
Optimization of Assertion Placement in

Time-Constrained Embedded Systems

Viacheslav Izosimov

Embedded Intelligent Solutions (EIS) By Semcon AB

Email: viacheslav.izosimov@eis.semcon.com

Zebo Peng

Dept. of Computer and Information Science,

Linköping University

Email: zebo.peng@liu.se

Michele Lora, Graziano Pravadelli, Franco Fummi

Dept. of Computer Science, University of Verona

Email: {name.surname}@univr.it

Giuseppe Di Guglielmo, Masahiro Fujita

VLSI Design and Education Center, University of Tokyo,

CREST - Japan Science and Technology Agency

{gdg, fujita}@cad.t.u-tokyo.ac.jp

Abstract— We present an approach for optimization of assertion

placement in time-constrained HW/SW modules for detection of

errors due to transient and intermittent faults. During the design

phases, these assertions have to be inserted into the executable

code and, hence, will always be executed with the corresponding

code branches. As the result, they can significantly increase

execution time of a module, in particular, contributing to a much

longer execution of the worst case, and cause deadline misses.

Assertions have different characteristics such as tightness (or

"local error coverage") and execution latency. Taking into

account these properties can increase efficiency of assertion checks

in time-constrained embedded HW/SW modules. We have

developed a design optimization framework, which (1) identifies

candidate locations for assertions, (2) associates a candidate

assertion to each location, and (3) selects a set of assertions in

terms of performance degradation and assertion tightness.

Experimental results have shown the efficiency of the proposed

techniques.

I. INTRODUCTION

Executable assertions are one of the most efficient methods to

increase testability of applications against transient and intermittent

faults1 (also known as ―soft errors‖). Transient faults are one of the

most common faults in modern electronic systems due to high

complexity, smaller transistor sizes, higher operational frequency, and

lower voltage levels [4][12][19]. These faults can be result of

electromagnetic interference, radiation, temperature variations, etc.

[16]. They happen for a short time and disappear without causing a

permanent damage to the circuit. However, if not tolerated, transient

faults may crash the system or lead to dramatic quality deterioration

[16][17]. Efficient error detection is an ultimate prerequisite for this

fault tolerance. Assertions can provide a high degree of error coverage

against transient faults with low performance overhead compared to

other techniques [10][13][20]. This is, however, true only if the right

assertions are introduced in the proper places during execution of

HW/SW modules.

In this paper, we will focus on optimization of executable assertions

placement in HW/SW modules. In particular, we will consider HW/SW

modules, which have timing constraints, i.e., are parts of a larger real-

time embedded system. Execution of such a real-time module has to

complete before a certain deadline [18]. If this deadline is violated, it

may lead to potentially catastrophic consequences for an application.

Thus, taking into account performance overheads of executable

assertions becomes particularly crucial.

The related works on assertions can be classified in three main

groups: assertion-based approaches for SystemC code (HW/SW

1 We will refer to both intermittent and transient faults as transient faults.

modules), assertion-based debugging approach for embedded

applications, and assertion-based approaches for addressing transient

faults.

In the first group of techniques, executable assertions are

introduced into SystemC descriptions, which is a popular language for

developing embedded systems [9]. In particular, Habibi et al. [11] have

presented a methodology to generate assertions with ASM (Abstract

States Machines) in C# language with the following transition into

SystemC before integration into the HW/SW module. They use PLS

(Property Specification Language) to specify a variety of design

properties in ASM. Economakos [6] has proposed a framework to

introduce SystemC and PSL assertions into embedded programs, which

are later integrated into the high-level synthesis (HLS) process for

digital circuits. Tomasena et al. [21] have proposed a design framework

to introduce assertions into SystemC programs at the Transaction Level

(TL) model with the Assertion Based Verification (ABV) support.

ABV is a popular technique to verify electronic systems, where

assertions are introduced in a systematic manner into an embedded

component.

In the second group, most of assertion-related works target

debuggability and testability of applications. For example, Yin and

Bieman [15] have developed a C-Patrol tool to automatically introduce

executable assertions into C programs. Voas and Miller [23] have

introduced assertions based on sensitivity properties of the code, i.e.,

which parts of the code are the most difficult to test and are the most

critical for execution of safety-critical applications. Gharehbaghi et al.

[8] have proposed an assertion-based methodology to test Systems-on-

Chip (SoC) with a monitor that observes status of assertions.

In the last group of related research works, assertions have been

used against transient faults. Vemu and Abraham [22] have proposed a

CEDA methodology to call program flow with assertions, which can be

used to detect transient faults. Goloubeva et al. [10] have proposed an

approach to insert executable assertions for detecting transient faults.

