J Electron Test (2012) 28:469—486
DOI 10.1007/s10836-012-5316-1

Time-Constraint-Aware Optimization of Assertions

in Embedded Software

Viacheslav Izosimov - Giuseppe Di Guglielmo -
Michele Lora - Graziano Pravadelli - Franco Fummi -
Zebo Peng - Masahiro Fujita

Received: 6 November 2011 /Accepted: 27 June 2012 /Published online: 18 July 2012

© Springer Science+Business Media, LLC 2012

Abstract Technology shrinking and sensitization have led to
more and more transient faults in embedded systems. Transient
faults are intermittent and non-predictable faults caused by
external events, such as energetic particles striking the circuits.
These faults do not cause permanent damages, but may affect
the running applications. One way to ensure the correct exe-
cution of these embedded applications is to keep debugging
and testing even after shipping of the systems, complemented
with recovery/restart options. In this context, the executable
assertions that have been widely used in the development
process for design validation can be deployed again in the
final product. In this way, the application will use the assertion
to monitor itself under the actual execution and will not allow
erroneous out-of-the-specification behavior to manifest
themselves. This kind of software-level fault tolerance
may represent a viable solution to the problem of de-
veloping commercial off-the-shelf embedded systems
with dependability requirements. But software-level fault
tolerance comes at a computational cost, which may

Responsible Editor: C. Metra

V. Izosimov

Embedded Intelligent Solutions (EIS) by Semcon AB,
Linkdping, Sweden

e-mail: viacheslav.izosimov(@eis.semcon.com

G. Di Guglielmo (<)) - M. Lora - G. Pravadelli - F. Fummi
Dept. of Computer Science, University of Verona,

Verona, Italy

e-mail: giuseppe.diguglielmo@univr.it

M. Lora
e-mail: michele.lora@univr.it

G. Pravadelli
e-mail: graziano.pravadelli@univr.it

F. Fummi
e-mail: franco.fummi@univr.it

affect time-constrained applications. Thus, the execut-
able assertions shall be introduced at the best possible
points in the application code, in order to satisfy timing
constraints, and to maximize the error detection efficien-
cy. We present an approach for optimization of execut-
able assertion placement in time-constrained embedded
applications for the detection of transient faults. In this
work, assertions have different characteristics such as
tightness, i.e., error coverage, and performance degrada-
tion. Taking into account these properties, we have developed
an optimization methodology, which identifies candidate loca-
tions for assertions and selects a set of optimal assertions with
the highest tightness at the lowest performance degradation.
The set of selected assertions is guaranteed to respect the real-
time deadlines of the embedded application. Experimental
results have shown the effectiveness of the proposed approach,
which provides the designer with a flexible infrastructure for
the analysis of time-constrained embedded applications and
transient-fault-oriented executable assertions.

Z. Peng

Dept. of Computer and Information Science,
Linkoping University,

Linkdping, Sweden

e-mail: zebo.peng@liu.se

M. Fujita

VDEC, University of Tokyo, CREST — Japan Science and
Technology Agency,

Tokyo, Japan

e-mail: fujita@cad.t.u-tokyo.ac.jp

@ Springer

470

J Electron Test (2012) 28:469—486

Keywords Fault-detection optimization - Software-level
fault tolerance - Time-constrained embedded software -
Transient fault - Soft error - Executable assertion

1 Introduction

In the recent years, the exponential increase of digital-circuit
performance has been followed by an increasing requirement
of system dependability. Indeed, the continuous reduction of
transistor sizes and threshold voltages makes the circuits more
sensitive to spurious voltage and charge variations that may
result in transient faults [7]. Transient faults are intermittent
and non-predictable faults caused by external events, such as
energetic particles striking the chip. These faults do not cause
permanent damages, but may affect the running applications
by altering data and execution flows. When a transient fault
alters the application execution, such a phenomenon is defined
as a soft error [45].

Several approaches have been developed for hardening
safety- and mission-critical systems against transient faults
and soft errors [32]. In particular, massive use of redundant
hardware components has been deployed to satisfy high de-
pendability requirements in the domains that are very suscep-
tible to electro-magnetic phenomena, such as nuclear,
medical, and space domains. However, in addition to high-
cost of the redundant-hardware solutions, the duplication of
components introduces significant speed, power, and area
penalties, making them unacceptable in most of the designs.
Moreover, designers of high-end-system applications should
benefit from commercial off-the-shelf (COTS) components
for performance and time-to-market reasons. Indeed, COTS
components are typically based on newer technology solu-
tions than the hardened ones, i.e., commercial components are
more powerful and less power demanding. This is due to the
longer design cycles which the hardened components require
before obtaining the dependability certification [6], [52].

In such a context, the requirement of guaranteeing de-
pendability over unreliable-hardware components has
moved the research focus to the software part of the sys-
tems. Techniques for detecting, and possibly correcting, the
effects of transient faults, i.e., soft errors, have been referred
as software-level fault tolerance (SLFT) [21]. In Fig. 1, the
hardware-level fault tolerance (HLFT) approach is com-
pared with the SLFT approach. The failures, i.e., the user-
visible effects of soft errors caused by transient faults, may
range from minor inconveniences, e.g., having to restart a
smartphone, to catastrophic events, e.g., real-time-software
crash in an aircraft that prevents the pilot from recovering.
On the left side of the figure, HW-shielding and HW-
hardening approaches aim at preventing, detecting, and
correcting transient faults at electrical, gate, and architectur-
al levels. On the other side, SLFT approaches do not require

@ Springer

Hardened SW

Error detection

. Soft errors SW |_| SLFT
3
Error detection t Soft errors SW
HLFT
| Transient faults

v
& Transient faults v COTS HW

Hardened HW

Fig. 1 Hardware- vs. software-level fault tolerance

any hardware modification. Moreover, they can provide
different protections against soft errors for individual appli-
cations or portion of applications to achieve various depend-
ability requirements. If a hardware-level solution is used, the
same protection mechanism will be used for the different
application, while different software-level protection
mechanism can be used for the different applications
to satisfy the different dependability requirements. Finally,
SLFT approaches may complement other already existing
error-detection mechanisms in off-the-shelf components,
e.g., error-correcting code (ECC) on memories and integrity-
checks mechanisms on I/O peripherals.

In literature, several SLFT approaches have been proven
to be effective in addressing soft errors that alter both data
and execution flow of applications [21]. An overview of the
state of the art is reported in Section 2. In the present work,
we restrict our analysis to the optimization of soft-error
detection via executable assertions in the context of time-
constrained embedded applications.

Independently from the adopted solutions, the hardened
software in existing SLFT approaches both performs the
originally-specified functionalities and executes additional
special operations, e.g. assertions, to detect soft errors. The
execution of such error detection operations do not affect
general applications, but may potentially compromise tim-
ing of real-time applications. In a real-time application, the
correctness of an operation depends not only upon its be-
havioral correctness, but also upon the time in which it is
performed: missing a time constraint (or deadline) is a total
failure for hard real-time applications, while, in soft-real
time applications the usefulness of a result degrades after
its deadline. In literature, there are examples of time-
constrained applications which may be compromised by
soft-errors both in high-end and low-end market: medical-
surgical-nursing applications [28], anti-lock brake systems,
community storage solutions [33], e-commerce transactions
[9], etc. All of these examples may benefit from error-
detection approach implemented at software level, provided
that the time constraints are not affected.

Thus, in this work, we assess timing efficiency of asser-
tions in order to reduce performance overheads of error

J Electron Test (2012) 28:469-486

471

detection and propose a framework for selecting, among the
whole set of assertions that could be placed into time-
constrained embedded software, a subset of them with,
possibly, the highest error detection capability and the low-
est execution overhead. The proposed framework will:

1. identify candidate locations for assertions;

2. associate a candidate assertion to each location (the
candidate assertion is suggested by the framework, but
the user can change it);

3. statically/dynamically profile the module with asser-
tions (inspired by the work of Hiller et al. [23]); and

4. select a sub-set of assertions in terms of performance
degradation and tightness (by using the optimization
infrastructure) to guarantee an effective error detection
capability without negatively affecting the deadline of
the targeted embedded SW applications.

The presented approach is useful for optimization of
executable assertions in embedded applications with timing
constraints. Examples of such systems include, but are not
limited to, automotive electronics, airborne software, factory
automation, and medical and telecommunication equipment.
The main advantage of our approach is that it can be auto-
matically applied at the source-code level, without the in-
tervention of the designer, e.g., for selecting where to put the
executable assertions and manually profiling them. More-
over, the approach is completely independent on the under-
lying hardware, and it may complement other existing error-
detection mechanisms.

