
Exploiting GPU On-Chip Shared Memory for
Accelerating Schedulability Analysis

Swaroop Nunna1, Unmesh D. Bordoloi2, Samarjit Chakraborty1, Petru Eles2, Zebo Peng2
1TU Munich, Germany

2Linköpings Universitet, Sweden
1E-mail: {swaroop.nunna, samarjit.chakraborty}@rcs.ei.tum.de

2E-mail:{unmbo, petel, zebpe}@ida.liu.se

Abstract— Embedded electronic devices like mobile phones
and automotive control units must perform under strict timing
constraints. As such, schedulability analysis constitutes an im-
portant phase of the design cycle of these devices. Unfortunately,
schedulability analysis for most realistic task models turn out
to be computationally intractable (NP-hard). Naturally, in the
recent past, different techniques have been proposed to accelerate
schedulability analysis algorithms, including parallel computing
on Graphics Processing Units (GPUs). However, applying tra-
ditional GPU programming methods in this context restricts
the effective usage of on-chip memory and in turn imposes
limitations on fully exploiting the inherent parallel processing
capabilities of GPUs. In this paper, we explore the possibility
of accelerating schedulability analysis algorithms on GPUs while
exploiting the usage of on-chip memory. Experimental results
demonstrate upto9× speedup of our GPU-based algorithms over
the implementations on sequential CPUs.

I. I NTRODUCTION

Many embedded devices like mobile phones and automotive
control units have to satisfy strict timing constraints. Hence,
the design cycles of these devices involve a schedulabil-
ity or timing analysis phase. Typically, a system designer
would choose the values of certain parameters (e.g., processor
frequency and task deadlines) and invoke a schedulability
analysis tool to determine whether the timing constraints are
met. If such an analysis returns a negative answer, then some
of the parameters are modified and the analysis is invoked
once again. This iterative adjustment of the system parameters
is repeated till the performance constraints are satisfied.This
process is illustrated in Figure I. However, schedulability
analysis for most realistic task models are computationally
intractable (NP-hard) [7]. Hence, each iteration takes a long
time to run. This critically impacts the usability of the tool
in the interactive design sessions. In order to reduce the long
running times, in this paper, we propose a technique for accel-
erating a schedulability analysis algorithm by implementing it
on Graphics Processing Units (GPUs). In particular, we show
that effectively exploiting the GPU on-chip shared memory can
lead to more speedups compared to a straightforward parallel
implementation of the algorithm on the GPU.

Motivation for using GPU: Our work has been motivated by
the recent trend of applying GPUs to accelerate non-graphics
applications. There are many compelling reasons behind
exploiting GPUs for such non-graphics related applications
(in contrast to using, say, ASIC/FPGA-based accelerators).

Select System

Parameters

Timing Constraints are

Satisfied ?

Schedulability

Analysis

Feasible Design

Yes

No

Constraints

Violated

Fig. 1. The iterative design cycle.

Firstly, modern GPUs are extremely powerful; high-end
GPUs, such as the nVIDIA GeForce 8800 GTX, have a
FLOPS rates of around 330 GigaFLOPS, whereas high-end
general-purpose processors are only capable of around 25
GigaFLOPS. Secondly, GPUs are now commodity items
as their costs have dramatically reduced over the last few
years. Hence, the attractive price-performance ratios of
GPUs give us an enormous opportunity to change the way
computer-aided tools for embedded system design perform,
with almost no additional cost. In fact, recent years have seen
the increasing use of graphics processing units (GPUs) for
different general-purpose computing tasks. These span across
numerical algorithms [11], computational geometry [1],
database processing [2], image processing [14]. Of late, there
has also been a lot interest in accelerating computationally
expensive algorithms in the computer-aided design of
electronic systems [10], [9], [12] using GPUs. Our paper
follows this line of work and proposes a novel technique to
implement schedulability analysis algorithms on GPUs.