Hiller [13] has proposed a methodology to sort out faults from

incoming signals with assertions, which can be used to stop propagation

of errors caused by transient faults through the system. This work has

been later extended with assertion optimization to increase system

dependability with profiling in [14]. Peti et al. [20] have proposed an

―out-of-norm‖ assertion methodology to insert assertions into electronic

components, in particular, communication controllers, to detect

transient faults. Ayev et al. [2] have proposed a technique to integrate

assertions into embedded programs with automatic program

transformations to provide error detection and recovery against

transient faults.

However, to our knowledge, none of the previous work has

addressed real-time aspects of embedded systems with executable

assertions. In this work, we assess timing efficiency of assertions in

order to reduce performance overheads of error detection and propose a

framework for optimizing the assertion placing into time-constrained

embedded systems. Our framework will:

1. identify candidate locations for assertions;

2. associate a candidate assertion to each location (the candidate

assertion is suggested by the framework, but the user can

change it);

3. statically/dynamically profile the module with assertions

(inspired by the work of Hiller et al. [14]); and

4. select a set of assertions in terms of performance degradation

and tightness (by using the optimization infrastructure).

Our approach can be useful for optimization of executable

assertions in any embedded system with timing constraints. Examples

of such systems include, but are not limited to, automotive electronics,

airborne software, factory automation, and medical and

telecommunication equipment. Our technique is useful not only for

detection of transient faults but also for debugging of real-time

programs with hard timing constraints. In such programs, assertions

must not compromise the program’s timing constrains, and, thus, have

to be optimized.

The rest of the paper is organized as follows: the next section

presents our application model, describes principles of error detection,

and discusses basic properties of executable assertions; in Section III,

we outline our problem formulation; in Section IV, we present our

assertion placement optimization framework; finally, experimental

results are presented in Section V.

II. APPLICATION MODEL

To represent application behavior, we have adapted the conditional

process graph model proposed in [7] for the program instruction level.

We represent an embedded program module M as a directed

dependency graph G = {V, ES, EC}, where V is a set of nodes and ES

and EC are sets of simple and conditional edges, respectively. The main

difference from the model in [7] is that we will permit loops in the

graph, i.e., the dependency graph G does not have to be acyclic, and we

will consider program instructions instead of processes. Moreover, it is

not required that the graph has to be polar, i.e., several source and sink

nodes are possible. In our model, a node Ii V is a module instruction

and eij is a direct dependency between instructions Ii and Ij, which can

be, for example, a data or logical dependency. eij can be either a simple

or conditional dependency. eij is a conditional dependency, i.e. eij EC,

if it will be taken based on a certain logical condition in the instruction

Ii, i.e., for example, based on a ―true‖ or ―false‖ value of an if statement

in Ii. If eij is the only alternative for program execution, we will

consider that it is a simple dependency, i.e., eij ES. Note that simple

and conditional dependencies may constitute parts of module loops.

The embedded program module M can be eventually implemented

either is software (SW) or in hardware (HW) and will be referred as a

HW/SW module or simply module in the paper.

In Figure 1 we present an example of a simple module M1 and the

corresponding dependency graph G1. This module calculates a factorial

of an integer number N, where N is an input. Graph G1 consists of 6

instructions, I1 to I6, and 6 dependencies, e13 to e53. Dependencies e36,

e34 and e53 constitute a while loop, i.e., ―while i is less than or equals

N‖, where e36 and e34 are conditional dependencies. e36 is taken if the

―while‖ condition I3 is ―false‖ and e34 is taken if the ―while‖ condition

I3 is ―true‖. e53 is a simple dependency and is always taken after the last

loop instruction I5 to come back to the ―while‖ instruction I3. The

dependency graph G1 has two source nodes, I1 and I2, and one sink node

I6.

We will assign performance values to instructions and

dependencies in the HW/SW module with the static/dynamic profiling

of the module.2 Performance values for module M1 are shown in the

2 In general, these performance values are dependent on the actual execution

sequence of the module. However, to simplify performance analysis, we will

begin with the performance values individually profiled for instructions and

dependencies, which will give us the first approximate performance figures of

the module execution, as described in Section IV.A. Later, as described in

Section IV.B, module execution sequences (with the introduced assertions) will

be profiled to capture performance effect of inter-dependencies between

bottom of Figure 1. For example, instruction I4 will take 15 time units

to execute. Time constraints, or deadlines, are assigned to the HW/SW

modules. For example, module M1 produces a new value of the

factorial variable at each loop of I3 to I5 and each execution of I3 to I5 is

constrained with the deadline D1 of 50 time units, as depicted in Figure

1. Thus, instruction I3 to I5 are not allowed to execute more than 50

time units.

We will consider that transient faults may affect execution of

program P1 and are, thus, interested in optimization of assertion

placement for the time-constrained module M1.

Figure 1. Example of a program and its instruction graph.

