
Software Model Checking for GPGPU Programs,
Towards a Verification Tool

Unmesh Bordoloi
Linköping University
SE-581 83, Sweden

unmesh.bordoloi@liu.se

Ahmed Rezine
Linköping University
SE-581 83, Sweden

ahmed.rezine@liu.se

ABSTRACT
The tremendous computing power GPUs are capable of makes
of them the epicenter of an unprecedented attention for ap-
plications other than graphics and gaming. Apart from the
highly parallel nature of the programs to be run on GPUs,
the sought after gain in computing power is only achieved
with low level tuning at threads level and is therefore very
error prone. In fact the level of intricacy involved when writ-
ing such programs is already a problem and will become a
major bottleneck in spreading the technology.

Only very recent and rare works started looking into using
formal methods for helping GPU programmers avoiding er-
rors like data races, incorrect synchronizations or assertions
violations. These are at their infancy and directly import
techniques adapted for other (sequential) systems with sim-
ple approximations for concurrency [6]. Besides that, the
only help we are aware of right now [4] takes a concrete input
and explores a tiny portion of the possible thread scheduling
looking for such errors. This easily misses common errors
and makes of GPU programming a nightmare task. There
is therefore still a lot of work to do in order to come up
with helpful and scalable tools for today’s and tomorrow’s
GPGPU software.

We state in this paper our intention in building in Linköping
a flagship verification tool that will take CUDA code and
track and report, with minimal assistance from the pro-
grammer, errors like data races, incorrect synchronizations
or assertions violations. In order to achieve this ambitious
and vital goal for the widespread of GPU programming, we
build on our experience using and implementing CUDA and
GPU code and on our latest work in the verification of mul-
ticore and concurrent programs. In fact, GPU programs
like those written in CUDA are suitable for verification as
they typically neither manipulate pointer arithmetics nor al-
low recursion. This restricts the focus to concurrency and
array manipulation, combined with intra and inter proce-
dural analysis. To give a flavor of where we start from, we

report on our experiments in automatically verifying two
synchronization algorithms that appeared in a recent paper
[7] proposing efficient barriers for inter-block synchroniza-
tion. Unlike any other verification approach for GPU pro-
grams, we can show that the algorithms neither deadlock
nor violate the barrier condition regardless of the number
of threads. We also capture bugs in case basic relations are
violated between the number of blocks and the number of
threads per block.

Categories and Subject Descriptors
D.2.4 [Software/Program Verification]: Model Check-
ing, Formal Methods

General Terms
Assertion Checkers, Verification

Keywords
GPU, Software Model Checking, CUDA, Formal Verification

1. CUDA PROGRAMMING MODEL
GPUs are used to accelerate parallel phases in modern pro-
grams. Typically these phases deal with data intensive oper-
ations. However, they are also more and more used for more
general computing, like by exploring parallelization possibil-
ities in dynamic programming. As an example of a GPU pro-
gramming model, CUDA extends ANSI C and uses kernel
functions to specify the code run by all threads in a parallel
phase. This is an instance of the Single Program Multiple
Data (SPMD) programming style. When kernel functions
are launched, threads are executed in a grid partitioned into
a number of blocks. More precisely, executing a kernel func-
tion results in a one, two or three dimensional grid consist-
ing of a number of blocks each having the same number of
threads. Each thread can obtain the identifier of its block by
using CUDA supplied variables (blockIdx.x, etc). Threads
in the same block share a low latency memory. Those be-
longing to different blocks would need to use a much slower
memory or to pass through the host. In addition to block
identifiers, a thread has also identifiers it can access using
other CUDA variables (threadIdx.x, etc). Based on these
indices, each thread will run the kernel function differently
as the latter can refer to them.

2. SYNCHRONIZATION EXAMPLES
In the following, we describe two synchronization barriers
from [7]. The two solutions propose inter-block barrier im-



1 //blocks shared variable
2 __device__ int g_mutex;
3

4 //centralized barrier function
5 __device__ void __gpu_sync(int goalVal){
6 int tid_in_block = threadIdx.x * blockDim.y +
7 threadIdx.y;
8

9 // in each block, only thread 0 synchronizes
10 // with the other blocks
11 if (tid_in_block == 0) {
12 atomicAdd(&g_mutex, 1);
13 // wait for the other blocks
14 while(g_mutex != goalVal) { }
15 }
16

17 // synchronize within the block
18 __synchthreads();
19 }

Figure 1: Code snapshot of a simple barrier [7].

plementations. Indeed, CUDA only supplies intra-block syn-
chronization barriers using the “ synchthreads()” function.
The authors in [7] propose a centralized mutex based solu-
tion together with a more efficient “lock-free” solution. In
fact they also propose a tree based solution that can be re-
garded as a direct extension of the simple solution. For lack
of space, we concentrate here on the two first solutions.

