
Reliability-Aware Instruction Set Customization
for ASIPs with Hardened Logic

Unmesh D. Bordoloi1, Bogdan Tanasa1, Mehdi B. Tahoori2,
Petru Eles1, Zebo Peng1, Syed Z. Shazli3, Samarjit Chakraborty4

1Linköpings Universitet, Sweden2Karlsruhe Institute of Technology, Germany
3Northeastern University, USA 4TU Munich, Germany

1E-mail:{unmesh.bordoloi, bogdan.tanasa, petru.eles, zebo.peng}@liu.se
2E-mail: {mehdi.tahoori@kit.edu}

3E-mail: {sshazli@ece.neu.edu} 4E-mail: {samarjit@tum.de}

Abstract—Application-specific instruction-set processors
(ASIPs) allow the designer to extend the instruction set of the
base processor with selectedcustom instructions to tailor-fit
the application. In this paper, with the help of a motivational
example, we first demonstrate that different custom instructions
are vulnerable to faults with varying probabilities. This shows
that by ignoring the vulnerability to faults, traditional methods
of instruction set customization can provide no guarantees
on the reliability of the system. Apart from such inherent
disparity in error vulnerability across custom instructions, each
custom instruction can have multiple implementation choices
corresponding to varying hardened levels. Hardening reduces
the vulnerability to errors but this comes at the overhead of
area costs and reduced performance gain. In this paper, we
propose a framework to select custom instructions and their
respective hardening levels such that reliability is optimized
while the performance gain is satisfied and area costs are met as
well. Our framework is based on a novel analytical method to
compute the overall system reliability based on the probability
of failure of individual instructions. Wide range of experiments
that were conducted illustrate how our tool navigates the design
space to reveal interesting tradeoffs.

I. I NTRODUCTION

Application-specific instruction-set processors (ASIPs)al-
low the user to extend the instruction set of the base pro-
cessor with custom instructions to tailor fit the application
requirements. Typically, frequently executed subgraphs of the
program’s dataflow graph (DFG) are chosen as custom instruc-
tions. Some examples of commercial customizable processors
include Lx [13], Xtensa [15], Strech S5 [3] among others.
Fig. 1 illustrates the DFG of theblowfish application from
the MiBench benchmark [16]. Individual nodes (like AND,
ADD, XOR, and>>) in the DFG represent base instructions.
Custom instructions are shown as shaded areas subsuming
multiple base instructions and, thus, consist of a pattern of
the base instructions.

Design automation tools and methodologies for customizing
the instruction sets of ASIPs have focused on optimizing the
design for metrics like performance, power and area. Such
tools implicitly assume that the processor functions without
any faults. With aggressive scaling of electronic components,
however, processors are also susceptible to faults and hence,

� ���

� ���

� ��

� 	
�

� ��

 	
�

� ��

�� ���

�� ���

� ��

�� ���

�� ���

�� ���

�� ���

� ��

�����

����	
���
��

�
 ��

�� ���

�� ��

�� ���

�� ��

�� ���

�� ��

�� ���

�
��
�

����	
���
��

Fig. 1. DFG of theblowfishfrom the MiBench benchmark.

such tools can provide no guarantees on the reliability of the
system. Moreover, embedded systems are now being widely
deployed in health-care devices, automotive electronic systems
and other safety critical devices, thereby making system reli-
ability an important design concern.

In this paper, we propose an instruction set customization
framework to optimize system reliability, apart from satisfying
the metrics of performance and area. We assume that the
processor operates in the presence oftransientfaults. Transient
faults appear for a very short duration, cause miscalculations
in the logic, data corruption, and then disappear without
permanent damage to the circuit. These faults can be caused
by radiation, fabrication process, voltage and temperature
(PVT) variations and they erroneously change the output
of a gate or value of wire from 0 to 1 or from 1 to 0. We
focus on transient faults because the rate of transient faults
is significantly higher than for other types of faults, making
them a primary concern for system reliability [25].

Our contributions: The contributions of our paper are enu-
merated as follows.

• Our paper demonstrates that there is an inherent disparity
in the vulnerability of different custom instructions to
transient faults. Towards this, in Section II, we use
the blowfish application (see Fig. 1) as a motivational
example to show that different custom instructions are
vulnerable to faults with different probabilities. This

establishes that, by ignoring the susceptibility of custom
instructions to faults, current tool-chains and method-
ologies for instruction set customization cannot provide
reliability guarantees.

• Apart from the above-mentioned inherent disparity in
error vulnerabilities across custom instructions, each cus-
tom instruction can have multiple implementation choices
corresponding to various hardening levels. Hardening of
logic implies reduction in its vulnerability to soft errors.
While hardening might mitigate the probability of error of
custom instructions, this comes at cost overheads in terms
of performance and area. In this paper, we propose to
leverage hardened custom instructions to enhance system
reliability in a cost-effective fashion.

• We present a framework to select custom instructions
and their respective hardened versions such that the
design is optimized for reliability while the constraints
on performance and area are satisfied. Our framework is
based on Constraint Logic Programming (CLP) [2]. CLP
allows us to write constraints in a logic programming
framework and solves the problem using branch and
bound search based on constraint programming. It should
be noted that the framework is flexible in the sense that
the underlying analytical framework remains unchanged
if the design needs to be optimized for a different metric
(like performance) and the reliability is instead given
as a design constraint. Our framework is based on a
novel analytical method (Section IV) that connects the
probability of failure of custom instructions at various
hardened levels and the overall system reliability. Our
analysis takes into account the varying frequency with
which each kernel is invoked in an application run in
order to accurately compute the contribution of each
kernel to the overall system reliability.

• Finally, we also present an efficient heuristic that scales
with larger problem instances because the CLP-based
branch and bound search does not scale to large
problems. This is direct consequence of the fact that
the optimization problem tackled in this paper is
computationally expensive.

Related work: The previous decade has seen a flurry of
research activities in the domain of ASIPs. Lot of research
has been devoted to custom instructionselectiontechniques
so as to optimize either performance or hardware area [12],
[18], [5], [8], [7]. Algorithms to expose the tradeoffs between
performance and area were reported in [9]. However, none
of these approaches have considered reliability issues because
they assume a fault free functionality. This inhibits the appli-
cability of ASIPs to safety critical domains like health-care
and automotive electronics.