The remaining of the paper is organized as follows.
Section 2 presents the works in literature addressing
hardware- and software-level error-detection approaches
and, in particular, it focuses on their limitations in the
context of time-constrained embedded applications. Sec-
tion 3 presents the adopted application model, describes
principles of error detection, and discusses basic proper-
ties of executable assertion. Section 4 outlines the prob-
lem formulation and describes the proposed assertion-
placement optimization framework. Section 5 reports ex-
perimental results. Finally, Section 6 is devoted to con-
cluding remarks.

2 Related Work

Transient faults and soft errors in digital systems can
cause abnormal behaviors and failures that compromise
system dependability. This is especially true in nuclear,
medical, and space environments, where many
transient-fault causes, including alpha-particles [27]
and ray neutrons [19], are highly likely and a system
failure can have catastrophic outcomes [28], [33], [9].
Moreover, with the technology shrinking and sensitization,

soft errors have become a problem also in non-critical
environments and at sea level, e.g., due to radiation im-
purities in the device materials [63], [8], [10]. In this
context, fault avoidance techniques for high-budget and
safety-critical domains have been traditionally based on
shielding and hardening techniques. In particular, error
detection and correction mechanisms through hardware
hardening can be introduced at different architectural lev-
els, for example by using massive module redundancy
[60], [3], watchdog processors [4], strengthened latch/flip-
flops [38], die monitoring [50] or other techniques [42],
[32].

On the other hand, commercial-off-the-shelf (COTS)
components are typically not hardened against transient
faults. In most of the cases, shielding of these compo-
nents is impracticable either, since different type of
shields must be used against different type of particles
[31]. At the same time, most COTS components have a
higher density, faster clock rate, lower power consump-
tion and significantly lower price. Thus, software-level
fault tolerance has become an attractive solution for
developing COTS-based dependable embedded systems,
since it requires no extra hardware modification and
only minor software modifications [58]. In particular,
software-level-fault-tolerance (SLFT) techniques aim at
detecting, and possibly correcting, soft errors before
they manifest as failures, by adding to the embedded
applications extra functionalities for error detection.

Since soft errors may affect the running applications by
altering execution or data flows, SLFT approaches have
been classified accordingly [21]. In particular, execution-
flow-hardening approaches aim at detecting errors that di-
rectly modify the sequence of executed operations in appli-
cations, e.g., by affecting branch conditions or assembly-
code-fetch operations; while data-hardening approaches
aim at detecting errors that modify the application results
and, indirectly, the execution flow, i.e., the sequence of
executed operations. In turn data-hardening approaches
make use of (a) computation duplication at different appli-
cation levels, (b) data-structure protection, and (c) execut-
able assertions.

Hardening the application-execution flow requires to
monitor the sequence of operations and, in particular,
the control points. The basic idea of control-flow check-
ing [59] is to partition the application program in basic
blocks, i.e., branch-free parts of code. For each block a
deterministic signature is computed and faults can be
detected by comparing the run-time signature with a
pre-computed one [2], [37], [55], [20]. The tool pre-
sented in [49], i.e., SWIFT, increases dependability by
inserting redundant code to compute duplicate versions
of all register values and inserting validation instructions
before control flow and memory operations. In general,

@ Springer

472

J Electron Test (2012) 28:469—486

the SLFT approaches based on execution-flow checking
are effective, but error affecting the data may go unde-
tected, i.e., the data errors may not affect the execution
flow. Moreover, a problem is to tune the methodology
granularity that should be used, that is managing the
extra-computation overhead.

The next main category of SLFT approaches concerns
hardening of data. The simplest approaches for data
hardening are based on computation duplication [43]
and may apply at different application levels, i.e., as-
sembly instruction [36], [54], high-level instruction [46],
[47], instruction block, function [34], and program [48],
[44], [51]. Each of these approaches transforms the code
by replicating computation and checking the (intermediate)
results for consistency, e.g., the outputs of replicated programs
are compared to detect possible errors. In the case of incon-
sistency, a soft error is detected and possibly an appropriate
error recovery procedure has to be executed. The designer can
introduce a further granularity level by replicating only the
most critical portions of the application [11]. A major limita-
tion of these approaches, when running on conventional pro-
cessors, is the high performance overhead [13]: the replicas
execute in sequence and then the results are compared, i.c.,
time redundancy. Thus, recently, methods have been proposed
for exploiting instruction-level parallelism of COTS super-
scalar processors [36] and multi-core CPUs [48], [44], [51],
[26]. For example, EDDI [36] duplicates instructions at
compile-time and uses instruction pipelining of superscalar
processors. The possibility of executing the same application
in different threads [48] or programs [44], [51] is known as
spatial redundancy: it permits to reduce the performance
overhead thanks to some COTS-hardware support. Both time
and spatial redundancies are difficult to adapt to soft-error
detection in the context of time-constrained embedded appli-
cations. Indeed, time-redundancy approaches may introduce
excessive time overheads, thus violating application dead-
lines; while super-scalar and multicore CPUs used for spatial
redundancy can be expensive.

The SLFT approaches based on data diversity are
similar to ones based on computation duplication: two
copy of the same program is executed, but on slightly
different data [16], [35]. For example, ED*I [35] com-
piles the original program in a new one by introducing
a “diversity factor k” on integer operations: a soft error
is detected if the outputs of the original and transformed
program do not differ of the factor k. With respect to
traditional computation-duplication approaches, data-
diversity approaches involve extra computations to pro-
duce the perturbed version of the program and to com-
pare the results of the different runs. Thus, they hardly
adapt to time-constrained embedded applications.

Data-structure protection [41] and algorithm-based fault
tolerance (ABFT) [24] are other approaches to provide fault

@ Springer

detection through data redundancy. They are usually
implemented at the application level. ABFT techniques
have been widely used for matrix-based signal process-
ing applications such as matrix multiplication, inversion,
LU decomposition and Fast Fourier Transforms [26].
ABFT approaches are effective but need a thorough
understanding of the algorithms under study. Moreover,
they are suited only for specific applications using reg-
ular structures, and therefore its applicability is valid for
a limited set of problems.

Finally, let us consider executable assertions. In soft-
ware verification, designers widely use executable asser-
tions [22] for specifying invariant relationships that
apply to some states of a computation, e.g., pre- and
post-conditions of a procedural-code block. In this case,
executable assertions address design errors. Indeed, sev-
eral assertion-related works target debuggability and
testability of applications. For example, C-Patrol [61]
automatically introduces executable assertions into C
programs. Assertions that are placed at each statement
in a program can automatically monitor the internal
status of the application. However, the advantages of
universal assertions come at a cost: a program with such
extensive internal instrumentation is slower than the
same program without the instrumentation; moreover,
some of the assertions may be redundant. Thus, some
authors introduce assertions based on sensitivity proper-
ties of the code, i.e., which parts of the code are the
most difficult to test and are the most critical for exe-
cution of safety-critical applications [56]. Besides design
errors, executable assertions can potentially detect also
soft errors in internal data caused by transient faults
[62]. For example, in [55] and [20], the authors intro-
duce assertions at compile-time to monitor effects of
soft errors on data (and control) flows. In [22], the
authors propose a methodology to sort out faults from
incoming signals with assertions, which can be used to
stop propagation of errors caused by transient faults
through the system. This work has been later extended
with assertion optimization to increase system depend-
ability with profiling in [23]. In [40], an “out-of-norm”
assertion methodology describes how to insert assertions
into electronic components, in particular, communication
controllers, to detect transient faults. Finally, the meth-
odology proposed in [5] integrates assertions into embedded
programs with automatic program transformations to provide
error detection and recovery against transient faults.
Assertions significantly contribute for defining SLFT
approaches, but they are not transparent to the designer
and, thus, their effectiveness in detecting soft errors
largely depends on the nature of the application and
on the ability of the designer in optimizing the assertion
choice and placement.

J Electron Test (2012) 28:469-486

473

To our knowledge, none of the previous works are
focused on the problems derived from the overhead
introduced by executable assertions in the context of
time-constrained embedded software. This paper is
intended to fill in the gap by proposing an optimization
framework that allows evaluating the impact of assertion
execution and select, among the defined assertions, a
sub-set with high error-detection capability and low
overhead.

3 Executable Assertions for Soft-Error Detection

This section introduces some preliminary concepts. In par-
ticular, it describes the adopted application model, the exe-
cutable assertions for soft-error detection, and the parameter
criteria associated with assertion optimization. Using the
example of an embedded-application module, we present
assertion properties and discuss a methodology for assertion
selection.

