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Abstract—In this paper we present an approach to mapping
and scheduling of distributed embedded systems for hard real-
time applications, aiming at a minimization of the system modifi-
cation cost. We consider an incremental design process that starts
from an already existing system running a set of applications. We
are interested to implement new functionality such that the tim-
ing requirements are fulfilled, and the following two require-
ments are also satisfied: the already running applications are
disturbed as little as possible, and there is a good chance that,
later, new functionality can easily be added to the resulted system.
Thus, we propose a heuristic which finds the set of already run-
ning applications which have to be remapped and rescheduled at
the same time with mapping and scheduling the new application,
such that the disturbance on the running system (expressed as the
total cost implied by the modifications) is minimized. Once this
set of applications has been determined, we outline a mapping
and scheduling algorithm aimed at fulfilling the requirements
stated above. The approaches have been evaluated based on
extensive experiments using a large number of generated bench-
marks as well as a real-life example.

Index Terms—Distributed embedded systems, real-time sys-
tems, process scheduling, process mapping, incremental design.

I. INTRODUCTION

Complex embedded systems with multiple processing ele-
ments are becoming common in various application areas
from telecommunications, automotive electronics, robotics,
industrial control to medical equipment and multimedia. Such
systems have to fulfil strong requirements in terms of perform-
ance and cost efficiency. There are several complex design
steps to be considered during the development of such a sys-
tem: the underlying architecture has to be allocated (which im-
plies the allocation of components like processors, memories,
and buses together with the decision on a certain interconnec-
tion topology), tasks and communication channels have to be
mapped on the architecture, and all the activities in the system
have to be scheduled. The design process usually implies an it-
erative execution of these steps until a solution is found such
that the resulted system satisfies certain design constraints [10,
24, 25, 12, 39, 42].

Several notable results have been reported, aimed at sup-
porting the designer with methodologies and tools during the
hardware/software co-synthesis of embedded systems. Initial-
ly, researchers have considered architectures consisting of a
single programmable processor and an ASIC. Their goal was
to partition the application between the hardware and software
domain, such that performance constraints are satisfied while
the total hardware cost is kept at a minimum [7, 9, 11, 15].

Currently, similar architectures are becoming increasingly in-
teresting, with the ASIC replaced by a dynamically re-config-
urable hardware coprocessor [21].

As a result of fast technological development and of an in-
creasing demand for reliable embedded systems with highly
complex functionality, new, more sophisticated architectures,
consisting of a large number of interconnected programmable
components and ASICs, are now widely used. Such complex
systems can be integrated on a single chip (Systems on Chip)
or can be physically distributed over a smaller or wider area
(distributed embedded systems). One of the first attempts to
address the problems of allocation, mapping, and scheduling
in the context of such a complex architecture has been pub-
lished in [33]. The approach is based on a mixed integer linear
programming (MILP) formulation and has the disadvantage of
the huge complexity inherent to solving such a model. There-
fore, alternative problem formulations and solutions based on
efficient heuristics have been proposed [40, 20, 41, 5, 1, 2].

Although much of the above work is dedicated to specific
aspects of distributed systems, researchers have often ignored
or very much simplified issues concerning the communication
infrastructure. One notable exception is [37], in which system
synthesis is discussed in the context of a distributed architec-
ture based on arbitrated buses. Many efforts dedicated to com-
munication synthesis have concentrated on the synthesis
support for the communication infrastructure but without con-
sidering hard real-time constraints and system level schedul-
ing aspects [16, 26, 27].

Another characteristic of research efforts concerning the
codesign of embedded systems is that authors concentrate on
the design, from scratch, of a new system optimised for a par-
ticular application. For many application areas, however, such
a situation is extremely uncommon and only rarely appears in
design practice. It is much more likely that one has to start
from an already existing system running a certain application
and the design problem is to implement new functionality on
this system. In such a context it is very important to operate no,
or as few as possible, modifications to the already running ap-
plication. The main reason for this is to avoid unnecessarily
large design and testing times. Performing modifications on
the (potentially large) existing application increases design
time and, even more, testing time (instead of only testing the
newly implemented functionality, the old application, or at
least a part of it, has also to be retested). However, this is not
the only aspect to be considered. Such an incremental design
process, in which a design is periodically upgraded with new
features, is going through several iterations. Therefore, after
new functionality has been implemented, the resulting system
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has to be structured such that additional functionality, later to
be mapped, can easily be accommodated [31, 32].

In one recent paper [14], Haubelt et al. consider the require-
ment of flexibility as a parameter during design space explo-
ration. However, their goal is not incremental design, but the
generation of an architecture which, at an acceptable cost, is
able to implement different applications or variants of a certain
application.

In this paper we use a non-preemptive static-cyclic sched-
uling policy for processes and messages. Using such a sched-
uling policy is strongly recommended for many types of
applications, e.g., hard real-time safety critical applications
[17]. In [29] we have discussed the implications of an incre-
mental design process in the context of a fixed-priority
preemptive scheduling policy.

A. Contributions

The contribution of the present paper is twofold. 
1) First, we consider mapping and scheduling for hard real-

time embedded systems in the context of a realistic commu-
nication model based on a time division multiple access
(TDMA) protocol as recommended for applications in areas
like, for example, automotive electronics [18]. We accu-
rately take into consideration overheads due to
communication and consider, during the mapping and
scheduling process, the particular requirements of the com-
munication protocol.

2) As our main contribution, we have considered, for the first
time to our knowledge, the design of distributed embedded
systems in the context of an incremental design process as
outlined above. This implies that we perform mapping and
scheduling of new functionality on a given distributed em-
bedded system, so that certain design constraints are
satisfied and, in addition: (a) The already running applica-
tions are disturbed as little as possible. (b) There is a good
chance that, later, new functionality can easily be mapped
on the resulted system.

We propose a new heuristic, together with the corre-
sponding design criteria, which finds the set of old
applications which have to be remapped and rescheduled at
the same time with mapping and scheduling the new appli-
cation, such that the disturbance on the running system
(expressed as the total cost implied by the modifications) is
minimized. Once this set of applications has been deter-
mined, mapping and scheduling is performed according to
the requirements stated above.
Supporting such a design process is of critical importance

for current and future industrial practice, as the time interval
between successive generations of a product is continuously
decreasing, while the complexity due to increased sophistica-
tion of new functionality is growing rapidly. The goal of re-
ducing the overall cost of successive product generations has
been one of the main motors behind the, currently very popu-
lar, concept of platform-based design [19, 23]. Although, in
this paper, we are not explicitly dealing with platform-based

systems, most of the results are also valid in the context of this
design paradigm.

This paper is organized as follows. The next section
presents some preliminary discussion concerning the system
architecture we consider and our abstract system representa-
tion. In Section III we formulate the problem we are going to
solve. Section IV introduces our approach to quantitatively
characterize certain features of both currently running and fu-
ture applications. In Section V we introduce the metrics we
have defined in order to capture the quality of a given design
alternative and, based on these metrics, we give an exact prob-
lem formulation. Our mapping and scheduling strategy is de-
scribed in Section VI and the experimental results are
presented in Section VII. Finally, Section VIII presents our
conclusions.

II. PRELIMINARIES

A. System Architecture

1) Hardware Architecture: We consider architectures con-
sisting of nodes connected by a broadcast communication
channel (Figure 1a). Every node consists of a TTP controller,
processor, memory, and an I/O interface to sensors and actua-
tors. 

Communication between nodes is based on the time-trig-
gered protocol (TTP) [18]. TTP was designed for distributed
real-time applications that require predictability and reliability
(e.g., drive-by-wire). It integrates all the services necessary for
fault-tolerant real-time systems.

The communication channel is a broadcast channel, so a
message sent by a node is received by all the other nodes. The
bus access scheme is time-division multiple-access (TDMA)
(Figure 1b). Each node Ni can transmit only during a predeter-
mined time interval, the so called TDMA slot Si. In such a slot,
a node can send several messages packed in a frame. A se-
quence of slots corresponding to all the nodes in the architec-
ture is called a TDMA round. A node can have only one slot
in a TDMA round. Several TDMA rounds can be combined
together in a cycle that is repeated periodically. The sequence
and length of the slots are the same for all TDMA rounds.
However, the length and contents of the frames may differ.

Every node has a TTP controller that implements the proto-
col services and runs independently of the node’s CPU. Com-
munication with the CPU is performed through a shared

Node

Figure 1.  System Architecture
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memory, the message base interface (MBI) in Figure 2. The
TDMA access scheme is imposed by a so called message de-
scriptor list (MEDL) that is located in every TTP controller.
The MEDL serves as a schedule table for the TTP controller
which has to know when to send or receive a frame to or from
the communication channel. The TTP controller provides each
CPU with a timer interrupt based on a local clock synchro-
nized with the local clocks of the other nodes. Clock synchro-
nization is done by comparing the a priori known time of
arrival of a frame with the observed arrival time. Thus, TTP
provides a global time-base of known precision, without any
overhead on the communication. 

2) Software Architecture: We have designed a software ar-
chitecture which runs on the CPU in each node, and which has
a real-time kernel as its main component. Each kernel has a
schedule table that contains all the information needed to take
decisions on activation of processes and transmission of mes-
sages, at the predetermined time moments.