Note that in this work we also focus on the custom instruc-
tion selectionproblem and like the above lines of work, we too
assume that a library of custom instruction candidates is given.
Such a library of custom instructions may beenumeratedby

extracting frequently occurring computation patterns from the
data flow graph of the program. Recent advances in the custom
instruction enumeration techniques are reported in [11], [23],
[20], [6], [30].

It should be mentioned here that there have been some
efforts to enhance system reliability by applying various
fault recovery techniques at the instruction-level [10], [26].
However, our work differs significantly from them. First
and foremost, these works are neither targeted towards
customizable processors nor do they focus on instruction
selection. Hence, they address a completely different problem
setting. Secondly, they rely on simulation based methods
and are unlike the analytical methods proposed in this
paper. Finally, they do not consider hardening alternatives
or disparities in the error vulnerabilities of instructions to
achieve an overall system reliability.

II. D ISPARITY IN ERRORVULNERABILITIES

In this section, we will first demonstrate that there is a
significant variation in the error vulnerabilities (probabilities
of failure) across custom instructions. This underscores the im-
portance of considering reliability explicitly as a designmetric
when customizing instruction sets for ASIPs. It is known
that hardening techniques can improve the vulnerabilitiesof
hardware to errors. Thus, varying levels of hardening would
imply varying error vulnerability of instructions and thiswill
be discussed in the later part of this section. We would like to
mention that our goal here is not to propose a new technique to
compute error probabilities. Rather, we demonstrate the need
for a reliability-aware instruction set customization framework.

A. Inherent Disparity

Error vulnerabilities, i.e., probabilities of error of instruc-
tions can be computed by methods discussed in [28], [1].
These probabilities typically depend on two factors — (i)
the probability that an error occurs, i.e., the value of a bitis
incorrectly flipped from 0 to 1 or from 1 to 0 and (ii) theError
Propagation Probabilities(EPPs), i.e., the probability that this
fault will result in an observable error at the primary output
of the circuit (in our case, the output of the instructions).The
first, i.e., the probability that an error occurs, depends onthe
raw error rate [4], [21] and instruction execution time, among
other factors. The raw error rate can be expressed in terms of
failure in time (FIT). FIT is equal to one failure in a billion
hours (109) of operation. For instance, the FIT rates for Xilinx
SRAM based-based FPGA devices have been reported to be
up to 1000 FIT/Mbit for 90-nm technology [19]. The raw error
rate depends on the device characteristics and the environment.
The overall raw FIT rate for a custom instruction is propor-
tional to the number of gates used for the implementation of
that instruction (i.e., the area of that instruction). Since the
hardware area required for implementing custom instructions
vary significantly, the FIT rate and, in turn, the probability that
an error occurs will also vary from one instruction to another.

Independently of the overall FIT rate, the second factor,
i.e., EPP also varies across instructions. We will illustrate this

� ��� � ���

	 ���

EPP = ������

(a) CI 1

� ��� � ���

	 ���

 �� � ��

EPP = �������

(b) CI 2

 ��

� ���

� ���

	 ��

EPP = ��	�	�

(c) CI 3(a) CI 1 (b) CI 2 (c) CI 3

� ���

	 ��

EPP = ��	���

(d) CI 4

���

�
���

EPP = ��
���

(e) CI 5

 ���

� ���

	 ���

�
��

�����

���

EPP = ���	�

(f) CI 6

Fig. 2. Error Propagation Probabilities (EPPs) for 6 instruction patterns of
blowfish.

for the blowfish application from the MiBench benchmark
(Fig. 1). This result, along with the factors discussed above,
establish that the probabilities of failure of instructions vary
in an irregular fashion and motivates the need for new
techniques for instruction set customization methods like
the one proposed in this paper. In the following, we first
introduce the notion of EPP, then describe a methodology
used to calculate the EPP values, and finally, we discuss the
results obtained by calculating the EPP values on a benchmark.

Error Propagation Probability: The EPP of a logic circuit
is the probability that an error in the components of the logic
block will propagate to a primary output of the block and
results in an observable error. As mentioned in Section I,
we consider transient faults and, hence, our error model is a
logical bit-flip. A bit-flip causes an error if the effect of the
bit-flip is observable at the primary output of the circuit. Given
a bit-flip occurring on a wire, the EPP for this wire is defined
as the ratio between the number of input combinations which
resulted in an error and the total number of possible input
combinations. EPP computation is based on an all-solution
SAT solver (RELSAT [27]). Due to space constraints, we will
not discuss the details of EPP computation here. We refer
the reader interested in the details on EPP computation to [28].

Results: As mentioned before, custom instructions are es-
sentially a pattern of instructions. We choose 6 instruction
patterns from the DFG (Fig. 1) of theblowfish application
obtained from the MiBench benchmark [16]. We apply the
above methodology to compute the EPP of these 6 patterns.
The EPPs obtained are shown in Fig. 2. The EPP values
can be seen to vary from around 0.43 to 0.73, which clearly
establishes that the error probabilities of different custom
instructions are different. We already discussed that the raw
error rates for different custom instructions are different.
Thus, both factors contributing to the probability of failure
of instructions have different values, thereby establishing the
disparity in error vulnerabilities of custom instructions. Thus,
various custom instructions contribute to the overall system

reliability in varying magnitudes.

B. Disparity Based on Hardening Levels

Above, we discussed the inherent disparities in error prob-
abilities across custom instructions, i.e., we did not factor
in the possibility of hardening. Hardened hardware is less
vulnerable to transient faults. A variety of techniques for
hardening hardware logic and circuits have been proposed in
the literature [22], [29], [24], [14]. Most of these techniques
rely on selective resizing of gates or transistors in order to
enhance the immunity to soft errors. We note, however, that
while they reduce the probability of error, all of them incur
additional area overhead and suffer performance degradation.
Typically, such techniques report multiple hardening levels
with decreasing error probabilities but increasing area and
performance overheads. Thus, in ASIPs that allow such hard-
ening, each custom instruction maybe implemented in one out
of many feasible hardening levels. This implies that, apartfrom
disparities in probability of failure across custom instructions
(as discussed in Section II-A), there is another dimension of
disparity in error vulnerabilities within each custom instruction
based on its hardening levels.