3.1 A. Application Model

To represent the embedded-application at instruction
level, we adopt a control and data-flow graph structure
with conditional edges [15]. In particular, given an
embedded application M, a control and data flow graph
G = {V, Es, E¢} is associated, where V is a set of
nodes (program instructions) and Eg and E. are sets of
simple and conditional edges. Edges can be either data
or control dependencies between the nodes. We do not
require that the graph has to be polar, i.ec., several
source and sink nodes are possible, in particular, with
relation to data initialization and parallel program exe-
cutions. In our model, a node [; € V is a module
instruction and an edge e¢; is a direct dependency be-
tween instructions /; and /;, which can be either data or
logical dependency. An edge e; can be either a simple

Fig. 2 Example of a module
(a), its control-data-flow graph
(b), and the execution-time
associated with each instruction

(©

|

| Factorial
| begin

| l;:double factorial = 1;
i Liint i = 1;

| lypwhile (1 <= N) {
I ;s factorial *=
bolgr o i++;}

| Il return factorial;
| end Factorial

|

(double) i;

or conditional dependency. An edge e; is a conditional
dependency, i.c., e; € Ec, if it will be taken based on a
certain logical condition in the instruction /;, i.e., for
example, based on a “true” or “false” value of an if
statement in /;. If the edge e; is the only alternative for
program execution, we will consider that it is a simple
dependency, i.e., e; € Es. The embedded-application
module M can be eventually implemented either is
software or in hardware and will be referred as a mod-
ule in the paper.

In Fig. 2a and b, we present a simplified example of
a module M; and the corresponding dependency graph
G;. This module calculates a factorial of an integer
number N, where N is an input, assigned to 5 for this
particular example. Graph G; consists of 7 instructions,
Iy to I, and 7 dependency edges, ep4 to es3. Dependen-
cies e3q, €34 and es3 constitute a while loop, i.e., “while
i is less than or equals N”, where edges e3 and e34 are
conditional dependencies. Edge e;q is taken if the
“while” condition /5 is “false” and edge es4 is taken if
the “while” condition /5 is “true”. Edge es3 is a simple
dependency and is always taken after the last loop
instruction /s to come back to the “while” instruction
I;. The dependency graph G; has three source nodes, 1,
I, and I, where [, is initialization of input variable N,
and one sink node /.

We assign execution time to instructions in the mod-
ule by means of application profiling. Execution time
(eT) for each instruction (INSTR) of module M; is shown
in Fig. 2c. For example, instruction I, takes 15 time
units to execute. Similarly, time constraints, or dead-
lines, are assigned to the modules between two instruc-
tions. For example, module M, produces a new value of
the factorial variable at each loop of /5 to /5 and each
execution of /53 to s is constrained with the deadline D,
of 50 time units, as depicted in Fig. 2b. Thus, instruc-
tion I3 to I5 are not allowed to execute more than 50
time units.

ET

10
15

b c

@ Springer

474

J Electron Test (2012) 28:469—486

Since transient faults may affect execution of the appli-
cation, we are interested in optimization of executable-
assertion placement for the time-constrained module M.

3.2 B. Error Detection with Executable Assertions

Several soft errors can happen to the module M, in Fig. 2,
due to transient faults:

+ the multiplication operation may fail;

» the factorial number may be overflowed;

» the counter i may not increment as expected; and

» the while loop may loop infinitely due to a corrupted
counter i, memory overflow, or problems with the con-
ditional jump.

These errors can be triggered at any time of application
execution and have to be detected. Several techniques can be
used to detect errors caused by transient faults, such as watch-
dogs, signatures (both hardware and software), memory pro-
tection codes, various types of duplication, hardware-based
error detections and, finally, assertions. In this work, we will
use assertions to detect these faults in execution of module A/;.

Executable assertions are a common error detection tech-
nique, which is often used by programmers for debugging.
In general, an assertion is a predicate written as a Boolean
statement placed in the code, where the truth value should
be always true in the absence of faults. An assertion can be
defined as if not < assertion > then < error>, where <
assertion > is a logical (Boolean) check of an operand value
or correctness of an operation. An example of an operand
assertion can be “a shall be 1”. Correctness of an operation,
for example, “y=a — b” can be checked with an assertion “y —
a+ b shall be 0”. An example of error manifestation, enclosed
in the < error > block, can be a “try-catch” program structure
or a dedicated error detection mechanism in form of macro
definition that follows the assertion. The manifestation of
error propagates to the external recovery or warning mecha-
nism that initiates automatic recovery/restart or display a
warning message to the user, i.e., a pilot that can initiate
system reboot. Assertions can provide a very high level of
error detection compared to other techniques since they can be
fine-tuned to particular program properties.

However, assertions, similar to other error detection tech-
niques, can introduce a significant performance overhead
and, consequently, compromise the deadlines. At the same
time, lack of assertions will lead to low error coverage and

<x = factorial;>

<if

g

E factorial *=(double)i;
! (! (factorial/ (double)i ==

high susceptibility of the program to transient faults, which
will not be detected and, hence, can lead to potentially
catastrophic consequences. Thus, both performance over-
heads of assertions and their efficiency have to be consid-
ered in the assertion placement.

3.3 C. Parameters of Executable Assertions

To capture effectiveness of assertions, we assign to
each assertion 4,, a tightness value T,. The tightness
value T,, represents an increase in error detection prob-
ability of the module M against soft errors after asser-
tion 4,, is introduced. These values can be obtained
with, for example, fault injection experiments [1] or
with static probability analysis of the assertion code.
We compute them as a part of our profiling strategy
described in Section 4. We refer to this tightness value
as the static tightness, which is the error detection
capacity increase by the assertion in its respective in-
struction block taken in isolation. When the assertion is
executed as the part of the program, its tightness value
can be different. The tightness of the assertion will
depend on the program execution pattern. We refer to
the tightness value of assertions in the program as
dynamic tightness, which is the error detection capacity
increase by the assertion as a part of the program
execution.

Each assertion 4,, is also characterized with a perfor-
mance degradation value, §,,. The performance degradation
value §,, is the performance overhead of the assertion if
introduced into module M. These values can be obtained
with static analysis [57] or with extensive simulations of
program execution [30]. We also compute them in the
profiling step of the optimization framework, as de-
scribed in Section 4. Respectively, we define static-
and dynamic-performance degradations. The static-
performance degradation is the overhead of an assertion
associated with an instruction block taken in isolation;
the dynamic-performance degradation is the overhead
with respect to the program.

As a rule of thumb, assertions shall be introduced
with the highest tightness at the lowest performance
degradation.

Let us consider the example in Fig. 2. Instruction /: can
be protected with assertion 4; (where the assertion code is
indicated with brackets):

Assertion A;.

@ Springer

J Electron Test (2012) 28:469-486

475

For instruction /4 this assertion protects only the multipli-
cation operation, but it protects neither the value of factorial

<i prev = i;>

<factorial prev =
<x = factorial;>
<if

&& 1_prev

factorial; >
<<<while loop iteration>>>

factorial *=(double)i;
(! (factorial/ (double)i == x

&& factorial prev == x)

nor the value of the counter. Another assertion 4, could be as
follows:

error () ;>

Assertion A,.

This assertion A4, will protect both the multiplication and
the changing of counter i and factorial variables.

Let us consider that, after profiling, assertion 4; gives
tightness of 75 % (it captures faults only in the multi-
plication) and assertion A4, gives tightness of 90 %.'
Regarding performance, we obtain that 4; has perfor-
mance degradation of 20 time units, and A4, has perfor-

<i prev = i;>
<factorial prev =

factorial;>

factorial *=(double)i;

<if

ks
i (! (1_prev==i

factorial;>
<<<while loop iteration>>>

&& factorial prev==x))

mance degradation of 30 time units. If we compare
assertions 4; and A4, from the performance degradation
point of view, we can see that assertion A, requires more
time to execute. However, 4, is better than 4, from the
tightness point of view.

Let us consider assertion 45, which is the assertion 4, ex-
cluding the assertion A4, part for the multiplication check:

Assertion A;.

A3 will give us 25 % tightness but will only need 10 time
units to execute.

Note that assertions themselves can be subject to tran-
sient fault occurrences and, therefore, additional measures
should be taken to address error detection in assertions. This
could lead to a problem of “false positives”, i.c., assertion

(! (factorial /
if (! ((x *
error () ;>

(double) i

affected by a transient fault can signal that a fault has
happen but it actually has not. This can be solved with
self-detectable assertions, i.e., we introduce assertions for
assertions to provide a level of error detection coverage in
the assertions’ code. For example, a self-detectable assertion
for assertion A; can be:

(double)i == x)) i
factorial))) !

Example of self-detectable assertion.

! Note that these and the other values in the example are presented here
for illustrative purposes only, i.e., in order to illustrate decision-making
in the assertion placement process in the reader-friendly fashion.

This assertion checks if the division operation within
assertion 4, is performed correctly.

