Reliability-Aware Instruction Set Customization
for ASIPs with Hardened Logic

Unmesh D. Bordoldi, Bogdan Tanasa Mehdi B. TahooH,
Petru Eles, Zebo Pend, Syed Z. Shazli, Samarjit Chakraborty
ILinkdpings Universitet, Sweden?Karlsruhe Institute of Technology, Germany
3Northeastern University, USA 4TU Munich, Germany
'E-mail{unmesh. bor dol oi , bogdan. t anasa, petru. el es, zebo. peng}@i u. se
2E-mail: {nehdi . t ahoori @it . edu}
3g-mail: {sshazl i @ce. neu. edu} “E-mail: {samarjit@um de}

Abstract—Application-specific instruction-set processors
(ASIPs) allow the designer to extend the instruction set of the
base processor with selecteccustom instructions to tailor-fit
the application. In this paper, with the help of a motivational
example, we first demonstrate that different custom instructiors
are vulnerable to faults with varying probabilities. This shows
that by ignoring the vulnerability to faults, traditional methods
of instruction set customization can provide no guarantees
on the reliability of the system. Apart from such inherent
disparity in error vulnerability across custom instructions, each
custom instruction can have multiple implementation choices
corresponding to varying hardened levels. Hardening reduces
the vulnerability to errors but this comes at the overhead of
area costs and reduced performance gain. In this paper, we
propose a framework to select custom instructions and their
respective hardening levels such that reliability is optimized ¢\,ch tools can provide no guarantees on the reliability ef th

while the performance gain is satisfied and area costs are met as . .
well. Our framework is based on a novel analytical method to system. Moreover, embedded systems are now being widely

compute the overall system reliability based on the probability deployed in health-care devices, automotive electrorstesys
of failure of individual instructions. Wide range of experiments and other safety critical devices, thereby making systdm re
that were conducted illustrate how our tool navigates the design ability an important design concern.
space to reveal interesting tradeoffs. In this paper, we propose an instruction set customization
framework to optimize system reliability, apart from shfisg
the metrics of performance and area. We assume that the
Application-specific instruction-set processors (ASIBs) Processor operates in the presenceafsientfaults. Transient
low the user to extend the instruction set of the base prigults appear for a very short duration, cause miscal@iati
cessor with custom instructions to tailor fit the applicatioin the logic, data corruption, and then disappear without
requirements. Typically, frequently executed subgraghthe Permanent damage to the circuit. These faults can be caused
program’s dataflow graph (DFG) are chosen as custom instriiy- radiation, fabrication process, voltage and tempeeatur
tions. Some examples of commercial customizable processdfVT) variations and they erroneously change the output
include Lx [13], Xtensa [15], Strech S5 [3] among other®f a gate or value of wire from O to 1 or from 1 to 0. We
Fig. 1 illustrates the DFG of thélowfish application from focus on transient faults because the rate of transientsfaul
the MiBench benchmark [16]. Individual nodes (like AND/s significantly higher than for other types of faults, makin
ADD, XOR, and>>) in the DFG represent base instructionghem a primary concern for system reliability [25].
Custom instructions are shown as shaded areas subsuming
multiple base instructions and, thus, consist of a pattdérn @ur contributions: The contributions of our paper are enu-
the base instructions. merated as follows.
Design automation tools and methodologies for customizinge Our paper demonstrates that there is an inherent disparity
the instruction sets of ASIPs have focused on optimizing the in the vulnerability of different custom instructions to
design for metrics like performance, power and area. Such transient faults. Towards this, in Section Il, we use

Fig. 1. DFG of theblowfishfrom the MiBench benchmark.

I. INTRODUCTION

tools implicitly assume that the processor functions witho
any faults. With aggressive scaling of electronic compdsien

however, processors are also susceptible to faults ancechenc

the blowfish application (see Fig. 1) as a motivational
example to show that different custom instructions are
vulnerable to faults with different probabilities. This

establishes that, by ignoring the susceptibility of custoextracting frequently occurring computation patterngrfrine
instructions to faults, current tool-chains and methodtata flow graph of the program. Recent advances in the custom
ologies for instruction set customization cannot providiestruction enumeration techniques are reported in [23],[
reliability guarantees. [20], [6], [30].

o Apart from the above-mentioned inherent disparity in It should be mentioned here that there have been some
error vulnerabilities across custom instructions, ead clefforts to enhance system reliability by applying various
tom instruction can have multiple implementation choicefault recovery techniques at the instruction-level [1A6]f
corresponding to various hardening levels. Hardening bfowever, our work differs significantly from them. First
logic implies reduction in its vulnerability to soft errors and foremost, these works are neither targeted towards
While hardening might mitigate the probability of error ofcustomizable processors nor do they focus on instruction
custom instructions, this comes at cost overheads in tersedection. Hence, they address a completely differentlenob
of performance and area. In this paper, we propose getting. Secondly, they rely on simulation based methods
leverage hardened custom instructions to enhance systemd are unlike the analytical methods proposed in this
reliability in a cost-effective fashion. paper. Finally, they do not consider hardening alternative

o We present a framework to select custom instructioms disparities in the error vulnerabilities of instructsorto
and their respective hardened versions such that thehieve an overall system reliability.
design is optimized for reliability while the constraints
on performance and area are satisfied. Our framework is Il. DISPARITY IN ERRORVULNERABILITIES
based on Constraint Logic Programming (CLP) [2]. CLP | this section, we will first demonstrate that there is a
allows us to write constraints in a logic programminggnificant variation in the error vulnerabilities (profiides
framework and solves the problem using branch ang fajlure) across custom instructions. This underscdres-
bound search based on constraint programming. It shogrtance of considering reliability explicitly as a desigetric
be noted that the framework is flexible in the sense th@hen customizing instruction sets for ASIPs. It is known
the underlying analytical framework remains unchanggfat hardening techniques can improve the vulnerabilities
if the design needs to be optimized for a different metrigargware to errors. Thus, varying levels of hardening would
(like performance) and the reliability is instead givefmply varying error vulnerability of instructions and thill
as a design constraint. Our framework is based onpg discussed in the later part of this section. We would ke t
novel analytical method (Section IV) that connects thgention that our goal here is not to propose a new technique to
probability of failure of custom instructions at various;ompute error probabilities. Rather, we demonstrate tieel ne