It is important to note that, apart from the disparity in
error probabilities, different custom instructions are invoked
for different number of times by the application. This is yet
another factor that leads to the varying contribution of the
custom instructions to the overall system reliability. Hence,
the frequency of the custom instructions being invoked must
be considered as well by any reliability-aware technique for
instruction set customization.

Example: With an illustrative example, we shall now discuss
how the interplay of various factors like probability of failure,
frequencies and hardening levels of a custom instruction im-
pacts the system reliability. For simplicity of elucidation, let us
consider that we have only two custom instruction candidates
CI1 andCI2 with probability of failuresp1 = 8× 10−2 and
p2 = 7× 10−2 respectively. Let us assume that the frequency
of execution of each instruction, i.e., the number times the
instructions are executed in one run of application aref1 = 3
and f2 = 6, the performance gains achieved areG1 = 4
andG2 = 2 for one invocation of each instance and the area
requirements areA1 = 4 and A2 = 2. Let us consider that
the area is in number of LUTs and gain is in units of clock
cycles.

The total performance gain achieved by selectingCI1 or
CI2 is the same, i.e.,f1 × G1 = f2 × G2 = 12. Let us
consider that for the design at hand, the area budget is
restricted to 5 units. Then, only one of eitherCI1 or CI2
maybe selected because the combined area costs ofCI1 and
CI2 is 6 units. Our goal is to select the one that yields
higher reliability. CI2 has a lower probability of error and
seems a promising candidate. However, when we consider
the frequency of executions of the instructions,CI2 might
not be the optimal selection. The probability of failure of
CI1, considering all its executions, is1− (1− p1)

f1=0.2213.

On the other hand, overall failure ofCI2 evaluates to be
1−(1−p2)

f2=0.3530. Thus, even thoughp1 > p2, considering
all execution instances,CI2 has a higher probability of failure
thanCI1 in a run of the application. Hence,CI1 should be
selected in this case instead ofCI2.

Above, we did not consider any hardening alternatives. Let
us now assume thatCI1 has no possible hardening levels as
alternative implementations butCI2 has one level of harden-
ing alternative, denoted byCIH

2
, with following parameters

pH
2

= 4 × 10−2, AH
2

= 5 and GH
2

= 1. Thus, hardening
improves the probability of failure but it comes with increased
area costs and degradation in possible performance gains. The
overall probability of failure ofCI2 is now computed to be
0.2172, that is less than that ofCI1. Thus, instead ofCI1,
selectingCI2’s hardened implementation is optimal from the
reliability perspective. However, this comes at the overhead
of performance because instead of the performance gain of12
clock cycles that was possible withCI1, the performance gain
with CIH

2
is only f2 ×GH

2
= 6 clock cycles.

The above example illustrates the intricate relationship,
between probability of failure, frequency of execution of the
instructions and their hardening levels, that must be captured
while computing the reliability. It also illustrates that the
tradeoffs between reliability, performance gain and area that
must be accounted for during custom instruction selection.
Our proposed framework captures the relevant relationships
between various parameters and systematically evaluates the
tradeoffs between various optimization objectives. We note
that in the above example, for simplicity, we assumed that
no base instructions contribute to the system reliability.In our
proposed framework, we will explicitly take into account the
probability of failure of base instructions and their execution
frequencies. Note that the probability of failure of base instruc-
tions can also be computed in a similar manner as discussed
in Section II-A.

III. SYSTEM MODEL

Given an application to be run on a customizable processor,
we assume that the library of custom instruction candidatesfor
this application is known to us. Let there beN custom instruc-
tion candidates denoted by the setCI = {C1, C2, . . . , CN}.
A custom instructionCi hasni instances in the application,
and we denote them asci,1, ci,2, . . . , ci,ni

. The execution
frequencyfci,j (i.e., the number of times an instruction is
executed in one run of the application) of each instance
is also known to us. This is input dependent and can be
obtained by profiling the execution trace of the application
on a large set of inputs. For a custom instructionCi let us
say that there areri versions for implementations considering
all possible hardening levels. Without loss of generalization,
we assume that the non-hardened version is one of theri
versions. For each of these levels, let{Gi,1, Gi,2, . . . , Gi,ri}
denote the gain in performance obtained by one instance of
the custom instructionCi. Similarly, let the area overheads
be {Ai,1, Ai,2, . . . , Ai,ri}. We note that a problem that does
not consider hardening would haveri = 1. Thus, our problem

formulation is quite general that allows us to consider both
hardening and non-hardening scenarios in a seamless fashion.

Note that the processor core has a set of existing instruc-
tions. These instructions can be categorized into two sets —
(i) BC is the set of existing instructions that can be covered
by a custom instruction instance and (ii)BI is the set of
instructions that cannot be covered by any custom instruction
instance. For any existing instructionbk ∈ (BC ∪ BI), the
execution frequency of that instruction is given byfbbk. In
other words,BC is the set of the existing instructions that
maybe subsumed by the custom instruction candidates, while
BI is the set of instructions that cannot be subsumed by any
custom instruction candidate.

We assume that the probabilities of failure of all the custom
instruction candidates as well as the existing instructions
are known to us. Such probabilities can be obtained using
techniques described in Section II. The probability of failure
of a custom instructionCi, when implemented athth
hardening level, is denoted bypci,h, whereCi ∈ CI and
h ∈ {1, 2, . . . , ri}. The probability of failure of an existing
instruction bk is denoted bypbk, where bk ∈ (BC ∪ BI).
A higher probability for an instruction implies that this
instruction is more vulnerable to transient faults.