A. Error detection with assertions

Several errors can happen to the HW/SW module M1 of program P1

in Figure 1, due to transient faults:

 the multiplication operation may fail;

 the factorial number may be overflowed;

 the counter i may not increment as expected; and

 the while loop may loop infinitely due to a corrupted counter i,

memory overflow, or problems with the conditional jump.

These errors can be triggered at any time of program execution and

have to be detected. Several techniques can be used to detect errors

caused by transient faults, such as watchdogs, signatures (both

hardware and software), memory protection codes various types of

duplication, hardware-based error detections and, finally, assertions. In

this work, we will use assertions to detect these faults in execution of

module M1.

Executable assertions are a common error detection technique,

which is often used by programmers for debugging. In general, an

assertion is a predicate written as a Boolean statement placed in the

code, where the truth value should be always true in absence of faults.

An assertion can be defined as if not <assertion> then <error>, where

<assertion> is a logical (Boolean) check of an operand value or

correctness of an operation. An example of an operand assertion can be

―a shall be 1‖. Correctness of an operation, for example, ―y = a b‖ can

be checked with an assertion ―y a + b shall be 0‖. Assertions can

provide a very high level of error detection compared to other

techniques since they can be fine-tuned to particular program

properties.

However, assertions, similar to other error detection techniques, can

introduce a significant performance overhead and, consequently,

compromise the deadline. Violation of this deadline may lead to

catastrophic consequences, and, hence, must be avoided. At the same

time, lack of assertions will lead to low error coverage and high

susceptibility of the program to transient faults, which will not be

detected and, hence, can also lead to potentially catastrophic

instructions (and assertions) in these execution sequences, and, thus, deadline

satisfaction will be ensured over all execution scenarios of the module.

I1
I2
I3

3
3

10

I4
I5
I6

15
3

5

e13

e23

e34

1
1

5

e45

e36

e53

1
1

5

I2

I6

I3

e23

I1

e13

I4

I5

e34

e45
e36

e53

M1: G1

false true

Factorial(const int N)

double factorial = 1;

int i = 1;

while(i <= N) {

factorial *= (double) i ;

i++; }

return factorial ;

end Factorial

I1:

I2:

I3:

I4:

I5:

I6:

consequences. Thus, both performance overheads of assertions and

their efficiency have to be considered in the assertion placement.

B. Parameters of executable assertions

To capture effectiveness of assertions, we will assign to each

assertion Am a tightness value, m. The tightness value m represents an

increase in error detection probability of the HW/SW module M against

random faults after assertion Am is introduced. These values can be

obtained with, for example, fault injection experiments [1] or with static

probability analysis of the assertion code. We will compute them as a

part of our profiling strategy described in Section IV.

Each assertion Am is also characterized with a performance

degradation value, m. The performance degradation value m is the

performance overhead of the assertion if introduced into module M.

These values can be obtained with static analysis [24] or with extensive

simulations of program execution [25]. We will also compute them in

the profiling step of the optimization framework, as described in

Section IV.

In general assertions shall be introduced with the highest possible

tightness at the lowest performance degradation.

In Figure 1, instruction I4: factorial*=(double)i can be

protected with assertion A1 (where the assertion code is indicated with

brackets):

<x = factorial;>

factorial *=(double)i;

<if (!(factorial/(double)i == x)) error();>

For instruction I4 this assertion protects only the multiplication

operation, but it protects neither the value of factorial nor the value of

the counter. Another assertion A2 could be as follows:

<i_prev = i;>

<factorial_prev = factorial;>

<<<while loop iteration>>>

<x = factorial;>

factorial *=(double)i;

<if (!(factorial/(double)i == x

 && i_prev == i

 && factorial_prev == x) error();>

This assertion A2 will protect both the multiplication and the

changing of counter i and factorial variables.

Let us consider that, after profiling, assertion A1 gives tightness of

75% for instruction I4 (it captures faults only in the multiplication) and

assertion A2 gives tightness of 90%.3 Regarding performance, we obtain

that A1 has performance degradation of 20 time units, and A2 has

performance degradation of 30 time units. If we compare assertions A1

and A2 from the performance degradation point of view, we can see that

assertion A2 requires more time to execute. However, A2 is better than

A1 from the tightness point of view.

Let us consider assertion A3, which is the assertion A2 excluding the

assertion A1 part for the multiplication check:

<i_prev = i;>

<factorial_prev = factorial;>

<<<while loop iteration>>>

<x = factorial;>

factorial *=(double)i;

<if (!(i_prev==i

 && factorial_prev==x)) error();>

A3 will give us 25% tightness but will only need 10 time units to

execute.