@ Springer

476

J Electron Test (2012) 28:469—486

So, which assertion should we choose for module M in
Fig. 2, given a list of assertions A;, A, and A3 and the
deadline Dy, i.e., 50 time units for instruction /5 to /5? The
total execution without assertions will be for module M;: 10+
15+3=28, which gives a performance budget of 50—28=23
time units. We define the performance budget as the difference
between a given time constraint of the module and its actual
time overhead of the module. Assertion A, cannot be chosen
since it executes in 30 time units, which exceeds the perfor-
mance budget. Assertions 4; and 45 can both fulfill the
performance requirement. However, assertion 4; provides a
better tightness value. Thus, assertion 4; will be chosen since
it has a performance degradation of 20 time units, which fits
into the given budget, and its tightness value of 75 % is greater
than 25 % tightness of 4.

Although, for the example in Fig. 2, decision on
which assertion to choose is relatively straightforward,
as the size of application increases, these decisions
become much more difficult. In the example of asser-
tion selection in Fig. 2, we had to choose between
three assertions for illustrative purposes. However, for
real-life programs the number of assertions can be
thousands, which makes it impossible to decide manu-
ally. On top of that, self-detectable assertions should be
also considered to reduce the number of “false
positives”.

Another problem with assertions is that not all of the
instructions are executed at every execution of an ap-
plication. For example, in Fig. 3a an instruction 7, will
be executed only if the instruction [;: “if x>99” produ-
ces “true” value. Suppose that the values of x are
uniformly distributed between 1 and 100. Then, if we
introduce an assertion A4,, for instruction /,, this asser-
tion delivers its tightness only in 1 case out of 100. In
99 cases it does not contribute to the error detection of
transient faults. We consider that, if, for example, the
initial static tightness of 4, is 80 %, the actual dynamic
tightness is 80 / 100=0.8 %. Thus, efficiency of asser-
tions also depends on how often they (and their related
instructions) are executed. In Fig. 3a, introduction of an
assertion A4, with static tightness of 40 % into the
“false” branch make more sense, i.e., its dynamic tight-
ness is 40x99 / 100=39.6 %, which is greater than that

a

Fig. 3 Example of a conditional execution of an assertion

@ Springer

of A4,,. Note, however, that in this example, there is no
competition between A4,, and A4, as long as they are
executed completely in different branches and both
assertions can be introduced. Let us consider another
situation depicted in Fig. 3b, where parts of 4,, and 4,
have to be executed before the condition 7, i.e., always,
with remaining parts to be completed in their own
branches. If we have to choose between these asser-
tions, assertion 4,, is obviously the best, despite the fact
that its static tightness (40 %) is only half of the static
tightness (80 %) of 4,,.

Thus, to address the complexity of the assertion placement,
we have proposed the assertion-placement-optimization
framework described in the following section.

4 Assertion-Placement Framework

We formulate the assertion-optimization problem as follows.
As an input we get a module M of a time-constrained
embedded application. Module M does not contain execut-
able assertions. Several sets of instructions in this module M
are associated with hard deadlines, as illustrated in the
simple example of Fig. 2. A list of candidate assertions for
this module M is also given. This list can be, for example,
provided by designers after previous debugging of this
module in the non-real-time mode or may even be associat-
ed with the module source code directly under the “ DE-
BUG” compilation flag. As an output, we want to produce a
module with the subset of assertions introduced at the best
possible places in the module source code, which maximize
tightness, while meeting hard deadlines.

In this section, we present the approach for placement,
optimization, and evaluation of error detection primitives. In
particular, an overview of the developed framework is
shown in Fig. 4. The framework is based on three main
iterative phases: the code analysis and manipulation phase,
the module simulation and profiling phase, and, finally, the
optimization of the assertion placement according to the
simulation and profiling information.

The framework takes as input a module (C/C++ code) of a
time-constrained embedded system, which does not have any
assertions, i.e. a fault silent description M, and transforms it
into an intermediate representation [12]. In this phase, the
framework introduces assertions, i.e. A, and placeholders by
exploiting the dependency-graph associated with the module,
i.e. G. Moreover, the framework allows the user to provide an
actual assertion for each placeholder. Then, the module
description with placeholders, i.e. M *, is simulated for
generating profiling information. In this work, we adop-
ted a Monte-Carlo automatic-test-pattern generator
(ATPG) for generating simulation stimuli, but either
user-defined testbenches or structural-ATPG approaches

J Electron Test (2012) 28:469-486

477

. User Interface
Code analysis and ----------

Manipulation ‘l‘

HW/SW i
module

M

1
i
I
i
1
I
I
I
i
1
I
I
I
i
I
\

~o -

Assertion
Optimization

Simulation and
Profiling

:l ...M Odl" Ie“+ ‘: ! Assert \‘:
: Placeholders : i oo :
mL i L_—| Algorithms
H i i _ | Simulation| H
I \/-'——-> Logs ;
: ATPG | i T |
\ . Optimization Library ;

Fig. 4 The profiling and optimization framework for assertion
placement

can be easily integrated. The generated profiling information
is a simulation log which, for each assertion, contains the
values of tightness and performance degradation. Finally, in
the optimization phase, the framework exploits this informa-
tion and the user-defined algorithms for generating a module
description with assertions. In particular, the framework pro-
vides an API for accessing the static and dynamic profiling
information. Moreover, it provides a set of optimization algo-
rithms, which can be either used or extended by the designer.
The final choice of assertions, i.e. M, is both compatible with
the time constraints of the embedded application, and opti-
mized in terms of error detection.

In the following, Section 4.A summarizes the main aspects
of the code analysis; Section 4.B presents the assertion-

profiling approach; Section 4.C describes the assertion-
optimization infrastructure and some algorithms built on
top of it; finally, Section 4.D provides an evaluation
metric for validating the quality of the optimization
environment.

4.1 A. Code Analisys and Profiling

The analysis and manipulation of the module descriptions are
based on HIFSuite [12], a set of tools and libraries, which
provides support for modeling and verification of embedded
systems. The core of HIFSuite is an intermediate format, i.e.,
Heterogeneous Intermediate Format (HIF), which is similar to
an abstract-syntax tree (AST); moreover, front-end and back-
end tools allow the conversion of HW/SW description into HIF
code and vice versa. In this initial phase, the HIF representation
of the module is automatically converted into a dependency
graph G, whose nodes and data/control-dependency edges are
added to the HIF AST. Then, the code analysis searches for
eligible locations for assertion placing. Eligible locations are
assignment instructions, arithmetic expressions, control state-
ment, operations over signals, bodies of loops, as well as initial
and final instructions of processes. For each of these locations
the framework provides a candidate assertion, which aims at
detecting soft errors. For example, in the case of a conditional
statement, it is necessary to guarantee that a transient fault does
not affect the choice of the branch currently in execution, as
shown in Listing 1.

Analogously, assertions may check the execution of the
body of loop statements, or that the loop-counter monoton-
ically increases (decreases). Another example is given in
Listing 2, where both the array access and the data reading
are protected against soft errors by means of an assertion.
Moreover, a user interface permits the designer to introduce

Lisﬁpg 1 Protecting 1

conditional-statement branches °

against soft errors 2
3.
4.
5.
6.
7.
8.
9.
10

if (x <= max) {
// then body
<if (!'(x <= max)) error():;>
X =y + z;
// then body
} else {
// else body
<if (x <= max) error();>

// else body

@ Springer

478 J Electron Test (2012) 28:469—486
Listing 2 Protecting array
reading against soft errors 1. <int _i,' >

2. x=ali1=1];

3. /7 ...

4. <if (x !'= a[i] && 1 != _i) error();>

further assertions or modify the assertions that the frame-
work automatically choose.

During the analysis of the code, an initial statically-
computed value for performance degradation is associated
with each assertion. The performance degradation is com-
puted based on the syntactic complexity of the Boolean
predicate, which is defined by the number and type of
variables and operators.

As a final step, in each eligible location, a placeholder is
injected that registers an event in the simulation log every
time it is reached during the execution. In particular, values
for tightness and performance degradation are dynamically-
computed and registered. An intuitive example of tightness
computation for executable assertions is reported in Fig. 3.
In such a case, the higher the number of times that a branch
is executed, the greater is the tightness of each assertion that
occurs in the branch. During the execution, the performance
degradation, associated with each assertion, is computed as
described in the following Section 4.B.

4.2 B. Executable-Assertion Profiling

Two critical performance measures characterize embedded
applications: physical-resource requirements, €.g., memory

occupation, and execution time of application tasks. In real-
time applications, the latter is traditionally the most critical
issue, indeed missing a deadline may cause result degrada-
tion or a complete failure.

