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Abstract— We present an approach for optimization of assertion 

placement in time-constrained HW/SW modules for detection of 

errors due to transient and intermittent faults. During the design 

phases, these assertions have to be inserted into the executable 

code and, hence, will always be executed with the corresponding 

code branches. As the result, they can significantly increase 

execution time of a module, in particular, contributing to a much 

longer execution of the worst case, and cause deadline misses. 

Assertions have different characteristics such as tightness (or 

"local error coverage") and execution latency. Taking into 

account these properties can increase efficiency of assertion checks 

in time-constrained embedded HW/SW modules. We have 

developed a design optimization framework, which (1) identifies 

candidate locations for assertions, (2) associates a candidate 

assertion to each location, and (3) selects a set of assertions in 

terms of performance degradation and assertion tightness. 

Experimental results have shown the efficiency of the proposed 

techniques. 

I.  INTRODUCTION 

Executable assertions are one of the most efficient methods to 

increase testability of applications against transient and intermittent 

faults1 (also known as ―soft errors‖). Transient faults are one of the 

most common faults in modern electronic systems due to high 

complexity, smaller transistor sizes, higher operational frequency, and 

lower voltage levels [4][12][19]. These faults can be result of 

electromagnetic interference, radiation, temperature variations, etc. 

[16]. They happen for a short time and disappear without causing a 

permanent damage to the circuit. However, if not tolerated, transient 

faults may crash the system or lead to dramatic quality deterioration 

[16][17]. Efficient error detection is an ultimate prerequisite for this 

fault tolerance. Assertions can provide a high degree of error coverage 

against transient faults with low performance overhead compared to 

other techniques [10][13][20]. This is, however, true only if the right 

assertions are introduced in the proper places during execution of 

HW/SW modules. 

In this paper, we will focus on optimization of executable assertions 

placement in HW/SW modules. In particular, we will consider HW/SW 

modules, which have timing constraints, i.e., are parts of a larger real-

time embedded system.  Execution of such a real-time module has to 

complete before a certain deadline [18]. If this deadline is violated, it 

may lead to potentially catastrophic consequences for an application. 

Thus, taking into account performance overheads of executable 

assertions becomes particularly crucial. 

The related works on assertions can be classified in three main 

groups: assertion-based approaches for SystemC code (HW/SW 

                                                           
1 We will refer to both intermittent and transient faults as transient faults. 

modules), assertion-based debugging approach for embedded 

applications, and assertion-based approaches for addressing transient 

faults. 

In the first group of techniques, executable assertions are 

introduced into SystemC descriptions, which is a popular language for 

developing embedded systems [9]. In particular, Habibi et al. [11] have 

presented a methodology to generate assertions with ASM (Abstract 

States Machines) in C# language with the following transition into 

SystemC before integration into the HW/SW module. They use PLS 

(Property Specification Language) to specify a variety of design 

properties in ASM. Economakos [6] has proposed a framework to 

introduce SystemC and PSL assertions into embedded programs, which 

are later integrated into the high-level synthesis (HLS) process for 

digital circuits. Tomasena et al. [21] have proposed a design framework 

to introduce assertions into SystemC programs at the Transaction Level 

(TL) model with the Assertion Based Verification (ABV) support. 

ABV is a popular technique to verify electronic systems, where 

assertions are introduced in a systematic manner into an embedded 

component. 

In the second group, most of assertion-related works target 

debuggability and testability of applications. For example, Yin and 

Bieman [15] have developed a C-Patrol tool to automatically introduce 

executable assertions into C programs. Voas and Miller [23] have 

introduced assertions based on sensitivity properties of the code, i.e., 

which parts of the code are the most difficult to test and are the most 

critical for execution of safety-critical applications. Gharehbaghi et al. 

[8] have proposed an assertion-based methodology to test Systems-on-

Chip (SoC) with a monitor that observes status of assertions.  

In the last group of related research works, assertions have been 

used against transient faults. Vemu and Abraham [22] have proposed a 

CEDA methodology to call program flow with assertions, which can be 

used to detect transient faults. Goloubeva et al. [10] have proposed an 

approach to insert executable assertions for detecting transient faults. 

Hiller [13] has proposed a methodology to sort out faults from 

incoming signals with assertions, which can be used to stop propagation 

of errors caused by transient faults through the system. This work has 

been later extended with assertion optimization to increase system 

dependability with profiling in [14]. Peti et al. [20] have proposed an 

―out-of-norm‖ assertion methodology to insert assertions into electronic 

components, in particular, communication controllers, to detect 

transient faults. Ayev et al. [2] have proposed a technique to integrate 

assertions into embedded programs with automatic program 

transformations to provide error detection and recovery against 

transient faults. 