Problem statement: In this paper, our goal is to choose a set
of custom instructions and their respective hardened levels,
such that the reliability of the application is optimized while
the desired performance gain is achieved and the area con-
straints are satisfied. In other words, the goal is to minimize the
overall probability of error of the application. Towards this, a
Constraint Logic Programming (CLP) [2] based formulation is
presented in Section IV. CLP allows users to write constraints
in a logic programming framework and solves the problem
using branch and bound search. However, this is computa-
tionally expensive and hence, we will also present an efficient
heuristic. We would like to emphasize here that the underlying
analysis remains unchanged if a different optimization objec-
tive (like performance gain) is chosen instead of reliability and
the desired reliability is specified as a constraint. Note that
typically if a custom instruction is selected, all instances of
that instruction are run in dedicated hardware to maximize the
performance gain. However, custom instructions might have
higher probability of error than base instructions. This might
be the case, for instance, when the base instructions run on
a core that is more hardened than the dedicated hardware for
custom instructions. Such a scenario is feasible, for example,
when the application is running on a soft-core processor
in the FPGA logic, and both base instructions and custom
instructions are implemented using FPGA logic. In such a
scenario, invoking all instances of custom instructions might
lead to very low reliability. Hence, our problem formulation is
quite general and allows the flexibility to select the instances
of each custom instruction.

IV. PROPOSEDFRAMEWORK

Our proposed scheme is illustrated in Figure 3. We first
propose an analysis that connects the error probabilities of the
custom instructions to the overall reliability.

A. Probability Analysis

In this section, our goal is to compute the overall probability
of failure for the system. Note that this probability gives us
a measure of the unreliability of the system. First, let us
consider the custom instructions. The probability of failure of
an instance,ci,j of a custom instructionCi is given bypci,h for
its hth hardening level. Thus, the probability that it executes
successfully is1− pci,h. Given the execution frequencyfci,j
of ci,j and considering thehth hardening level, the probability
that the instance executes successfully each time it is invoked
is thus given by:

(1− pci,h)
fci,j (1)

Now we will derive an expression that denotes the probability
of failure for the instanceci,j considering all possible hard-
ening levels. Towards this, let there beri boolean variables,
xi,j,1, xi,j,2, . . . , xi,j,ri associated with an instanceci,j where
if xi,j,h is 1, it implies that the instanceci,j of the custom
instructionCi has been selected to implemented in thehth
hardening level. Ifxi,j,h is 0, it implies otherwise. This allows
us to derive the following expression as the probability of
failure for the instanceci,j considering all possible hardening
levels.

ri
∏

h=1

(1− pci,h)
xi,j,h×fci,j (2)

We note that at most one of theri boolean variables might be
true forci,j because at most one hardening level can be chosen
for an instance. This constraint will be described formallyin
next section as part of our CLP formulation (see Equation 12
and Equation 13).

Considering all instances of the custom instructionCi, that
are selected, the probability that they execute without faults is
given by:

ni
∏

j=1

ri
∏

h=1

(1− pci,h)
xi,j,h×fci,j (3)

Now, let us consider all custom instructions. The probability
that they execute correctly without any fault is:

PCI =

N
∏

i=1

ni
∏

j=1

ri
∏

h=1

(1− pci,h)
xi,j,h×fci,j (4)

In Eq. 4, we computed the probability that all the customized
instructions execute successfully. Now let us consider the
base instructions. From Section III, we recall thatBC =
{B1, B2, . . . , BM} is the set of existing instructions that can
be covered by a custom instruction instance. However, our
framework allows the flexibility that all instances of a custom
instruction need not run in hardware, and thus, there will be
some instances of the instructions in the setBC which will run
in the existing processor core. The frequencies with which the

Library of candidate

kernels

Specification from

system designer
Execution frequencies,

failure probabilities

Overall

probability analysisExecution frequencies, System constraints:p y y

Optimization for reliability

d f d

Execution frequencies,

area costs, performance gain

System constraints:

Area, Performance

under performance and

area constraints

Final output : selected

i icustom instruction set

Fig. 3. The overall scheme consists of a probability analysiscore that is
invoked by the optimization framework.

base instructions occur are given byfb1, fb2, . . . , fbM . How-
ever, because some instances of these base instructions might
be covered by the custom instructions, the base instructionwill
now execute with less frequency. Let this number be given by
fb′k for an instructionBk. fb′k can be computed as follows.

fb′k = fbk −

|CIk|
∑

i=1

ni
∑

j=1

ri
∑

h=1

xi,j,h × fci,j (5)

In the above equation,CIk is the set of custom instruction
candidates that covers the base instructionBk. Essentially,
we subtracted the number of times all the custom instructions
have covered the base instruction. Oncefb′k is computed, the
probability that these base instructions execute successfully is
given by:

PBC =
M
∏

k=1

(1− pbk)
fb′k (6)

Finally, there are base instructions that have no custom
instruction candidates and are denoted by the setBI. The
probability that instructions in the setBI execute successfully
is given by:

PBI =

|BI|
∏

k=1

(1− pbk)
fbk (7)

We note that the above termPBI is constant but we account
for it in the optimization framework to obtain accurate re-
sults. Thus, the overall probability that all the instructions
(customized and base instructions) execute without failures is:

GP = PCI × PBC × PBI (8)

The overall probability of failure for the system, i.e., a measure
of unreliability is then given by1−GP .

B. CLP-based Optimal Approach

We now formulate the custom instruction selection problem
as an optimization problem in CLP, where the optimization
objective is reliability, i.e., the minimization of(1−GP). As
an output of the CLP, we obtain the set of selected custom
instructions and their respective hardening levels. In the
following we describe the CLP constraints.

Performance constraint: The first constraint is that the
desired performance gain must be achieved by selecting the
custom instructions, i.e.,

N
∑

i=1

ni
∑

j=1

ri
∑

h=1

(xi,j,h ×Gi,h × fci,j) ≥ GT (9)

Here GT is the total performance gain that the designer
wants to achieve with the use of custom instructions. For
instance,GT may be specified as a certain fraction ofGmax,
where Gmax is the maximum achievable performance gain
using all custom instructions without any area constraints.
Note thatGmax can be easily known once the library of the
custom instructions has been enumerated. In certain settings,
it is possible that the designer does not have an explicit
constraintGT but rather a range of possibleGT values. In
such cases, our framework (both the CLP-based approach
and the proposed heuristic) can be invoked iteratively for
differentGT values in order to evaluate the tradeoffs between
reliability versus performance gain and the designer can then
choose a suitable design point from the resulting design space.
This will be illustrated in more detail in our experimental
results.