Centralized simple Synchronization. A snapshot of the
code for this solution is presented in Figure 1. When calling
the “ gpu sync” function implementing the inter-block bar-
rier, the number of blocks is passed as the value “goalVal”.
The idea is to use a global variable shared by all blocks,
here “g mutex”. The solution assumes a “leading thread”
in each block. After the block completes its computation
in the current epoch, its leading thread atomically incre-
ments the shared variable “g mutex” (line 12). The leading
thread starts then its active wait (line 14) until the vari-
able evaluates to “goalVal”, in which case the leading thread
can synchronize with the other threads in its block, hence
proceeding to the next epoch.

Lock free synchronization. A snapshot of this second so-
lution is described in Figure 2. Instead of having all blocks
accessing the same shared variable, this solution proposes to
share two arrays (namely “Ain” and “Aout”) with the num-
ber of blocks as their respective sizes. The idea is that each
block that completed the computation in the current epoch
will have its leading thread assign “goalVal” (passed as a pa-
rameter together with the arrays) to the input array“Ain” in
the slot corresponding to its block. After that, the leading
thread waits for the slot corresponding to its block in“Aout”
to become “goalVal”. After all blocks have assigned “goal-
Val” to their respective slot in “Ain”, the threads of a chosen
block (here block 1) synchronize at line 25. The threads
belonging to the chosen block are used to monitor, for each
block id,“Ain[id]”and to assign its value to“Aout[id]” in case
it evaluates to “goalVal”. As a result, all leading threads can
proceed and synchronize with the threads in their own block
(line 38) hence moving to the next epoch.

1 //lock-free barrier function
2 __device__ void __gpu_sync(int goalVal, int *Ain,
3 int *Aout){
4

5 int tid_in_block = threadIdx.x * blockDim.y +
6 threadIdx.y;
7 int nBlockNum = gridDim.x * gridDim.y;
8 // each thread of the first block is
9 // associated to a block it monitors

10 int bid = blockIdx.x * gridDim.y + blockIdx.y;
11

12 // thread 0 of each block states its arrival
13 if (tid_in_block == 0){
14 Ain[bid] = goalVal;
15 }
16

17 if (bid == 1){
18 // threads in the first block wait for
19 // the associated block
20 if (tid_in_block < nBlockNum) {
21 while(Ain[tid_in_block] != goalVal){ }
22 }
23

24 // synchronize threads of first block
25 __synchthreads();
26

27 // release associated block
28 if (tid_in_block < nBlockNum) {
29 Aout[tid_in_block] = goalVal;
30 }
31 }
32 // each block waits to be released
33 if (tid_in_block == 0) {
34 while(Aout[tid_in_block] != goalVal) { }
35 }
36

37 // synchronize within the block
38 __synchthreads();
39 }

Figure 2: Code snapshot of a lock-free barrier [7].

t0 before

t0 poll

t0 after

tb1 before

tb1 read tb1 largerId

tb1 rsynch tb1 largerSynch

tb1 after

Figure 3: Model of the lock free barrier of Fig.2.
Initially, all leading threads are in “t0 before” and
all block 1 threads are in “tb1 before”.



t0 before t0 poll t0 after

++g mutex g mutex==goalVal

Figure 4: Model of the simple barrier in Fig. 1.
Initially, all leading threads are in state “t0 before”.

Figure 5: Counter Example Guided Abstraction Re-
fine. for Concurrent Parameterized Systems [2]

3. PARAMETERIZED VERIFICATION
Given models of the programs, we perform automatic pa-
rameterized verification, i.e., we verify with minimal human
interaction programs regardless of the number of concur-
rent threads and blocks in the system. The problem can be
shown to be undecidable in general and combinations with
abstractions and efficient symbolic representations play an
important role. For this reason, we build on our previous
work with monotonic abstraction [3] and its automatic re-
finement [2]. Monotonic abstraction is based on the con-
cept of monotonic systems w.r.t. a well-quasi ordering �
defined on the set of configurations [1, 5]. Since the abstract
transition relation is an over-approximation of the original
one, proving a safety property in the abstract system im-
plies that the property is also satisfied in the original sys-
tem. However, this also implies that false-positives may be
generated in the abstract model, we handle them by com-
bining forward/backward analysis together with widening or
interpolation techniques. This is schematically described in
Figure.3. More details are available in [2].