The message passing mechanism is illustrated in Figure 2,
where we have three processes, P1 to P3. P1 and P2 are mapped
to node N0 that transmits in slot S0, and P3 is mapped to node
N1 that transmits in slot S1. Message m1 is transmitted between
P1 and P2 that are on the same node, while message m2 is trans-
mitted from P1 to P3 between the two nodes. We consider that
each process has its own memory locations for the messages it

sends or receives and that the addresses of the memory loca-
tions are known to the kernel through the schedule table.

P1 is activated according to the schedule table, and when it
finishes it calls the send kernel function in order to send m1,
and then m2. Based on the schedule table, the kernel copies m1
from the corresponding memory location in P1 to the memory
location in P2. When P2 will be activated it finds the message in
the right location. According to our scheduling policy, whenever
a receiving process needs a message, the message is already
placed in the corresponding memory location. Thus, there is
no overhead on the receiving side, for messages exchanged on
the same node.

Message m2 has to be sent from node N0 to node N1. At a
certain time, known from the schedule table, the kernel trans-
fers m2 to the TTP controller by packaging it into a frame in
the MBI. Later on, the TTP controller knows from its MEDL
when it has to take the frame from the MBI, in order to broad-
cast it on the bus. In our example the timing information in the
schedule table of the kernel and the MEDL is determined in
such a way that the broadcasting of the frame is done in the slot
S0 of Round 2. The TTP controller of node N1 knows from its
MEDL that it has to read a frame from slot S0 of Round 2 and
to transfer it into the MBI. The kernel in node N1 will read the
message m2 from the MBI. When P3 will be activated based on
the local schedule table of node N1, it will already have m2 in
its right memory location.

In [30] we presented a detailed discussion concerning the
overheads due to the kernel and to every system call. We also
presented formulas for derivation of the worst case execution
delay of a process, taking into account the overhead of the tim-
er interrupt, the worst case overhead of the process activation
and message passing functions.

B. Abstract Representation

As the basis for abstract modelling we use a directed, acyclic,
polar graph G(V, E), called process graph (Figure 3). Each node Pi
∈ V represents a process. A process is a sequence of computa-
tions (corresponding to several building blocks in a program-
ming language), which starts when all its inputs are available
and it issues its outputs when it terminates. As mentioned in
the introduction, we consider safety-critical applications
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where not meeting a timing constraint could potentially lead to
catastrophic consequences. Hence, each process Pi is charac-
terized by a worst-case execution time Ci. Estimation of the
worst-case execution time for a given process has been exten-
sively discussed in the literature [34]. Moreover, we consider
a non-preemptive execution environment. Hence, once acti-
vated, a process executes until it completes.

An edge in the process graph, eij ∈ E from Pi to Pj indicates
that the output of Pi is the input of Pj. 

Each process graph G is characterized by its period TG and
its deadline DG ≤ TG. Deadlines can also be placed locally on
processes. Release times of some processes as well as multiple
deadlines can be easily modelled by inserting dummy nodes
between certain processes and the source or the sink node re-
spectively. These dummy nodes represent processes with a
certain execution time but which are not allocated to any
processing element.

A process graph is polar, which means that there are two
nodes, called source and sink, that conventionally represent
the first and last process. If needed, these nodes are introduced
as dummy processes so that all other nodes in the graph are
successors of the source and predecessors of the sink, respec-
tively. 

As shown in Figure 3, an application Γ is modelled as a set
of process graphs Gi ∈ Γ. The whole functionality of the sys-
tem is represented as a set of applications.

According to our representation model, all processes inter-
acting with each other through time critical messages belong
to the same process graph. If processes have different periods,
this is solved by generating several instances of processes and
building a process graph which corresponds to a set of proc-
esses that occur within a time period equal to the least common
multiple of the periods of the involved processes. Potential
communication between processes in different applications is
not part of the model. Technically, such a communication is
implemented by the kernels based on asynchronous non-
blocking send and receive primitives. Such messages are con-
sidered non-critical and are not affected by real-time con-
straints. They will use bus slots that have not been assigned to
time-critical messages. Therefore, communications of this na-
ture will not be addressed in this paper.

C. Application Mapping and Scheduling

Considering a system architecture like the one presented in
Section II-A, the mapping of a process graph G(V, E) is given
by a function M: V→PE, where PE = {N1, N2, .., Nnpe} is the set
of nodes (processing elements). For a process Pi ∈ V, M(Pi) is the
node to which Pi is assigned for execution. Each process Pi can
potentially be mapped on several nodes. Let NPi

⊆ PE be the
set of nodes to which Pi can potentially be mapped. For each
Ni ∈ NPi, we know the worst-case execution time tPi

Ni of proc-
ess Pi, when executed on Ni. Messages transmitted between
processes mapped on different nodes are communicated
through the bus, in a slot corresponding to the sending node.

The maximum number of bits transferred in such a message is
also known.

In order to implement an application, represented as a set of
process graphs, the designer has to map the processes to the
system nodes and to derive a static cyclic schedule such that
all deadlines are satisfied. We first illustrate some of the prob-
lems related to mapping and scheduling, in the context of a
system based on a TDMA communication protocol, before go-
ing on to explore further aspects specific to an incremental de-
sign approach.

Let us consider the example in Figure 4 where we want to
map an application consisting of four processes P1 to P4, with
a period and deadline of 50 ms. The architecture is composed
of three nodes that communicate according to a TDMA proto-
col, such that Ni transmits in slot Si. For this example we sup-
pose that there is no other previous application running on the
system. According to the specification, processes P1 and P3
are constrained to node N1, while P2 and P4 can be mapped on
nodes N2 or N3, but not N1. The worst case execution times of
processes on each potential node and the sequence and size of
TDMA slots, are presented in Figure 4. In order to keep the ex-
ample simple, we suppose that the message sizes are such that
each message fits into one TDMA slot.

We consider two alternative mappings. If we map P2 and P4
on the faster processor N3, the resulting schedule length
(Figure 4a) will be 52 ms which does not meet the deadline.
However, if we map P2 and P4 on the slower processor N2, the
schedule length (Figure 4b) is 48 ms, which meets the dead-
line. Note, that the total traffic on the bus is the same for both
mappings and the initial processor load is 0 on both N2 and N3.
This result has its explanation in the impact of the communi-
cation protocol. P3 cannot start before receiving messages m2,3
and m4,3. However, slot S2 corresponding to node N2 precedes
in the TDMA round slot S3 on which node N3 communicates.
Thus, the messages which P3 needs are available sooner in the

Figure 4. Mapping and Scheduling Example

a) Processes P2 and P4 are mapped on the fast node

b) Processes P2 and P4 are mapped on the slow node
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case P2 and P4 are, counter-intuitively, mapped on the slower
node.

But finding a valid schedule is not enough if we are to sup-
port an incremental design process as discussed in the intro-
duction. In this case, starting from a valid design, we have to
improve the mapping and scheduling so that not only the de-
sign constraints are satisfied, but also there is a good chance
that, later, new functionality can easily be mapped on the re-
sulted system.

To illustrate the role of mapping and scheduling in the con-
text of an incremental design process, let us consider the ex-
ample in Figure 5. For simplicity, we consider an architecture
consisting of a single processor. The system is currently run-
ning application ψ (Figure 5a). At a particular moment appli-
cation Γ1 has to be implemented on top of ψ. Three possible
implementation alternatives for Γ1 are depicted in Figure 5b1,
5c1, and 5d1. All three are meeting the imposed time constraint
for Γ1. At a later moment, application Γ2 has to be implement-
ed on the system running ψ and Γ1. If Γ1 has been implement-
ed as shown in Figure 5b1, there is no possibility to map
application Γ2 on the given system (in particular, there is no
time slack available for process P7). If Γ1 has been implement-

ed as in Figure 5c1 or 5d1, Γ2 can be correctly mapped and
scheduled on top of ψ and Γ1. There are two aspects which
should be highlighted based on this example:
1. If application Γ1 is implemented like in Figure 5c1 or 5d1, it

is possible to implement Γ2 on top of the existing system,
without performing any modifications on the implementa-
tion of previous applications. This could be the case if,
during implementation of Γ1, the designers have taken into
consideration the fact that, in future, an application having
the characteristics of Γ2 will possibly be added to the
system.

2. If Γ1 has been implemented like in Figure 5b1, Γ2 can be
added to the system only after performing certain modifica-
tions on the implementation of Γ1 and/or ψ. In this case, of
course, it is important to perform as few as possible modi-
fications on previous applications, in order to reduce the
development costs.

III. PROBLEM FORMULATION

As shown in Section II, we capture the functionality of a
system as a set of applications. An application Γ consists of a
set of process graphs Gi ∈ Γ. For each process Pi in a process
graph we know the set NPi

 of potential nodes on which it could
be mapped and its worst case execution time on each of these
nodes. We also know the maximum number of bits to be trans-
mitted by each message. The underlying architecture is as pre-
sented in Section II-A. We consider a non-preemptive static
cyclic scheduling policy for both processes and message pass-
ing.

Our goal is to map and schedule an application Γcurrent on a
system that already implements a set ψ of applications, con-
sidering the following requirements:
• Requirement a: All constraints on Γcurrent are satisfied and

minimal modifications are performed to the implementa-
tion of applications in ψ.