However, to our knowledge, none of the previous work has 

addressed real-time aspects of embedded systems with executable 

assertions. In this work, we assess timing efficiency of assertions in 

order to reduce performance overheads of error detection and propose a 



framework for optimizing the assertion placing into time-constrained 

embedded systems. Our framework will: 

1. identify candidate locations for assertions; 

2. associate a candidate assertion to each location (the candidate 

assertion is suggested by the framework, but the user can 

change it); 

3. statically/dynamically profile the module with assertions  

(inspired by the work of Hiller et al. [14]); and 

4. select a set of assertions in terms of performance degradation 

and tightness (by using the optimization infrastructure). 

Our approach can be useful for optimization of executable 

assertions in any embedded system with timing constraints. Examples 

of such systems include, but are not limited to, automotive electronics, 

airborne software, factory automation, and medical and 

telecommunication equipment. Our technique is useful not only for 

detection of transient faults but also for debugging of real-time 

programs with hard timing constraints. In such programs, assertions 

must not compromise the program’s timing constrains, and, thus, have 

to be optimized. 

The rest of the paper is organized as follows: the next section 

presents our application model, describes principles of error detection, 

and discusses basic properties of executable assertions; in Section III, 

we outline our problem formulation; in Section IV, we present our 

assertion placement optimization framework; finally, experimental 

results are presented in Section V. 

II. APPLICATION MODEL 

To represent application behavior, we have adapted the conditional 

process graph model proposed in [7] for the program instruction level. 

We represent an embedded program module M as a directed 

dependency graph G = {V, ES, EC}, where V is a set of nodes and ES 

and EC are sets of simple and conditional edges, respectively. The main 

difference from the model in [7] is that we will permit loops in the 

graph, i.e., the dependency graph G does not have to be acyclic, and we 

will consider program instructions instead of processes. Moreover, it is 

not required that the graph has to be polar, i.e., several source and sink 

nodes are possible. In our model, a node Ii  V is a module instruction 

and eij is a direct dependency between instructions Ii and Ij, which can 

be, for example, a data or logical dependency. eij can be either a simple 

or conditional dependency. eij is a conditional dependency, i.e. eij  EC, 

if it will be taken based on a certain logical condition in the instruction 

Ii, i.e., for example, based on a ―true‖ or ―false‖ value of an if statement 

in Ii. If eij is the only alternative for program execution, we will 

consider that it is a simple dependency, i.e., eij  ES. Note that simple 

and conditional dependencies may constitute parts of module loops. 

The embedded program module M can be eventually implemented 

either is software (SW) or in hardware (HW) and will be referred as a 

HW/SW module or simply module in the paper. 

In Figure 1 we present an example of a simple module M1 and the 

corresponding dependency graph G1. This module calculates a factorial 

of an integer number N, where N is an input. Graph G1 consists of 6 

instructions, I1 to I6, and 6 dependencies, e13 to e53. Dependencies e36, 

e34 and e53 constitute a while loop, i.e., ―while i is less than or equals 

N‖, where e36 and e34 are conditional dependencies. e36 is taken if the 

―while‖ condition I3 is ―false‖ and e34 is taken if the ―while‖ condition 

I3 is ―true‖. e53 is a simple dependency and is always taken after the last 

loop instruction I5 to come back to the ―while‖ instruction I3. The 

dependency graph G1 has two source nodes, I1 and I2, and one sink node 

I6. 

We will assign performance values to instructions and 

dependencies in the HW/SW module with the static/dynamic profiling 

of the module.2 Performance values for module M1 are shown in the 

                                                           
2 In general, these performance values are dependent on the actual execution 

sequence of the module. However, to simplify performance analysis, we will 

begin with the performance values individually profiled for instructions and 

dependencies, which will give us the first approximate performance figures of 

the module execution, as described in Section IV.A. Later, as described in 

Section IV.B, module execution sequences (with the introduced assertions) will 

be profiled to capture performance effect of inter-dependencies between 

bottom of Figure 1. For example, instruction I4 will take 15 time units 

to execute. Time constraints, or deadlines, are assigned to the HW/SW 

modules. For example, module M1 produces a new value of the 

factorial variable at each loop of I3 to I5 and each execution of I3 to I5 is 

constrained with the deadline D1 of 50 time units, as depicted in Figure 

1. Thus, instruction I3 to I5 are not allowed to execute more than 50 

time units. 

We will consider that transient faults may affect execution of 

program P1 and are, thus, interested in optimization of assertion 

placement for the time-constrained module M1. 

 

Figure 1.  Example of a program and its instruction graph. 

A. Error detection with assertions 

Several errors can happen to the HW/SW module M1 of program P1 

in Figure 1, due to transient faults: 

 the multiplication operation may fail; 

 the factorial number may be overflowed; 

 the counter i may not increment as expected; and 

 the while loop may loop infinitely due to a corrupted counter i, 

memory overflow, or problems with the conditional jump. 