Area constraints: Assume that the overall hardware area
available for custom instructions is constrained byR. Given
a hardening levelh, if at least one instance of a custom
instructionCi is chosen to be implemented at that level, then
Ai,h units of hardware cost is incurred. LetXi,h be a boolean
variable which is true if at least one instance ofCi is chosen
ath hardened version. Mathematically, we have the following,

Xi,h =

{

1 if
∑ni

j=1
xi,j,h > 0

0 otherwise
(10)

Thus, the constraint on area may be given as follows:
N
∑

i=1

ri
∑

h=1

Xi,h ×Ai,h ≤ R (11)

Hardening constraints: Note that, for each custom instruc-
tion, at most one hardened version might be chosen for each
custom instruction instance. Thus, out ofri hardened levels
of ci,j , at most one may be chosen for implementation. This
is ensured by the following constraint:

xi,j,1 + xi,j,2 . . .+ xi,j,ri ≤ 1 (12)

All the constraints discussed above and the analysis pre-
sented in Section IV-A allow the flexibility to implement
different instances of the same custom instruction to be imple-
mented in different hardening levels. If, however, we assume
that all instances of a custom instruction are implemented at
the same hardening level, then we must have the following
additional constraint for eachci,j ,

xi,1,h = xi,2,h . . . = xi,ni,h, ∀h ∈ {1, 2, . . . , ri} (13)

Optimization goal: Our goal is to minimize the overall
probability of failure.

min (1−GP) (14)

Note that this is equivalent to maximizing the overall relia-
bility, i.e., the probability that all the instructions (customized
and non-customized) will execute without failures.

Algorithm 1 Heuristic for optimizing reliability
Input: A library of custom instruction candidates

{c1,1, c1,2, . . . , ci,j , . . . , cN,ni
}, with probability of failures

pi,j and area costAi

1: G = 0; PROB =
∏|BI|∪|BC|

k=1
(1− pbk,h)

fbk ;
2: Xi = 0 ∀1 ≤ i ≤ N ; xi,j = 0 ∀1 ≤ i ≤ N, 1 ≤ j ≤ ni;
3: for i ∈ {1, 2, . . . , N} do
4: for j ∈ {1, 2, . . . , ni} do
5: computeYi,j ← Gi × fci,j/(Ai × (1− (1− pci,h)

fci,j))
6: end for
7: end for
8: sortYi,j values in descending order and enqueueYi,j ∈ Q
9: while Q 6= φ do

10: select first element from Q
11: if Xi = 1 andG < GT then
12: xi,j = 1
13: G = G+Gi,j × fci,j
14: PROB = PROB×Yi,j/(1− pbk)

fbk wherebk ∈ BC andbk
is covered by instanceci,j

15: else ifXi 6= 1 and (Ri ≤ R or G < GT) then
16: Xi = 1; xi,j = 1;
17: G = G+Gi,j × fci,j
18: R = R−Ai

19: PROB = PROB × Yi,j/(1− pbk,h)
fbk wherebk ∈ BC and

bk is covered by instanceci,j
20: remove K from Q where K is the set of hardened versions ofci,j
21: end if
22: dequeue instructionci,j from Q

23: end while

C. Heuristic Approach

The CLP formulation described above will return optimal
solutions but is computationally expensive. In this section,
we propose an efficient heuristic (listed in Alg. 1) based
on a greedy algorithm. We recall that our objective is to
select a subset of the custom instruction instances such that
the area and performance gain constraints are satisfied while
the overall probability of failure is minimized. Thus, for
each custom instruction instanceci,j , the following three
factors have to be taken into account — (i) the area cost
of each custom instruction (Ai), (ii) the performance gain
(Gi×fci,j) obtained by using the custom instruction instance
and (iii) the probability of failure (1 − (1 − pci,h)

fci,j). We
consider each custom instruction instance as a set ofri items
corresponding to its hardened levels. We sort these items
(considering all custom instruction instances) based on the
ratioGi×fci,j/(Ai×(1−(1−pci,h)

fci,j)) in the descending
order (lines 3 to 8 of Alg. 1). Then, the items are chosen from
this list as long as the sum of area does not exceed the area
constraintR or the performance gain constraintGT is not
satisfied (lines 11 and 15). Note that the list of items is also
updated at each iteration to ensure that at most one hardened
level is chosen for any custom instruction instance. The lines
9 to 22 ensure this and the correct computation of the overall
probability of failure. The time complexity of our heuristic is
O(n log n) , wheren =

∑N

i=1
ni × ri, i.e., the total number

of items.

V. EXPERIMENTAL RESULTS

Several experiments were conducted to evaluate our
proposed framework. The experiments show how the

1 4
x 10

-4

1.2

1.4

lu
re

Lib.1

Lib. 2

Lib. 3

b

0.8

1

b
il

it
y

o
f

fa
il Lib. 4

Lib. 5

0.4

0.6

ra
ll

 p
ro

b
a

b

10 20 30 40 50 60 70 80 90 100
0

0.2O
v

e

10 20 30 40 50 60 70 80 90 100

Performance Gain

(in % of GainP)

���

���

���

���

���

���

�
	

�
�	

��
�
��

�
�

�������	
��

�

���

���

���

���

�� �� �� ��

�
	

�
�	

�

�	���� ��!��	
�"��

#�"$	��	�

(a) (b)

Fig. 4. (a) Tradeoffs between gain in performance and reliability for 5 different inputs of custom instruction libraries. (b) Running times of the heuristic
versus the optimal CLP.

proposed scheme reveals interesting tradeoffs between
reliability, performance and area.