hardened levels and the overall system reliability. Oy 5 reliability-aware instruction set customizationnfrawork.
analysis takes into account the varying frequency with

which each kernel is invoked in an application run ift- Inherent Disparity
order to accurately compute the contribution of each Error vulnerabilities, i.e., probabilities of error of ingc-
kernel to the overall system reliability. tions can be computed by methods discussed in [28], [1].
« Finally, we also present an efficient heuristic that scal@$ese probabilities typically depend on two factors — (i)
with larger problem instances because the CLP-basew probability that an error occurs, i.e., the value of aibit
branch and bound search does not scale to largeorrectly flipped from 0 to 1 or from 1 to 0 and (ii) th&ror
problems. This is direct consequence of the fact thRtopagation ProbabilitieSEPPS), i.e., the probability that this
the optimization problem tackled in this paper igault will result in an observable error at the primary outpu
computationally expensive. of the circuit (in our case, the output of the instructiond)e
first, i.e., the probability that an error occurs, dependshen
_ raw error rate [4], [21] and instruction execution time, amgo
Related work: The previous decade has seen a flurry Qfiner factors. The raw error rate can be expressed in terms of
research activities in the domain of ASIPs. Lot of researgljyre in time (FIT). FIT is equal to one failure in a billion
has been devoted to custom instructiselectiontechniques oyrs (09) of operation. For instance, the FIT rates for Xilinx
SO as to optimize either performance or hardware area [12RaAM based-based FPGA devices have been reported to be
[18], [3], [8], [7]. Algorithms to expose the tradeoffs beten 1, 1o 1000 FIT/Mbit for 90-nm technology [19]. The raw error
performance and area were reported in [9]. However, nopge depends on the device characteristics and the envératnm
of these approaches have considered reliability issuesuUSec The overall raw FIT rate for a custom instruction is propor-
they assume a fault free functionality. This inhibits the@lap tional to the number of gates used for the implementation of
cability of ASIPs to safety critical domains like health/€a that instruction (i.e., the area of that instruction). Sirtbe
and automotive electronics. hardware area required for implementing custom instrastio
Note that in this work we also focus on the custom instrueary significantly, the FIT rate and, in turn, the probakitihat
tion selectionproblem and like the above lines of work, we to@n error occurs will also vary from one instruction to anothe
assume that a library of custom instruction candidatesssngi Independently of the overall FIT rate, the second factor,
Such a library of custom instructions may brumeratedoy i.e., EPP also varies across instructions. We will illustrthis

o) 5\@/ 7?/ reliability in varying magnitudes.

N /5@ e B. Disparity Based on Hardening Levels
R 3 Q@ 8? B Above, we discussed the inherent disparities in error prob-
@ v 1608 ey
abilities across custom instructions, i.e., we did not dact
EPP= 06689 EPP=043166 EPP=05850 in the possibility of hardening. Hardened hardware is less
(a)CI'1 (b)C12 (c)CI3 . . .
vulnerable to transient faults. A variety of techniques for
Q hardening hardware logic and circuits have been proposed in
\ | "@\ the literature [22], [29], [24], [14]. Most of these techoi&p
“Q® o) 5@91 rely on selective resizing of gates or transistors in oraer t
? ? s enhance the immunity to soft errors. We note, however, that
N : - i
i i n while they reduce the probability of error, all of them incur
BT Ve Al additional area overhead and suffer performance degcadati