These errors can be triggered at any time of program execution and 

have to be detected. Several techniques can be used to detect errors 

caused by transient faults, such as watchdogs, signatures (both 

hardware and software), memory protection codes various types of 

duplication, hardware-based error detections and, finally, assertions. In 

this work, we will use assertions to detect these faults in execution of 

module M1. 

Executable assertions are a common error detection technique, 

which is often used by programmers for debugging. In general, an 

assertion is a predicate written as a Boolean statement placed in the 

code, where the truth value should be always true in absence of faults. 

An assertion can be defined as if not <assertion> then <error>, where 

<assertion> is a logical (Boolean) check of an operand value or 

correctness of an operation. An example of an operand assertion can be 

―a shall be 1‖. Correctness of an operation, for example, ―y = a  b‖ can 

be checked with an assertion ―y  a + b shall be 0‖. Assertions can 

provide a very high level of error detection compared to other 

techniques since they can be fine-tuned to particular program 

properties. 

However, assertions, similar to other error detection techniques, can 

introduce a significant performance overhead and, consequently, 

compromise the deadline. Violation of this deadline may lead to 

catastrophic consequences, and, hence, must be avoided. At the same 

time, lack of assertions will lead to low error coverage and high 

susceptibility of the program to transient faults, which will not be 

detected and, hence, can also lead to potentially catastrophic 

                                                                                                       
instructions (and assertions) in these execution sequences, and, thus, deadline 

satisfaction will be ensured over all execution scenarios of the module. 
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consequences. Thus, both performance overheads of assertions and 

their efficiency have to be considered in the assertion placement. 

B. Parameters of executable assertions 

To capture effectiveness of assertions, we will assign to each 

assertion Am a tightness value, m. The tightness value m represents an 

increase in error detection probability of the HW/SW module M against 

random faults after assertion Am is introduced. These values can be 

obtained with, for example, fault injection experiments [1] or with static 

probability analysis of the assertion code. We will compute them as a 

part of our profiling strategy described in Section IV. 

Each assertion Am is also characterized with a performance 

degradation value, m. The performance degradation value m is the 

performance overhead of the assertion if introduced into module M. 

These values can be obtained with static analysis [24] or with extensive 

simulations of program execution [25]. We will also compute them in 

the profiling step of the optimization framework, as described in 

Section IV. 

In general assertions shall be introduced with the highest possible 

tightness at the lowest performance degradation. 

In Figure 1, instruction I4: factorial*=(double)i can be 

protected with assertion A1 (where the assertion code is indicated with 

brackets):  

<x = factorial;> 

factorial *=(double)i; 

<if (!(factorial/(double)i == x)) error();> 

For instruction I4 this assertion protects only the multiplication 

operation, but it protects neither the value of factorial nor the value of 

the counter. Another assertion A2 could be as follows: 

<i_prev = i;> 

<factorial_prev = factorial;> 

<<<while loop iteration>>> 

<x = factorial;> 

factorial *=(double)i; 

<if (!(factorial/(double)i == x 

     && i_prev == i 

     && factorial_prev == x) error();> 

This assertion A2 will protect both the multiplication and the 

changing of counter i and factorial variables. 

Let us consider that, after profiling, assertion A1 gives tightness of 

75% for instruction I4 (it captures faults only in the multiplication) and 

assertion A2 gives tightness of 90%.3 Regarding performance, we obtain 

that A1 has performance degradation of 20 time units, and A2 has 

performance degradation of 30 time units. If we compare assertions A1 

and A2 from the performance degradation point of view, we can see that 

assertion A2 requires more time to execute. However, A2 is better than 

A1 from the tightness point of view.  

Let us consider assertion A3, which is the assertion A2 excluding the 

assertion A1 part for the multiplication check: 

<i_prev = i;> 

<factorial_prev = factorial;> 

<<<while loop iteration>>> 

<x = factorial;> 

factorial *=(double)i; 

<if (!(i_prev==i  

     && factorial_prev==x)) error();> 

A3 will give us 25% tightness but will only need 10 time units to 

execute. 

Note that assertions themselves can be subject to transient fault 

occurrences and, therefore, additional measures should be taken to 

address error detection in assertions. This could lead to a problem of 

―false positives‖, i.e., assertion affected by a transient fault can signal 

that the fault has happen but it actually has not. This can be solved with 

                                                           
3 Note that these and the other values in the example are presented here for 

illustrative purposes only, i.e., in order to illustrate decision-making in the 

assertion placement process in the reader-friendly fashion. 

self-detectable assertions, i.e., we introduce assertions for assertions to 

provide a level of error detection coverage in the assertions’ code. For 

example, a self-detectable assertion for assertion A1 can be: 

<if (!(factorial / (double)i == x))  

   if (!((x * (double)i == factorial))) 

     error();> 

This assertion checks if the division operation within assertion A1 is 

performed correctly. 