Related Work and Our Contributions: To accelerate the
tedious design cycles associated with schedulability analy-
sis, many different approaches have been proposed in the
literature. In [3], [8], approximation algorithms have been
introduced, while aninteractive analysis scheme has been
presented in [5]. However, unlike exact schedulability anal-
ysis, approximate schedulability analysis might return false
positives or false negatives. For example, if the algorithmis
allowed to return false positives, then, in some cases, although
a task set is not schedulable, the algorithm incorrectly returns
schedulable. Nevertheless, it can be guaranteed that even in
such cases no task will miss its deadline by more than a

prespecified time interval.
On the other hand, theinteractive analysis scheme [5]

exploits the repetitive nature of the iterative design cycle in
order to achieve speedup. When the algorithm is invoked for
the first time, the full algorithm is allowed to run, but certain
data structures are created and stored. When the algorithm
is invoked in successive iterations after modifying a small
set of system parameters, these data structures are exploited
to partially run the algorithm and still guarantee the correct
result. However, this scheme allows only asmall number of
the system parameters to be changed in each iteration, and
hence doesn’t scale well for large number of changes or when
a completely new design needs to be analyzed.

Recently, Graphics Processor Units (GPUs) were also uti-
lized to improve the running times of the schedulability
analysis engine [6]. Unlike the techniques mentioned above,
the approach proposed in [6] always gives optimal results
and it is not restricted tosmall number of changes to the
parameters to achieve the speed up. However, this technique
used a traditional GPU programming model with Cg [13]
and OpenGL [16]. This model does not expose the on-chip
memory to the programmers and thus, imposes limitations on
fully exploiting the inherent parallel processing capabilities of
GPUs. In this context, Compute Unified Device Architecture
(CUDA) [15] — which is a new parallel computing architec-
ture based on GPUs — seems to be a promising alternative.
Unlike the traditional GPU programming model, CUDA GPUs
can be programmed using an extension of C and requires no
previous expertise in graphics programming. In this paper,
we explore the possibility of accelerating system-level design
analysis algorithms with General Purpose GPU (GPGPU)
programming with CUDA. In particular, we present the exe-
cution speed-ups achieved by implementing the schedulability
analysis on CUDA as well as the performance enhancements
corresponding to the usage of on-chip memory.

We demonstrate our technique using the schedulability anal-
ysis algorithm of the recurring real-time task model proposed
by Baruah in [4]. We chose this task model because it is
especially suited for accurately modeling conditional real-time
code with recurring behavior, i.e., where code blocks have
conditional branches and run in an infinite loop, as is the case
in many embedded applications. We describe the recurring
real-time task model and its schedulability analysis in the
next section. Section III describes the CUDA architecture and
programming model. Thereafter, our proposed technique of ac-
celerating the schedulability analysis using CUDA is described
in Section IV and the results are reported in Section V.

II. RECURRINGREAL-TIME TASK MODEL

As mentioned above, in this paper we consider the re-
curring real-time task model. A recurring real-time taskT
is represented by a task graph which is a directed acyclic
graph with a unique source (a vertex with no incoming
edges) and a unique sink (a vertex with no outgoing edges).
Associated with each vertexv of this graph is its execution
requiremente(v), and deadlined(v). Whenever a vertexv is

v1

v2
v3

v4

(e=2, d= 4)

(e=3, d=7)

(e=2, d=10)

5 10

15 20

(e=6, d=10)

P(T) = 50

Fig. 2. An example recurring real time task.

triggered, it generates a job which has to be executed fore(v)
amount of time withind(v) time units from the triggering-
time. Each directed edge(u, v) in the graph is associated
with a minimum intertriggering separationp(u, v), denoting
the minimum amount of time that must elapse before vertex
v can be triggered after the triggering of vertexu.

The semantics of the execution of such a task graph state
that the source vertex can be triggered at any time, and if
some vertexu is triggered then the next vertexv can be
triggered only if there exists a directed edge(u, v) and at
leastp(u, v) amount of time has passed since the triggering
of the vertexu. If there are directed edges(u, v1) and(u, v2)
from the vertexu (representing a conditional branch) then only
one amongv1 andv2 can be triggered, after the triggering of
u. The triggering of the sink vertex can be followed by the
source vertex getting triggered again but any two consecutive
triggerings of the source vertex should be separated byP (T)
units of time, called theperiod of the task graph.