• Requirement b: New applications Γfuture can be mapped on
top of the resulting system.
We illustrate such an incremental design process in

Figure 6. The product is implemented as a three processor sys-
tem and its version N-1 consists of the set ψ of two applica-
tions (the processes belonging to these applications are
represented as white and black disks, respectively). At the cur-
rent moment, application Γcurrent is to be added to the system,
resulting in version N of the product. However, a new version,
N+1, is very likely to follow and this fact is to be considered
during implementation of Γcurrent

1.
If it is not possible to map and schedule Γcurrent without

modifying the implementation of the already running applica-
tions, we have to change the scheduling and mapping of some
applications in ψ. However, even with remapping and resched-
uling all applications in ψ, it is still possible that certain con-

Figure 5. Application Γ2 Implemented on Top of ψ and Γ1
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1 The design process outlined here also applies when Γcurrent is a 
new version of an application Γold ∈ ψ. In this case, all the processes 
and communications belonging to Γold are eliminated from the run-
ning system ψ, before starting the mapping and scheduling of Γcurrent.
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straints are not satisfied. In this case the hardware architecture
has to be changed by, for example, adding a new processor,
and the mapping and scheduling procedure for Γcurrent has to be
restarted. In this paper we will not further elaborate on the as-
pect of adding new resources to the architecture, but will con-
centrate on the mapping and scheduling aspects. Thus, we
consider that a possible mapping and scheduling of Γcurrent
which satisfies the imposed constraints can be found (with min-
imizing the modification of the already running applications),
and this solution has to be further improved in order to facilitate
the implementation of future applications.

In order to achieve our goal we need certain information to
be available concerning the set of applications ψ as well as the
possible future applications Γfuture. What exactly we have to
know about these applications will be discussed in Section IV.
In Section V we then introduce the quality metrics which will
allow us to give a more rigorous formulation of the problem
we are going to solve.

The processes in application Γcurrent can interact with the pre-
viously mapped applications ψ by reading messages generated
on the bus by processes in ψ. In this case, the reading process
has to be synchronized with the arrival of the message on the
bus, which is easy to model as an additional time constraint on
the particular receiving process. This constraint is then consid-
ered (as any other deadline) during scheduling of Γcurrent.

IV. CHARACTERIZING EXISTING AND FUTURE 
APPLICATIONS

A. Characterizing the Already Running Applications

To perform the mapping and scheduling of Γcurrent, the min-
imum information needed, concerning the already running ap-
plications ψ, consists of the local schedule tables for each
processor node. Thus, we know the activation time for each
process previously mapped on the respective node and its
worst case execution time. As for messages, their length as
well as their place in the particular TDMA frame are known.

If the initial attempt to schedule and map Γcurrent does not
succeed, we have to modify the schedule and, possibly, the
mapping of applications belonging to ψ, in the hope to find a
valid solution for Γcurrent. The goal is to find that minimal mod-

ification to the existing system which leads to a correct imple-
mentation of Γcurrent. In our context, such a minimal
modification means remapping and/or rescheduling a subset Ω
of the old applications, Ω ⊆ ψ, so that the total cost of re-im-
plementing Ω is minimized.

Remapping and/or rescheduling a certain application
Γi ∈ ψ can trigger the need to also perform modifications of
one or several other applications because of, for example, the
dependencies between processes belonging to these applica-
tions. In order to capture such dependencies between the ap-
plications in ψ, as well as their modification costs, we have
introduced a representation called the application graph. We
represent a set of applications as a directed acyclic graph G(V,
E), where each node Γi ∈ V represents an application. An edge
eij ∈ E from Γi to Γj indicates that any modification to Γi
would trigger the need to also remap and/or reschedule Γj, be-
cause of certain interactions between the applications1. Each
application in the graph has an associated attribute specifying
if that particular application is allowed to be modified or not
(in which case, it is called “frozen”). To those nodes Γi ∈ V
representing modifiable applications, the designer has associ-
ated a cost RΓi

 of re-implementing Γi. Given a subset of appli-
cations Ω ⊆ ψ, the total cost of modifying the applications in
Ω is:

.

Modifications of an already running application can only be
performed if the process graphs corresponding to that applica-
tion, as well as the related deadlines (which have to be satis-
fied also after remapping and rescheduling), are available.
However, this is not always the case, and in such situations
that particular application has to be considered frozen.

In Figure 7 we present the graph corresponding to a set of
ten applications. Applications Γ6, Γ8, Γ9 and Γ10, depicted in
black, are frozen: no modifications are possible to them. The
rest of the applications have the modification cost RΓi

 depicted
on their left. Γ7 can be remapped/rescheduled with a cost of
20. If Γ4 is to be re-implemented, this also requires the modi-
fication of Γ7, with a total cost of 90. In the case of Γ5, al-
though not frozen, no remapping/rescheduling is possible as it
would trigger the need to modify Γ6, which is frozen.

To each application Γi ∈ V the designer has associated a
cost RΓi

 of re-implementing Γi. Such a cost can typically be ex-
pressed in man-hours needed to perform retesting of Γi and

Figure 6. Incremental Design Process
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other tasks connected to the remapping and rescheduling of
the application. If an application is remapped or rescheduled,
it has to be validated again. Such a validation phase is very
time consuming. In the automotive industry, for example, the
time-to-market in the case of the powertrain unit is 24 months.
Out of these, 5 months, representing more than 20%, are ded-
icated to validation. In the case of the telematic unit, the time
to market is less than one year, while the validation time is two
months [38]. However, if an application is not modified during
implementation of new functionality, only a small part of the
validation tasks have to be re-performed (e.g., integration test-
ing), thus reducing significantly the time-to-market, at no ad-
ditional hardware or development cost. 

How to concretely perform the estimation of the modifica-
tion cost related to an application is beyond the topic of this
paper. Several approaches to cost estimation for different
phases of the software life-cycle have been elaborated and are
available in the literature [6, 35]. One of the most influential
software cost models is the Constructive Cost Model (COCO-
MO) [3]. COCOMO is at the core of tools such as REVIC [43]
and its newer version SoftEST [44], which can produce cost
estimations not only for the total development but also for test-
ing, integration, or modification related retesting of embedded
software. The results of such estimations can be used by the
designer as the cost metrics assigned to the nodes of an appli-
cation graph.

In general, it can be the case that several alternative costs
are associated to a certain application, depending on the par-
ticular modification performed. Thus, for example, we can
have a certain cost if processes are only rescheduled, and an-
other one if they are also remapped on an alternative node. For
different modification alternatives considered during design
space exploration, the corresponding modification cost has to
be selected. In order to keep the discussion reasonably simple,
we present the case with one single modification cost associ-
ated to an application. However, the generalization for several
alternative modification costs is straightforward.

B. Characterizing Future Applications

What do we suppose to know about the family Γfuture of ap-
plications which do not exist yet? Given a certain limited ap-
plication area (e.g. automotive electronics), it is not
unreasonable to assume that, based on the designers’ previous
experience, the nature of expected future functions to be im-
plemented, profiling of previous applications, available in-
complete designs for future versions of the product, etc., it is
possible to characterize the family of applications which pos-
sibly could be added to the current implementation. This is an
assumption which is basic for the concept of incremental de-
sign. Thus, we consider that, with respect to the future appli-
cations, we know the set St = {tmin,...ti,...tmax} of possible
worst case execution times for processes, and the set
Sb = {bmin,...bi,...bmax} of possible message sizes. We also as-
sume that over these sets we know the distributions of proba-
bility fSt

(t) for t ∈ St and fSb
(b) for b ∈ Sb. For example, we

might have predicted possible worst case execution times of
different processes in future applications St = {50, 100, 200,

300, 500 ms}. If there is a higher probability of having proc-
esses of 100 ms, and a very low probability of having process-
es of 300 ms and 500 ms, then our distribution function fSt

(t)
could look like this: fSt

(50) = 0.20, fSt
(100) = 0.50,

fSt
(200) = 0.20, fSt(300) = 0.05, and fSt

(500) = 0.05.
Another information is related to the period of process

graphs which could be part of future applications. In particu-
lar, the smallest expected period Tmin is assumed to be given,
together with the expected necessary processor time tneed, and
bus bandwidth bneed, inside such a period Tmin. As will be
shown later, this information is treated in a flexible way during
the design process and is used in order to provide a fair distri-
bution of available resources.

The execution times in St, as well as tneed, are considered rel-
ative to the slowest node in the system. All the other nodes are
characterized by a speedup factor relative to this slowest node.
A normalization with these factors is performed when comput-
ing the metrics C1

P and C2
P  introduced in the following sec-

tion.

V. QUALITY METRICS AND OBJECTIVE FUNCTION

A designer will be able to map and schedule an application
Γfuture on top of a system implementing ψ and Γcurrent only if
there are sufficient resources available. In our case, the re-
sources are processor time and the bandwidth on the bus. In
the context of a non-preemptive static scheduling policy, hav-
ing free resources translates into having free time slots on the
processors and having space left for messages in the bus slots.
We call these free slots of available time on the processor or
on the bus, slack. It is to be noted that the total quantity of
computation and communication power available on our sys-
tem after we have mapped and scheduled Γcurrent on top of ψ is
the same regardless of the mapping and scheduling policies
used. What depends on the mapping and scheduling strategy is
the distribution of slacks along the time line and the size of the
individual slacks. It is exactly this size and distribution of the
slacks that characterizes the quality of a certain design alterna-
tive from the point of view of flexibility for future upgrades.
In this section we introduce two criteria in order to reflect the
degree to which one design alternative meets the requirement
(b) presented in Section III. For each criterion we provide met-
rics which quantify the degree to which the criterion is met.
The first criterion reflects how well the resulted slack sizes fit
to a future application, and the second criterion expresses how
well the slack is distributed in time.