Typically, such techniques report multiple hardening lgve
Fig. 2. Error Propagation Probabilities (EPPs) for 6 instion patterns of wijth decreasing error probabilities but increasing ared an
blowfish performance overheads. Thus, in ASIPs that allow such hard-
ening, each custom instruction maybe implemented in one out
for the blowfish application from the MiBench benchmarkof many feasible hardening levels. This implies that, afsarh
(Fig. 1). This result, along with the factors discussed @bowdisparities in probability of failure across custom instians
establish that the probabilities of failure of instrucsowary (as discussed in Section 1I-A), there is another dimension o
in an irregular fashion and motivates the need for newisparity in error vulnerabilities within each custom mstion
techniques for instruction set customization methods liksased on its hardening levels.
the one proposed in this paper. In the following, we first |t is important to note that, apart from the disparity in
introduce the notion of EPP, then describe a methodologyror probabilities, different custom instructions areciked
used to calculate the EPP values, and finally, we discuss tbe different number of times by the application. This is yet
results obtained by calculating the EPP values on a benéhmaiother factor that leads to the varying contribution of the
custom instructions to the overall system reliability. iden
Error Propagation Probability: The EPP of a logic circuit the frequency of the custom instructions being invoked must
is the probability that an error in the components of thedogbe considered as well by any reliability-aware technique fo
block will propagate to a primary output of the block andnhstruction set customization.
results in an observable error. As mentioned in Section I,
we consider transient faults and, hence, our error model iE€aample: With an illustrative example, we shall now discuss
logical bit-flip. A bit-flip causes an error if the effect ofeh how the interplay of various factors like probability of lfaie,
bit-flip is observable at the primary output of the circuitv€h frequencies and hardening levels of a custom instruction im
a bit-flip occurring on a wire, the EPP for this wire is definegacts the system reliability. For simplicity of elucidatjdet us
as the ratio between the number of input combinations whicbnsider that we have only two custom instruction candilate
resulted in an error and the total number of possible inpatl; and C'I, with probability of failuresp; = 8 x 10~2 and
combinations. EPP computation is based on an all-solutiph = 7 x 102 respectively. Let us assume that the frequency
SAT solver (RELSAT [27]). Due to space constraints, we wilbf execution of each instruction, i.e., the number times the
not discuss the details of EPP computation here. We refastructions are executed in one run of application Are- 3
the reader interested in the details on EPP computatiorBio [2and f, = 6, the performance gains achieved afg = 4
and G5 = 2 for one invocation of each instance and the area
Results: As mentioned before, custom instructions are esequirements arel; = 4 and A, = 2. Let us consider that
sentially a pattern of instructions. We choose 6 instructidhe area is in number of LUTs and gain is in units of clock
patterns from the DFG (Fig. 1) of thklowfish application cycles.
obtained from the MiBench benchmark [16]. We apply the The total performance gain achieved by selectifify or
above methodology to compute the EPP of these 6 patter6d, is the same, i.e.fi x G; = fo x Gy = 12. Let us
The EPPs obtained are shown in Fig. 2. The EPP valussnsider that for the design at hand, the area budget is
can be seen to vary from around 0.43 to 0.73, which cleanlgstricted to 5 units. Then, only one of eithétl; or CI,
establishes that the error probabilities of different cost maybe selected because the combined area costd,0and
instructions are different. We already discussed that #ve rC'I, is 6 units. Our goal is to select the one that yields
error rates for different custom instructions are differenhigher reliability. C'I; has a lower probability of error and
Thus, both factors contributing to the probability of fadu seems a promising candidate. However, when we consider
of instructions have different values, thereby estabfighthe the frequency of executions of the instructiord$/, might
disparity in error vulnerabilities of custom instructioridus, not be the optimal selection. The probability of failure of
various custom instructions contribute to the overall eyst C'I;, considering all its executions, is— (1 fpl)f1=0.2213.

On the other hand, overall failure af'l, evaluates to be formulation is quite general that allows us to consider both
1—(1—p2)#2=0.3530. Thus, even though > p,, considering hardening and non-hardening scenarios in a seamless riashio
all execution instancesg,I> has a higher probability of failure
than CI; in a run of the application. Hencé&;I; should be Note that the processor core has a set of existing instruc-
selected in this case instead ©f,. tions. These instructions can be categorized into two sets —
Above, we did not consider any hardening alternatives. L&} BC is the set of existing instructions that can be covered
us now assume that'l; has no possible hardening levels aby a custom instruction instance and (i§/ is the set of
alternative implementations bat/, has one level of harden- instructions that cannot be covered by any custom insbmcti
ing alternative, denoted bg' I, with following parameters instance. For any existing instructidn € (BC U BI), the
pil = 4 x 1072, A¥ = 5 and G§ = 1. Thus, hardening execution frequency of that instruction is given §%;. In
improves the probability of failure but it comes with incsed other words,BC' is the set of the existing instructions that
area costs and degradation in possible performance gaies. Maybe subsumed by the custom instruction candidates, while
overall probability of failure ofC'I, is now computed to be BI is the set of instructions that cannot be subsumed by any
0.2172, that is less than that 6fl;. Thus, instead of”I;, custom instruction candidate.
selectingC'Iy’s hardened implementation is optimal from the
reliability perspective. However, this comes at the ovathe We assume that the probabilities of failure of all the custom
of performance because instead of the performance gaif ofinstruction candidates as well as the existing instrustion
clock cycles that was possible withi/, the performance gain are known to us. Such probabilities can be obtained using
with CT14 is only f, x G =6 clock cycles. techniques described in Section Il. The probability ofufeel
The above example illustrates the intricate relationshipf a custom instructionC;, when implemented athth
between probability of failure, frequency of execution bét hardening level, is denoted byc; ,, where C; € CI and
instructions and their hardening levels, that must be ceptu~ € {1,2,...,r;}. The probability of failure of an existing
while computing the reliability. It also illustrates thahet instruction b, is denoted bypb,, whereb, € (BC U BI).
tradeoffs between reliability, performance gain and ated t A higher probability for an instruction implies that this
must be accounted for during custom instruction selectionstruction is more vulnerable to transient faults.
Our proposed framework captures the relevant relatiosship
between various parameters and systematically evalulages t
tradeoffs between various optimization objectives. WeenoProblem statement:In this paper, our goal is to choose a set
that in the above example, for simplicity, we assumed thaf custom instructions and their respective hardened devel
no base instructions contribute to the system reliabilityour such that the reliability of the application is optimized ilgh
proposed framework, we will explicitly take into accouneththe desired performance gain is achieved and the area con-
probability of failure of base instructions and their extimu straints are satisfied. In other words, the goal is to miréntie
frequencies. Note that the probability of failure of basgtimc- overall probability of error of the application. Towardsstha
tions can also be computed in a similar manner as discus$gghstraint Logic Programming (CLP) [2] based formulatien i
in Section IlI-A. presented in Section IV. CLP allows users to write constsain
in a logic programming framework and solves the problem
using branch and bound search. However, this is computa-
Given an application to be run on a customizable processtionally expensive and hence, we will also present an efficie
we assume that the library of custom instruction candidiates heuristic. We would like to emphasize here that the undaglyi
this application is known to us. Let there Becustom instruc- analysis remains unchanged if a different optimizatioreobj
tion candidates denoted by the s&f = {C,,C5,...,Cn}. tive (like performance gain) is chosen instead of reliap#ind
A custom instructionC; hasn; instances in the application,the desired reliability is specified as a constraint. Notat th
and we denote them as i,c¢;2,...,¢ . The execution typically if a custom instruction is selected, all instasiasf
frequency fc; ; (i.e., the number of times an instruction igthat instruction are run in dedicated hardware to maxintiee t
executed in one run of the application) of each instangerformance gain. However, custom instructions might have
is also known to us. This is input dependent and can béher probability of error than base instructions. Thignti
obtained by profiling the execution trace of the applicatiobe the case, for instance, when the base instructions run on
on a large set of inputs. For a custom instructi@nlet us a core that is more hardened than the dedicated hardware for
say that there are; versions for implementations consideringsustom instructions. Such a scenario is feasible, for eXamp
all possible hardening levels. Without loss of generalirgt when the application is running on a soft-core processor
we assume that the non-hardened version is one ofrthein the FPGA logic, and both base instructions and custom
versions. For each of these levels, {&;1,G;2,...,Gi,,} instructions are implemented using FPGA logic. In such a
denote the gain in performance obtained by one instancessknario, invoking all instances of custom instructionghmi
the custom instructiorC;. Similarly, let the area overheadslead to very low reliability. Hence, our problem formulatits
be {4;1,4,2,...,A;,,}. We note that a problem that doegjuite general and allows the flexibility to select the insts
not consider hardening would have= 1. Thus, our problem of each custom instruction.