In particular, our approach introduces additional code,
i.e., executable assertions, which may increase the exe-
cution time and cause failures with respect to time
constraints. In this context, a further clarification is
necessary. In the design and verification practice, the
use of executable assertions addressing design errors is
limited to the pre-release phases of the life cycle of
embedded application. When verification activities are
completed and the application is ready to be released,
the assertions are removed. Removing assertions after
verification is analogous to compiling without the debug
flags: the designer does not longer need to look for
incorrect behaviors. On the contrary, in our approach
executable assertions monitor constantly the application
status for detecting soft errors after system deployment.
Thus, measuring the introduced overhead is mandatory
both for assertion-placement optimization and real-time
requirements.

Execution-time profiling of assertions in embedded
application, i.e., C code, encounters some obstacles:

1. // tsc.h

2. #include <stdio.h>

3. __inline__ uint €4_t rdtsc(void) ({

4, uint32_t lo, hi;

S. _asm__ _ volatile (// serialize

6. “xorl %$%eax, %%eax \n cpuid”

7. :rr “srax”, “srbx”, Y“srcx”, “Ssrdx”):

8. __asm__ _ volatile (“rdtsc” : “=a” (lo), "“=d” (hi)):
9. return (uinté4_t)hi << 32 | lo:

10.)

Listing 3 Usage of RDTSC instruction at C-code level for x86-architecture. The instruction CPUID force in-order execution

@ Springer

J Electron Test (2012) 28:469-486

479

1. rdtsc ;
2. move time, eax ;
3. fdiv ;
4. rdtsc ;
S. sub eax, time ;

read time stamp

move counter into variable
floating-point divide

read time stamp

find the difference

Listing 4 Usage of RDTSC instruction at assembly-code level. Out-of-the-order execution may alter the cycle count

(a) the optimization proposed in this work is mostly
based on simulation, thus we prefer a dynamic-
profiling approach; (b) modern processors have high
execution frequencies and most of the available profil-
ing tools does not have sufficient time accuracy, thus
we need an approach providing accurate measures; at
the same time, (c) the profiling activities typically intro-
duces extra overhead, thus we need an approach with a
reduced impact; finally, (d) we want to reduce the code
instrumentation and, more in general, the designer inter-
vention. The adopted solution addresses each of these
issues, by exploiting two profiling techniques: time
stamping and use of an explicit counter at a known
frequency.

Nowadays, many processors provide dedicated syn-
chronous counters, i.e., time stamp counter (TSC), for
clock-cycle measurement [25]. TSCs share the same
clock as the processor core and hence provide accuracy
down to individual clock cycle of the operating frequen-
cy. For example, if the system is equipped with 1 GHz
processor, the timing accuracy is 1 ns. Note that profiling
tools like GProf [17] and OProfile [29], although widely
used for general profiling of software, truncate results to
milliseconds, thus for most of the assertions the resulting
execution time is just 0 ms. In contrary, a TSC-based
approach is useful when a very fine cycle measurement
is needed for a small section of code: it can give a good
idea of how many cycles a few instructions might take
versus another set of instructions.

The TSC register can be accessed using the assembly
instruction read time stamp counter (RDTSC). Listing 3
provides the snippet of C/assembly code that can be
used for profiling on RTLinux and x86 architecture,
but similar code can be written for different architec-
tures. For example, the ARM1] and Cortex cores include
a Performance Monitor Unit for events counting. Note
that, in Listing 3 at lines 5-7, instruction serialization is
introduced. Indeed, recent processors support out-of-or-
der execution that is instructions are not necessary per-
formed in the order they appear in the source code. This
may give a misleading cycle count. An example is

reported in Listing 4: the assembly code fragment meas-
ures the time required by a floating point division (line
3). Since the floating-point division takes a longer time
to compute, the following instruction RDTSC could
actually execute before the division. For example, under
the hypothesis of out-of-the-order-execution, a possible
re-ordering of the instructions in Listing 4 is <1, 2, 4,
3, 5>. If this happened, the cycle count would not take
the division into account. In order to keep the RDTSC
instruction from being performed out-of-the-order, the
instruction CPUID is used. CPUID forces every preced-
ing instruction in the code to complete before allowing
the application to continue. Note that CPUID is normal-
ly used to identify the processor on which the applica-
tion is being run, but here it is used only to force the
in-order execution.

Listing 5 provides a simple example of usage of the
function defined in Listing 3. Since the TSC counts cycles,
in order to convert the clock ticks to time we need to use the
classical equation: #seconds = #cycles / (frequence Hz). On
the same example, GProf is not able to provide a result for
the assertion at line 8.

Finally, dynamic profiling of executable assertions in
embedded applications may produce different results due
to short-circuit operators and cache effects.” The short-
circuit evaluation of Boolean operators in C specifies that
the left operand is evaluated first; then, depending on the
result of the evaluation of the left operand, the right
operand is evaluated. For example, let us consider the
expression ((a!=0) && ((b+4) >0)). If the variable
a stores the value 0 | then the overall Boolean expression is
trivially false and the sub-expression ((b+4) >0)is not eval-
uated. This may mislead the execution-time measurement
of the assertion. Similarly, when an assertion is evalu-
ated and the first time a line of data is brought into
cache, it takes a large number of cycles to transfer data
from the main memory.

% In real-time embedded systems, due to difficulties of obtaining reli-
able predictions, caching mechanisms are frequently disabled.

@ Springer

480 J Electron Test (2012) 28:469-486
1. #include <assert.h>
2. #include <stdio.h>
3. #include “tsc.h”
4. int main (int argc, char** argv) {
S. srand ((unsigned) time (NULL));
6. int r = rand() % 100;
7. uint64_t before = rdtsc():;
8. assert (r!=0);
9. uint64 t after = rdtsc();
10. uint64_t diff = after - before;
11. printf(“$1lu\n”, diff);
12. 1}

Listing 5 Time stamping and use of TSC counter permit to measure accurately assertion overhead

For addressing these issues we adopt a cache-warming tech-
nique and an on-the-site-measure hypothesis. In particular, the
embedded application is executed for a long time with various
input stimuli and for each assertion average execution time is
computed. This does not remove all the effects of cache and
short-circuits operators, but provide a close measure of perfor-
mance degradation due to executable assertions. In particular,
cache missing will occur differently on different iteration by
producing a different cycle count; similarly, the Boolean ex-
pression will be differently exercised. This approximates the
behavior of the embedded application and assertions after
system deployment (i.c., on-the-site-measure hypothesis).

4.3 C. Optimization Infrastructure

In the previous phases, a set of candidate assertions address-
ing soft errors is associated with each module of the time-
constrained embedded application, and simulation-based
profiling information is generated. These assertions have
different probabilities of detecting errors, and increase by
different amounts the execution time of the module. The
proposed framework provides an infrastructure that allows
the designer to automatically choose the assertions that
maximize the error detection and respect the time con-
straints of the application.

Algorithm 1 The Slowest
Assertion First (SAF) algorithm 1. input: the module M
2. input: the set CAS of candidate assertions
3. input: the maximum tolerated overhead MTO
4. output: the set SAS of selected assertions
S. SAS « @; remaining_overhead « MTO:
6. APQ « performance_degradation_ordering (CAS);
7. while ((remaining_overhead > 0) A APQ.is_not_empty()) do
8. assertion « remove_top (APQ);
9. if (assertion.perf_degradation < remaining_overhead) then
10. SAS « SELECTED U { assertion };
11. remaining overhead «
remaining_overhead - assertion.perf_degradation;
12. endif
13. end while
14. return SAS

@ Springer

J Electron Test (2012) 28:469-486

481

Table 1 ITC’99 benchmarks characteristics

Table 3 Comparison of the optimization algorithms (b05 benchmark)

Bench. Pi Po Var Loc CAS OH (ns) SAF FAF Meaf

b01 2 186 54 217 MTO MTO Ratio SAS Ratio SAS Ratio SAS
b02 3 1 3 131 28 117 (o) (ns)

b03 ! 26 212 68 308 5 81.1 0.182 8 0027 16 0289 10
b04 13 8 101 194 3 234 10 1622 0192 14 0075 34 0426 18
b05 3 36 St 362 192 1622 15 2433 0295 21 0125 51 0557 28
b06 4 6 3 205 67 288 20 3244 0407 50 0317 67 0.637 41
b07 3 8 43 286 46 195 25 4055 0448 36 0359 80 0704 56
b08 1 4 37 137 29 128

The optimization library provides functionalities for
accessing the dependency and profiling information. In par-
ticular, some data structures are maintained in association
with the dependency graph of each module, for example:

* A set which contains each candidate assertion (4,,), the
related location in the module (/,), and the profiled
tightness (T,,), and performance degradation (5,,).

* A set of paths which contains each path followed during
the simulation. In particular, a path is represented as a
list of events in the simulation log, and an event is a
couple (4,, t), where A4, is a reached assertion and ¢ is
the corresponding execution time from the simulation
beginning.

