 

of processes, whose re-executions will potentially introduce the largest delays to the start 

time of Target (line 2). These re-executions will be considered for generation of partial 

FTPGs GX(m), increasing the number of faults m from 1 to k (lines 3-5). Each m-fault 

scenario in partial FTPG GX(m), i (the mth fault occurs in process Pi) is evaluated with a 

 

 

 

 

ScheduleLengthEstimation(G , T , k, N , B, M )
ψ = LastNode(G)

LS = ExtractSynchronizationNodes(G)

if LS ≠ ∅  then

PCPPriorityFunct ionSort(G, LS)

for each Si
 ∈  LS do

tmax_start{Si} = StartTimeEstimat ion(G , T , k, N ,  B, M , Si)

FixStartTime(Si
, G , tmax _start

)

end for

end if

tmax_start{ψ} = StartTimeEstimation(G , T , k, N , B, M , ψ)

SLmax = tmax_start{ψ } + worst_exec_time(ψ)

return SLmax

end ScheduleLengthEstimation

StartTimeEstimation(G , T , k, N , B, M , Target )
tmax_start

 = 0; X(0) = ∅
Z = SelectProcesses(Node,  G)

for m = 1...k do

for each Pi ∈ Z do

GX(m) , i = CreatePartialFTCPG(X(m - 1), Pi)

ti  = ListScheduling(GX( m), i , Target )

if tmax_start < t i then

tmax_start = t i 
Pworst = Pi

end if

end for

X(m) = X(m - 1) + Pwors t

end for

return tmax _start

end StartTimeEstimation

a)

b)

 

 

Fig. 14. Schedule Length Estimation. 



ListScheduling heuristic that stops once it reaches Target (line 6).7 If the obtained start 

time ti is larger than the largest-so-far start time tmax_start, it is saved as tmax_start (line 8). 

Process Pi is saved as Pworst. After evaluation of all selected processes, Pworst will contain 

the process that has led to the latest start time of Target. This process will be used in 

construction of the m + 1 faults scenarios (line 12) for the next iterations. Once we reach 

k faults and evaluate the respective k fault scenarios, the estimation heuristic will return 

the corresponding tmax_start as the latest start time of Target (line 14). 

If the set LS in ScheduleLengthEstimation is not empty (line 3, Fig. 14a), i.e., the 

application A contains at least one frozen process or message, we will estimate latest start 

times for all synchronization nodes (lines 4-8, Fig. 14a). We will order synchronization 

nodes according to the PCP priority and will investigate them one-by-one (lines 4-5). In 

order to obtain the latest start time of each next node Si, we need to consider the latest 

start times of all previous synchronization nodes because they will significantly influence 

the start time of node Si. Thus, when we obtain the latest start time tmax_start for each node 

Si, we “fix” this time in the graph G (FixStartTime function, line 7), so that Si’s start time 

is considered for the next synchronization node. The latest start time of the last process 

ψ will be estimated considering latest start times of all synchronization nodes in G (line 

10). 

Finally, the estimated longest schedule length SLmax will be obtained starting the last 

process ψ at its latest start time tmax_start (lines 11-12, Fig. 14a). 

 

8. EXPERIMENTAL RESULTS 

In order to demonstrate the effectiveness of the proposed algorithms, we run a set of 

extensive experiments both on synthetic applications and a real-life example. First, we 

evaluate our conditional scheduling algorithm and compare it to shifting-based 

scheduling proposed in [Izosimov et al., 2005; Pop et al., 2009]. Then, we study 

properties of our mapping optimization algorithm that uses as a cost function the 

schedule length estimation. We also evaluate the estimation in terms of monotonicity, by 

comparing its results to the results produced with the actual conditional scheduling. 

Finally, we apply our scheduling and mapping algorithms to a real-life example, a vehicle 

cruise controller. 

 

                                                           
7ListScheduling is a list scheduling based heuristic with the PCP priority function as in the 
conditional scheduling algorithm in Section 7.3. 
 