A. Slack Sizes (the first criterion)

The slack sizes resulted after implementation of Γcurrent on
top of ψ should be such that they best accommodate a given
family of applications Γfuture, characterized by the sets St, Sb
and the probability distributions fSt

 and fSb
, as outlined in Sec-

tion IV-B.
Let us go back to the example in Figure 5 where Γ1 is what

we now call Γcurrent, while Γ2, to be later implemented on top
of ψ and Γ1, is Γfuture. This Γfuture consists of the two processes
P6 and P7. It can be observed that the best configuration from
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the point of view of accommodating Γfuture, taking in consider-
ation only slack sizes, is to have a contiguous slack after im-
plementation of Γcurrent (Figure 5d1). However, in reality, it is
almost impossible to map and schedule the current application
such that a contiguous slack is obtained. Not only is it impos-
sible, but it is also undesirable from the point of view of the
second design criterion, to be discussed next. However, as we
can see from Figure 5b1, if we schedule Γcurrent such that it
fragments too much the slack, it is impossible to fit Γfuture be-
cause there is no slack that can accommodate process P7. A sit-
uation as the one depicted in Figure 5c1 is desirable, where the
resulted slack sizes are adapted to the characteristics of the Γfu-

ture application.
In order to measure the degree to which the slack sizes in a

given design alternative fit the future applications, we provide
two metrics, C1

P  and C1
m . C1

P captures how much of the larg-
est future application which theoretically could be mapped on
the system can be mapped on top of the current design alterna-
tive. C1

m  is similar relative to the slacks in the bus slots.
How does the largest future application which theoretically

could be mapped on the system look like? The total processor
time and bus bandwidth available for this largest future appli-
cation is the total slack available on the processors and bus, re-
spectively, after implementing Γcurrent. Process and message
sizes of this hypothetical largest application are determined
knowing the total size of the available slack, and the character-
istics of the future applications as expressed by the sets St and
Sb, and the probability distributions fSt

 and fSb
. Let us consider,

for example, that the total slack size on the processors is of
2800 ms and the set of possible worst case execution times is
St={50, 100, 200, 300, 500 ms}. The probability distribution
function fSt

 is defined as follows: fSt
(50) = 0.20,

fSt
(100) = 0.50, fSt

(200) = 0.20, fSt
(300) = 0.05, and

fSt
(500) = 0.05. Under these circumstances, the largest hypo-

thetical future application will consist of 20 processes: 10
processes (half of the total, ft(100) = 0.50) with a worst case
execution time of 100 ms, 4 processes with 50 ms, 4 with 200
ms, one with 300 and one with 500 ms.

After we have determined the number of processes of this
largest hypothetical Γfuture and their worst case execution
times, we apply a bin-packing algorithm [22] using the best-fit
policy in which we consider processes as the objects to be
packed, and the available slacks as containers. The total exe-
cution time of processes which are left unpacked, relative to
the total execution time of the whole process set, gives the C1

P

metric. The same is the case with the metric C1
m, but applied to

message sizes and available slacks in the bus slots.
Let us consider the example in Figure 5 and suppose a hy-

pothetical Γfuture consisting of two processes like those of ap-
plication Γ2. For the design alternatives in Figure 5c1 and 5d1,
C1

P = 0% (both alternatives are perfect from the point of view
of slack sizes). For the alternative in Figure 5b1, however,
C1

P = 30/40 = 75%—the worst case execution time of P7
(which is left unpacked) relative the total execution time of the
two processes.

B. Distribution of Slacks (the second criterion)

In the previous section we defined a metric which captures
how well the sizes of the slacks fit a possible future applica-
tion. A similar metric is needed to characterize the distribution
of slacks over time.

Let Pi be a process with period TPi
 that belongs to a future

application, and M(Pi) the node on which Pi will be mapped.
The worst case execution time of Pi is tPi

M(Pi). In order to sched-
ule Pi we need a slack of size tPi

M(Pi) that is available periodical-
ly, within a period TPi

, on processor M(Pi). If we consider a
group of processes with period T, which are part of Γfuture, in
order to implement them, a certain amount of slack is needed
which is available periodically, with a period T, on the nodes
implementing the respective processes.

During implementation of Γcurrent we aim for a slack distri-
bution such that the future application with the smallest ex-
pected period Tmin and with the necessary processor time tneed,
and bus bandwidth bneed, can be accommodated (see Section
IV-B).

Thus, for each node, we compute the minimum periodic
slack, inside a Tmin period. By summing these minima, we ob-
tain the slack which is available periodically to Γfuture. This is
the C2

P  metric. The C2
m  metric characterizes the minimum pe-

riodically available bandwidth on the bus and it is computed in
a similar way.

In Figure 8 we consider an example with Tmin = 120 ms,
tneed = 90 ms, and bneed = 65 ms. The length of the schedule ta-
ble of the system implementing ψ and Γcurrent is 360 ms (in
Section VI we will elaborate on the length of the global sched-
ule table). Thus, we have to investigate three periods of length
Tmin each. The system consists of three nodes. Let us consider
the situation in Figure 8a. In the first period, Period 0, there
are 40 ms of slack available on Node1, in the second period 80
ms, and in the third period no slack is available on Node1.
Thus, the total slack a future application of period Tmin can use
on Node1 is min(40, 80, 0) = 0 ms. Neither can Node2 provide
slack for this application, as in Period 1 there is no slack avail-
able. However, on Node3 there are at least 40 ms of slack avail-
able in each period. Thus, with the configuration in Figure 8a
we have C2

P = 40 ms, which is not sufficient to accommodate

min(40, 80,   0) =   0ms

min(40,   0, 80) =   0ms

min(80, 80, 40) = 40ms

CP
2 = 40 + 0 + 0 = 40ms

min(40, 40, 40) = 40ms

min(40, 40, 40) = 40ms

min(80, 80, 40) = 40ms

CP
2 = 40 + 40 + 40 = 120ms

Figure 8. Example for the Second Design Criterion

Time slots occupied by ψ and Γcurrent Slack

a)

b)

360 ms
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2 = min(60,120, 90) = 60ms
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tneed = 90 ms. The available periodic slack on the bus is also in-
sufficient: C2

m = 60 ms < bneed. However, in the situation pre-
sented in Figure 8b, we have C2

P = 120 ms > tneed, and
C2

m = 90 ms > bneed.

C. Objective Function and Exact Problem Formulation

In order to capture how well a certain design alternative
meets the requirement (b) stated in Section III, the metrics dis-
cussed before are combined in an objective function, as
follows:

where the metric values introduced in the previous section are
weighted by the constants w1

P, w2
P, w1

m, and w2
m. Our mapping

and scheduling strategy will try to minimize this function. 
The first two terms measure how well the resulted slack siz-

es fit to a future application (the first criterion), while the sec-
ond two terms reflect the distribution of slacks (the second
criterion). In order to obtain a balanced solution, that favours
a good fitting both on the processors and on the bus, we have
used the squares of the metrics.

We call a valid solution, that mapping and scheduling which
satisfies all the design constraints (in our case the deadlines)
and meets the second criterion (C2

P ≥  tneed and C2
m ≥  bneed)

1.
At this point we can give an exact formulation of our prob-

lem. Given an existing set of applications ψ which are already
mapped and scheduled, and an application Γcurrent to be imple-
mented on top of ψ, we are interested to find the subset Ω ⊆ ψ
of old applications to be remapped and rescheduled such that
we produce a valid solution for Γcurrent ∪ Ω and the total cost
of modification R(Ω) is minimized. Once such a set Ω of appli-
cations is found, we are interested to optimise the implementa-
tion of Γcurrent ∪ Ω such that the objective function C is
minimized, considering a family of future applications charac-
terized by the sets St and Sb, the functions fSt

 and fSb
 as well as

the parameters Tmin, tneed, and bneed.
A mapping and scheduling strategy based on this problem

formulation is presented in the following section.

VI. MAPPING AND SCHEDULING STRATEGY

As shown in the algorithm in Figure 9, our mapping and
scheduling strategy (MS) consists of two steps. In the first step
we try to obtain a valid solution for the mapping and schedul-
ing of Γcurrent ∪ Ω so that the modification cost R(Ω) is mini-
mized. Starting from such a solution, the second step
iteratively improves the design in order to minimize the objec-
tive function C. In the context in which the second criterion is
satisfied after the first step, improving the cost function during

the second step aims at minimizing the value of
w1

P(C1
P)2 + w1

m(C1
m)2.

If the first step has not succeeded in finding a solution such
that the imposed time constraints are satisfied, this means that
there are not sufficient resources available to implement the
application Γcurrent. Thus, modifications of the system archi-
tecture have to be performed before restarting the mapping
and scheduling procedure. If, however, the timing constraints
are met but the second design criterion is not satisfied, a larger
Tmin (smallest expected period of a future application, see Sec-
tion IV-B) or smaller values for tneed and/or bneed are suggested
to the designer. This, of course, reduces the frequency of possi-
ble future applications and the amount of processor and bus re-
sources available to them.

In the following section we briefly discuss the basic map-
ping and scheduling algorithm we have used in order to gener-
ate an initial solution. The heuristic used to iteratively improve
the design with regard to the first and the second design crite-
ria is presented in Section VI-B. In Section VI-C we describe
three alternative heuristics which can be used during the first
step in order to find the optimal subset of applications to be
modified.