Experimental setup: Our experimental framework has been
built in C++. The Constraint Logic Programming component
has been developed usingProlog [2] and is invoked from
within our C++ framework. All the experiments were con-
ducted on a Windows 7 machine running a 4-core Xeon(R)
2.67 GHz processor. For our experiments, we generated many
synthetic test cases (custom instruction libraries) with varying
parameters. The number of custom instruction candidates and
their instances were varied between 2 and 10 respectively in
each library. The area cost for each hardware version was
varied between 20 and 60 LUTs while the performance gain
from each instance was varied between 30 and 90 clock cycles.
The error probabilities of the custom instructions of our input
sets were generated between10−8 and 10−6. We conducted
two broad sets of experiments on our test cases — (i) without
hardening (Section V-A) and (ii) with hardening (Section V-B).
We will report results obtained on an industrial case study in
Section V-C.

A. Without Hardening

In our first set of experiments, we did not consider any
hardening alternatives for the custom instructions. Thus,for
each custom instructionCi we have ri = 1. The results
discussed below illustrate that even when no hardening
alternatives are considered, the proposed methodology
provides significant benefits.

Tradeoffs: First, we show that our framework can reveal
tradeoffs between reliability and performance gain, unlike
the techniques that are limited to maximizing performance.
Towards this, we implemented a CLP-based framework (CLP-
P) to maximize the performance gain under area constraints
without considering reliability issues. Then, we followedthe

steps outlined below for 10 different inputs of custom instruc-
tion libraries.

1) For each input library, we recorded the maximum per-
formance gain (GainP) that can be achieved by CLP-P
without considering reliability.

2) For each input, we ran our proposed CLP based optimal
framework. In contrast to step (1), the goal here is
to maximize reliability with performance gain as a
constraint. This constraint was set to different values,
varying from{100%, 90%, 80%, . . . , 10%} of GainP .

Fig. 4(a) illustrates the overall probability of failure (a
measure of unreliability) versus the performance gain, at
{100%, 90%, 80%, . . . , 10%} of GainP , for 5 of our 10
input sets. If we observe the tradeoffs for the library 1 (solid
curve shaded in black), the highest probability of failure
occurs when the performance constraint is100% of GainP .
Note that this is the failure probability when the optimization
criterion is performance (CLP-P), without any consideration
for reliability. In fact, in all 10 input sets, the reliability
was worst at100% of GainP buttressing the fact that a
technique for instruction set customization that optimizes
simply for performance achieves the worst reliability. On
the other hand, our proposed framework can reveal tradeoffs
between reliability and performance gain which is important
for safety-critical applications. On the average, the results for
all the 10 test cases show that by using our technique we can
achieve16% gain in reliability while sacrificing only10% of
the overall gain in performance, i.e., at the90% of the gain
that is achieved by traditional methods. This trend may be
observed visually for the 5 curves plotted in Fig. 4(a).

Heuristic: For the 10 input libraries, we also compared
the result (overall probability of failure) obtained from our
heuristic and the CLP-based implementations. For each input
library, we compared these values at 10 points by setting
the performance constraint to{100%, 90%, 80%, . . . , 10%} of
GainP . Note that the heuristic returns a probability that may

be larger or equal to the probability returned by the optimal
CLP. In our experiments, on the average the heuristic deviated
from the optimal CLP-based solution by13% showing that
it performs well with respect to the quality of solutions. To
show the scalability of our heuristic, we conducted more
experiments by increasing the problem size

∑N

i=1
ni up to

50. The running times are shown in Fig. 4(b). The CLP-based
formulation does not scale to large problems. On the other
hand, the execution times for our heuristic scales quite well
with larger problem sizes.

B. With Hardening

In our second set of experiments, we considered that there
are three levels of hardening, i.e., for each custom instruction
Ci we haveri = 3. With increasing levels of hardening, the
input characteristics varied as described in the following. The
probability of failure was decreased as the hardening level
increased. Thus, for the first level, the range was between
10−8 and 10−6, for the second level the range was between
10−9 and10−7, and the range for the most hardened level was
between10−10 and10−8. The performance gain was assumed
to degrade atmost5% at each level due to hardening and the
maximum area overhead increase was considered in steps of
10%.

We now illustrate how our tool can navigate the tradeoffs be-
tween performance gain and area overheads against the overall
probability of failure. Towards this, Figure 5(a) and Figure 5(b)
show the results obtained for one custom instruction library.
Similar results were obtained with other libraries but we will
focus on one for the clarity of exposition. Figure 5(a) shows
three different plots, each corresponding to the case that the
same level of hardening is allowed for all custom instructions.
Thus, h = 1 illustrates the tradeoffs between reliability and
performance gain when only level one hardening was allowed
for all custom instructions. Similarly,h = 2 andh = 3 show
plots when, respectively, only second and only third level of
hardening was allowed. For each level, we followed a similar
procedure as in Section V-A to conduct the experiments, i.e.,
we first recorded the maximum performance gain (GainP)
that can be achieved by CLP-P without considering reliability.
Then, we set the performance constraint to different values,
varying from{100%, 90%, 80%, . . . , 10%} of GainP and we
ran our proposed CLP-based framework.

At each of the 10 points, the overall probability of failure
decreases fromh = 1 to h = 2 and fromh = 2 to h = 3, as
visualized in Figure 5(a). This shows that the higher hardening
levelsh = 2 andh = 3 can significantly enhance the overall
system reliability. However, we note that forh = 2 and
h = 3 the CLP solver reported no solutions at{100%, 90%}
of GainP . This is reflected in Figure 5(a), where these two
curves are seen to be truncated at80% of GainP . This is
because as the hardening levels increase, the performance gain
that can be achieved decreases. Thus, ath = 2 andh = 3 it
is not possible to meet high performance demands as well
as to guarantee high reliability. This result also shows the

limitations of utilizing the same hardening level for all custom
instructions.

On the other hand, when varying hardening levels are
allowed for different custom instructions, it might be possible
to strike the right balance between reliability and performance.
Figure 5(b) illustrates the reliability versus performance trade-
offs in this case. The curve (h = X) with solid markers in
Figure 5(b) corresponds to the case when different custom
instructions can utilize different hardening levels. Notethat
this curve (h = X) is superimposed on theh = 3 curve
up to 80% of GainP . This is explained by the fact that
our CLP searches for solutions with highest reliability and
h = 3 contains such solutions. The interesting case is that,
at h = 3, the there is no solution beyond80% of GainP ,
but in the general case (h = X), valid solutions are found as
shown in Figure 5(b). It is noteworthy that at90% of GainP ,
h = X reports a solution that is not reported byh = 1,
h = 2 or h = 3. Thus, these solution points offer both high
performance as well as high reliability. This example shows
how our framework can reveal very interesting trends and find
solutions that offer the right balance between reliabilityand
performance.