Note that assertions themselves can be subject to transient fault

occurrences and, therefore, additional measures should be taken to

address error detection in assertions. This could lead to a problem of

―false positives‖, i.e., assertion affected by a transient fault can signal

that the fault has happen but it actually has not. This can be solved with

3 Note that these and the other values in the example are presented here for

illustrative purposes only, i.e., in order to illustrate decision-making in the

assertion placement process in the reader-friendly fashion.

self-detectable assertions, i.e., we introduce assertions for assertions to

provide a level of error detection coverage in the assertions’ code. For

example, a self-detectable assertion for assertion A1 can be:

<if (!(factorial / (double)i == x))

 if (!((x * (double)i == factorial)))

 error();>

This assertion checks if the division operation within assertion A1 is

performed correctly.

So, which assertion should we choose for module M1 in Figure 1,

given a list of assertions A1, A2 and A3 and the deadline of 50 time units

for instruction I3 to I5? The total execution without assertions will be for

module M1: 10 + 15 + 3 = 28, which gives a performance budget of 50

– 28 = 23 time units. Thus, assertion A1 will be chosen since it has a

performance degradation of 20 time units, which fits into the given

budget, and its tightness value of 75% is greater than 25% tightness of

A3.

Although, for the example in Figure 1, decision on which assertion

to choose is relatively straightforward, as the size of HW/SW module

increases, these decisions becomes much more difficult. If in Figure 1

we have only three possible assertions, for real-life programs the

number of assertions can be thousands, which makes it impossible to

decide manually. On top of that, self-detectable assertions should be

also considered to reduce the number of ―false positives‖.

Another problem with assertions is that not all of the instructions

are executed at every execution of a HW/SW module. For example, in

Figure 2a, instruction I2 will be executed only if the instruction I1: ―if x

> 99‖ produces ―true‖ value. Suppose that the values of x are uniformly

distributed between 1 and 100. Then, if we introduce an assertion Am

for instruction I2, this assertion will deliver its tightness only in 1 case

out of 100. In 99 cases it will not contribute to the error detection of

transient faults. We will consider that, if, for example, the initial static

tightness of Am is 80%, the actual dynamic tightness will be 80 / 100 =

0.8%. Thus, efficiency of assertions also depends a lot on how often

they (and their related instructions) are executed. In Figure 2a,

introduction of an assertion An with static tightness of 40% into the

―false‖ branch will make more sense, i.e., its dynamic tightness will be

40 × 99 / 100 = 39.6%, which is greater than that of Am. Note, however,

that in this example, there is no competition between Am and An as long

as they are executed completely in different branches and both

assertions can be introduced. Let us consider another situation depicted

in Figure 2b, where parts of Am and An have to be executed before the

condition I1, i.e., always, with remaining parts to be completed in their

own branches. If we have to choose between these assertions, assertion

An will be obviously the best, despite the fact that its static tightness

(40%) is twice as small as the static tightness (80%) of Am.

Figure 2. Example of a conditional execution of an assertion.

Thus, to address the complexity of assertion placement, we have

proposed an assertion placement optimization framework described in

Section IV, which solves a generalized problem of assertion placement

that we present in Section III.

III. PROBLEM FORMULATION

As an input we get a HW/SW module M (in VHDL, SystemC, C)

of a time-constrained embedded system. Module M does not contain

executable assertions. Several sets of instructions in this module M are

associated with hard deadlines, as illustrated in the example in Figure 1.

A list of candidate assertions for this module M is also given. This list

can be, for example, provided by designers after previous debugging of

this module in the non real-time mode or may even be associated with

I2 I3

I4

I1
if x > 99 then

e13e12

e34e24

true false

Am

x : [1…100]

AnI2 I3

I4

I1
if x > 99 then

e13e12

e34e24

true false

Am

x : [1…100]

An I2 I3

I4

I1

e13e12

e34e24

true false

Am An

Am An

I2 I3

I4

I1

e13e12

e34e24

true false

Am An

Am An
a) b)

the module source code directly under the ―_DEBUG‖ compilation

flag.

As an output, we want to produce a HW/SW module with the

subset of assertions introduced at the best possible places in the module

source code, which maximize tightness, while meeting hard deadlines.

IV. ASSERTION PLACEMENT

In this section, we present the approach for placement,

optimization, and evaluation of error detection primitives in time-

constrained embedded systems. In particular, an overview of the

developed framework is shown in Figure 3. The framework is based on

three main iterative phases: the code analysis and manipulation phase,

the module simulation and profiling phase, and, finally, the

optimization of the assertion placement according to the simulation and

profiling information.

Figure 3. The profiling and optimization framework for assertion placement.

The framework takes as input an HW/SW module (VHDL,

SystemC, C) of a time-constrained embedded system, which does not

have any assertions, i.e. a fault silent description M, and transforms it

into an intermediate representation [3]. In this phase, the framework

introduces assertions, i.e. A, and placeholders by exploiting the

dependency-graph associated with the module, i.e. G. Each assertion is

coupled with a statically computed value for performance degradation.