8.1 Scheduling with Fault Tolerance 

For the evaluation of our scheduling algorithm we have used applications of 20, 40, 60, 

and 80 processes mapped on architectures consisting of 4 nodes. We have varied the 

number of faults, considering 1, 2, and 3 faults. These faults can happen during one 

execution cycle. The duration µ of the recovery time has been set to 5 ms. Fifteen 

examples have been randomly generated for each application dimension, thus a total of 

60 applications have been used for experimental evaluation. We have generated both 

graphs with random structure and graphs based on more regular structures like trees and 

groups of chains. Execution times and message lengths have been assigned randomly 

within the interval 10 to 100 ms, and 1 to 4 bytes range, respectively. To evaluate the 

scheduling, we have first generated a fixed mapping on the computation nodes with our 

design optimization strategy from [Izosimov et al., 2005; Pop et al., 2009]. The 

experiments have been run on Sun Fire V250 computers. 

We were first interested to evaluate how the conditional scheduling algorithm handles 

the transparency/performance trade-offs imposed by the designer. Hence, we have 

scheduled each application, on its corresponding architecture, using the conditional 

scheduling (CS) strategy from Fig. 11. In order to evaluate CS, we have considered a 

reference non-fault tolerant implementation, NFT. NFT executes the same scheduling 

algorithm but considering that no faults occur (k = 0). Let δCS and δNFT be the end-to-end 

delays of the application obtained using CS and NFT, respectively. The fault tolerance 

overhead is defined as 100 × (δCS – δNFT) / δNFT. 

We have considered five transparency scenarios, depending on how many of the 

inter-processor messages have been set as frozen: 0, 25, 50, 75 or 100%. Table I presents 

the average fault-tolerance overheads for each of the five transparency requirements. We 

see that, as the transparency requirements are relaxed, the fault-tolerance overheads are 

reduced. Thus, the designer can trade-off between the degree of transparency and the 

overall performance (schedule length). For example, for application graphs of 60 

Table I. Fault-Tolerance Overheads (CS), %. 



processes with three faults, we have obtained an 86% overhead for 100% frozen 

messages, which is reduced to 58% for 50% frozen messages. 

Table II presents the average memory8 space per computation node (in kilobytes) 

required to store the schedule tables. Often, one entity has the same start time under 

different conditions. We merge such entries in the table into a single table entry, headed 

by the union of the logical expressions. Thus, Table II reports the memory required after 

such a straightforward compression. We can observe that as the transparency increases, 

the memory requirements decrease. For example, for 60 processes and three faults, 

increasing the number of frozen messages from 50% to 100%, reduces the memory 

needed from 18K to 4K. This demonstrates that transparency can also be used for 

memory/performance trade-offs. 

The CS algorithm runs in less than three seconds for large applications (80 processes) 

when only one fault has to be tolerated. Due to the nature of the problem, the execution 

time increases, in the worst case, exponentially with the number of faults that have to be 

handled. However, even for graphs of 60 processes, for example, and three faults, the 

schedule synthesis algorithm finishes in under 10 minutes. 

Shifting-based scheduling (SBS), proposed in [Izosimov et al., 2005; Pop et al., 

2009], always preserves the same order of processes and messages in all execution 

scenarios and can only handle a very limited setup in which all inter-processor messages 

are frozen and no other transparency requirements can be captured. As a second set of 

experiments, we have compared the conditional scheduling approach with the shifting-

based scheduling approach. In order to compare the two algorithms, we have determined 

the end-to-end delay δSBS of the application when using SBS. For both the SBS and the 

CS approaches, we have obtained a fixed mapping on the computation nodes with our 

design optimization strategy from [Izosimov et al., 2005; Pop et al., 2009]. We have 

considered that all inter-processor messages and only them are frozen. When comparing 

                                                           
8
Considering an architecture where an integer and a pointer are represented on two bytes. 

Table II. Memory Requirements (CS), Kbytes. 

 



the delay δCS, obtained with conditional scheduling, to δSBS in the case of, for example, k 

= 2, conditional scheduling outperforms SBS on average with 13%, 11%, 17%, and 12% 

for application dimensions of 20, 40, 60 and 80 processes, respectively. 