So, which assertion should we choose for module M1 in Figure 1, 

given a list of assertions A1, A2 and A3 and the deadline of 50 time units 

for instruction I3 to I5? The total execution without assertions will be for 

module M1: 10 + 15 + 3 = 28, which gives a performance budget of 50 

– 28 = 23 time units. Thus, assertion A1 will be chosen since it has a 

performance degradation of 20 time units, which fits into the given 

budget, and its tightness value of 75% is greater than 25% tightness of 

A3. 

Although, for the example in Figure 1, decision on which assertion 

to choose is relatively straightforward, as the size of HW/SW module 

increases, these decisions becomes much more difficult. If in Figure 1 

we have only three possible assertions, for real-life programs the 

number of assertions can be thousands, which makes it impossible to 

decide manually. On top of that, self-detectable assertions should be 

also considered to reduce the number of ―false positives‖. 

Another problem with assertions is that not all of the instructions 

are executed at every execution of a HW/SW module. For example, in 

Figure 2a, instruction I2 will be executed only if the instruction I1: ―if x 

> 99‖ produces ―true‖ value. Suppose that the values of x are uniformly 

distributed between 1 and 100. Then, if we introduce an assertion Am 

for instruction I2, this assertion will deliver its tightness only in 1 case 

out of 100. In 99 cases it will not contribute to the error detection of 

transient faults. We will consider that, if, for example, the initial static 

tightness of Am is 80%, the actual dynamic tightness will be 80 / 100 = 

0.8%. Thus, efficiency of assertions also depends a lot on how often 

they (and their related instructions) are executed. In Figure 2a, 

introduction of an assertion An with static tightness of 40% into the 

―false‖ branch will make more sense, i.e., its dynamic tightness will be 

40 × 99 / 100 = 39.6%, which is greater than that of Am. Note, however, 

that in this example, there is no competition between Am and An as long 

as they are executed completely in different branches and both 

assertions can be introduced. Let us consider another situation depicted 

in Figure 2b, where parts of Am and An have to be executed before the 

condition I1, i.e., always, with remaining parts to be completed in their 

own branches. If we have to choose between these assertions, assertion 

An will be obviously the best, despite the fact that its static tightness 

(40%) is twice as small as the static tightness (80%) of Am. 

 
Figure 2.  Example of a conditional execution of an assertion. 

Thus, to address the complexity of assertion placement, we have 

proposed an assertion placement optimization framework described in 

Section IV, which solves a generalized problem of assertion placement 

that we present in Section III. 

III. PROBLEM FORMULATION 

As an input we get a HW/SW module M (in VHDL, SystemC, C) 

of a time-constrained embedded system. Module M does not contain 

executable assertions. Several sets of instructions in this module M are 

associated with hard deadlines, as illustrated in the example in Figure 1. 

A list of candidate assertions for this module M is also given. This list 

can be, for example, provided by designers after previous debugging of 

this module in the non real-time mode or may even be associated with 
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the module source code directly under the ―_DEBUG‖ compilation 

flag. 

As an output, we want to produce a HW/SW module with the 

subset of assertions introduced at the best possible places in the module 

source code, which maximize tightness, while meeting hard deadlines. 

IV. ASSERTION PLACEMENT 

In this section, we present the approach for placement, 

optimization, and evaluation of error detection primitives in time-

constrained embedded systems. In particular, an overview of the 

developed framework is shown in Figure 3.  The framework is based on 

three main iterative phases: the code analysis and manipulation phase, 

the module simulation and profiling phase, and, finally, the 

optimization of the assertion placement according to the simulation and 

profiling information.  

 

Figure 3.  The profiling and optimization framework for assertion placement. 

The framework takes as input an HW/SW module (VHDL, 

SystemC, C) of a time-constrained embedded system, which does not 

have any assertions, i.e. a fault silent description M, and transforms it 

into an intermediate representation [3]. In this phase, the framework 

introduces assertions, i.e. A, and placeholders by exploiting the 

dependency-graph associated with the module, i.e. G. Each assertion is 

coupled with a statically computed value for performance degradation. 

Moreover, the framework allows the user to provide an actual assertion 

for each placeholder. Then, the module description with placeholders, 

i.e. M L, is simulated for generating further profiling information. In this 

work, we adopted a Monte-Carlo automatic-test-pattern generator 

(ATPG) for generating simulation stimuli, but either user-defined 

testbenches or structural-ATPG approaches can be easily integrated. 

The generated profiling information is a simulation log which, for each 

placeholder, contains the dynamically computed values of tightness and 

performance degradation. Finally, in the optimization phase, the 

framework exploits this information and the user-defined algorithms for 

generating a module description with assertions. In particular, the 

framework provides an API for accessing the static and dynamic 

profiling information. Moreover, it provides a set of optimization 

algorithms, which can be either used or extended by the designer. The 

final choice of assertions, i.e. M A, is both compatible with the time 

constraints of the embedded system, and optimized in terms of error 

detection. 