Moreover, the framework allows the user to provide an actual assertion

for each placeholder. Then, the module description with placeholders,

i.e. M L, is simulated for generating further profiling information. In this

work, we adopted a Monte-Carlo automatic-test-pattern generator

(ATPG) for generating simulation stimuli, but either user-defined

testbenches or structural-ATPG approaches can be easily integrated.

The generated profiling information is a simulation log which, for each

placeholder, contains the dynamically computed values of tightness and

performance degradation. Finally, in the optimization phase, the

framework exploits this information and the user-defined algorithms for

generating a module description with assertions. In particular, the

framework provides an API for accessing the static and dynamic

profiling information. Moreover, it provides a set of optimization

algorithms, which can be either used or extended by the designer. The

final choice of assertions, i.e. M A, is both compatible with the time

constraints of the embedded system, and optimized in terms of error

detection.

In the following, Section IV.A summarizes the main aspects of the

code analysis and profiling phases; Section IV.B describes the

assertion-optimization infrastructure and some algorithms built on top

of it; finally, Section IV.C provides an evaluation metric for validating

the quality of the optimization environment.

A. Code analisys and profiling

The analysis and manipulation of the module descriptions are based

on HIFSuite [3], a set of tools and libraries, which provides support for

modeling and verification of embedded systems. The core of HIFSuite

is an intermediate format, i.e. HIF, which is similar to an abstract-

syntax tree (AST); moreover, front-end and back-end tools allow the

conversion of HW/SW description into HIF code and vice versa. In this

initial phase, the HIF representation of the module is automatically

converted into a dependency graph G, whose nodes and data/control-

dependency edges are added to the HIF AST. Then, the code analysis

searches for eligible locations for assertion placing. Eligible locations

are assignment instructions, arithmetic expressions, control statement,

operations over signals, bodies of loops, as well as initial and final

instructions of processes. For each of these locations the framework

provides a candidate assertion, which aims at detecting soft errors. For

example, in the case of a conditional statement, it is necessary to

guarantee that a transient fault does not affect the choice of the branch

currently in execution, as shown in Figure 4.

Figure 4. Protecting conditional-statement branches against soft errors.

Analogously, assertions may check the execution of the body of

loop statements, or that the loop counter monotonically increases

(decreases). Another example is given in Figure 5, where both the array

access and the data reading are protected against soft errors by means of

an assertion. Moreover, a user interface permits the designer to

introduce further assertions or modify the assertions that the framework

automatically choose.

Figure 5. Protecting array reading against soft errors.

During the analysis of the code, an initial statically-computed value

for performance degradation is associated with each assertion. The

performance degradation is computed based on the syntactic

complexity of the Boolean predicate, which is defined by the number

and type of variables and operators.

As a final step, in each eligible location, a placeholder is injected

that registers an event in the simulation log every time it is reached

during the execution. In particular, further values for tightness and

performance degradation are dynamically-computed and registered. An

intuitive example of tightness computation for executable assertions is

reported in Figure 2. In such a case, the higher the number of times that

a branch is executed, the greater is the tightness of each assertion that

occurs in the branch. During the execution, the performance

degradation, associated with each assertion, is computed in terms of

time units.

B. Optimization infrastructure

In the previous phases, a set of candidate assertions addressing soft

errors is associated with each module of the time-constrained embedded

system, and simulation-based profiling information is generated. These

assertions have different probability of detecting errors, and increase

the execution time of the module. The proposed framework provides an

infrastructure that allows the designer to automatically choose the

assertions that maximize the error detection and respect the time

constraints of the system.

The optimization library provides functionalities for accessing the

dependency and profiling information. In particular, some data

structures are maintained in association with the dependency graph of

each module, for example:

<int _i;>

x = a[_i = i];

// ...

<if (x != a[i] && i != _i) error();>

if (x <= max) {

 // then body

 <if (!(x <= max)) error();>

 x = y + z;

 // then body

} else {

 // else body

 <if (x <= max) error();>

 // else body

}

HW/SW
module

M

Code analysis and
Manipulation

HIF Suite

Dependency
Graph Asserts

User Interface

Module +
Assertions

M

Module +
Placeholders

M

Simulation and
Profiling

ATPG

Results

Algorithms

Assertion
Optimization

Optimization Library

Assert
List

Simulation
Logs

 A set which contains each candidate assertion (Am), the related

location in the module (lm), and the profiled tightness (), and

performance degradation ().

 An assertion-dependency graph, ADG = {A, EA}, where each

node is a candidate assertion (Am A) and each edge (i,j) EA

correlates two assertions, if assertion j is the subsequent of

assertion i during the simulation.

 A set of paths which contains each path followed during the

simulation. In particular, a path is represented as a list of events

in the simulation log, and an event is a couple (Am, t) where, Am

is a reached assertion and t is the corresponding execution time

from the simulation beginning.