We implemented some algorithms on top of this infra-
structure, with the purpose of showing possible assertion-
placing optimizations, and focusing the attention on the
usability of the library. In particular, we can distinguish
between algorithms which use only the structural informa-
tion of the module, and algorithms that exploit the simula-
tion information.

A first simple optimization approach is the Slowest Asser-
tion First (SAF) strategy, shown in Algorithm 1. It always
chooses, while the deadlines are respected, the candidate
assertion with the highest static-performance degradation.
In such a case, we assume that the performance degradation

Table 2 UniVR benchmark characteristics

Bench. Pi Po Var Loc CAS OH (ns)
root 33 33 141 90 44 188
eccl 23 32 85 312 52 192
8b10b 9 10 37 455 82 358
adpcm 128 67 286 277 100 439

dist 66 33 4096 190 104 429

div 33 33 144 261 133 576
tcas 22 17 121 1415 222 940

aftt 132 65 1713 1813 636 3077

is proportional to the error detection of the assertions; that is, a
computational-heavy assertion detects more likely soft errors.
The expected result of this algorithm is a design with few, but
effective, assertions. In particular the algorithm takes as inputs
(lines 1-3) the module M, the set of candidate assertions CAS,
and a maximum-tolerated-overhead value MTO, which
depends on the time constraints of the embedded system. It
returns a set of assertions SAS (line 4), which are compatible
with the constraints and aim at optimizing the soft-error de-
tection probability. In particular, the candidate assertions are
ordered with respect to the static performance degradation,
with the most expensive first, in a priority queue 4PQ (line 6).
Then, the assertions are selected till they exhaust the available
tolerated overhead (lines 7—13).

Another similar approach, but based on a conceptually
inverse motivation, is the Fastest Assertion First (FAF). It
always chooses the available assertion with the minimum
performance degradation, until the tolerated overhead is
exhausted. The expected result is a design with the highest
number of assertions, which try to maximize the fault de-
tection capability. A third algorithm, the Most Executed
Assertion First (MEAF), exploits the tightness of the asser-
tions, a simulation-based information: it chooses, while the
deadlines are respected, the most executed assertion during
the system simulation. Similarly, several other algorithms
can be easily created by exploiting and combining both the
structural and profiling information.

Table 4 Comparison of the optimization algorithms (aftt benchmark)

SAF FAF Meaf

MTO MTO Ratio SAS Ratio SAS Ratio SAS
(%) (ns)

5 1539 0256 30 0.001 40 0.390 38
10 307.7 0.122 64 0390 71 0.756 68
15 461.6 0.500 93 0.512 103 0.851 98
20 6154 0.122 121 0.634 139 0.874 132
25 769.3 0.366 150 0.756 169 0.910 161

@ Springer

482

J Electron Test (2012) 28:469—486

Fig. 5 Comparison of the Ratio
optimization algorithms for 0,9
ITC’99 benchmarks 08

0,7
0,6
0,5
0,4
0,3
0,2
0,1

4.4 D. Evaluation Metric

Measuring the quality of selected assertions is a key aspect
for evaluating assertion-optimization algorithm. Since the
framework is particularly focused on the simulation, it
seems reasonable to emphasize simulation contribution also
for evaluating the obtained results. Thus, we propose the
following metric.

Definition 1 Let M be a time-constrained module, A = {A;,
..., Ax} alist of candidate assertions for the module M, and
p an assertion-placing algorithm. Then the result of the
algorithm p over the module M, and the set of assertions A
is the set of assertions A, = {A}, ..., A%} C A. The qual-
ity of A, is measured as the ratio

where 0 < 7; < 1 and 6; > 0 are, respectively, the tightness
and performance degradation associated with each assertion
Fig. 6 Comparison of the

optimization algorithms for
UniVR benchmarks

Ratio

@ Springer

MTO %

mS5

=10
=15
m20
w25

Ajin A, while 0 < rli’ < land 6? > (Oare associated with each
assertion Alin A,,.

This metric promotes the set of assertions having
higher tightness and lower performance degradation. We
empirically measured the tightness by using a transient
fault simulator, i.e., FEMU [18]. The simulator permits to
randomly inject bit faults in all general purpose registers
and into the status flags of the emulated processor. Fur-
thermore, it is possible to manipulate the first two bytes
of a fetched instruction, in order to simulate the execu-
tion of a wrong instruction. In particular, the duration of
the fault can be configured to be permanent or transient.
The performance degradation is measure in terms of time
overhead introduced by the assertions, as described in
Section 4.B.

5 Experimental Results

In order to assess the effectiveness of the proposed frame-
work, we have used the benchmarks described in Tables 1
and 2. In each table, columns PI, PO, and VAR denote

MTO %
m5

=10
mi5
|20
25

J Electron Test (2012) 28:469-486

483

respectively the number of bits in primary inputs, primary
outputs and internal variables for each benchmark; column
LocC reports the number of lines of code; column CAS reports
the number of candidate assertions; finally, column OH
reports the overall overhead in nanoseconds (ns) that the
candidate assertions introduce. Benchmarks in Table 1 are
from ITC’99 suite, which is a well know reference used by
other authors [14]. In particular, we have rewritten the
behavioral designs in C code to be executed as embedded
applications. Indeed, the designs are suitable to be imple-
mented as software components: for example, design 503 is
aresource arbiter and »/0 is a voting system. Table 2 reports
a further set of embedded applications, i.e., UniVR suite,
which we used in our experiments. In this case, the appli-
cations are ordered according the number of candidate asser-
tions (column cAs). In particular, root, div, and dist are
software components of an industrial face recognition sys-
tem provided by STMicroelectronics; eccl is an error-
correction application by STMicroelectronics; 8b10b is a
encoding/decoding application [39]; adpcm is implementing
an audio-compression algorithm by STMicroelectronics;
tcas is a traffic-collision-avoidance system [53]; finally, afit
computes the trajectory of aircraft-fuel tanks released before
emergency landing.

After the automatic generation of a set of candidate
assertions for each benchmark, we profiled the quality
of the described optimization algorithms by using the
evaluation metric proposed in Section 4.D. In particular,
we adopted a Monte-Carlo automatic-test-pattern gener-
ator for generating simulation stimuli. The embedded
applications are executed for a long time with various
input stimuli and for each assertion average values for
tightness and performance degradation are computed.
We observed that different runs, i.e., different work-
loads, provide approximately the same results (the dif-
ference of tightness and performance degradation are
under 1 %).

In Tables 3 and 4, we report the results of the algo-
rithms in columns SAF, FAF, and MEAF for benchmarks
b05 and aftt, respectively. We have chosen one bench-
mark for each set of embedded application having high-
est number of candidate assertions, i.e., b05 and afit. We
executed each algorithm with a maximum-tolerated over-
head. Such a value is expressed as a percentage of the
overall overhead reported in column OHms) of Tables 1
and 2. In particular, columns MTO(%) and MTO(ns) of
Tables 3 and 4 report the percentage value and the
corresponding time value in nanoseconds, respectively.
Moreover, for each algorithm, the column RATIO reports
the quality of the algorithm which is measured accord-
ing to the proposed metric, and column SAS reports the
number of assertion selected over the total number of
candidate assertions reported in Tables 1 and 2.

According to the results we can observe that:

+ there is an increasing in the quality ratio of the selected
assertions with the increase of the maximum tolerated
deadline; indeed this is expected, because, apart from the
adopted optimization algorithm, an higher number of
assertions can be selected for each benchmark;

* the number of selected assertions of the algorithm Fast-
est Assertion First (FAF) is always higher than Slowest
Assertion First (SAF), but this does not always guarantee
an higher effectiveness of the assertions;

» the Most Executed Assertion First (MEAF) algorithm always
outperforms the others; this result highlights the importance
of the simulation and profiling information in selecting the
candidate assertions; indeed, the proposed framework pro-
vides an infrastructure to define effective optimization algo-
rithms, which both increase the efficiency of assertion
checks and reduce the performance overhead.

Figures 5 and 6 provide an overview of the quality (Ratio)
for each benchmark and algorithm. The maximum-tolerated
overhead (MTO) is expressed as a percentage ranging from
5 % to 25 %. From these results we can further conclude that
for each benchmark the profiling/simulation-based approach
(MEAF) provides better results than the static-analysis-based
optimizations. The mean effectiveness of MEAF is 3 times
higher the others, while, in the case of benchmark 501, the
effectiveness of MEAF is up to 9 times higher. Moreover, the
variance® of the MEAF results (0.2448*1072) is significantly
smaller than saF (1.1714*107%) and FAF (2.9704%10 %) that
guarantees a higher confidence on the quality of the error-
detection primitives which are selected by means of the pro-
filing framework.