IIl. SYSTEM MODEL

Specification from
system designer
System constraints:
Area, Performance

IV. PROPOSEDFRAMEWORK e —»! T e

Our proposed scheme is illustrated in Figure 3. We first

. yege p ili lysi:

propose an analysis that connects the error probabilifitseo e,
custom instructions to the overall reliability. Optimization for reliability
under performance and

area constraints

A. Probability Analysis | Fnal output : selected

custom instruction set

area costs, performance gain

In this section, our goal is to compute the overall probgbili
of failure for the system. Note that this probability gives uFig. 3. The overall scheme consists of a probability analgsie that is
L . invoked by the optimization framework.

a measure of the unreliability of the system. First, let us

consider the custom instructions. The probability of fialof

an instancey; ; of a custom instructioni’; is given bype; . for 556 instructions occur are given By, by, . .., fbrr. How-
its hth hardening level. Thus, the probability that it execute§ e hecause some instances of these base instructiohs mig
successfully isl — pc; . Given the execution frequenditi,; e covered by the custom instructions, the base instruatitbn

of ¢;,; and considering theth hardening level, the probability ;.\, execute with less frequency. Let this number be given by
that the instance executes successfully each time it ikawo b, for an instructionBy,. fb, can be computed as follows.

is thus given by:
(1 7pCi7h)fCi’j (1) [CIc| n;

b, = fbr — i.i.h X JCij 5
Now we will derive an expression that denotes the probabilit ! I ; ; hZ:l Tigih X fCij ®)
of failure for the instance; ; considering all possible hard-

ening levels. Towards this, let there beboolean variables, In the above equatior(/; is the set of custom instruction
i1, Tija,-. . Ti ., aSSOCiated with an instaneg; where candidates that covers the base instructi®n Essentially,

if 2,5 is 1, it implies that the instance; ; of the custom W€ subtracted the number of times all the custom instrustion
instruction C; has been selected to implemented in fita have covered the base instruction. Orfieg is computed, the
hardening level. Ifi; ; is 0, it implies otherwise. This allows Probability that these base instructions execute suaslgsss

us to derive the following expression as the probability &iven by: "

failure for the instance; ; considering all possible hardening _ £,

levels. Ppc =[]0~ pb) ©)
T k=1
[T = peip)rosm=dens (2) Finally, there are base instructions that have no custom
h=1 instruction candidates and are denoted by the /3&t The

We note that at most one of the boolean variables might be propability that instructions in the sétl execute successfully
true forc; ; because at most one hardening level can be chosgiyiven by:

for an instance. This constraint will be described formatly |BI|
next section as part of our CLP formulation (see Equation 12 Ppr = H (1 — pby,)/bx)
and Equation 13). ke1

Considering all instances of the custom instruction that

») “* We note that the above terifiz; is constant but we account
are selected, the probability that they execute withoutdas

for it in the optimization framework to obtain accurate re-

given by: S sults. Thus, the overall probability that all the instroos
H H (1 = pey p)i > Teis A3) (customized and base instructions) execute without feslis:
j=1h=1 GP = Po; x Pge X Py (8)
ﬂl:laotm{h{ee; gie%%?é 'ggﬁrgﬂt@“\?&ﬁ&lﬂ?ﬁﬁuycﬁg’lﬂf'iST:he probapil The overall probability of failure for the system, i.e., aasare
N of unreliability is then given byt — GP.
Por = H H H(l — peip) I (4) B. CLP-based Optimal Approach

i=17=1h=1 We now formulate the custom instruction selection problem

In Eqg. 4, we computed the probability that all the customizess an optimization problem in CLP, where the optimization
instructions execute successfully. Now let us consider tlodjective is reliability, i.e., the minimization dfl — GP). As
base instructions. From Section Ill, we recall thatC = an output of the CLP, we obtain the set of selected custom
{Bi1, Ba,..., By} is the set of existing instructions that carinstructions and their respective hardening levels. In the
be covered by a custom instruction instance. However, datlowing we describe the CLP constraints.

framework allows the flexibility that all instances of a cust

instruction need not run in hardware, and thus, there will Bgerformance constraint: The first constraint is that the
some instances of the instructions in the Bét which will run desired performance gain must be achieved by selecting the
in the existing processor core. The frequencies with whieh tcustom instructions, i.e.,