We implemented some algorithms on top of this infrastructure, with

the purpose of showing possible assertion-placing optimizations, and

focusing the attention on the usability of the library. In particular, we

can distinguish between algorithms which use only the structural

information of the module, and algorithms that exploit the simulation

information.

A first simple optimization approach is the Best Assertion First

(BAF) strategy, shown in Algorithm 1. It always chooses, while the

deadlines are respected, the candidate assertion with the highest

probability of detecting errors. In such a case, we assume that the error

detection probability is proportional to the static performance

degradation of the assertions; that is, a computational-heavy assertion

detects more likely soft errors. The expected result of this algorithm is a

design with few, but effective, assertions. In particular the algorithm

takes as inputs (lines 1-3) the module, the set of candidate assertions,

and a maximum-tolerated-overhead value, which depends on the time

constraints of the embedded system. It returns a set of assertions (line

4), which are compatible with the constraints and aim at optimizing the

soft-error detection probability. In particular, the candidate assertions

are ordered with respect to the static performance degradation, with the

most expensive first (line 6). Then, the assertions are selected till they

exhaust the available tolerated overhead (lines 7-13).

Algorithm 1. The Best Assertion First (BAF) algorithm.

Another similar approach, but based on a conceptually inverse

motivation, is the Fastest Assertion First (FAF). It always chooses the

available assertion with the minimum static performance degradation,

until the tolerated overhead is exhausted. The expected result is a

design with the highest number of assertions, which try to maximize the

fault detection capability. A third algorithm, the Most Executed

Assertion First (MEAF), exploits the tightness of the assertions, a

simulation-based information: it chooses, while the deadlines are

respected, the most executed assertion during the system simulation.

Similarly, several other algorithms can be easily created by exploiting

and combining both the structural and profiling information.

C. Evaluation metric

Since the framework is particularly focused on the simulation, it

seems reasonable to emphasize simulation contribution also for

evaluating the obtained results. Thus, we propose the following metric.

Definition 1: Let M be a time-constrained module, A ={A1, ..., AK}

a list of candidate assertions for the module M, and an assertion-

placing algorithm. Then the result of over M and A is the set of

assertions Ap = {

} . The quality of Ap is measured as

the ratio

R io

where and are, respectively, the tightness and performance

degradation associated with each assertion in A, while

 and

 are

associated with each assertion in Ap .

Thus, this metric not only considers the quality of the selected

assertion, but also takes into account the frequency of assertion

execution (the dynamically computed tightness).

V. EXPERIMENTAL RESULTS

In order to assess the effectiveness of the proposed framework, we

have used the benchmarks described in Table 1, where columns PI, PO,

and VAR respectively report the number of bits in primary inputs,

primary outputs and internal variables for each benchmark; column

LOC reports the number of lines of code; column CAS reports the

number of candidate assertions; finally, column OH reports the overall

overhead in nanoseconds (ns) that the candidate assertions introduce.

Such benchmarks are from ITC’99 suite, that is a well know reference

used by other authors [5].

BENCH. PI PO VAR LOC CAS OH (ns)

b01 4 2 3 186 54 217

b02 3 1 3 131 28 117

b03 6 1 26 212 68 308

b04 13 8 101 194 55 234

b05 3 36 511 362 192 1622

b06 4 6 3 205 67 288

b07 3 8 43 286 46 195

b08 11 4 37 137 29 128

Table 1. Benchmarks characteristics.

After the automatic generation of a set of candidate assertions for

each benchmark, we profiled the quality of the described optimization

algorithms by using the evaluation metric proposed in Section IV.C.

In Table 2 and Table 3, the results of the algorithms are reported in

columns BAF, FAF, and MEAF for benchmarks b03 and b05,

respectively. We have chosen to report only the results of b03 and b05

for lack of space and because these benchmarks are the biggest in terms

of candidate assertions. We executed each algorithm with a maximum

tolerated overhead, which is reported in column MTO. Such a value is

expressed as a percentage on the overall overhead (column OH in

Table 1), i.e. 5%, 10%, … , and 25%. For example, in the case of b05

the MTO values are 5ns, 10ns, 15ns, 20ns, and 25ns. For each

algorithm, the column RATIO reports the quality of the algorithm which

is measured according to the proposed metric, and column SAS reports

the number of assertion selected over the total number of candidate

assertions reported in Table 1.

 BAF FAF MEAF

MTO (%) RATIO SAS RATIO SAS RATIO SAS

5 0.125 3 0.026 7 0.290 5

10 0.246 6 0.272 13 0.415 8

15 0.360 9 0.396 16 0.540 11

20 0.383 8 0.518 18 0.665 11

25 0.455 12 0.632 20 0.791 13
Table 2. Comparison of the optimization algorithms (b03 benchmark).