 

8.2 Mapping Heuristic 

For the evaluation of our mapping optimization strategy we have used applications of 20, 

30, and 40 processes implemented on an architecture of 4 computation nodes. We have 

varied the number of faults from 2 to 4 within one execution cycle. The recovery 

overhead µ has been set to 5 ms. Thirty examples have been randomly generated for each 

dimension. Execution times and message lengths have been assigned randomly using 

uniform distribution within the interval 10 to 100 ms, and 1 to 4 bytes, respectively. We 

have selected a transparency level with 25% frozen processes and 50% frozen inter-

processor messages. The experiments have been done on a Pentium 4 processor at 2.8 

GHz with 1 Gb of memory. 

We were first interested to evaluate the proposed heuristic for schedule length 

estimation (ScheduleLengthEstimation in Fig. 14, denoted with SE), in terms of 

monotonicity, relative to the FTScheduleSynthesis (CS) algorithm presented in Section 

7.3. SE is monotonous with respect to CS if for two alternative mapping solutions M1 and 

M2 it is true that if CS(M1) ≤  CS(M2) then also SE(M1) ≤ SE(M2). This property is 

important because, with a high monotonicity, the mapping optimization guided by the 

estimation will follow the same trajectory as it would follow if guided by the actual 

conditional scheduling. 

For the purpose of evaluating the monotonicity of SE with regard to CS, 50 random 

mapping changes have been performed for each application. Each of those changes has 

been evaluated with both SE and CS. The results are depicted in Table III. As we see, in 

over 90% of the cases, SE correctly evaluates the mapping decisions, i.e. in the same way 

as CS. The monotonicity decreases slightly with the application dimension. 

                                                                                                                                                
 

Table III. Monotonicity of Estimation (%). 

 



Another important property of SE is its execution time, presented in Table IV. The 

execution time of the SE is growing linearly with the number of faults and application 

size. Over all graph dimensions, the execution time of SE is significantly smaller than 

that with CS. This shows that the schedule length estimation heuristic is well-suited to be 

used inside a design space exploration loop. 

We were also interested to evaluate our mapping optimization strategy, for the 

selected transparency level with 25% frozen processes and 50% frozen inter-processor 

messages. We have compared our mapping optimization that considers fault tolerance 

with transparency to the mapping optimization strategy proposed in [Izosimov et al., 

2005; Pop et al., 2009]that does not consider the transparency/performance trade-offs. 

For the sake of this comparison, we will refer to our OptimizationStrategy (in Fig. 7) as 

AWARE and to the latter one as BLIND. In Table V, we show the improvement of 

AWARE over BLIND in terms of the schedule length corresponding to the produced 

mapping solution. The schedule length obtained with AWARE is 30% shorter on average. 

This confirms that considering the transparency properties leads to significantly better 

design solutions and that the SE heuristic can be successfully used inside an optimization 

loop. Note that, while SE has been used inside the loop, the final evaluation of the 

AWARE solutions (as well as of those produced with BLIND) has been done generating 

the actual schedules with CS. 

We were also interested to compare the solutions obtained with AWARE using SE 

with the case where CS is used for evaluating the mapping alternatives during 

optimization. However, due to the long optimization times with the CS based exploration, 

we have run this experiment only for applications of 20 processes. We have chosen 15 

synthetic applications with 25% frozen processes and 50% frozen messages. In terms of 

Table IV. Execution Time (sec): Estimation vs. Scheduling, 

 

Table V. Mapping Improvement (%). 

 



schedule length, in case of 2 faults, the CS-based strategy is only 3.18% better than the 

SE-based one. In case of 3 faults, the difference is 9.72%, while for 4 faults the 

difference in terms of obtained schedule length is of 8.94%. 

 
8.3 Real-life Example 

We have also used a real-life example implementing a vehicle cruise controller (CC) for 

the evaluation of our scheduling and mapping algorithms. The process graph that models 

the CC has 32 processes, and is described in [Izosimov, 2009]. The hardware architecture 

consists of three nodes: Electronic Throttle Module (ETM), Anti-lock Breaking System 

(ABS) and Transmission Control Module (TCM). We have considered a deadline of 300 

ms, k = 2 and µ = 2 ms.  