Therefore, a sequence of verticesv1, v2, . . . , vk getting
triggered at time instantst1, t2, . . . , tk, is legal if and only if
there are directed edges(vi, vi+1), andti+1− ti ≥ p(vi, vi+1)
for i = 1, 2, . . . , k − 1. The only exception is thatvi+1 can
also be the source andvi the sink vertex. In this case if there
exists some vertexvj with j < i in the sequence such thatvj
is also the source vertex, thenti+1 − tj >= P (T) must be
additionally satisfied. The real-time constraints requirethat the
job generated by triggering vertexvi, wherei = 1, 2, . . . , k,
be assigned the processor fore(vi) amount of time within the
time interval(ti, ti + d(vi)].

Figure II illustrates an example of a recurring real-time
task. In this task, vertexv3, for instance, has an execution
requiremente(v3) = 6, which must be met within10 time
units (its deadline) from its triggering time. The edge(v1, v3)
has been labeled10, which implies that the vertexv3 can be
triggered only after a minimum of10 time units from the
triggering of v1 (i.e., the minimum intertriggering separation
time). Edges(v1, v2) and (v1, v3) from vertexv1 imply that
either v2 or v3 can be triggered afterv1. The period of the
task (the minimum time interval between two consecutive
triggerings of the source vertex) is50.

A. Task Sets and Schedulability Analysis

A task setT = {T1, T2, . . . , Tn} consists of a collection of
task graphs, the vertices of which can get triggered indepen-

dently of each other. A triggering sequence for such a task set
T is legal if and only if for every task graphTi, the subset
of vertices of the sequence belonging toTi constitute a legal
triggering sequence forTi. In other words, a legal triggering
sequence forT is obtained by merging together (ordered by
triggering times, with ties broken arbitrarily) legal triggering
sequences of the constituting tasks.

The schedulability analysis of a task setT is concerned with
determining whether the jobs generated by all possible legal
triggering sequences ofT can be scheduled such that their
associated deadlines are met. In this paper, we assume earliest
deadline first (EDF) based preemptive uniprocessor schedules.
However, all results presented here can be extended to other
scheduling policies (e.g., fixed-priority) as well.

A demand bound criteria-based schedulability analysis
states that a task setT is schedulable if and only if∑

T∈T T.dbf(t) ≤ t for all 0 < t ≤ tmax. For any given
task T , the functionT.dbf(t) is referred to as thedemand-
bound function. It takes as an argument a positive real number
t and returns the maximum possible cumulative execution
requirement of jobs that can be legally generated byT and
which have their ready-times and deadlines both within a time
interval of lengtht. It can be proved that

tmax =

∑
T∈T

2E(T)

1−
∑

T∈T

E(T)
P (T)

whereE(T) is the maximum cumulative execution require-
ment arising from a sequence of vertices on any path from
the source to the sink vertex of the task graphT (see [4]
for details). The schedulability analysis algorithm therefore
involves two steps.

(i) ComputingT.dbf(t) for all t ≤ tmax andT ∈ T , and
(ii) Checking that

∑
T∈T T.dbf(t) ≤ t, ∀ 0 < t ≤ tmax.

For the recurring real-time task model, it turns out that
computing T.dbf(t) for any t is NP-hard (see [7]) and
therefore forms the computationally intensive kernel of the
schedulability analysis algorithm. In what follows, we outline
a dynamic programming (DP) based algorithm for computing
T.dbf(t) for any task graphT and time interval lengtht.
For details on this algorithm, we refer the reader to [8]. In
Section IV, we describe our approach to reformulate this
algorithm in order to implement it effectively using CUDA.

B. Computing the demand-bound function

In this section we present a dynamic programming algo-
rithm for computing the demand-bound functionT.dbf(t)
for any task graphT . For any task graphT , computing the
value ofT.dbf(t) for some (large) value oft ≤ tmax might
involve multiple traversals (loops) through the task graph. It
was shown in [4] that if for a task graphT , T.dbf(t) is known
for all “small values” oft then it is possible to calculate, from
these, the value ofT.dbf(t) for any t. “Small values” oft for
a task graphT are those for which the sequence of vertices
that contribute towards computingT.dbf(t) contain the source
vertex at most once. The value ofT.dbf(t) for larger values
of t is made up of some multiple ofE(T) plus T.dbf(t′)
where t′ is “small” in the sense described above. It follows
that T.dbf(t) for any t can be computed as follows (for a

Algorithm 1 ComputingT.dbf(t) using dynamic programming
Require: Task graphT ′, and a real numbert ≥ 0