N mi T T Algorithm 1 Heuristic for optimizing reliability
Z Z Z(xi,j-,h X Gip X fci,j) >G 9) Input: A library of custom instruction candidates

i=1 j=1 h=1 {c1,1,¢1,2,...,¢ij,---,¢Nm; }, With probability —of failures
T . . p;,; and area cosH;
Here G* is the total performance gain that the designer,. G'=0; PROB = [[PLUBCI 1 iy) o

wants to achieve with the use of custom instructions. Fop: X;=0VI<i<N;z; =0V1<i<N,1<j<ny
instance,G* may be specified as a certain fraction®f,,,, 3 fori€{1,2,...,N} do

where Guq, is the maximum achievable performance g.aingé forcgnfpﬁéé M_"(";]; iofc,- (s x (1= (1= pes)i
using all custom instructions without any area constraintsg: end for . ’ ’

Note thatG,,.. can be easily known once the library of the 7: end for))

custom instructions has been enumerated. In certain gettin gf \mf;/é ;a;‘%f)'” descending order and enquéig € Q

it is possible that the designer does not have an explicib: select first element from Q

constraintG” but rather a range of possiblg” values. In 11 if X; =1andG < G then

such cases, our framework (both the CLP-based approaﬁi xGJ::GLG s fer
and the proposed heuristic) can be invoked iteratively foty: PROB — PROB ;’{/”/(1 — pby) Tk whereby € BC andby,
different G* values in order to evaluate the tradeoffs between is covered by instance; ;

reliability versus performance gain and the designer can th1> e'i‘z"ffi_i_l?ﬂdl@ < RorG < G7) then
e = L, Ti 5 = 1

choose a suitable design point from the resulting desigoespa;7: G =G+ feij

This will be illustrated in more detail in our experimentalls: R=R-A;
19: PROB = PROB x Y; ;/(1 — pby, ,)’* whereb, € BC and
results. ' X % ;
by, is covered by instance; ;
) 20: remove K from Q where K is the set of hardened versions; gf
Area constraints: Assume that the overall hardware are®l: end if

available for custom instructions is constrained By Given 22° dequeue instruction; ; from Q

a hardening level, if at least one instance of a custom?23: €nd while

instructionC; is chosen to be implemented at that level, then

A; » units of hardware cost is incurred. L&t ;, be a boolean

variable which is true if at least one instance@fis chosen C. Heuristic Approach

ath hardened version. Mathematically, we have the followingthe CLP formulation described above will return optimal

1 it S i >0 solutions but is computationally expensive. In this settio
Xin :{ g=1""4J> (10) we propose an efficient heuristic (listed in Alg. 1) based
on a greedy algorithm. We recall that our objective is to

select a subset of the custom instruction instances such tha

N T the area and performance gain constraints are satisfie@ whil

S XinxAn<R (11) the overall probability of failure is minimized. Thus, for

— = . S _ .
Hardening constraints: Note that, for each custom instruc—eaCh custom instruction mstanme’] , the foII_owmg three
faﬁtors have to be taken into account — (i) the area cost

tion, at most one hardened version might be chosen for each .ch custom instructionAg), (i) the performance gain

custom instruction instance. Thus, outqf hardened levels . . . o
) : G, x fc; ;) obtained by using the custom instruction instance
of ¢; ;, at most one may be chosen for implementation. Th{s :

is ensured by the following constraint: and (iii) the probability of failure { — (1 — pci’}L)fCi"j)_' we
consider each custom instruction instance as a sef béms
Tij1+Tig2. .+ T <1 (12) corresponding to its hardened levels. We sort these items
Fggnsidering all custom instruction instances) based @ th
ratio G x fe; ;/(A; x (1—(1 —pe;in)f€ia)) in the descending

different instances of the same custom instruction to béémpor:gelris(:'gislgntg gsozrf\elgs.ulr%. -(I)—Per]e,;hg()lfsmnso?reexgzgzetrrl]:;rc;r:]ea

mented in different hardening levels. If, however, we assu traint R or th » . trai6 i i
that all instances of a custom instruction are implemented Gonstraint/u or the performance gain constraiit 1S no
tisfied (lines 11 and 15). Note that the list of items is also

the same hardening level, then we must have the followir . .
additional constraint for each,, | dat.ed at each iteration to ensure tha}t at. most one hardened
evel is chosen for any custom instruction instance. Theslin
Tith =Tioh---=Tin,n Vh€{1,2,...,7} (13) 9 to 22 ensure this and the correct computation of the overall
probability of failure. The time complexity of our heuristis
O(n log n) , wheren = >~ | n; x r;, i.e., the total number
of items.

0 otherwise
Thus, the constraint on area may be given as follows:

All the constraints discussed above and the analysis p
sented in Section IV-A allow the flexibility to implement

Optimization goal: Our goal is to minimize the overall
probability of failure.

min (1 — GP) (14)

Note that this is equivalent to maximizing the overall relia
bility, i.e., the probability that all the instructions &omized
and non-customized) will execute without failures.

V. EXPERIMENTAL RESULTS

Several experiments were conducted to evaluate our
proposed framework. The experiments show how the

[
S
2 900 .
= At .
% 800 CLP-Optimal : o
z é 700 \\ =
= S \
§ S 600 -
v B
o £ :
= @ 400
= £ :
o = .
o =300 o —
> Lo Heuristic
o 200 — \
ae®
100 RYTLl "
0 b
Performance Gain 35 40 45 50
(in % of Gainp) Size of the input
(@) (b)

Fig. 4. (a) Tradeoffs between gain in performance and rdiiatfor 5 different inputs of custom instruction librariegb) Running times of the heuristic
versus the optimal CLP.

proposed scheme reveals interesting tradeoffs betwesaps outlined below for 10 different inputs of custom instr
reliability, performance and area. tion libraries.