 BAF FAF MEAF

MTO (%) RATIO SAS RATIO SAS RATIO SAS

5 0.182 8 0.027 16 0.289 10

10 0.192 14 0.075 34 0.426 18

15 0.295 21 0.125 51 0.557 28

20 0.407 50 0.317 67 0.637 41

25 0.448 36 0.359 80 0.704 56

Table 3. Comparison of the optimization algorithms (b05 benchmark).

1. input: the module M
2. input: the set CAS of candidate assertions
3. input: the maximum tolerated overhead MTO
4. output: the set SAS of selected assertions

5. SAS ← ; rem ining_overhe d ← MTO;
6. PQ ← perf_deg_order (C S);
7. while remaining_overhead flag do
8. assertion ← remove_ op (PQ);
9. if (assertion.perf_degradation remaining_overhead) then
10. SAS ← SELECTED { assertion };
11. rem ining_overhe d ←

 remaining_overhead assertion.perf_degradation;
12. end if
13. end while
14. return SAS

According to the results we can observe that:

 there is an increasing in the quality ratio of the selected

assertions with the increase of the maximum tolerated deadline;

indeed this is expected, because, apart from the adopted

optimization algorithm, an higher number of assertions can be

selected for each benchmark;

 the number of selected assertions of the algorithm Fastest

Assertion First (FAF) is always higher than Best Assertion First

(BAF), but this does not always guarantee an higher

effectiveness of the assertions;

 the Most Executed Assertion First (MEAF) algorithm always

outperforms the others; this result highlights the importance of

the simulation and profiling information in selecting the

candidate assertions; indeed, the proposed framework provides

an infrastructure to define effective optimization algorithms,

which both increase the efficiency of assertion checks and

reduce the performance overhead.

Table 4 provides an overview of the quality (Ratio) for each

benchmark and algorithm. We set the maximum tolerated overhead

Mto to be 15% of the overall overhead of each benchmark.

Table 4. Comparison of the optimization algorithms (MTO 15%).

From these results we can further conclude that for each benchmark

the profiling/simulation-based approach (MEAF) provides better results

than the static-analysis-based optimizations. The mean effectiveness of

MEAF is 3 times higher the others, while, in the case of benchmark b01,

the effectiveness of MEAF is up to 9 times higher. Moreover, the

variance4 of the MEAF results () is significantly smaller

than BAF () and FAF (), that guarantees a

higher confidence on the quality of the error-detection primitives which

are selected by means of the profiling framework.

VI. CONCLUSIONS

We have presented an approach to introduce executable assertions

into HW/SW modules of real-time programs. Executable assertions are

used for detection of transient and intermittent faults during program

execution and can be also used for debugging of real-time programs. In

our approach, we take into account frequency of assertion execution,

tightness (efficiency) of assertions and performance degradation due to

assertions.

We have also developed optimization framework for assertion

placement in large HW/SW modules given an array of large number of

assertions. Our framework takes into account assertion properties and

properties of real-time programs. Our experimental results have shown

that we could introduce executable assertions and increase error

detection probabilities against transient and intermittent faults, while, at

the same time, preserving timing constraints. Thus, executable

assertions can be effectively used to improve error-detection and

debuggability of real-time systems.

4 The variance describes how far values lie from the mean.

REFERENCES

[1] J. Aidemark, J. Vinter, P. Folkesson, and J. Karlsson, ―GOOFI: Generic
Object-Oriented Fault Injection Tool‖, Proc. Intl. Conf. on Dependable
Systems and Networks (DSN), 83-88, 2001.

[2] T. Ayav, P. Fradet, and A. Girault, ―Implementing Fault-Tolerance in
Real-Time Programs by Automatic Program Transformations‖, ACM
Trans. on Embedded Computing Systems, 7(4), 1-43, 2008.

[3] N. Bombieri, G. Di Guglielmo, F. Fummi, G. Pravadelli, M. Ferrari, F.
Stefanni, and A. Venturelli, ―HIFSuite: Tools for HDL Code Conversion
and Manipulation‖, EURASIP Journal on Embedded Systems (under
publishing), 2011.

[4] C. Constantinescu, ―Trends and Challenges in VLSI Circuit Reliability‖,
IEEE Micro, 23(4), 14-19, 2003.

[5] F. Corno, M. Reorda, and G. Squillero, ―RT-Level ITC99 Benchmarks
and First ATPG Result‖, IEEE Design & Test of Computers, pp. 44–53,
July-August, 2000.

[6] G. Economakos, ―Behavioral Synthesis with SystemC and PSL
Assertions for Interface Specification‖, IEEE Intl. Symp. on Circuits and
Systems (ISCAS), 4 pp. - 822, 2006.

[7] P. Eles, Z. Peng, P. Pop, and A. Doboli, ―Scheduling with Bus Access
Optimization for Distributed Embedded Systems‖, IEEE Trans. on VLSI
Systems, 8(5), 472-491, 2000.