1: for e← 1 to nE do

2: t1,e ←

{

d(v1) if e(v1) = e

∞ otherwise
3: t11,e ← t1,e
4: end for
5: for i← 1 to n− 1 do
6: for e← 1 to nE do
7: Let there be directed edges from the verticesvi1

, vi2
, . . . , vik

to vi+1

8: t
i+1
i+1,e ←











min{t
ij

ij ,e−e(vi+1)
− d(vij

) + p(vij
, vi+1)

+d(vi+1) | j = 1, 2, . . . , k} if e(vi+1) < e,

d(vi+1) if e(vi+1) = e, and ∞ otherwise
9: ti+1,e ← min{ti,e, t

i+1
i+1,e}

10: end for
11: end for

12: T.dbf(t)← max{e | tn,e ≤ t}

more detailed description, refer to [4])

T.dbf(t) = max{⌊t/P (T)⌋E(T) + T.dbf(t mod P (T)),

(⌊t/P (T)⌋ − 1)E(T) + T.dbf(P (T) + t mod P (T))} (1)

To computeT.dbf(t) for “small” values oft, [4] constructs
a new task graph by taking two copies of the task graph ofT

and adding an edge from the sink vertex of the first graph to
the source vertex of the second and finally replacing the source
vertex of the first with a “dummy” vertex with execution
requirement and deadline equal to zero. The intertriggering
separations on all edges outgoing from this source vertex is
also made equal to zero.T.dbf(t) for all values oft are then
calculated by enumerating all possible paths in this new graph.
For arbitrary task graphs, this incurs a computation time which
is exponential in the number of vertices in the task graph.

We first outline an algorithm for computing the demand-
bound function of a task graph for “small values” oft. Using
this, we then compute the demand-bound function for any
value of t as explained above.

Given a task graphT , let T ′ denote the graph formed by
joining two copies ofT by adding an edge from the sink
vertex of the first graph to the source vertex of the second and
replacing the source vertex of the first copy by a “dummy”
vertex. The newly added edge is labeled with an intertriggering
separation ofp = d(vsink). Now we give a pseudo-polynomial
algorithm based on dynamic programming, for computing
T ′.dbf(t) for values of t that do not involve any looping
throughT ′, i.e., we consider only “one-shot” executions of
T ′. Let there ben vertices inT ′ denoted byv1, v2, . . . , vn,
and without any loss of generality we assume that there can
be a directed edge fromvi to vj only if i < j. Following our
notation above, associated with each vertexvi, is its execution
requiremente(vi) which here is assumed to be integral, and
its deadlined(vi). Associated with each edge(vi, vj) is the
minimum intertriggering separationp(vi, vj).

Let ti,e be the minimum time interval within which the
taskT ′ can have an execution requirement of exactlye time
units due to some legal triggering sequence, considering only
a subset of vertices from the set{v1, v2, . . . , vi}, if all the
triggered vertices are to meet their respective deadlines.Let
tii,e be the minimum time interval within which a sequence

of vertices from the set{v1, v2 . . . , vi}, and ending with the
vertexvi, can have an execution requirement of exactlye time
units, if all the vertices have to meet their respective deadlines.
Lastly, letE = maxi=1,i=2,...,n e(vi). Clearly,nE is an upper
bound onT ′.dbf(t) for any t ≥ 0 for one-shot executions of
T ′. It can be shown by induction that Algorithm 1 correctly
computesT ′.dbf(t), and has a running time ofO(n3E).

We would like to emphasize thatT ′.dbf(t) values obtained
from Algorithm 1 are essentially the values ofT.dbf(t) for
“small” values of t. The notationT ′ was used in the above
explanation in order to explicitly denote the graph formed
by joining two copies ofT . Thus, T ′ is an input to the
Algorithm 1 and the output isT.dbf(t) for “small” values
of t. Following this, one may now use Equation 1 to calculate
T.dbf(t) for any value oft.