A. The Initial Mapping and Scheduling

As shown in Figure 11, the first step of MS consists of an
iteration that tries different subsets Ω ⊆ ψ with the intention to
find that subset Ω = Ωmin of old applications to be remapped
and rescheduled which produces a valid solution for Γcurrent ∪
Ω such that R(Ω) is minimized. Given a subset Ω, the Initial-
MappingScheduling function (IMS) constructs a mapping and
a schedule for the applications Γcurrent ∪ Ω on top of ψ \ Ω, that
meets the deadlines, without worrying about the two criteria
introduced in Section V.

The IMS is a classical mapping and scheduling algorithm
for which we have used as a starting point the Heterogeneous
Critical Path (HCP) algorithm, introduced in [13]. HCP is
based on a list scheduling approach [4]. We have modified the
HCP algorithm in three main regards:
1. We consider that mapping and scheduling does not start

with an empty system but a system on which a certain num-

1 This definition of a valid solution can be relaxed by imposing 
only the satisfaction of deadlines. In this case, the algorithm in 
Figure 9 will look after a solution which satisfies the deadlines and 
R(Ω) is minimized; the additional second criterion is, in this case, 
only considered optionally.

C w1
P

C1
P( )

2
w1

m
C1

m( )
2

w2
P

max 0 tneed, C2
P–( ) w2

m
max 0 bneed, C2

m–( )

+

+ +

=

MappingSchedulingStrategy
Step 1: try to find a valid solution that minimizes R(Ω)

Find a mapping and scheduling of Γcurrent ∪ Ω on top of ψ \ Ω so that:
1.constraints are satisfied;
2.modification cost R(Ω) is minimized;
3.the second criterion is satisfied: C2

P ≥ tneed and C2
m ≥ bneed

if Step1 has not succeeded then
if constraints are not satisfied then

change architecture
else

suggest new Tmin, tneed or bneed

end if
go to Step 1

end if
Step 2: improve the solution by minimizing objective function C

Perform iteratively transformations which improve the first criterion
(the metrics C1

P  and C1
m ) without invalidating the second criterion.

end MappingSchedulingStrategy

Figure 9. Mapping and Scheduling Strategy (MS)
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ber of processes already are mapped.
2. Messages are scheduled into bus-slots according to the

TDMA protocol. The TDMA-based message scheduling
technique has been presented by us in [8].

3. As a priority function for list scheduling we use, instead of
the CP (critical path) priority function employed in [13], the
MPCP (modified partial critical path) function introduced
by us in [8]. MPCP takes into consideration the particulari-
ties of the communication protocol for calculation of
communication delays. These delays are not estimated
based only on the message length, but also on the time when
slots assigned to the particular node which generates the
message will be available.
For the example in Figure 4, our initial mapping and sched-

uling algorithm will be able to produce the optimal solution
with a schedule length of 48 ms.

However, before performing the effective mapping and
scheduling with IMS, two aspects have to be addressed. First,
the process graphs Gi ∈ Γcurrent ∪ Ω have to be merged into a
single graph Gcurrent, by unrolling of process graphs and inser-
tion of dummy nodes as shown in Figure 10. The period
TGcurrent of Gcurrent is equal to the least common multiplier of
the periods TGi

 of the graphs Gi. Dummy nodes (depicted as
black disks in Figure 10) represent processes with a certain ex-
ecution time but that are not to be mapped to any processor or
bus. In addition, we have to consider during scheduling the
mismatch between the periods of the already existing system
and those of the current application. The schedule table into
which we would like to schedule Gcurrent has a length of Tψ\Ω
which is the global period of the system ψ after extraction of
the applications in Ω. However, the period Tcurrent of Gcurrent
can be different from Tψ\Ω. Thus, before scheduling Gcurrent
into the existing schedule table, the schedule table is expanded
to the least common multiplier of the two periods. A similar
procedure is followed in the case Tcurrent > Tψ\Ω.

B. Iterative Design Transformations

Once IMS has produced a mapping and scheduling which
satisfies the timing constraints, the next goal of Step 1 is to im-
prove the design in order to satisfy the second design criterion
(C2

P ≥ tneed and C2
m ≥ bneed). During the second step, the design

is then further transformed with the goal of minimizing the

value of w1
P(C1

P)2 + w1
m(C1

m)2, according to the requirements
of the first criterion, without invalidating the second criterion
achieved in the first step. In both steps we iteratively improve
the design using a transformational approach. These succes-
sive transformations are performed inside the (innermost)
repeat loops of the first and second step, respectively
(Figure 11). A new design is obtained from the current one by
performing a transformation called move. We consider the fol-
lowing two categories of moves:
1. moving a process to a different slack found on the same

node or on a different node;
2. moving a message to a different slack on the bus.

In order to eliminate those moves that will lead to an infea-
sible design (that violates deadlines), we do as follows. For
each process Pi, we calculate the ASAP(Pi) and ALAP(Pi)
times considering the resources of the given hardware archi-
tecture. ASAP(Pi) is the earliest time Pi can start its execution,
while ALAP(Pi) is the latest time Pi can start its execution
without causing the application to miss its deadline. When
moving Pi we will consider slacks on the target processor only
inside the [ASAP(Pi), ALAP(Pi)] interval. The same reasoning
holds for messages, with the addition that a message can only
be moved to slacks belonging to a slot that corresponds to the

Figure 10. Graph Merging
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Step 1: try to find a valid solution that minimizes R(Ω)
Ω = ∅
repeat

succeeded = InitialMappingScheduling(ψ \ Ω, Γcurrent ∪ Ω)
-- compute ASAP-ALAP intervals for all processes
ASAP(Γcurrent ∪ Ω); ALAP(Γcurrent ∪ Ω)
if succeeded then-- if time constraints are satisfied

-- design transformations in order to satisfy 
-- the second design criterion
repeat

-- find set of moves with the highest potential to 
-- maximize C2

P or C2
m

move_set = PotentialMoveC2
P(Γcurrent ∪ Ω) ∪ 

PotentialMoveC2
m(Γcurrent ∪ Ω)

-- select and perform move which improves most C2
move = SelectMoveC2(move_set); Perform(move)
succeeded =C2

P ≥ tneed and C2
m ≥ bneed

until succeeded or maximum number of iterations reached
end if
if succeeded and R(Ω) smallest so far then 

Ωvalid = Ω; solutionvalid = solutioncurrent
end if

Ω=NextSubset(Ω) -- try another subset
until termination condition

Step 2: improve the solution by minimizing objective function C
solutioncurrent = solutionvalid; Ωmin = Ωvalid
-- design transformations in order to satisfy the first design criterion
repeat

-- find set of moves with highest potential to minimize C1
P or C1

m

move_set = PotentialMoveC1
P(Γcurrent ∪ Ωmin) ∪ 

PotentialMoveC2
m(Γcurrent ∪ Ωmin)

-- select move which improve w1
P(C1

P)2 + w1
m(C1

m)2,
-- and does not invalidate the second criterion
move = SelectMoveC1(move_set); Perform(move)

until w1
P(C1

P)2 + w1
m(C1

m)2 has not changed or 
maximum number of iterations reached

Figure 11. Step 1 and Step 2 of the Mapping and 
Scheduling Strategy in Figure 9
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sender node (see Section II-A). Any violation of the data de-
pendency constraints caused by a move is rectified by shifting
processes or messages concerned in an appropriate way. If
such a shift produces a deadline violation, the move is reject-
ed.

At each step, our heuristic tries to find those moves that
have the highest potential to improve the design. For each it-
eration a set of potential moves is selected by the Potential-
MoveX functions. SelectMoveX then evaluates these moves
with regard to the respective metrics and selects the best one
to be performed. We now briefly discuss the four Potential-
MoveX functions with the corresponding moves.

3) PotentialMoveC2
P and PotentialMoveC2

m: Consider
Figure 8a. In Period 2 on Node1 there is no available slack.
However, if we move process P1 with 40 ms to the left into Pe-
riod 1, as depicted in Figure 8b, we create a slack in Period 2
and the periodic slack on node N1 will be min(40, 40, 40) = 40
ms, instead of 0 ms.

Potential moves aimed at improving the metric C2
P will be

the shifting of processes inside their [ASAP, ALAP] interval in
order to improve the periodic slack. The move can be per-
formed on the same node or to the less loaded nodes. The same
is true for moving messages in order to improve the metric C2

m.
For the improvement of the periodic bandwidth on the bus, we
also consider movement of processes, trying to place the sender
and receiver of a message on the same processor and, thus, re-
ducing the bus load.