For the evaluation of the proposed scheduling approach, we have obtained a fixed 

mapping of the CC on the computation nodes with BLIND (design optimization strategy 

from [Izosimov et al., 2005; Pop et al., 2009]). SBS has produced an end-to-end delay of 

384 ms. This delay is larger than the deadline. The CS approach, proposed in this paper, 

reduces this delay to 346 ms, given that all inter-processor messages are frozen. This 

delay is also unschedulable. If we relax this transparency requirement and select 50% of 

the inter-processor messages as frozen, we will further reduce the delay to 274 ms that 

will meet the deadline. 

For the evaluation of our mapping algorithm, we have compared BLIND to AWARE 

(our proposed transparency aware mapping strategy). The solution obtained with BLIND 

is schedulable only with 50% frozen messages and no frozen processes. However, the 

application optimized with AWARE, is easily schedulable with 85% frozen messages. 

Moreover, we can additionally introduce 20% frozen processes without violating the 

deadlines. 

 

9. CONCLUSIONS 

In this paper, we have presented an approach to synthesizing efficient fault-tolerant 

schedules for distributed real-time embedded systems in the presence of multiple 

transient faults. The approach supports fine-grained customized transparency. 

Transparency has the advantages of improved debuggability and less memory needed to 

store the fault-tolerant schedules. The proposed scheduling algorithm has the ability to 

handle fine-grained, process and message level, transparency requirements. This provides 

an opportunity for the designer to handle performance versus transparency and memory 

size trade-offs. 



We have also proposed a mapping optimization strategy for applications with 

transparency requirements. Since the conditional scheduling algorithm is computation-

intensive and cannot be used inside an optimization loop, we have proposed a fast 

estimation heuristic that is able to accurately evaluate a given mapping decision. The 

proposed mapping algorithm, based on the estimation heuristic, is able to produce 

effective design solutions for a given transparency setup. 

Considering the fault-tolerance and transparency requirements during design 

optimization, we are able to deliver efficient solutions with increased debuggability under 

limited amount of available resources. 
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11. APPENDIX I: FTPG GENERATION 

In Fig. 15 we have outlined the BuildFTPG algorithm that traces processes in the merged 

graph G with transparency requirements T in the presence of maximum k faults and 

 

Fig. 15. Generation of FTPG. 

 



generates the corresponding FTPG G. In the first step, BuildFTPG copies the root process 

into the FTPG (line 2). Then, re-executions of the root process are inserted, connected 

through “faulty” conditional edges with the “true” condition value (lines 3–5). Copies of 

the root process (including its re-executions) are assigned with f, f − 1, f − 2,..., 0 possible 

faults, respectively, where f = k for the root process. These fault values will be used in the 

later construction steps. In Fig. 16a, we show the intermediate state resulted after this first 

step during the generation of the FTPG depicted in Fig. 9b. After the first step, copies 

1
1P ,  2

1P and 3
1P  are inserted (where k = 2), connected with the conditional edges 12

11e  

and 23
11e , between copies 1

1P  and 2
1P , and between copies 2

1P  and 3
1P , respectively. 

Copies 1
1P , 2

1P  and 3
1P  are assigned with f = 2, f = 1 and f = 0 possible faults, as shown 

in the figure. 

In the next step, BuildFTPG places successors of the root process into the process list 

L (line 7). For generation of the FTPG, the order of processes in the process list L is not 

important and BuildFTPG extracts the first available process Pi (line 9). By an “available” 

b)

a)

 

 

Fig. 16. FTPG Generation Steps (1). 



process, we denote a process Pi with all its predecessors already incorporated into the 

FTPG G. 

For each process Pi, extracted from the process list L, BuildFTPG prepares a set VC of 

valid combinations of copies of the predecessor processes (line 10). A combination is 

valid (1) if the copies of predecessor processes in each combination vcn ∈ VC correspond 

to a non-conflicting set of condition values, (2) if all copies of the predecessors together, 

do not accumulate more than k faults, and (3) if the combination contains at most one 

copy of each predecessor. 