Apart from the tradeoffs between reliability and perfor-
mance, design of ASIP processors must also optimize area
costs. Area overheads are even more significant when we
consider hardening. Figure 6(a) and (b) shows area overhead
incurred by h = 1, h = 2 and h = 3. As seen in
Figure 6(a) the higher hardening levels have utilized more
area to provide the same performance. This is a consequence
of the fact that they provide more reliability at increased
area overheads. Note however that given an instruction, the
hardware area for its more hardened implementations is not
strictly increasingly [22], [29], [24], [14]. This explains the
lower area overhead forh = 3 in Figure 6(a) at around30%
of performance gain. Also, we note from Figure 6(a) that high
performance requirements lead to high area costs as more
instructions are customized.

Figure 6(b) plots the tradeoffs between area and overall
probability of failure for each of the 10 design points for
h = 1, h = 2 and h = 3. For the almost same area
overhead (155 LUTs)h = 3 provides significantly higher
reliability than h = 1, but we know from Figure 6(a) that
at this area overhead,h = 3 provided only80% of the total
performance whileh = 1 guaranteed maximum performance.
This illustrates the importance of navigating the tradeoffs
between area, performance gain and reliability in a systematic
manner, as performed by our tool. We would like to mention
that our heuristic showed significant speedups as discussed
before.

C. Case Study

As a case study, we studiedgsm-encoderfrom the mobile
application domain. We profiled the application using the
LLVM suite [17]. The values of area costs of the custom in-
structions were obtained using Xilinx ISE WebPack consider-
ing the device XC5VLX50 Virtex-5. We considered 5 custom

2
x 10

-5

1.6

1.8

2
lu

re
h=1

h=2

h=3

1

1.2

1.4

b
il

it
y

o
f

fa
il

0.6

0.8

ra
ll

 p
ro

b
a

b

10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

O
v

e

10 20 30 40 50 60 70 80 90 100

Performance Gain

(in % of GainP)

2
x 10

-5

1.6

1.8

2

lu
re

h=1

h=2

h=3

h=X

1

1.2

1.4

b
il

it
y

o
f

fa
il h=X

0.6

0.8

ra
ll

 p
ro

b
a

b

10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

O
v

e

10 20 30 40 50 60 70 80 90 100

Performance Gain

(in % of GainP)

(a) (b)

Fig. 5. The tradeoffs between performance gain and the overall probability of failure when (a) the same hardening levels isallowed for all custom instructions
and when (b) varying hardening levels are allowed for different custom instructions.

160

140

160

s
)

h=1

h=2

h=3

100

120

h
e

a
d

 (
L

U
T
s

60

80

A
re

a
 O

v
e

rh

10 20 30 40 50 60 70 80 90 100
20

40

A

10 20 30 40 50 60 70 80 90 100

Performance Gain

(in % of GainP)

5

1 6

1.8

2
x 10

-5

h=1

h=2

1.2

1.4

1.6
h=3

y
o

f
fa

il
u

re

0.8

1

p
ro

b
a

b
il

it
y

0.2

0.4

0.6

O
v

e
ra

ll

20 40 60 80 100 120 140 160
0

Area Overhead (LUTs)

(a) (b)

Fig. 6. The area overhead incurred by the different levels ofhardening (a) plotted against performance gain and (b) plotted against the overall probability
of failure.

instruction candidatesC1, . . . , C5. The area and performance
gain are given in pairs(Ai, Gi) for C1, . . . , C5 in the fol-
lowing set {(71, 30), (119, 50), (27, 10), (73, 24), (119, 55)}.
The area is in terms of LUTs and performance gain is
in terms of clock cycles. For these custom instructions we
first computed the EPP values using the methodology in
Section II. For C1, . . . , C5, the EPP values were, respec-
tively, {0.0014152, 0.002626, 0.04107, 0.004139, 0.008329}.
Note that there is significant variation in the EPP values and
this supports our discussion in Section II about the inherent
disparity in error vulnerabilities across custom instructions. In
fact, EPP ofC3 is an order of magnitude different from the
rest. We conducted the experiments considering no hardening
(i.e., ri = 1) and that the probabilities of failure of the custom
instructions are directly proportional to the EPP values.

The results are shown in Figure 7(a) and (b). Figure
7(a) depicts the plot of overall probability failure versusthe
performance gain. In this figure, the effect of EPP variation

is clearly reflected.C3 is custom instruction with highest
EPP value and it was not chosen by the tool for the design
points{80%, . . . , 10%} of GainP . However, without selecting
C3, it was not possible to meet the high performance at
{90%, 100%} of GainP . WhenC3 was selected to increase
the performance, it significantly contributed to high unreliabil-
ity as reflected by the spike in Figure 7(a). Figure 7(b) shows
the increasing area overheads with increasing performance
gains, as is expected.

VI. CONCLUSION

We proposed a instruction set customization technique
for reliable designs in the presence of transient faults. Our
analysis takes into account the variability in error tolerance
across custom instructions and hardening levels in order to
optimize reliability. Our framework can be also be used to
optimize for performance or for evaluating tradeoffs between
performance and reliability as illustrated in our experimental
results. It will be interesting to utilize other techniques

5
x 10

-6

4

4.5

5
a

il
u

re

2.5

3

3.5

a
b

il
it

y
o

f
fa

1.5

2

v
e

ra
ll

 p
ro

b
a

10 20 30 40 50 60 70 80 90 100
0

0.5

1

O
v

10 20 30 40 50 60 70 80 90 100

Performance Gain

(in % of GainP)

300

250

300

200

d
 (

L
U

T
s

)

150

 O
v

e
rh

e
a

d

10 20 30 40 50 60 70 80 90 100
50

100

A
re

a

10 20 30 40 50 60 70 80 90 100

Performance Gain

(in % of GainP)

(a) (b)

Fig. 7. The tradeoffs between reliability, performance gainand area overhead for the case study.

like triple-modular redundancy as well to provide reliability
guarantees for ultra-reliable systems. It is also worthwhile
to explore possibilities of hardware resource sharing to
effectively utilize area constraint. Note that such techniques
are orthogonal to the approach presented in this paper and
may build upon the foundations introduced here.