4) PotentialMoveC1
P and PotentialMoveC1

m: The moves
suggested by these two functions aim at improving the C1 met-
ric through reducing the slack fragmentation. The heuristic is
to evaluate only those moves that iteratively eliminate the
smallest slack in the schedule. Let us consider the example in
Figure 12, where we have three applications mapped on a sin-
gle processor: ψ, consisting of P1 and P2, Γcurrent, having proc-
esses P3, P4 and P5, and Γfuture, with P6, P7 and P8. Figure 12
presents three possible schedules; processes are depicted with
rectangles, the width of a rectangle representing the worst case
execution time of that process. The PotentialMoveC1 functions
start by identifying the smallest slack in the schedule table. In
Figure 12a, the smallest slack is the slack between P1 and P3.
Once the smallest slack has been identified, potential moves
are investigated which either remove or enlarge the slack. For
example, the slack between P1 and P3 can be removed by at-
taching P3 to P1, and it can be enlarged by moving P3 to the
right in the schedule table. Moves that remove the slack are
considered only if they do not lead to an invalidation of the
second design criterion, measured by the C2 metric improved
in the previous step (see Figure 11, Step 1). Also, the slack can
be enlarged only if it does not create, as a result, other unusable
slack. A slack is unusable if it cannot hold the smallest object
of the future application, in our case P6. In Figure 12a, the
slack can be removed by moving P3 such that it starts from
time 20, immediately after P1, and it can be enlarged by mov-
ing P3 so that it starts from 30, 40, or 50 (considering an incre-
ment which here was set by us to 10, the size of P6, the
smallest object in Γfuture). For each move, the improvement on
the C1 metric is calculated, and that move is selected by the

SelectMoveC1 function to be performed, which leads to the
largest improvement on C1 (which means the smallest value).
For all the previously considered moves of P3, we are not able
to map P8 which represents 50% of the Γfuture, therefore
C1 = 50%. Consequently, we can perform any of the men-
tioned moves, and our algorithm selects the first one investi-
gated, the move to start P3 from 20, thus removing the slack.
As a result of this move, the new schedule table is the one in
Figure 12b. In the next call of the PotentialMoveC1 function,
the slack between P5 and P2 is identified as the smallest slack.
Out of the potential moves that eliminate this slack, listed in
Figure 12 for case b, several lead to C1 = 0%, the largest im-
provement. SelectMoveC1 selects moving P5 to start from 90,
and thus we are able to map process P8 of the future applica-
tion, leading to a successful implementation in Figure 12c.

The previous example has only illustrated movements of
processes. Similarly, in PotentialMoveC1

m, we also consider
moves of messages in order to improve C1

m. However, the
movement of messages is restricted by the TDMA bus access
scheme, such that a message can only be moved into a slot cor-
responding to the node on which it is generated.

C. Minimizing the Total Modification Cost

The first step of our mapping and scheduling strategy, de-
scribed in Figure 11, iterates on successive subsets Ω search-
ing for a valid solution which also minimizes the total
modification cost R(Ω). As a first attempt, the algorithm
searches for a valid implementation of Γcurrent without disturb-
ing the existing applications (Ω = ∅). If no valid solution is
found, successive subsets Ω produced by the function Next-
Subset are considered, until a termination condition is met.
The performance of the algorithm, in terms of runtime and
quality of the solutions produced, is strongly influenced by the
strategy employed for the function NextSubset and the termi-

Figure 12. Successive Steps with 
Potential Moves for Improving C1
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nation condition. They determine how the design space is ex-
plored while testing different subsets Ω of applications. In the
following we present three alternative strategies. The first two
can be considered as situated at opposite extremes: The first
one is potentially very slow but produces the optimal result
while the second is very fast and possibly low quality. The
third alternative is a heuristic able to produce good quality re-
sults in relatively short time, as will be demonstrated by the
experimental results presented in Section VII. 

5) Exhaustive Search (ES): In order to find Ωmin, the sim-
plest solution is to try successively all the possible subsets Ω
⊆ ψ. These subsets are generated in the ascending order of the
total modification cost, starting from ∅. The termination con-
dition is fulfilled when the first valid solution is found or no
new subsets are to be generated. Since the subsets are generat-
ed in ascending order, according to their cost, the subset Ω that
first produces a valid solution is also the subset with the mini-
mum modification cost.

The generation of subsets is performed according to the
graph G that characterizes the existing applications (see Sec-
tion IV-A). Finding the next subset Ω, starting from the current
one, is achieved by a branch and bound algorithm that, in the
worst case, grows exponentially in time with the number of
applications. For the example in Figure 7, the call to
NextSubset(∅) will generate Ω = {Γ7} which has the smallest
non-zero modification cost R({Γ7}) = 20. The next generated
subsets, in order, together with their corresponding total mod-
ification cost are: R({Γ3}) = 50, R({Γ3, Γ7}) = 70, R({Γ4, Γ7})
= 90 (the inclusion of Γ4 triggers the inclusion of Γ7), R({Γ2,
Γ3}) = 120, R({Γ2, Γ3, Γ7}) = 140, R({Γ3, Γ4, Γ7}) = 140,
R({Γ1}) = 150, and so on. The total number of possible subsets
according to the graph G in Figure 7 is 16.

This approach, while finding the optimal subset Ω, requires
a large amount of computation time and can be used only with
a small number of applications.

6) Greedy Heuristic (GH): If the number of applications is
larger, a possible solution could be based on a simple greedy
heuristic which, starting from Ω = ∅, progressively enlarges
the subset until a valid solution is produced. The algorithm
looks at all the non-frozen applications and picks that one
which, together with its dependencies, has the smallest modi-
fication cost. If the new subset does not produce a valid solu-
tion, it is enlarged by including, in the same fashion, the next
application with its dependencies. This greedy expansion of
the subset is continued until the set is large enough to lead to a
valid solution or no application is left. For the example in
Figure 7 the call to NextSubset(∅) will produce R({Γ7}) = 20,
and will be successively enlarged to R({Γ7, Γ3}) = 70, R({Γ7,
Γ3, Γ2}) = 140 (Γ4 could have been picked as well in this step
because it has the same modification cost of 70 as Γ2 and its
dependence Γ7 is already in the subset), R({Γ7, Γ3, Γ2,
Γ4}) = 210, and so on.

While this approach finds very quickly a valid solution, if
one exists, it is possible that the resulted total modification
cost is much higher than the optimal one.

7) Subset Selection Heuristic (SH): An intelligent selection
heuristic should be able to identify the reasons due to which a

valid solution has not been produced and to find the set of can-
didate applications which, if modified, could eliminate the
problem. The failure to produce a valid solution can have two
possible causes: an initial mapping which meets the deadlines
has not been found, or the second criterion is not satisfied.

Let us investigate the first reason. If an application Γi is to
meet its deadline Di, all its processes Pj ∈ Γi have to be sched-
uled inside their [ASAP, ALAP] intervals. InitialMappingSched-
uling (IMS) fails to schedule a process inside its [ASAP, ALAP]
interval if there is not enough slack available on any processor,
due to other processes scheduled in the same interval. In this
situation we say that there is a conflict with processes belong-
ing to other applications. We are interested to find out which
applications are responsible for conflicts encountered during
the mapping and scheduling of Γcurrent, and not only that, but
also which ones are flexible enough to be moved away in order
to avoid these conflicts. 

If it is not able to find a solution that satisfies the deadlines,
IMS will determine a metric ∆Γi

 that characterizes both the de-
gree of conflict and the flexibility of each application Γi ∈ ψ
in relation to Γcurrent. A set of applications Ω will be character-
ized, in relation to Γcurrent, by the following metric:

.

This metric ∆(Ω) will be used by our subset selection heu-
ristic in the case IMS has failed to produce a solution which
satisfies the deadlines. An application with a larger ∆Γi

 is more
likely to lead to a valid schedule if included in Ω.

In Figure 13 we illustrate how this metric is calculated. Ap-
plications A, B and C are implemented on a system consisting
of the three processors Node1, Node2 and Node3. The current
application to be implemented is D. At a certain moment, IMS
comes to the point to map and schedule process D1 ∈ D. How-
ever, it is not able to place it inside its [ASAP, ALAP] interval,
denoted in Figure 13 as I. The reason is that there is not
enough slack available inside I on any of the processors, be-
cause processes A1, A2, A3 ∈ A, B1 ∈ B, and C1 ∈ C are sched-
uled inside that interval. We are interested to determine which
of the applications A, B, and C are more likely to lend free
slack for D1, if remapped and rescheduled. Therefore, we cal-

A1

δA
D1 = max(max(|I| − |B1| − min(|A1

L|, |A1
R |), |I| −

δC
D1 = max(|I| − min(|C1

L|, |C1
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Figure 13. Metric for the Subset Selection Heuristic
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culate the slack resulted after we move away processes be-
longing to these applications from the interval I. For example,
the resulted slack available after modifying application C
(moving C1 either to the left or to the right inside its own
[ASAP, ALAP] interval) is of size |I| − min(|C1

L|, |C1
R|). With

C1
L(C1

R) we denote that slice of process C1 which remains in-
side the interval I after C1 has been moved to the extreme left
(right) inside its own [ASAP, ALAP] interval. |C1

L| represents
the length of slice C1

L. Thus, when considering process D1, ∆C

will be incremented with δC
D1 = max(|I| − min(|C1

L|, |C1
R|) −

|D1|, 0). This value shows the maximum theoretical slack us-
able for D1, that can be produced by modifying application C.
By relating this slack to the length of D1, the value δC

D1 also
captures the amount of flexibility provided by that modifica-
tion.

The increments δB
D1 and δA

D1 to be added to the values of ∆B
and ∆A respectively, are also presented in Figure 13. IMS then
continues the evaluation of the metrics ∆ with the other proc-
esses belonging to the current application D (with the assump-
tion that process D1 has been scheduled at the beginning of
interval I). Thus, as result of the failed attempt to map and
schedule application D, the metrics ∆A, ∆B, and ∆C will be pro-
duced.