Let us extract process P2 from the process list L and incorporate this process into the 

FTPG G. In the application graph G, process P2 has only one predecessor P1. Initially, the 

set of combinations of copies of predecessors for process P2 will contain seven elements: 

{ 1
1P }, { 2

1P }, { 3
1P }, { 1

1P , 2
1P }, { 1

1P , 3
1P }, { 2

1P , 3
1P } and { 1

1P , 2
1P , 3

1P }. 

According to the first rule, none of the elements in this set corresponds to a 

conflicting set of conditional values. For example, for { 1
1P , 2

1P , 3
1P }, 1

1P  is activated 

upon the condition true as the root node of the graph; 2
1P  under condition 1

1P
F ; and 3

1P  

under joint condition 1
1P

F ∧ 2
1P

F . Condition true is not in conflict with any of the 

conditions. Conditions 1
1P

F  and 1
1P

F ∧ 2
1P

F  are not in conflict since 1
1P

F ∧ 2
1P

F  includes 

1
1P

F .9 If, however, we apply the second rule, { 2
1P , 3

1P } and { 1
1P , 2

1P , 3
1P } are not 

valid since they would accumulate more than k = 2 faults, i.e., 3 faults each. Finally, only 

three elements { 1
1P }, { 2

1P } and { 3
1P } satisfy the last rule. Thus, in Fig. 16a, the set of 

valid predecessors VC for process P2 will contain three elements with copies of process 

P1: {
1

1P }, { 2
1P }, and { 3

1P }. 

In case of any frozen input message to P2, we would need to further modify this set 

VC, in order to capture transparency properties. However, since all input messages of 

process P2 are regular, the set of combinations should not be modified, i.e., we skip lines 

12-16 in the BuildFTPG and go directly to the process incorporation step. 

                                                           
9An example of conflicting conditions, for example, would be 1

1P
F ∧ 2

1P
F  and 

1
1P

F ∧ 2
1P

F  that contain mutually exclusive condition values 2
1P

F  and 2
1P

F . 

 



For regular processes, such as P2, the FTPG generation proceeds according to lines 

28– 38 in Fig. 15. For each combination vcn ∈  VC, BuildFTPG inserts a corresponding 

copy of process Pi, connects it to the rest of the graph (line 30) with conditional and 

unconditional edges that carry copies of input messages to process Pi, and assigns the 

number of possible faults (lines 31–33). If the combination vcn contains a “message” 

synchronization node, the number of possible faults f for the inserted copy will be set to 

the maximum k faults (line 31). Otherwise, f is derived from the number of possible faults 

in all of the predecessors’ copies m
xP ∈ vcn as f( h

iP ) = k – (k –  f( m
xP )) (line 32). In 

this formula, we calculate how many faults have already happened before invocation of 

h
iP , and then derive the number of faults that can still happen (out of the maximum k 

faults). Once the number of possible faults f is obtained, BuildFTPG inserts f re-execution 

copies that will be invoked to tolerate these faults (lines 34–37). Each re-execution copy 

h
iP  is connected to the preceding copy 1_h

iP  with a “faulty” conditional edge hh
iie 1_

. 

The number of possible faults for h
iP  is, consequently, reduced by 1, i.e., f( h

iP )= 

f( 1_h
iP )–1. 

In Fig. 16a, after 1
1P , with f = 2, copies 1

2P ,  2
2P  and 3

2P  are inserted, connected 

with the conditional edges 11
12e , 12

22e  and 23
22e , that will carry copies 1

4m ,  2
4m  and 3

4m  of 

message m4. After 2
1P , with f = 1, copies 4

2P  and 5
2P  are inserted, connected with the 

conditional edges 24
12e  and 45

22e . After 3
1P , with no more faults possible (f = 0), a copy 

6
2P  is introduced, connected to 3

1P  with the unconditional edge 36
12e . This edge will be 

always taken after 3
1P . The number of possible faults for 1

2P  is f = 2. For re-execution 

copies 2
2P  and 3

2P , f = 1 and f = 0, respectively. The number of possible faults for 4
2P  is 

f = 1. Hence, f = 0 for the corresponding re-execution copy 5
2P . Finally, no more faults 

are possible for 6
2P , i.e., f = 0. 