In the following, Section IV.A summarizes the main aspects of the 

code analysis and profiling phases; Section IV.B describes the 

assertion-optimization infrastructure and some algorithms built on top 

of it; finally, Section IV.C provides an evaluation metric for validating 

the quality of the optimization environment. 

A. Code analisys and profiling 

The analysis and manipulation of the module descriptions are based 

on HIFSuite [3], a set of tools and libraries, which provides support for 

modeling and verification of embedded systems. The core of HIFSuite 

is an intermediate format, i.e. HIF, which is similar to an abstract-

syntax tree (AST); moreover, front-end and back-end tools allow the 

conversion of HW/SW description into HIF code and vice versa. In this 

initial phase, the HIF representation of the module is automatically 

converted into a dependency graph G, whose nodes and data/control-

dependency edges are added to the HIF AST. Then, the code analysis 

searches for eligible locations for assertion placing. Eligible locations 

are assignment instructions, arithmetic expressions, control statement, 

operations over signals, bodies of loops, as well as initial and final 

instructions of processes. For each of these locations the framework 

provides a candidate assertion, which aims at detecting soft errors. For 

example, in the case of a conditional statement, it is necessary to 

guarantee that a transient fault does not affect the choice of the branch 

currently in execution, as shown in Figure 4.  

  

Figure 4.  Protecting conditional-statement branches against soft errors. 

Analogously, assertions may check the execution of the body of 

loop statements, or that the loop counter monotonically increases 

(decreases). Another example is given in Figure 5, where both the array 

access and the data reading are protected against soft errors by means of 

an assertion. Moreover, a user interface permits the designer to 

introduce further assertions or modify the assertions that the framework 

automatically choose. 

 
Figure 5.  Protecting array reading against soft errors. 

During the analysis of the code, an initial statically-computed value  

for performance degradation is associated with each assertion. The 

performance degradation is computed based on the syntactic 

complexity of the Boolean predicate, which is defined by the number 

and type of variables and operators. 

As a final step, in each eligible location, a placeholder is injected 

that registers an event in the simulation log every time it is reached 

during the execution. In particular, further values for tightness and 

performance degradation are dynamically-computed and registered. An 

intuitive example of tightness computation for executable assertions is 

reported in Figure 2.  In such a case, the higher the number of times that 

a branch is executed, the greater is the tightness of each assertion that 

occurs in the branch. During the execution, the performance 

degradation, associated with each assertion, is computed in terms of 

time units. 

B. Optimization infrastructure 

In the previous phases, a set of candidate assertions addressing soft 

errors is associated with each module of the time-constrained embedded 

system, and simulation-based profiling information is generated. These 

assertions have different probability of detecting errors, and increase 

the execution time of the module. The proposed framework provides an 

infrastructure that allows the designer to automatically choose the 

assertions that maximize the error detection and respect the time 

constraints of the system. 

The optimization library provides functionalities for accessing the 

dependency and profiling information. In particular, some data 

structures are maintained in association with the dependency graph of 

each module, for example: 

<int _i;> 

x = a[_i = i]; 

// ... 

<if ( x != a[i] && i != _i) error();>  

if (x <= max) {  

  // then body 

  <if (!(x <= max)) error();> 

  x = y + z; 

  // then body 

} else { 

  // else body 

  <if (x <= max) error();> 

  // else body 

} 
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 A set which contains each candidate assertion (Am), the related 

location in the module (lm), and the profiled tightness ( ), and 

performance degradation ( ). 

 An assertion-dependency graph, ADG = {A, EA}, where each 

node is a candidate assertion (Am  A) and each edge (i,j)  EA 

correlates two assertions, if assertion j is the subsequent of 

assertion i during the simulation. 

 A set of paths which contains each path followed during the 

simulation. In particular, a path is represented as a list of events 

in the simulation log, and an event is a couple (Am, t) where, Am 

is a reached assertion and t is the corresponding execution time 

from the simulation beginning. 

We implemented some algorithms on top of this infrastructure, with 

the purpose of showing possible assertion-placing optimizations, and 

focusing the attention on the usability of the library. In particular, we 

can distinguish between algorithms which use only the structural 

information of the module, and algorithms that exploit the simulation 

information. 

A first simple optimization approach is the Best Assertion First 

(BAF) strategy, shown in Algorithm 1. It always chooses, while the 

deadlines are respected, the candidate assertion with the highest 

probability of detecting errors. In such a case, we assume that the error 

detection probability is proportional to the static performance 

degradation of the assertions; that is, a computational-heavy assertion 

detects more likely soft errors. The expected result of this algorithm is a 

design with few, but effective, assertions. In particular the algorithm 

takes as inputs (lines 1-3) the module, the set of candidate assertions, 

and a maximum-tolerated-overhead value, which depends on the time 

constraints of the embedded system. It returns a set of assertions (line 

4), which are compatible with the constraints and aim at optimizing the 

soft-error detection probability. In particular, the candidate assertions 

are ordered with respect to the static performance degradation, with the 

most expensive first (line 6). Then, the assertions are selected till they 

exhaust the available  tolerated overhead (lines 7-13). 