If the initial mapping was successful, the first step of MS
could fail during the attempt to satisfy the second criterion
(Figure 11). In this case, the metric ∆Γi

 is computed in a differ-
ent way. What ∆Γi

 will capture in this case, is the potential of
an application Γi to improve the metric C2 if remapped togeth-
er with Γcurrent. Therefore, we consider a total number of
moves from all the non-frozen applications. These moves are
determined using the PotentialMoveC2 functions presented in
Section VI-B. Each such move will lead to a different mapping
and schedule, and thus to a different C2 value. Let us consider
δmove as the improvement on C2 produced by the currently con-
sidered move. If there is no improvement, δmove = 0. Thus, for
each move that has as subject Pj or mj ∈ Γi, we increment the
metric ∆Γi

 with the δmove improvement on C2.
As shown in the algorithm in Figure 11, MS starts by trying

an implementation of Γcurrent with Ω = ∅. If this attempt fails,
because of one of the two reasons mentioned above, the corre-
sponding metrics ∆Γi

 are computed for all Γi ∈ ψ. Our heuristic
SH will then start by finding the solution ΩGH produced with
the greedy heuristic GH (this will succeed if there exists any
solution). The total modification cost corresponding to this so-
lution is RGH=R(ΩGH) and the value of the metric ∆ is ∆GH =
∆(ΩGH). SH now continues by trying to find a solution with a
more favourable Ω than ΩGH (a smaller total cost R). There-
fore, the thresholds Rmax=RGH and ∆min=∆GH/n (for our exper-
iments we considered n = 2) are set. Sets of applications not
fulfilling these thresholds will not be investigated by MS. For
generating new subsets Ω, the function NextSubset now fol-
lows a similar approach like in the exhaustive search approach
ES, but in a reverse direction, towards smaller subsets (starting
with the set containing all non-frozen applications), and it will
consider only subsets with a smaller total cost then Rmax and a
larger ∆ than ∆min (a small ∆ means a reduced potential to elim-
inate the cause of the initial failure). Each time a valid solution

is found, the current values of Rmax and ∆min are updated in or-
der to further restrict the search space. The heuristic stops
when no subset can be found with ∆ > ∆min, or a certain im-
posed limit has been reached (e.g., on the total number of at-
tempts to find new subsets).

VII. EXPERIMENTAL RESULTS

In the following three sections we show a series of experi-
ments that demonstrate the effectiveness of the proposed ap-
proach and algorithms. The first set of results is related to the
efficiency of our mapping and scheduling algorithm and the it-
erative design transformations proposed in Sections VI-A and
B. The second set of experiments evaluates our heuristics for
minimization of the total modification cost presented in Sec-
tion VI-C. As a general strategy, we have evaluated our algo-
rithms performing experiments on a large number of test cases
generated for experimental purpose. Finally, we have validat-
ed the proposed approach using a real-life example. All exper-
iments were run on a SUN Ultra 10 workstation.

A. Evaluation of the IMS Algorithm and the Iterative Design 
Transformations

For evaluation of our approach we used process graphs of
80, 160, 240, 320 and 400 processes, representing the applica-
tion Γcurrent, randomly generated for experimental purpose.
Thirty graphs were generated for each graph dimension, thus
a total of 150 graphs were used for experimental evaluation. 

We generated both graphs with random structure and graphs
based on more regular structures like trees and groups of
chains. We generated a random structure graph deciding for
each pair of two processes if they should be connected or not.
Two processes in the graph were connected with a certain
probability (between 0.05 and 0.15, depending on the graph
dimension) on the condition that the dependency would not in-
troduce a loop in the graph. The width of the tree-like struc-
tures was controlled by the maximum number of direct
successors a process can have in the tree (from 2 to 6), while
the graphs consisting of groups of chains had 2 to 12 parallel
chains of processes. Furthermore, the regular structures were
modified by adding a number of 3 to 30 random cross-connec-
tions. 

Execution times and message lengths were assigned ran-
domly using both uniform and exponential distribution within
the 10 to 100 ms, and 2 to 8 bytes ranges, respectively.

We considered an architecture consisting of 10 nodes of dif-
ferent speeds. For the communication channel we considered
a transmission speed of 256 kbps and a length below 20 me-
ters. The maximum length of the data field in a bus slot was 8
bytes. 

Throughout the experiments presented in this section we
have considered an existing set of applications ψ consisting of
400 processes, with a schedule table of 6s on each processor,
and a slack of about 50% of the total schedule size. The map-
ping of the existing applications has been done using a simple
heuristic that tries to balance the utilization of processors
while minimizing communication. The scheduling of the ap-
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plications ψ has been performed using list scheduling, and the
schedules obtained have then been stretched to their deadline
by introducing slacks distributed uniformly over the schedule
table.

In this section we have also considered that no modifica-
tions of the existing set of applications ψ are allowed when im-
plementing a new application. We will concentrate on the
aspects related to the modification of existing applications, in
the following section.

The first result concerns the quality of the designs produced
by our initial mapping and scheduling algorithm IMS. As dis-
cussed in Section VI-A, IMS uses the MPCP priority function
which considers particularities of the TDMA protocol. In our
experiments we compared the quality of designs (in terms of
schedule length) produced by IMS with those generated with
the original HCP algorithm proposed in [13]. Results are de-
picted in Table 1 where we have three columns for both HCP
and IMS. In the columns labelled “average” we present the av-
erage percentage deviations of the schedule length produced
with HCP and IMS from the length of the best schedule among
the two. In the “maximum” column we have the maximum per-
centage deviation, and the column with the heading “better”
shows the percentage of cases in which HCP or IMS was better
than the other. For example, for 240 processes, HCP had an av-
erage percentage deviation from the best result of 5.53%, com-
pared to 1.38% for IMS. Also, in the worst case, the schedule
length obtained with HCP was 61.27% larger than the one ob-

tained with IMS. There were four cases (13.33%) in which
HCP has obtained a better result than IMS, compared to 11
cases (36.66%) where IMS has obtained a better result. For the
rest of the 15 cases, the schedule lengths obtained were equal.
We can observe that, in average, the deviation from the best re-
sult is 3.28 times smaller with IMS than with HCP. The average
execution times for both algorithms are under half a second for
graphs with 400 processes.

For the next set of experiments we were interested to inves-
tigate the quality of the design transformation heuristic dis-
cussed in Section VI-B, aiming at the optimization of the
objective function C. In order to compare this heuristic, imple-
mented in our mapping and scheduling approach MS, we have
developed two additional heuristics:
1. A Simulated Annealing strategy (SA) [36], based on the

same moves as described in Section VI-B. SA is applied on
the solution produced by IMS and aims at finding the near-
optimal mapping and schedule that minimizes the objective
function C. The main drawback of the SA strategy is that in
order to find the near-optimal solution it needs very large
computation times. Such a strategy, although useful for the
final stages of the system synthesis, cannot be used inside a
design space exploration cycle.

2. A so called ad-hoc approach (AH) which is a simple,
straight-forward solution to produce designs that, to a cer-
tain degree, support an incremental process. Starting from
the initial valid schedule of length S obtained by IMS for a
graph G with N processes, AH uses a simple scheme to re-
distribute the processes inside the [0, D] interval, where D
is the deadline of process graph G. AH starts by considering
the first process in topological order, let it be P1. It introduc-
es after P1 a slack of size max(smallest process size of
Γfuture, (D - S) / N), thus shifting all descendants of P1 to the
right (towards the end of the schedule table). The insertion
of slacks is repeated for the next process, with the current,
larger value of S, as long as the resulted schedule has a
length S ≤ D. Processes are moved only as long as their in-

 Table 1. Evaluation of the Initial Mapping and Scheduling

No. of 
Procs.

HCP IMS

avg. max. better avg. max. better

80 2.04% 31.57% 10% 0.35% 1.47% 30%

160 3.12% 48.89% 10% 1.18% 5.44% 33.33%

240 5.53% 61.27% 13.33% 1.38% 14.52% 36.66%

320 6.12% 88.57% 16.66% 2.79% 24.33% 40%

400 11.02% 120.77% 13.33% 2.78% 22.52% 36.66%
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dividual deadlines (if any) are not violated.
Our heuristic (MS), proposed in VI-B, as well as SA and

AH have been used to map and schedule each of the 150 proc-
ess graphs on the target system. For each of the resulted de-
signs, the objective function C has been computed. Very long
and expensive runs have been performed with the SA algo-
rithm for each graph and the best ever solution produced has
been considered as the near-optimum for that graph. We have
compared the objective function obtained for the 150 process
graphs considering each of the three heuristics. Figure 14a
presents the average percentage deviation of the objective
function obtained with the MS and AH from the value of the
objective function obtained with the near-optimal scheme
(SA). We have excluded from the results in Figure 14a, 37 so-
lutions obtained with AH for which the second design criteri-
on has not been met, and thus the objective function has been
strongly penalized. The average run-times of the algorithms
are presented in Figure 14b. The SA approach performs best in
terms of quality at the expense of a large execution time: The
execution time can be up to 45 minutes for large graphs of 400
processes. The important aspect is that MS performs very
well, and is able to obtain good quality solutions, very close to
those produced with SA, in a very short time. AH is, of course,
very fast, but since it does not address explicitly the two design
criteria presented in Section V it has the worst quality of solu-
tions, as expressed by the objective function.