In Fig. 16b, process P4 is also incorporated into the FTPG G, with its copies 

connected to the copies of P1. Edges 11
14e ,  24

14e and 36
14e , which connect copies of P1 (

1
1P , 

2
1P , and 3

1P ) and copies of P4 (
1
4P , 4

4P , and 6
4P ), will carry copies 1

1m , 2
1m  and 3

1m  

of message m1. 



When process Pi has been incorporated into the FTPG G, its available successors are 

placed into the process list L (lines 40–42). For example, after P2 and P4 have been 

incorporated, process P3 is placed into the process list L. BuildFTPG continues until all 

processes and messages in the merged graph G are incorporated into the FTPG G, i.e., 

until the list L is empty (line 8). 

After incorporating processes P1, P2 and P4, the process list L will contain only 

process P3. Contrary to P2 and P4, the input of process P3 includes two frozen messages 

m2 and m3. Moreover, process P3 is itself frozen. Thus, the procedure of incorporating P3 

into the FTPG G will proceed according to lines 19-26 in Fig. 15. In the application graph 

G, process P3 has three predecessors P1, P2, and P4. Thus, its set of valid combinations VC 

of copies of the predecessor processes will be as: { 1
1P , 1

2P , 1
4P }, { 1

1P , 1
2P , 2

4P }, { 1
1P , 

1
2P , 3

4P }, { 1
1P , 2

2P , 1
4P }, { 1

1P , 2
2P , 2

4P }, { 1
1P , 3

2P , 1
4P }, { 2

1P , 4
2P , 4

4P }, { 2
1P , 

4
2P , 5

4P }, { 2
1P , 5

2P , 4
4P } and { 3

1P , 6
2P , 6

4P }. 

If any of the input messages of process Pi is frozen (line 11), the corresponding 

synchronization nodes are inserted and connected to the rest of the nodes in G (lines 12– 

15). In this case, the set of valid predecessors VC is updated to include the 

synchronization nodes (line 17). Since input messages m2 and m3 are frozen, two 

synchronization nodes Sm2  and Sm3  are inserted, as illustrated in Fig. 17. Sm2  and Sm3  

are connected to the copies of the predecessor processes with the following edges: mSe1
12 , 

 

 

Fig. 17. FTPG Generation Steps (2). 



mSe2
12 , and mSe3

12  (for Sm2 ), and mSe1
23 , mSe2

23 , mSe3
23 , mSe4

23 , mSe5
23 , and mSe6

23  (for Sm3 ). 

The set of valid predecessors VC is updated to include the synchronization nodes: { Sm2 , 

Sm3 , 1
4P }, { Sm2 , Sm3 , 2

4P }, { Sm2 , Sm3 , 3
4P }, { Sm2 , Sm3 , 4

4P }, { Sm2 , Sm3 , 5
4P }, and 

{ Sm2 , Sm3 , 6
4P }. Note that the number of combinations has been reduced due to the 

introduction of the synchronization nodes. 

Since process P3 is frozen, we first insert synchronization node SP3  (line 19), as 

illustrated in Fig. 9b, which is connected to the copies of the predecessor processes and 

the other synchronization nodes with the edges Se1
43 , Se2

43 , Se3
43 , Se4

43 , Se5
43 , Se6

43 , SSme23  

and SSme33  (lines 20–22). After that, the first copy 1
3P  of process P3 is inserted, assigned 

with f = 2 possible faults (line 23). 1
3P  is connected to the synchronization node SP3  with 

edge 1
33
Se . Finally, re-execution copies 2

3P  and 3
3P  with f = 1 and f = 0 possible faults, 

respectively, are introduced, and connected with two “faulty” conditional edges 12
33e  and 

23
33e  (lines 24– 26), which leads to the complete FTPG G depicted in Fig. 9b. The 

algorithm will now terminate since process P3 is the last process in the graph G. 