 
Algorithm 1.  The Best Assertion First (BAF) algorithm. 

Another similar approach, but based on a conceptually inverse 

motivation, is the Fastest Assertion First (FAF). It always chooses the 

available assertion with the minimum static performance degradation, 

until the tolerated overhead is exhausted. The expected result is a 

design with the highest number of assertions, which try to maximize the 

fault detection capability. A third algorithm, the Most Executed 

Assertion First (MEAF), exploits the tightness of the assertions, a 

simulation-based information: it chooses, while the deadlines are 

respected, the most executed assertion during the system simulation. 

Similarly, several other algorithms can be easily created by exploiting 

and combining both the structural and profiling information. 

C. Evaluation metric 

Since the framework is particularly focused on the simulation, it 

seems reasonable to emphasize simulation contribution also for 

evaluating the obtained results. Thus, we propose the following metric. 

Definition 1: Let M be a time-constrained module, A ={A1, ..., AK} 

a list of candidate assertions for the module M, and   an assertion-

placing algorithm. Then the result of    over M and A is the set of 

assertions Ap = {  
 
     

 
}    . The quality of  Ap  is measured as 

the ratio 

R  io   
    

 
  

    
 

   
 
    

 

where   and   are, respectively, the tightness and performance 

degradation associated with each assertion    in A, while  
 
 and  

 
 are  

associated with each assertion    in Ap . 

Thus, this metric not only considers the quality of the selected 

assertion, but also takes into account the frequency of assertion 

execution (the dynamically computed tightness). 

V. EXPERIMENTAL RESULTS 

In order to assess the effectiveness of the proposed framework, we 

have used the benchmarks described in Table 1, where columns PI, PO, 

and VAR respectively report the number of bits in primary inputs, 

primary outputs and internal variables for each benchmark; column 

LOC reports the number of lines of code; column CAS reports the 

number of candidate assertions; finally, column OH reports the overall 

overhead in nanoseconds (ns) that the candidate assertions introduce. 

Such benchmarks are from ITC’99 suite, that is a well know reference 

used by other authors [5]. 

BENCH. PI PO VAR LOC CAS OH (ns) 

b01 4 2 3    186 54 217 

b02 3 1 3    131 28 117 

b03 6 1 26 212 68 308 

b04 13 8 101 194 55 234 

b05 3 36 511 362 192 1622 

b06 4 6 3 205 67 288 

b07 3 8 43 286 46 195 

b08 11 4 37    137 29 128 

Table 1.   Benchmarks characteristics. 

After the automatic generation of a set of candidate assertions for 

each benchmark, we profiled the quality of the described optimization 

algorithms by using the evaluation metric proposed in Section IV.C.  

In Table 2 and Table 3, the results of the algorithms are reported in 

columns BAF, FAF, and MEAF for benchmarks b03 and b05, 

respectively. We have chosen to report only the results of b03 and b05 

for lack of space and because these benchmarks are the biggest in terms 

of candidate assertions. We executed each algorithm with a maximum 

tolerated overhead, which is reported in column MTO. Such a value is 

expressed as a percentage on the  overall overhead (column OH in 

Table 1), i.e. 5%, 10%, … , and 25%. For example, in the case of b05 

the MTO values are 5ns, 10ns, 15ns, 20ns, and 25ns. For each 

algorithm, the column RATIO reports the quality of the algorithm which 

is measured according to the proposed metric, and column SAS reports 

the number of assertion selected over the total number of candidate 

assertions reported in Table 1. 

 BAF FAF MEAF 

MTO (%) RATIO SAS RATIO SAS RATIO SAS 

5 0.125 3 0.026 7 0.290 5 

10 0.246 6 0.272 13 0.415 8 

15 0.360 9 0.396 16 0.540 11 

20 0.383 8 0.518 18 0.665 11 

25 0.455 12 0.632 20 0.791 13 
Table 2.   Comparison of the optimization algorithms (b03 benchmark). 

 BAF FAF MEAF 

MTO (%) RATIO SAS RATIO SAS RATIO SAS 

5 0.182 8 0.027 16 0.289 10 

10 0.192 14 0.075 34 0.426 18 

15 0.295 21 0.125 51 0.557 28 

20 0.407 50 0.317 67 0.637 41 

25 0.448 36 0.359 80 0.704 56 

Table 3.   Comparison of the optimization algorithms (b05 benchmark). 