) _ 1) For each input library, we recorded the maximum per-
Experimental setup: Our experimental framework has been formance gain @ainp) that can be achieved by CLP-P
built in C++. The Constraint Logic Programming component yithout considering reliability.

has been developed usirigolog [2] and is invoked from) For each input, we ran our proposed CLP based optimal
within our C++ framework. All the experiments were con- framework. In contrast to step (1), the goal here is
ducted on a Windows 7 machine running a 4-core Xeon(R) g maximize reliability with performance gain as a

2.67 GHz processor. For our experiments, we generated many constraint. This constraint was set to different values,

synthetic test cases (custom instruction libraries) witying varying from {100%, 90%, 80%, . . ., 10%} of Gainp.
parameters. The number of custom instruction candidatés an _) .)

their instances were varied between 2 and 10 respectively if /9- 4(a) illustrates the overall probability of failure (a
each library. The area cost for each hardware version whgasure of unreliability) versus Fhe performance gain, at
varied between 20 and 60 LUTs while the performance gairt?0%,90%,80%,...,10%} of Gainp, for 5 of our 10
from each instance was varied between 30 and 90 clock cycl®Ut sets. If we observe the tradeoffs for the library 1igsol
The error probabilities of the custom instructions of ot CUrveé shaded in black), the highest probability of failure
sets were generated betwetdT® and 10-6. We conducted occurs when the performance constraint®% of Gainp.

two broad sets of experiments on our test cases — (i) withdﬂ?te 'that' this is the failure probablllty when the optlr.nlzat'
hardening (Section V-A) and (ii) with hardening (SectiomBY- criterion is performance (CLP-P), without any considenati

We will report results obtained on an industrial case study [Or reliability. In fact, in all 10 input sets, the reliali
Section V-C. was worst at100% of Gainp buttressing the fact that a

technique for instruction set customization that optirsize
.) simply for performance achieves the worst reliability. On
A. Without Hardening the other hand, our proposed framework can reveal tradeoffs
In our first set of experiments, we did not consider arfyetween reliability and performance gain which is importan
hardening alternatives for the custom instructions. Ttias, O safety-critical applications. On the average, the ltssfor
each custom instructio; we haver; — 1. The results @ll the 10 test cases show that by using our technique we can
discussed below illustrate that even when no hardeniﬁﬁhie"em% gain in reliability while sacrificing onlyl0% of

alternatives are considered, the proposed methodold§§ overall gain in performance, i.e., at thé% of the gain
provides significant benefits. that is achieved by traditional methods. This trend may be

observed visually for the 5 curves plotted in Fig. 4(a).

Tradeoffs: First, we show that our framework can reveaHeuristic: For the 10 input libraries, we also compared
tradeoffs between reliability and performance gain, wnlikhe result (overall probability of failure) obtained fronuro
the techniques that are limited to maximizing performanckeuristic and the CLP-based implementations. For each inpu
Towards this, we implemented a CLP-based framework (CL#brary, we compared these values at 10 points by setting
P) to maximize the performance gain under area constraittte performance constraint {d00%, 90%, 80%, ..., 10%} of
without considering reliability issues. Then, we followdte Guainp. Note that the heuristic returns a probability that may

be larger or equal to the probability returned by the optimémitations of utilizing the same hardening level for allstom
CLP. In our experiments, on the average the heuristic daiatinstructions.

from the optimal CLP-based solution ly3% showing that ~ On the other hand, when varying hardening levels are
it performs well with respect to the quality of solutions. Tallowed for different custom instructions, it might be pibss
show the scalability of our heuristic, we conducted mor@ strike the right balance between reliability and perfance.
experiments by increasing the problem s@tfilni up to Figure 5(b) illustrates the reliability versus performariade-

50. The running times are shown in Fig. 4(b). The CLP-basexfs in this case. The curveh(= X) with solid markers in
formulation does not scale to large problems. On the otheigure 5(b) corresponds to the case when different custom
hand, the execution times for our heuristic scales quitd watstructions can utilize different hardening levels. Nohbat

with larger problem sizes. this curve ¢ = X) is superimposed on thé = 3 curve
up to 80% of Gainp. This is explained by the fact that
B. With Hardening our CLP searches for solutions with highest reliability and