6 Conclusion

Despite the intensive efforts of engineers during the design
and verification phases, time-constrained embedded applica-
tions may still have erroneous behaviors after deployment.
Some of these “buggy” application behaviors could be trig-
gered by the unavoidable nature of transient faults, caused by
cosmic radiations, temperature variations, vibrations, interfer-
ences, etc. Some could be the result of aging and some could
be purely software and/or hardware related due to, for exam-
ple, a rare synchronization circumstance or sudden incorrect
initialization of a certain variable. In this context, executable
assertions can be inserted into the application code to con-
stantly monitor the applications behavior, as long as they
respect the time constraints of the applications. In this work,
we have presented an approach to introduce executable

3 The variance describes how far values lie from the mean.

@ Springer

484

J Electron Test (2012) 28:469—486

assertions into time-constrained embedded applications. The
approach takes into account frequency of assertion execution,
tightness, i.e., error-coverage efficiency, of the assertions and
performance degradation due to them.

We have also developed an optimization framework for
assertion placement in embedded applications given a set of
candidate assertions. In particular, it identifies candidate
locations for assertions and associates a candidate assertion
to each location. The selected assertions will respect the
time-constraints of the real-time embedded application.
The proposed framework considers both assertion properties
and properties of real-time applications by accurately
profiling them. Our experimental results have shown
that we could introduce executable assertions and in-
crease error detection probabilities against transient
faults, while, at the same time, preserving timing con-
straints. Thus, executable assertions can be effectively
used to improve error-detection and debuggability of
real-time applications.

References

1. Aidemark J, Vinter J, Folkesson P, Karlsson J (2001) GOOFT: generic
object-oriented fault injection tool. Proceedings of International Con-
ference on Dependable Systems and Networks, pp 83—88

2. Alkhalifa Z, Nair VSS, Krishnamurthy N, Abraham JA (1999)
Design and evaluation of system-level checks for on-line
control flow error detection. IEEE Trans Parallel Distr Syst
10(6):627-641

3. Ando H, Yoshida Y, Inoue A, Sugiyama I, Asakawa T, Morita K,
Muta T, Motokurumada T, Okada S, Yamashita H, Satsukawa Y,
Konmoto A, Yamashita R, Sugiyama H (2003) A 1.3 GHz fifth
generation SPARC64 Microprocessor. Proceedings of Internation-
al Solid-State Circuits Conference

4. Austin TM (1999) DIVA: a reliable substrate for deep submicron
microarchitecture design. Proceedings ACM/IEEE International
Symposium on Microarchitecture. IEEE Computer Society, pp
196-207

5. Ayav T, Fradet P, Girault A (2008) Implementing fault-tolerance in
real-time programs by automatic program transformations. ACM
Trans Embed Comput Syst 7(4):1-43

6. Baleani M, Ferrari A, Mangeruca L, Sangiovanni Vincentelli A,
Peri M, Pezzini S (2003) Fault-tolerant platforms for automotive
safety-critical applications. Proceedings of International Confer-
ence on Compilers, Architecture and Synthesis for Embedded
Systems, pp 170-177

7. Baum CE (1992) From the electromagnetic pulse to high-power
electromagnetics. Proc IEEE 80(6):789-817

8. Baumann RC (2001) Soft errors in advanced semiconductor devi-
ces—part I: the three radiation sources. Device and Materials
Reliability, IEEE Transactions, vol. 1, no. 1

9. Baumann RC (2002) Soft errors in commercial semiconductor
technology: overview and scaling trends. Proceedings of Reliabil-
ity Physics Tutorial Notes, Reliability Fundamentals

10. Baumann RC (2005) Radiation-induced soft errors in advanced
semiconductor technologies. IEEE Transactions on Device and
Materials Reliability, vol. 5, no. 3

11. Benso A, Chiusano S, Prinetto P, Tagliaferri L (2000) A C/C++
source-to-source compiler for dependable applications. Proceedings

@ Springer

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.
27.

28.

29.

30.

31.

32.

33.

34.

of IEEE International Conference on Dependable Systems and Net-
works, pp 71-78

Bombieri N, Di Guglielmo G, Fummi F, Pravadelli G, Ferrari M,
Stefanni F and Venturelli A (2010) HIFSuite: tools for HDL code
conversion and manipulation. EURASIP Journal on Embedded
Systems, vol. 2010

Cheynet P, Nicolescu B, Velazco R, Rebaudengo M, Sonza Reorda
M, Violante M (2000) Experimentally evaluating an automatic
approach for generating safety-critical software with respect to
transient errors. IEEE Trans Nucl Sci 47(6):2231-2236

Corno F, Reorda M, Squillero G (2000) RT-Level ITC99 Bench-
marks and First ATPG Result. IEEE Design & Test of Computers,
pp 44-53, July—August

Eles P, Peng Z, Pop P, Doboli A (2000) Scheduling with bus access
optimization for distributed embedded systems. IEEE Trans VLSI
Syst 8(5):472-491

Engel H (1997) Data flow transformations to detect results which
are corrupted by hardware faults. Proceedings of IEEE High-
Assurance System Engineering Workshop, pp 279-285

Fenlason J, Stallman R (1998) GNU GProf. GNU Free Software
Foundation

Gaiswinkler G, Gerstinger A (2009) Automated software diversity
for hardware faul detection. Proceedings of IEEE Conference on
Emerging Technologies and Factory Automation

Gill B, Seifert N, Zia V (2009) Comparison of alpha-particle and
neutron-induced combinational and sequential logic rates at the
32 nm technology node. Proceedings of IEEE International Reli-
ability Physics Symposium, pp 199-205

Goloubeva O, Rebaudengo M, Sonza Reorda M, Violante M
(2003) Soft-error detection using control flow assertions. Proceed-
ings of IEEE International Symposium on Defect and Fault Toler-
ance in VLSI Systems, pp 581-588

Goloubeva O, Rebaudengo M, Sonza Reorda M, Violante M
(2006) Software-implemented hardware fault tolerance.
Springer

Hiller M (2000) Executable assertions for detecting data errors in
embedded control systems. Proceedings of International Confer-
ence on Dependable Systems and Networks, pp 24-33

Hiller M, Jhumka A, Suri N (2002) On the placement of software
mechanisms for detection of data errors. Proceedings of Interna-
tional Conference on Dependable Systems and Networks, pp 135—
144

Huang KH, Abraham JA (1984) Algorithm-based fault tolerance
for matrix operations. IEEE Trans Comput 33:518-528

Intel Corporation (1997) Using the RDTSC instruction for perfor-
mance monitoring. Technical report

Koren I, Mani Krishna C (2007) Fault-tolerant systems. Elsevier
Lantz L (1996) Soft errors induced by Alfa particles. IEEE Trans
Reliab 45:175-179

Levenson NG, Turner CS (1993) An investigation of the Therac-
25 accidents. IEEE Comput 26(7):18-41

Levon J, Elie P (2005) OProfile: a system profiler for Linux. Web
site: oprofile.sourceforge.net

Lu Y, Nolte T, Kraft J, Norstrom C (2010) Statistical-based
response-time analysis of systems with execution dependencies
between tasks. Proceedings of IEEE International Conference on
Engineering of Complex Computer Systems, pp 169—-179
Messenger G, Ash M (1986) The effects of radiation on electronic
systems. Van Nostrand Reinhold Company Inc

Nicolaidis M (ed) (2010) Soft errors in modern electronic systems.
Springer

Normand E (1996) Single event upset at ground level. IEEE Trans
Nucl Sci 43(6):2742-2750

Oh N, McCluskey EJ (2002) Error detection by selective proce-
dure call duplication for low energy consumption. IEEE Trans
Reliab 51(4):392-402

J Electron Test (2012) 28:469-486

485

35. Oh N, Mitra S, McCluskey EJ (2002) ED4I: error detection by
diverse data and duplication instructions. IEEE Trans Comput
51:180-199

36. Oh N, Shirvani PP, McCluskey EJ (2002) Error detection by
duplicated instructions in superscalar processors. IEEE Trans
Reliab 51(1):63-75

37. Oh N, Shirvani PP, McCluskey EJ (2002) Control-flow checking
by software signatures. IEEE Trans Reliab 51(2):111-122

38. Omana M, Rossi D, Metra C (2004) Latch susceptibility to tran-
sient faults and new hardening approach. IEEE Trans Comput
56:1255-1268

39. OpenCores (8b10b) Encoder/Decoder. www.opencores.org

40. Peti P, Obermaisser R, Kopetz H (2005) Out-of-norm assertions.
Proceedings of IEEE Real-Time and Embedded Technology and
Applications Symposium, pp 209-223