The most important aspect of the experiments is determin-
ing to which extent the design transformations proposed by us,
and the related heuristic, really facilitate the implementation
of future applications. To find this out, we have mapped
graphs of 80, 160, 240 and 320 nodes representing the Γcurrent
application on top of ψ (the same ψ as defined for the previous
set of experiments). After mapping and scheduling each of
these graphs we have tried to add a new application Γfuture to
the resulted system. Γfuture consists of a process graph of 80
processes, randomly generated according to the following
specifications: St = {20, 50, 100, 150, 200 ms}, ft(St) = {10,
25, 45, 15, 5%}, Sb = {2, 4, 6, 8 bytes}, fb(Sb) = {20, 50, 20,
10%}, Tmin = 250 ms, tneed = 100 and bneed = 20 ms. The exper-
iments have been performed three times: using MS, SA and
AH for mapping Γcurrent. In all three cases we were interested

if it is possible to find a correct implementation for Γfuture on
top of Γcurrent using the initial mapping and scheduling algo-
rithm IMS (without any modification of ψ or Γcurrent).
Figure 15 shows the percentage of successful implementations
of Γfuture for each the three cases. In the case Γcurrent has been
implemented with MS and SA, this means using the design
criteria and metrics proposed in the paper, we were able to find
a valid schedule for 65% and 68% of the total cases, respec-
tively. However, using AH to map Γcurrent, has led to a situation
where IMS is able to find correct solutions in only 21% of the
cases. Another conclusion from Figure 15 is that when the to-
tal slack available is large, as in the case Γcurrent has only 80
processes, it is easy for MS and, to a certain extent, even for
AH to find a mapping that allows adding future applications.
However, as Γcurrent grows to 240 processes, only MS and SA
are able to find an implementation of Γcurrent that supports an
incremental design process, accommodating the future appli-
cation in more than 60% of the cases. If the remaining slack is
very small, after we map a Γcurrent of 320 processes, it becomes
practically impossible to map new applications without modi-
fying the current system. Moreover, our mapping heuristic
MH performs very well compared to the simulated annealing
approach SA which aims for the near-optimal value of the ob-
jective function.

B. Evaluation of the Modification Cost Minimization 
Heuristics

For this set of experiments we first used the same 150 proc-
ess graphs as in the previous section, consisting of 80, 160,
240, 320 and 400 processes, for the application Γcurrent. We
also considered the same system architecture as presented
there.

The first results concern the quality of the solution obtained
with our mapping strategy MS using the search heuristic SH
compared to the case when the simple greedy approach GH
and the exhaustive search ES are used. For the existing appli-
cations we have generated five different sets ψ, consisting of
different numbers of applications and processes, as follows: 6
applications (320 processes), 8 applications (400 processes),
10 applications (480 processes), 12 applications (560 process-
es), 14 applications (640 processes). The process graphs in the
applications as well as their mapping and scheduling were
generated as described in the introduction of Section VII-A. 

After generating the applications we have manually as-
signed modification costs in the range 10 to 100, depending on
their size. The dependencies between applications (in the
sense introduced in Section IV-A) were such that the total
number of possible subsets Ω resulted for each set ψ were 32,
128, 256, 1024, and 4096 respectively. We have considered
that the future applications, Γfuture, are characterized by the fol-
lowing parameters: St = {20, 50, 100, 150, 200 ms},
ft(St) = {10, 25, 45, 15, 5%}, Sb = {2, 4, 6, 8 bytes},
fb(Sb) = {20, 50, 20, 10%}, Tmin = 250 ms, tneed = 100 ms and
bneed = 20 ms.

MS has been used to produce a valid solution for each of the
150 process graphs representing Γcurrent, on each of the target
configurations ψ, using the ES, GH and SH approaches to sub-
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set selection. Figure 16a compares the three approaches based
on the total modification cost needed in order to obtain a valid
solution. The exhaustive approach ES is able to obtain valid
solutions with an optimal (smallest) modification cost, while
the greedy approach GH produces in average 3.12 times more
costly modifications in order to obtain valid solutions. Howev-
er, in order to find the optimal solution ES needs large compu-
tation times, as shown in Figure 16b. For example, it can take
more than 2 hours in average to find the smallest cost subset to
be remapped that leads to a valid solution in the case of 14 ap-
plications (640 processes). We can see that the proposed heu-
ristic SH performs well, producing close to optimal results
with a good scaling for large application sets. For the results in
Figure 16 we have eliminated those situations in which no val-
id solution could be produced by MS.

Finally, we have repeated the last set of experiments dis-
cussed in the previous section (the experiments leading to the
results in Figure 15). However, in this case, we have allowed
the current system (consisting of ψ ∪ Γcurrent) to be modified
when implementing Γfuture. If the mapping and scheduling heu-
ristic is allowed to modify the existing system then we are able
to increase the total number of successful attempts to imple-
ment application Γfuture from 65% to 77.5%. For the case with
Γcurrent consisting of 160 processes (when the amount of avail-
able resources for Γfuture is small) the increase is from 60% to
92%. Such an increase is, of course, expected. The important
aspect, however, is that it is obtained not by randomly select-
ing old applications to be modified, but by performing this se-
lection such that the total modification cost is minimized.

C. The Vehicle Cruise Controller

A typical safety critical application with hard real-time con-
straints, to be implemented on a TTP based architecture, is a
vehicle cruise controller (CC). We have considered a CC sys-
tem derived from a requirement specification provided by the
industry. The CC delivers the following functionality: it main-
tains a constant speed for speeds over 35 km/h and under 200
km/h, offers an interface (buttons) to increase or decrease the
reference speed, and is able to resume its operation at the pre-
vious reference speed. The CC operation is suspended when
the driver presses the brake pedal. The specification assumes

that the CC will operate in an environment consisting of sev-
eral nodes interconnected by a TTP channel (Figure 17). There
are four nodes which functionally interact with the CC system:
the Anti-lock Braking System (ABS), the Transmission Con-
trol Module (TCM), the Engine Control Module (ECM), and
the Electronic Throttle Module (ETM). It has been decided to
map the functionality (processes) of the CC over these four
nodes. The ECM and ETM nodes have an 8-bit Motorola
M68HC11 family CPU with 128 Kilobytes of memory, while
the ABS and TCM are equipped with a 16-bit Motorola
M68HC12 CPU and 256 Kilobytes of memory. The 16-bit
CPUs are twice faster than the 8-bit ones. The transmission
speed of the communication channel is 256 kbps and the fre-
quency of the TTP controller was chosen to be 20 MHz. We
have modelled the specification of the CC system using a set
of 32 processes and 17 messages as described in [28]. The pe-
riod was 300 ms, equal to the deadline. 

The system ψ, representing the applications already run-
ning on the four nodes mentioned earlier, has been modelled
as a set of 80 processes with a schedule table of 300 ms and
leaving a total of 40% slack. We have assigned to each appli-
cation a modification cost proportional to the number and size
of processes. The CC is the Γcurrent application to be imple-
mented. We have also generated 30 future applications of 40
processes each, with the general characteristics close to those
of the CC, which are typical for automotive applications. We
have first mapped and scheduled the CC on top of ψ, using the

Figure 16. Evaluation of the Modification Cost Minimization
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ad-hoc strategy (AH) and then our MS algorithm. On the re-
sulted systems, consisting of ψ ∪ CC, we tried to implement
each of the 30 future applications. First we considered a situa-
tion in which no modifications of the existing system are al-
lowed when implementing the future applications. In this case,
we were able to implement 21 of the 30 future applications af-
ter implementing the CC with MS, while using AH to imple-
ment the CC, only 4 of the future applications could be
mapped. When modifications of the current system were al-
lowed, using MS, we were able to map 24 of the 30 future ap-
plications on top of the CC. For the CC example SA has
obtained the same results as MS.

VIII. CONCLUSIONS

We have presented an approach to the incremental design of
distributed hard real-time embedded systems. Such a design
process satisfies two main requirements when adding new
functionality: already running applications are disturbed as little
as possible, and there is a good chance that, later, new function-
ality can easily be mapped on the resulted system. Our ap-
proach assumes a non-preemptive static cyclic scheduling
policy and a realistic communication model based on a TDMA
scheme.

We have introduced two design criteria with their corre-
sponding metrics that drive our mapping strategy to solutions
supporting an incremental design process. These solutions are
obtained using an efficient transformation based heuristic.

Three algorithms have been proposed to produce a minimal
subset of applications which have to be remapped and re-
scheduled in order to implement the new functionality. ES is
based on a, potentially slow, branch and bound strategy which
finds an optimal solution. GH is very fast but produces solu-
tions that could be of too high cost, while SH is able to quickly
produce good quality results.

The approach has been evaluated based on extensive exper-
iments using a large number of generated benchmarks as well
as a real-life example.

Although the concrete architecture used to illustrate our ap-
proach is a distributed embedded system, typically used in au-
tomotive applications, the proposed strategy and heuristics can
as well be used for on-chip architectures and platforms.

There are several aspects that have been omitted from the
discussion in this paper. In [29] we have extended our ap-
proach to real-time systems where process scheduling is based
on a static priority preemptive approach. For the sake of sim-
plifying the discussion, we have also not addressed here the
memory constraints during process mapping and the implica-
tions of memory space in the incremental design process. An
extension of the approach in order to consider memory space
as another resource in addition to processor time and bus band-
width is, however, straightforward. We have also not dis-
cussed in this paper the issue of architecture selection,
considering that the designer has taken the appropriate deci-
sions before starting the mapping and scheduling procedure.
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