1. input: the module M 
2. input: the set CAS of candidate assertions 
3. input: the maximum tolerated overhead MTO 
4. output: the set SAS of selected assertions 
 
5. SAS ←  ; rem ining_overhe d ← MTO; 
6.  PQ ← perf_deg_order (C S); 
7. while remaining_overhead      flag do 
8.   assertion ←  remove_ op ( PQ); 
9.   if (assertion.perf_degradation   remaining_overhead) then 
10.     SAS ← SELECTED   { assertion }; 
11.     rem ining_overhe d ←  

         remaining_overhead   assertion.perf_degradation;  
12.   end if 
13. end while 
14. return SAS 



According to the results we can observe that: 

 there is an increasing in the quality ratio of the selected 

assertions with the increase of the maximum tolerated deadline; 

indeed this is expected, because, apart from the adopted 

optimization algorithm, an higher number of assertions can be 

selected for each benchmark; 

 the number of selected assertions of the algorithm Fastest 

Assertion First (FAF) is always higher than Best Assertion First 

(BAF), but this does not always guarantee an higher 

effectiveness of the assertions; 

 the Most Executed Assertion First (MEAF) algorithm always 

outperforms the others; this result highlights the importance of 

the simulation and profiling information  in selecting the 

candidate assertions; indeed, the proposed framework provides 

an infrastructure to define effective optimization algorithms, 

which both increase the efficiency of assertion checks and 

reduce the performance overhead. 

Table 4 provides an overview of the quality (Ratio) for each 

benchmark and algorithm. We set the maximum tolerated overhead 

Mto to be 15% of the overall overhead of each benchmark.  

 

Table 4.  Comparison of the optimization algorithms (MTO 15%). 

From these results we can further conclude that for each benchmark 

the profiling/simulation-based approach (MEAF) provides better results 

than the static-analysis-based optimizations. The mean effectiveness of  

MEAF is 3 times higher the others, while, in the case of benchmark b01, 

the effectiveness of MEAF is up to 9 times higher. Moreover, the 

variance4 of the MEAF results (           ) is significantly smaller 

than BAF (           ) and FAF (           ), that guarantees a 

higher confidence on the quality of the error-detection primitives which 

are selected by means of the profiling framework. 

VI. CONCLUSIONS 

We have presented an approach to introduce executable assertions 

into HW/SW modules of real-time programs. Executable assertions are 

used for detection of transient and intermittent faults during program 

execution and can be also used for debugging of real-time programs. In 

our approach, we take into account frequency of assertion execution, 

tightness (efficiency) of assertions and performance degradation due to 

assertions. 

We have also developed optimization framework for assertion 

placement in large HW/SW modules given an array of large number of 

assertions. Our framework takes into account assertion properties and 

properties of real-time programs. Our experimental results have shown 

that we could introduce executable assertions and increase error 

detection probabilities against transient and intermittent faults, while, at 

the same time, preserving timing constraints. Thus, executable 

assertions can be effectively used to improve error-detection and 

debuggability of real-time systems. 

                                                           
4 The variance describes how far values lie from the mean.  

REFERENCES 

[1] J. Aidemark, J. Vinter, P. Folkesson, and J. Karlsson, ―GOOFI: Generic 
Object-Oriented Fault Injection Tool‖,  Proc. Intl. Conf. on Dependable 
Systems and Networks (DSN), 83-88, 2001. 

[2] T. Ayav, P. Fradet, and A. Girault, ―Implementing Fault-Tolerance in 
Real-Time Programs by Automatic Program Transformations‖, ACM 
Trans. on Embedded Computing Systems, 7(4), 1-43, 2008. 

[3] N. Bombieri, G. Di Guglielmo, F. Fummi, G. Pravadelli, M. Ferrari, F. 
Stefanni, and A. Venturelli, ―HIFSuite: Tools for HDL Code Conversion 
and Manipulation‖, EURASIP Journal on Embedded Systems (under 
publishing), 2011. 

[4] C. Constantinescu, ―Trends and Challenges in VLSI Circuit Reliability‖, 
IEEE Micro, 23(4), 14-19, 2003. 

[5] F. Corno, M. Reorda, and G. Squillero, ―RT-Level ITC99 Benchmarks 
and First ATPG Result‖, IEEE Design & Test of Computers, pp. 44–53, 
July-August, 2000.  

[6] G. Economakos, ―Behavioral Synthesis with SystemC and PSL 
Assertions for Interface Specification‖, IEEE Intl. Symp. on Circuits and 
Systems (ISCAS), 4 pp. - 822, 2006. 

[7] P. Eles, Z. Peng, P. Pop, and A. Doboli, ―Scheduling with Bus Access 
Optimization for Distributed Embedded Systems‖, IEEE Trans. on VLSI 
Systems, 8(5), 472-491, 2000. 