41. Piotrowski A, Makowski D, Jablonski G, Napieralski A (2008)
The automatic implementation of software implemented hardware
fault tolerance algorithms as a radiation-induced soft errors miti-
gation technique. Proceedings of IEEE Nuclear Science Sympo-
sium Conference Record, pp 841-846

42. Pradhan DK (ed) (1986) Fault-tolerant computing: theory and
techniques. Prentice-Hall

43. Pradhan DK (1996) Fault-tolerant computer system design. Prentice
Hall PTR

44. Rashid F, Saluja KK, Ramanathan P (2000) Fault tolerance
through re-execution in multiscalar architectures. Proceedings of
International Conference on Dependable Systems and Networks,
pp 482-491

45. Rebaudengo M, Sonza Reorda M, Torchiano M, Violante M
(1999) Soft-error detection through software fault-tolerance tech-
niques. Proceedings of International Symposium on Defect and
Fault Tolerance in VLSI Systems, pp 210-218

46. Rebaudengo M, Sonza Reorda M, Torchiano M, Violante M
(1999) Soft-error detection through software fault-tolerance tech-
niques. Proceedings of IEEE International Symposium on Defect
and Fault Tolerance in VLSI Systems, pp 210-218

47. Rebaudengo M, Sonza Reorda M, Torchiano M, Violante M
(2001) A source-to-source compiler for generating dependable
software. Proceedings of IEEE International Workshop on Source
Code Analysis and Manipulation, pp 33-42

48. Reinhardt SK, Mukherjee SS (2000) Transient fault detection via
simultaneous multithreading. Proceedings of International Sympo-
sium on Computer Architecture, pp 25-36

49. Reis GA, Chang J, Vachharajani N, Rangan R, August DI (2005)
SWIFT: software implemented fault tolerance. Proceedings of
International Symposium on Code Generation and Optimization,
pp 243-254

50. Rossi D, Omana M, Metra C (2010) Transient fault and soft
error on-die monitoring scheme. Proceedings of International
Symposium on Defect and Fault Tolerance in VLSI Systems,
pp 391-398

51. Rotenberg E (1999) AR-SMT: a michroarchitecture approach to
fault tolerance in microprocessors. Proceedings of International
Symposium on Fault-Tolerant Computing, pp 84-91

52. Sangiovanni Vincentelli A, Di Natale M (2007) Embedded
system design for automotive applications. Proc Comput 40
(10):42-51

53. Software-artifact Infrastructure Repository. Traffic-Collision-
Advoidance system (TCAS). sir.unl.edu

54. Sohi G, Franklin M, Saluja K (1989) A study of time-redundant
fault tolerance techniques for high-performance pipelined com-
puters. Proceedings of International Symposium on Fault Tolerant
Computing, pp 463443

55. Vemu R, Abraham JA (2006) CEDA: control-flow error detection
through assertions. Proceedings of IEEE International On-Line
Testing Symposium

56. Voas JM, Miller KW (1994) Putting assertions in their place.
Proceedings of International Symposium on Software Reliability
Engineering, pp 152-157

57. Wilhelm R, Engblom J, Ermedahl A, Holsti N, Thesing S, Whalley
D, Bernat G, Ferdinand R, Heckmann C, Mueller F, Puuat I,
Puschner P, Staschulat J, Stenstrom P (2008) The worst-case
execution-time problem—overview of methods and survey of
tools. ACM Trans Embed Comput Syst 7(3)

58. Wood KS, Fritz G, Hertz P, Johnson WN, Lovelette MN, Wolff
MT, Bloom E, Godfrey G, Hanson J, Michelson P, Taylor R, Wen
H (1994) The USA experiment on the ARGOS satellite: a low cost
instrument for timing x-ray binaries. Proc EUV, X-Ray, and
Gamma-Ray Instrum Astron 2280:19-30

59. Yau S, Chen F (1980) An approach to concurrent control flow
checking. IEEE Trans Softw Eng SE-6(2):126—137

60. Yeh Y (1996) Triple-triple redundant 777 primary flight computer.
Proc IEEE Aero Appl Conf 1:293-307

61. Yin H, Bieman JM (1994) Improving software testability with
assertion insertion. Proceedings of International Test Conference,
pp 831-839

62. Zenha Rela M, Madeira H, Silva JG (1996) Experimental evalua-
tion of the fail-silent behavior in programs with consistency
checks. Proceedings of Symposium on Fault Tolerant Computing,
pp 394403

63. Ziegler JF et al (1996) IBM experiments in soft fails in computer
electronics (1978-1994). IBM J Res Dev 40(1):3—18

Viacheslav Izosimov is a Systems Architect Consultant at the Semcon
AB corporation. He performs an advanced consultancy work in the
area of safety-critical embedded systems, functional safety and reli-
ability. In particular, he works with ISO 26262 and IEC 61508 stand-
ards. Viacheslav defended his PhD in Computer Systems at Linkoping
University in 2009. He is author of more than 30 conference publica-
tions, several journal manuscripts and book chapters. He received the
Best Paper Award at the Design, Automation and Test in Europe
Conference (DATE 2005) and the EDAA Outstanding Dissertation
Award 2011 for his PhD thesis work.

Giuseppe Di Guglielmo received the Laurea degree in Computer
Science in 2005 and the PhD degree in Computer Science in 2009,
both from the University of Verona. He has been a research assistant at
the Computer Science Department of the University of Verona since
2009. His research interests include verification of embedded systems
and EDA methodologies for hardware/software system modeling. He
is a member of the IEEE.

Michele Lora received the Laurea degree in Computer Science from
the University of Verona in 2010. Thesis title: “Profiling and
simulation-based insertion and optimization of fault tolerance asser-
tions in embedded time-constrained systems” developed under the
supervision of Prof. Graziano Pravadelli and Dr. Giuseppe Di
Guglielmo of University of Verona, in collaboration with the ESLab
of the Linkoping Institute of Technology.

Graziano Pravadelli received the Laurea degree and the PhD degree
in Computer Science from the University of Verona, respectively, in
2001 and 2004. He was assistant professor at the Computer Science
Department of the University of Verona from January 2005 to Decem-
ber 2010, where, since January 2011 he is associate professor. His main
research interests are in hardware description languages and electronic
design automation methodologies for modeling and verification of
hardware/software systems, in which area he has published about 80
papers. He is a member of the IEEE.

@ Springer

486

J Electron Test (2012) 28:469—486

Franco Fummi received the Laurea degree in Electronic Engineer-
ing in 1990 and the PhD degree in Electronic Engineering in 1995,
both from the Politecnico di Milano. He has been a full professor
in the Dipartimento di Informatica of the University of Verona
since 2001. His main research interests are in hardware description
languages and electronic design automation methodologies for mod-
eling, verification, testing, and optimization of hardware/software
systems. He has published more than 230 papers in the EDA field;
three of them received “best paper awards” at, respectively, IEEE
EURODAC 96, IEEE DATE 99, FDL ’11. Since 1995, he has
been with the Dipartimento di Elettronica e Informazione of the
Politecnico di Milano with the position of assistant professor. In
July 1998, he was promoted to the position of associate professor
in computer architecture in the Department of Computer Science at
the University of Verona. He is a member of the IEEE and a
member of the IEEE Test Technology Committee.

Zebo Peng has been Professor of the chair of Computer Systems and
Director of the Embedded Systems Laboratory (ESLAB) at Linkoping
University since 1996. He is also Chairman of the Division for Soft-
ware and Systems (SaS). He served as Director of the Swedish Na-
tional Graduate School in Computer Science (CUGS) in 2006—-2008.

@ Springer

He received his Ph.D. in Computer Science from Linkoping University
in 1987. Prof. Peng’s current research interests include design and test
of embedded systems, electronic design automation, SoC testing, fault
tolerant design, hardware/software co-design, and real-time systems.
He has published over 300 technical papers in these areas and coau-
thored four books. Prof. Peng received “four best paper awards”, two at
the European Design Automation Conferences (EURO-DAC’92
and EURO-DAC’94), one at the IEEE Asian Test Symposium
(ATS’02), and one at the Design, Automation and Test in Europe
Conference (DATE’05). Prof. Peng served as the Chair of the
IEEE European Test Technology Technical Council (ETTTC) in
20062009, and has been a Golden Core Member of the IEEE
Computer Society since 2005.

Masahiro Fujita received his Ph.D. degree in Information Engineer-
ing from the University of Tokyo in 1985. From 1985 to 2000, he
worked at Fujitsu Laboratories Japan and US. In March 2000, he
joined the department of Electronic Engineering in the University of
Tokyo as a professor, and now a professor at VLSI Design & Educa-
tion Center in the University of Tokyo. He has received several awards
from Japanese major scientific societies on his works in formal verifi-
cation and logic synthesis.