Acknowledgements:This work was partially supported by the
Swedish Foundation for Strategic Research. It was supported
in parts by the German Research Foundation (DFG) as part of
the priority program ”Dependable Embedded Systems” (SPP
1500 -spp1500.itec.kit.edu).

REFERENCES

[1] J. Aidemark, J. Vinter, P. Folkesson, and J. Karlsson. Goofi: Generic
object-oriented fault injection tool. InDSN, 2001.

[2] K. R. Apt and M. G. Thiran. Constraint Logic Programming using
ECLiPSe. Cambridge University Press, 2007.

[3] J. M. Arnold. S5: The architecture and development flow of asoftware
configurable processor. InFPT, 2005.

[4] H. Asadi and M. B. Tahoori. Analytical techniques for soft error rate
modeling and mitigation of FPGA-based designs.IEEE Trans. Very
Large Scale Integr. Syst., 15(12):1320–1331, 2007.

[5] K. Atasu, R. G. Dimond, O. Mencer, W. Luk, C.Özturan, and G. D̈undar.
Optimizing instruction-set extensible processors under data bandwidth
constraints. InDATE, 2007.

[6] K. Atasu, O. Mencer, W. Luk, C. Ozturan, and G. Dundar. Fast
custom instruction identification by convex subgraph enumeration. In
CODES+ISSS, 2008.

[7] L. Bauer, M. Shafique, S. Kramer, and J. Henkel. Rispp: Rotating
instruction set processing platform. InDAC, 2007.

[8] P. Bonzini and L. Pozzi. Recurrence-aware instruction set selection for
extensible embedded processors.IEEE Trans. Very Large Scale Integr.
Syst., 16, 2008.

[9] U. D. Bordoloi, H. P. Huynh, S. Chakraborty, and T. Mitra.Evaluating
design trade-offs in customizable processors. InDAC, 2009.

[10] D. Borodin, B. H. Juurlink, S. Hamdioui, and S. Vassiliadis. Instruction-
level fault tolerance configurability. Journal of Signal Processing
Systems, 57(1), 2009.

[11] N. Cheung, S. Parameswaran, and J. Henkel. INSIDE: INstruction
Selection/Identification & Design Exploration for extensible processors.
In ICCAD, 2002.

[12] N. Clark, H. Zhong, and S. Mahlke. Processor acceleration through
automated instruction set customization. InMICRO, 2003.

[13] P. Faraboschi et al. Lx: A technology platform for customizable VLIW
embedded processing. InISCA, 2000.

[14] R. Garg, N. Jayakumar, S. P. Khatri, and G. Choi. A design approach
for radiation-hard digital electronics. InDAC, 2006.

[15] R. E. Gonzalez. Xtensa: A configurable and extensible processor.Micro,
20(2), 2000.

[16] M. R. Guthaus et al. Mibench: A free, commercially representative
embedded benchmark suite. InIEEE Annual Workshop on Workload
Characterization, 2001.

[17] C. Lattner and V. Adve. Llvm: A compilation framework for lifelong
program analysis & transformation. InInternational Symposium on Code
Generation and Optimization, 2004.

[18] J. Lee, K. Choi, and N. Dutt. Efficient instruction encoding for automatic
instruction set design of configurable ASIPs. InICCAD, 2002.

[19] A. Lesea, S. Drimer, J.J. Fabula, C. Carmichael, and P. Alfke. The
Rosetta experiment: atmospheric soft error rate testing in differing
technology FPGAs. IEEE Trans. Device and Materials Reliability,
5(3):317–328, 2005.

[20] T. Li, Z. Sun, W. Jigang, and X. Lu. Fast enumeration of maximal valid
subgraphs for custom-instruction identification. InCASES, 2009.

[21] S. S. Mukherjee, C. Weaver, J. Emer, S. K. Reinhardt, and T. Austin.
A systematic methodology to compute the architectural vulnerability
factors for a high-performance microprocessor. InMICRO, 2003.

[22] I. Polian, J. P. Hayes, S. M. Reddy, and B. Becker. Modeling and
mitigating transient errors in logic circuits.IEEE Trans. on Dependable
and Secure Computing, 2010.

[23] L. Pozzi, K. Atasu, and P. Ienne. Exact and approximate algorithms
for the extension of embedded processor instruction sets.IEEE TCAD,
25(7), July 2006.

[24] R. R. Rao, V. Joshi, D. Blaauw, and D. Sylvester. Circuitoptimization
techniques to mitigate the effects of soft errors in combinational logic.
ACM Trans. Des. Autom. Electron. Syst., 15, 2009.

[25] R.C.Baumann. Radiation-induced soft errors in advanced semiconductor
technologies.IEEE Transactions on Device and Materials Reliability,
5(3):305–316, 2005.

[26] G. A. Reis, J. Chang, and D. I. August. Automatic instruction-level
software-only recovery.IEEE Micro, 27(1):36–47, 2007.

[27] Relsat 2.1,. www.bayardo.org/resources.html.
[28] S. Z. Shazli and M. B. Tahoori. Obtaining microprocessorvulnerability

factor using formal methods. InInt’l Symposium on Defect and Fault
Tolerance of VLSI Systems, 2008.

[29] W. Sheng, L. Xiao, and Z. Mao. Soft error optimization of standard cell
circuits based on gate sizing and multi-objective genetic algorithm. In
DAC, 2009.

[30] A. K. Verma, P. Brisk, and P. Ienne. Fast, nearly optimal ISE
identification with I/O serialization through maximal cliqueenumeration.
IEEE Trans. Comp.-Aided Des. Integ. Cir. Sys., 29:341–354, 2010.