h = 3 contains such solutions. The interesting case is that,
In our second set of experiments, we considered that thejep, — 3, the there is no solution beyor&h% of Gainp,
are three levels of hardening, i.e., for each custom instmic pyt in the general casé: = X), valid solutions are found as
C; we haver; = 3. With increasing levels of hardening, theshown in Figure 5(b). It is noteworthy that 84% of Gainp,
input characteristics varied as described in the followifige — x reports a solution that is not reported ty = 1,
probability of failure was decreased as the hardening levgl— 2 or 1 = 3. Thus, these solution points offer both high
increased. Thus, for the first level, the range was betweggarformance as well as high reliability. This example shows
10~® and 107, for the second level the range was betweeow our framework can reveal very interesting trends and find
1077 and10~7, and the range for the most hardened level wag|utions that offer the right balance between reliabitityd
betweenl0~'° and10~®. The performance gain was assumeferformance.
to degrade atmosi’% at each level due to hardening and the Apart from the tradeoffs between reliability and perfor-
maximum area overhead increase was considered in stepsnghce, design of ASIP processors must also optimize area
10%. costs. Area overheads are even more significant when we
We now illustrate how our tool can navigate the tradeoffs beonsider hardening. Figure 6(a) and (b) shows area overhead
tween performance gain and area overheads against thelovefigurred by h = 1, h = 2 and h = 3. As seen in
probability of failure. Towards this, Figure 5(a) and Fig&i(b) Figure 6(a) the higher hardening levels have utilized more
show the results obtained for one custom instruction librararea to provide the same performance. This is a consequence
Similar results were obtained with other libraries but wél wiof the fact that they provide more reliability at increased
focus on one for the clarity of exposition. Figure 5(a) showgrea overheads. Note however that given an instruction, the
three different plots, each corresponding to the case et hardware area for its more hardened implementations is not
same level of hardening is allowed for all custom instruwdio strictly increasingly [22], [29], [24], [14]. This explainthe
Thus, h = 1 illustrates the tradeoffs between reliability andower area overhead fdr = 3 in Figure 6(a) at around0%
performance gain when only level one hardening was alloweg performance gain. Also, we note from Figure 6(a) that high
for all custom instructions. Similarly; = 2 andh = 3 show performance requirements lead to high area costs as more
plots when, respectively, only second and only third levfel ¢nstructions are customized.
hardening was allowed. For each level, we followed a similar Figure 6(b) plots the tradeoffs between area and overall
procedure as in Section V-A to conduct the experiments, i.erobability of failure for each of the 10 design points for
we first recorded the maximum performance gai¥uinp) 5 = 1, h = 2 and h = 3. For the almost same area
that can be achieved by CLP-P without considering religbili overhead (155 LUTs), = 3 provides significantly higher
Then, we set the performance constraint to different valugsliability than » = 1, but we know from Figure 6(a) that
varying from{100%, 90%, 80%, . .., 10%} of Gainp and we at this area overhead, = 3 provided only80% of the total
ran our proposed CLP-based framework. performance whileh = 1 guaranteed maximum performance.
At each of the 10 points, the overall probability of failureThis illustrates the importance of navigating the tradeoff
decreases fromm = 1 to h = 2 and fromh = 2 to h = 3, as between area, performance gain and reliability in a sydiema
visualized in Figure 5(a). This shows that the higher hairden manner, as performed by our tool. We would like to mention
levelsh = 2 and h = 3 can significantly enhance the overalthat our heuristic showed significant speedups as discussed
system reliability. However, we note that far = 2 and before.
h = 3 the CLP solver reported no solutions {@t00%, 90% }
of Gainp. This is reflected in Figure 5(a), where these tw&- Case Study
curves are seen to be truncated8at; of Gainp. This is As a case study, we studiggsm-encodefrom the mobile
because as the hardening levels increase, the performaimce gpplication domain. We profiled the application using the
that can be achieved decreases. Thug, at2 andh = 3 it LLVM suite [17]. The values of area costs of the custom in-
is not possible to meet high performance demands as w&tuctions were obtained using Xilinx ISE WebPack consider
as to guarantee high reliability. This result also shows theg the device XC5VLX50 Virtex-5. We considered 5 custom

Overall probability of failure
Overall probability of failure

Performance Gain Performance Gain
(in % of Gainp) (in % of Gaing)
(@) (b)

Fig. 5. The tradeoffs between performance gain and the dyeabability of failure when (a) the same hardening levelaliswed for all custom instructions
and when (b) varying hardening levels are allowed for défercustom instructions.

-
o

im [
Q) 5

3 = 14
~ L

El G 12
o >
< £

= = 1
3]
2 ©
o 2

0.8
g o
4 S

< = 06
g

Q o4
(e]

f 0.2

10 20 30 40 50 60 70 8 90 100 = B
| o ¢ e e ——— T b
Performance Gain % 40 60 80 100 120 140 160
(in % of Gainp) Area Overhead (LUTs)
(a) (b)

Fig. 6. The area overhead incurred by the different levelbastiening (a) plotted against performance gain and (b)gulaainst the overall probability
of failure.

instruction candidate€’,, ..., 5. The area and performanceis clearly reflected.C's is custom instruction with highest
gain are given in pairgA;,G;) for Cy,...,C5 in the fol- EPP value and it was not chosen by the tool for the design
lowing set {(71,30), (119, 50), (27,10), (73,24), (119,55)}. points{80%, ...,10%} of Gainp. However, without selecting
The area is in terms of LUTs and performance gain 83, it was not possible to meet the high performance at
in terms of clock cycles. For these custom instructions W@0%, 100%} of Gainp. WhenC5; was selected to increase
first computed the EPP values using the methodology tihe performance, it significantly contributed to high uraieil-
Section Il. ForCy,...,Cs, the EPP values were, respecity as reflected by the spike in Figure 7(a). Figure 7(b) shows
tively, {0.0014152,0.002626,0.04107,0.004139,0.008329}. the increasing area overheads with increasing performance
Note that there is significant variation in the EPP values agains, as is expected.
this supports our discussion in Section Il about the inheren
disparity in error vulnerabilities across custom instiwes. In
fact, EPP ofCs is an order of magnitude different from the We proposed a instruction set customization technique
rest. We conducted the experiments considering no hargleniar reliable designs in the presence of transient faults. Our
(i.e.,r; = 1) and that the probabilities of failure of the custon@nalysis takes into account the variability in error tohee
instructions are directly proportional to the EPP values. across custom instructions and hardening levels in order to
optimize reliability. Our framework can be also be used to
The results are shown in Figure 7(a) and (b). Figumptimize for performance or for evaluating tradeoffs beiwe
7(a) depicts the plot of overall probability failure versie performance and reliability as illustrated in our experirad
performance gain. In this figure, the effect of EPP variatioresults. It will be interesting to utilize other techniques

VI. CONCLUSION

&

300,

x
=
o,
1
1
1
1
\,
by

2]

>
o

s

1

1

1
(] 1
= 1
2 4 I 250
= i J
-« 35 | /
° ! — /

0
23 { E 200 /
5 : 2 pr--s--- '
g 2.5 H = /
o
E 2 ,' © ,’
a 1 _0:> 150 Il
= H 5 I}
© 15 ! g !
o ! o i
2 1 H I}
N a..d © 100 K
Rad 4 1
05 [P L < !
_________ f”’ FooTeTTT
0
50 . -
10 20 30 40 50 60 70 8 90 100 0 20 30 40 50 60 70 8 90 100
Performance Gain Performance Gain
(in % of Gainy) (in % of Gainp)
(a) (b)

Fig. 7. The tradeoffs between reliability, performance gamd area overhead for the case study.