[8] A.M. Gharehbaghi, M. Babagoli, and S. Hessabi, ―Assertion-based Debug
Infrastructure for SoC Designs‖, Intl. Conf. on Microelectronics (ICM),
137-140, 2007.

[9] F. Ghenassia (Ed.), ―Transaction-Level Modeling with SystemC: TLM
Concepts and Applications for Embedded Systems‖, Springer, 2005.

[10] O. Goloubeva, M. Rebaudengo, M. Sonza Reorda, and M. Violante,
―Soft-error Detection Using Control Flow Assertions‖, Proc. 18th IEEE
Intl. Symp. on Defect and Fault Tolerance in VLSI Systems, 581-588,
2003.

[11] A. Habibi, A. Gawanmeh, and S. Tahar, "Assertion based verification of
PSL for SystemC Designs‖, 2004. Proceedings. 2004 Intl. Symp. on
System-on-Chip, 2004 , Page(s): 177 – 180.

[12] S. Hareland, J. Maiz, M. Alavi, K. Mistry, S. Walsta, and Changhong Dai,
―Impact of CMOS Process Scaling and SOI on the Soft Error Rates of
Logic Processes‖, Proc. Symp. on VLSI Technology, 73-74, 2001.

[13] M. Hiller, ―Executable Assertions for Detecting Data Errors in Embedded
Control Systems‖, Proc. Intl. Conf. on Dependable Systems and Networks
(DSN), 24-33, 2000.

[14] M. Hiller, A. Jhumka, and N. Suri, ―On the Placement of Software
mechanisms for Detection of Data Errors‖, Intl. Conf. on Dependable
Systems and Networks, 135-144, 2002.

[15] Hwei Yin and J.M. Bieman, ―Improving Software Testability with
Assertion Insertion‖, Intl. Test Conf. (ITC), 831-839, 1994.

[16] V. Izosimov, ―Scheduling and Optimization of Fault-Tolerant Distributed
Embedded Systems‖, PhD Thesis No. 1290, Dept. of Computer and
Information Science, Linköping University, 2009.

[17] V. Izosimov, P. Pop, P. Eles, and Z. Peng, ―Scheduling of Fault-Tolerant
Embedded Systems with Soft and Hard Timing Constraints‖, DATE
Conf., 2008.

[18] H. Kopetz, ―Real-Time Systems-Design Principles for Distributed
Embedded Applications‖, Kluwer Academic Publishers, 1997.

[19] A. Maheshwari, W. Burleson, and R. Tessier, ―Trading Off Transient
Fault Tolerance and Power Consumption in Deep Submicron (DSM)
VLSI Circuits‖, IEEE Trans. on Very Large Scale Integration (VLSI)
Systems, 12(3), 299-311, 2004.

[20] P. Peti, R. Obermaisser, and H. Kopetz, ―Out-of-Norm Assertions‖, Proc.
11th IEEE Real-Time and Embedded Technology and Applications
Symp. (RTAS), 209-223, 2005.

[21] K. Tomasena, J.F. Sevillano, J. Perez, A. Cortes and I. Velez, ―A
Transaction Level Assertion Verification Framework in SystemC: An
Application Study‖, 2nd Intl. Conf. on Advances in Circuits, Electronics
and Micro-electronics, 75-80, 2009.

[22] R. Vemu and J.A. Abraham, ―CEDA: Control-Flow Error Detection
through Assertions‖, 12th IEEE Intl. On-Line Testing Symp., 6 pp., 2006.

[23] J.M. Voas and K.W. Miller, ―Putting Assertions in Their Place‖, Proc. 5th
Intl. Symp. on Software Reliability Engineering, 152-157, 1994.

[24] R. Wilhelm ,J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whalley,
G. Bernat, C. Ferdinand, R. Heckmann, F. Mueller, I. Puuat, P. Puschner,
J. Staschulat, and P. Stenström, ―The Worst-Case Execution-Time
Problem — Overview of Methods and Survey of Tools‖, ACM Trans. on
Embedded Computing Systems (TECS), 7(3), 36.1-36.53, 2008.

[25] Yue Lu, T. Nolte, J. Kraft, and C. Norstrom, ―Statistical-Based Response-
Time Analysis of Systems with Execution Dependencies between Tasks‖,
15th IEEE Intl. Conf. on Engineering of Complex Computer Systems,
169-179, 2010.

b01 b02 b03 b04 b05 b06 b07 b08

BAF 0.103 0.082 0.360 0.344 0.295 0.186 0.292 0.309

FAF 0.064 0.124 0.396 0.258 0.125 0.414 0.329 0.561

MEAF 0.578 0.626 0.540 0.550 0.557 0.614 0.650 0.674

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

R
A

T
IO

MTO 15%