4. EXPERIMENTS AND FUTURE WORK
At this stage, we manually build the models in Figures 4
and 3 to describe behaviors of the programs in Figures 1
and 2. Of course, building such models is both time con-
suming and error prone. We are working on automatically
extracting such models from CUDA source code without the
need to manually supply them. This model extraction step
is also combined with techniques like slicing or predicate ab-
straction to boost the applicability and the scalability of the
approach. Assuming for now the models are given, our veri-
fication technique applied to the first simple synchronization
algorithm, captures that: if“goalVal = nBlocsNum”then the
algorithm of Figure 1 respects the barrier property and does
not deadlock. This is not the case if “goalVal<nBlocksNum”
(barrier property violated) or “goalVal>nBlockNum” (dead-
lock). For the algorithm of Figure 2, our prototype automat-
ically captures that if “nThreadsPerBlock ≥ nBlocksNum”,
then the algorithm respects the barrier property, and does
not otherwise.

These results are relevant as a typical number of threads
per block on the latest generation of GPUs is 32. This is

Model pass seconds

CS[7]: goalVal = nBlocksNum
√

0.05

CS[7]: goalVal < nBlocksNum × <0.01

CS[7]: goalVal > nBlocksNum × 0.05

LFS[7]: nThreadsPerBlock ≤ nBlocksNum
√

2.7

LFS[7]: nThreadsPerBlock < nBlocksNum × <0.01

Table 1: We use our prototype for automatic pa-
rameterized verification [2].

√
stands for verified,

and × for supplying a concrete counter example.

the same number as the size of the “warp” (often selected
by the designers to hide latencies). A warp can be seen as
the smallest unit of threads that are scheduled together by
a GPU multiprocessor. Hence, choosing this number as the
thread block size has clear advantages. In future GPUs, we
can expect this number to remain more or less the same.
On the other hand, the number of multiprocessors on GPUs
can be expected to increase rapidly, as has been the trend.
For example, nVIDIA Tesla M2050 already has 14 multi-
processors, and in future we can expect this number to be
easily more than the magic number 32. Given this and given
the synchronization approach in the previous algorithms, we
can easily have more thread blocks than threads per block.
These algorithms would therefore not respect the barrier
property if ported directly to other platforms. This was
a simple example showing that capturing such errors and
proving their absence while allowing for benign race con-
ditions or other performance tricks is very important as it
helps programming GPU platforms.

5. REFERENCES
[1] P. A. Abdulla, K. Čerāns, B. Jonsson, and Y.-K. Tsay.

General decidability theorems for infinite-state systems.
In Proc. LICS ’96, 11th IEEE Int. Symp. on Logic in
Computer Science, pages 313–321, 1996.

[2] P. A. Abdulla, Y.-F. Chen, G. Delzanno, F. Haziza,
C.-D. Hong, and A. Rezine. Constrained monotonic
abstraction: A cegar for parameterized verification. In
CONCUR 2010 - Concurrency Theory, 21th
International Conference, pages 86–101, 2010.

[3] P. A. Abdulla, G. Delzanno, N. B. Henda, and
A. Rezine. Regular model checking without transducers
(on efficient verification of parameterized systems). In
Tools and Algorithms for the Construction and Analysis
of Systems, 13th International Conference, TACAS
2007, pages 721–736, 2007.

[4] M. Boyer, K. Skadron, and W. Weimer. Automated
Dynamic Analysis of CUDA Progr. In 3rd Workshop on
Software Tools for MultiCore Systems, 2008.

[5] A. Finkel and P. Schnoebelen. Well-structured
transition systems everywhere! Theoretical Comput.
Sci., 256(1-2):63–92, 2001.

[6] G. Li, G. Gopalakrishnan, R. M. Kirby, and
D. Quinlan. A symbolic verifier for cuda programs.
SIGPLAN Not., 45:357–358, January 2010.

[7] S. Xiao and W. chun Feng. Inter-block gpu
communication via fast barrier synchronization. In
Parallel Distributed Processing (IPDPS), 2010 IEEE
International Symposium on, pages 1 –12, april 2010.