[8] A.M. Gharehbaghi, M. Babagoli, and S. Hessabi, ―Assertion-based Debug 
Infrastructure for SoC Designs‖, Intl. Conf. on Microelectronics (ICM), 
137-140, 2007. 

[9] F. Ghenassia (Ed.), ―Transaction-Level Modeling with SystemC: TLM 
Concepts and Applications for Embedded Systems‖, Springer, 2005. 

[10] O. Goloubeva, M. Rebaudengo, M. Sonza Reorda, and M. Violante, 
―Soft-error Detection Using Control Flow Assertions‖, Proc. 18th IEEE 
Intl. Symp. on Defect and Fault Tolerance in VLSI Systems, 581-588, 
2003. 

[11] A. Habibi, A. Gawanmeh, and S. Tahar, "Assertion based verification of 
PSL for SystemC Designs‖, 2004. Proceedings. 2004 Intl. Symp. on 
System-on-Chip, 2004 , Page(s): 177 – 180. 

[12] S. Hareland, J. Maiz, M. Alavi, K. Mistry, S. Walsta, and Changhong Dai, 
―Impact of CMOS Process Scaling and SOI on the Soft Error Rates of 
Logic Processes‖, Proc. Symp. on VLSI Technology, 73-74, 2001. 

[13] M. Hiller, ―Executable Assertions for Detecting Data Errors in Embedded 
Control Systems‖, Proc. Intl. Conf. on Dependable Systems and Networks 
(DSN), 24-33, 2000. 

[14] M. Hiller, A. Jhumka, and N. Suri, ―On the Placement of Software 
mechanisms for Detection of Data Errors‖, Intl. Conf. on Dependable 
Systems and Networks, 135-144, 2002. 

[15] Hwei Yin and J.M. Bieman, ―Improving Software Testability with 
Assertion Insertion‖, Intl. Test Conf. (ITC), 831-839, 1994. 

[16] V. Izosimov, ―Scheduling and Optimization of Fault-Tolerant Distributed 
Embedded Systems‖, PhD Thesis No. 1290, Dept. of Computer and 
Information Science, Linköping University, 2009. 

[17] V. Izosimov, P. Pop, P. Eles, and Z. Peng, ―Scheduling of Fault-Tolerant 
Embedded Systems with Soft and Hard Timing Constraints‖, DATE 
Conf., 2008. 

[18] H. Kopetz, ―Real-Time Systems-Design Principles for Distributed 
Embedded Applications‖, Kluwer Academic Publishers, 1997. 

[19] A. Maheshwari, W. Burleson, and R. Tessier, ―Trading Off Transient 
Fault Tolerance and Power Consumption in Deep Submicron (DSM) 
VLSI Circuits‖, IEEE Trans. on Very Large Scale Integration (VLSI) 
Systems, 12(3), 299-311, 2004. 

[20] P. Peti, R. Obermaisser, and H. Kopetz, ―Out-of-Norm Assertions‖, Proc. 
11th IEEE Real-Time and Embedded Technology and Applications 
Symp. (RTAS), 209-223, 2005. 

[21] K. Tomasena, J.F. Sevillano, J. Perez, A. Cortes and I. Velez, ―A 
Transaction Level Assertion Verification Framework in SystemC: An 
Application Study‖, 2nd Intl. Conf. on Advances in Circuits, Electronics 
and Micro-electronics, 75-80, 2009. 

[22] R. Vemu and J.A. Abraham, ―CEDA: Control-Flow Error Detection 
through Assertions‖, 12th IEEE Intl. On-Line Testing Symp., 6 pp., 2006. 

[23] J.M. Voas and K.W. Miller, ―Putting Assertions in Their Place‖, Proc. 5th 
Intl. Symp. on Software Reliability Engineering, 152-157, 1994. 

[24] R. Wilhelm ,J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whalley, 
G. Bernat, C. Ferdinand, R. Heckmann, F. Mueller, I. Puuat, P. Puschner, 
J. Staschulat, and P. Stenström, ―The Worst-Case Execution-Time 
Problem — Overview of Methods and Survey of Tools‖, ACM Trans. on 
Embedded Computing Systems (TECS), 7(3), 36.1-36.53, 2008. 

[25] Yue Lu, T. Nolte, J. Kraft, and C. Norstrom, ―Statistical-Based Response-
Time Analysis of Systems with Execution Dependencies between Tasks‖, 
15th IEEE Intl. Conf. on Engineering of Complex Computer Systems, 
169-179, 2010. 

b01 b02 b03 b04 b05 b06 b07 b08

BAF 0.103 0.082 0.360 0.344 0.295 0.186 0.292 0.309

FAF 0.064 0.124 0.396 0.258 0.125 0.414 0.329 0.561

MEAF 0.578 0.626 0.540 0.550 0.557 0.614 0.650 0.674

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

R
A

T
IO

 

MTO 15% 