like triple-modular redundancy as well to provide relidtigil [14] R. Garg, N. Jayakumar, S. P. Khatri, and G. Choi. A desigpraach

guarantees for ultra-reliable systems. It is also worthsvhj _for radiation-hard digital electronics. IDAC, 2006. _
15] R. E. Gonzalez. Xtensa: A configurable and extensibbegssorMicro,

to explore possibilities of hardware resource sharing) 20(2), 2000.

effectively utilize area constraint. Note that such tegles [16] M. R. Guthaus et al. Mibench: A free, commercially repreatve
d embedded benchmark suite. IBEE Annual Workshop on Workload

are orthogonal to the approach presented in this paper an 0 De
build n the foundations introduced here Characterization 2001.

may butld upo : [17] C. Lattner and V. Adve. Llvm: A compilation framework forfdiong

program analysis & transformation. International Symposium on Code

Acknowledgements:This work was partially supported by the Generation and Optimizatior2004. _ _ _

Swedish Foundation for Strategic Research. It was supportés] J. ';ee,t_K- Ch(;"d and N. [f’U“- '?ﬁ'c'eglt'n:grgt'?gggﬂswzfgggummaﬂc

in parts by the German Research Foundation (DFG) as par instruction set design of configurable S: ' :

thPf) priorit))// program "Dependable Embedded (Syste)ms"p(SIEBl%E A. Lesea, S. I_Dr|mer, J.J. Fabulga, C. Carmichael, and_ erAIﬂ_'he
. . Rosetta experiment: atmospheric soft error rate testing fferttig

1500 -spp1500.|tec.k|t.edu). technology FPGAs. IEEE Trans. Device and Materials Reliabiljity

5(3):317-328, 2005.
[20] T. Li, Z. Sun, W. Jigang, and X. Lu. Fast enumeration of maadivalid

REFERENCES
subgraphs for custom-instruction identification. GASES 2009.
[1] J. Aidemark, J. Vinter, P. Folkesson, and J. Karlsson. flG@generic [21] S. S. Mukherjee, C. Weaver, J. Emer, S. K. Reinhardt, andustin.
A systematic methodology to compute the architectural vubikiy

object-oriented fault injection tool. IDSN 2001.
[2] K. R. Apt and M. G. Thiran. Constraint Logic Programming using factors for a high-performance microprocessorMiCRO, 2003.
ECL?PS¢c. Cambridge University Press, 2007. [22] 1. Polian, J. P. Hayes, S. M. Reddy, and B. Becker. Maugland
mitigating transient errors in logic circuitdEEE Trans. on Dependable

[3] J. M. Arnold. S5: The architecture and development flow cbéware
configurable processor. IRPT, 2005. and Secure Computin@010.

[4] H. Asadi and M. B. Tahoori. Analytical techniques for sefror rate [23] L. Pozzi, K. Atasu, and P. lenne. Exact and approximag@rithms
modeling and mitigation of FPGA-based designkcEE Trans. Very for the extension of embedded processor instruction $ESE TCAD
Large Scale Integr. Syst15(12):1320-1331, 2007. 25(7), July 2006.

[5] K. Atasu, R. G. Dimond, O. Mencer, W. Luk, ©zturan, and G. Dndar. [24] R. R. Rao, V. Joshi, D. Blaauw, and D. Sylvester. Ciraptimization

techniques to mitigate the effects of soft errors in combameti logic.

Optimizing instruction-set extensible processors undea t@ndwidth
constraints. IrDATE, 2007. ACM Trans. Des. Autom. Electron. Syst5, 2009.

[6] K. Atasu, O. Mencer, W. Luk, C. Ozturan, and G. Dundar. tFad25] R.C.Baumann. Radiation-induced soft errors in adverseeniconductor
custom instruction identification by convex subgraph enatiem. In technologies.|IEEE Transactions on Device and Materials Reliability
CODES+ISSS2008. 5(3):305-316, 2005.

[7] L. Bauer, M. Shafique, S. Kramer, and J. Henkel. Rispp: ftmga [26] G. A. Reis, J. Chang, and D. I. August. Automatic instiuctievel
instruction set processing platform. DAC, 2007. software-only recoverylEEE Micro, 27(1):36-47, 2007.

[8] P. Bonzini and L. Pozzi. Recurrence-aware instructienselection for [27] Relsat 2.1,. www.bayardo.org/resources.html. -
extensible embedded processolSEE Trans. Very Large Scale Integr. [28] S. Z. Shazli and M. B. Tahoori. Obtaining microprocesgainerability
Syst, 16, 2008. factor using formal methods. Imt'l Symposium on Defect and Fault

[9] U. D. Bordoloi, H. P. Huynh, S. Chakraborty, and T. Mitf@valuating Tolerance of VLSI System2008. S
design trade-offs in customizable processorsDAC, 2009. [29] W. Sheng, L. Xiao, and Z. Mao. Soft error optimization tdrsdard cell

[10] D. Borodin, B. H. Juurlink, S. Hamdioui, and S. Vassilmdnstruction- circuits based on gate sizing and multi-objective genegorhm. In
level fault tolerance configurability. Journal of Signal Processing DAC, 2009. .)

[30] A. K. Verma, P. Brisk, and P. lenne. Fast, nearly optimaE IS
identification with 1/0O serialization through maximal cliggaumeration.

Systems57(1), 2009.

[11] N. Cheung, S. Parameswaran, and J. Henkel. INSIDE: lid8tm >))
Selection/Identification & Design Exploration for extesisi processors. IEEE Trans. Comp.-Aided Des. Integ. Cir. $29:341-354, 2010.
In ICCAD, 2002.

[12] N. Clark, H. Zhong, and S. Mahlke. Processor accelenathrough
automated instruction set customization.MIRCRO, 2003.

[13] P. Faraboschi et al. Lx: A technology platform for custpable VLIW
embedded processing. IBCA 2000.