III. CUDA

In this section, we provide a brief description of CUDA
[15]. CUDA abstracts the GPU as a powerful multi-threaded
coprocessor capable of accelerating data-parallel, computa-
tionally intense operations. The data parallel operations, which
are similar computations performed onstreams of data, are
referred to askernels. Essentially, with its programming model
and hardware model, CUDA makes the GPU an efficient
streaming platform. Below, we discuss CUDA’s programming
and hardware model, followed by a short insight into the
memory access latencies of the GPU.
A. Programming Model

In CUDA, threads execute data parallel computations of the
kernel and are clustered into blocks of threads referred to as
thread blocks. These thread blocks are further clustered into
grids. During implementation, the designer can configure the
number of threads that constitute a block as well as the number
of blocks that constitute a grid. Each thread inside a block has
its own registers and local memory. The threads in the same
block can communicate with each other through a memory
space shared among all the threads in the block and referred
to as Shared Memory. However, an explicit communication
and synchronization between threads belonging to different
blocks is only possible through GPU-DRAM. GPU-DRAM is
the dedicated DRAM for the GPU in addition to DRAM of
the CPU. It is divided intoGlobal Memory, Constant Memory
and Texture Memory. We note that theConstant and Texture
Memory spaces are read-only regions whereasGlobal Memory
is a read-write region. Figure 3 illustrates the above described
CUDA programming model. Note that in contrast to the GPU-
DRAM the Shared Memory region is a on-chip memory space.
B. Hardware Model

CUDA hardware architecture is implemented as a set of
SIMD (Single-Instruction-Multiple-Data) multiprocessors with
on-chip memory. Each of these multiprocessors also consista
set of registers. The thread blocks (described in the previ-
ous subsection) are executed on these multiprocessors such
that each multiprocessor executes one or more thread blocks
through time slicing. However, each thread block is processed
by a single multiprocessor in order to facilitate communication

GPU DRAM

Global

Memory

Constant

Memory

Texture

Memory

Thread!Block

Shared Memory

Threads

Grids

Thread!Blocks

Thread!Blocks

Fig. 3. CUDA programming model.

between different threads in a block through on-chip memory.
Thus, the on-chip memory of a multiprocessor forms the
Shared Memory space of the thread block and is typically in
the order of KB.
C. Memory Access Latencies

A typical memory instruction in CUDA issued by a multi-
processor consumes 4 clock cycles. However depending upon
the memory space where the memory location that is being
accessed resides, there will be additional latencies. In case
the memory location being accessed resides in GPU-DRAM,
i.e., either inGlobal, Texture or Constant Memory spaces, the
memory instruction consumes an additional 400 to 600 cycles.
On the other hand, if the memory location resides on-chip in
the registers orShared Memory, then there will be almost no
additional latencies in the absence of memory access conflicts.
These additional latencies might obscure the speedups thatcan
be achieved due to parallelization and hence the on-chip shared
memory must be judiciously exploited.

IV. SCHEDULABILITY ANALYSIS USING CUDA

In order to accelerate the schedulability analysis algorithm
(Algorithm 1) described in Section II using CUDA, there
are two broad challenges. Firstly, we need to identify and
isolate the data parallel computation of the algorithm so that
they may be compiled as thekernels. These kernels must be
then mapped to CUDA thread blocks. Secondly, one has to
efficiently exploit the on-chipShared Memory to enhance the
achievable speedups. In light of these two challenges, we now
provide a systematic implementation of Algorithm 1.

As mentioned above, our first goal is to identify the data
parallel portions (kernels) that can be computed in a SIMD
fashion using CUDA threads. The kernels must not have
any data dependencies (on each other) because they will be
executed by threads running in parallel. Towards this, we first
identify the data dependcies in Algorithm 1. Algorithm 1 (lines
6−10) essentially builds a dynamic programming (DP) matrix.
Thei+1-th row in the matrix corresponds to vertexvi+1 of the
task graph described in Section II. Each of the cells in rowi+1
consists ofti+1,e and ti+1

i+1,e values wheree = 1, 2, . . . , nE.
According to Algorithm 1 (line 8), the computation of these
values in the cells of thei+1-th row dependsonly on the values

present in thepreviously computed rows. This implies the
values of the cells of thesame row in the DP-based matrix can
be computed independently of each other by using different
CUDA threads in a SIMD fashion. Therefore, we segregate
this task (lines 8 and 9 of Algorithm 1) as thekernel of our
CUDA implementation.

We store the DP-matrix inGlobal Memory space, i.e., in
GPU-DRAM. Note that we useGlobal Memory space instead
of Constant or Texture Memory becauseConstant andTexture
Memory are read-only regions. During the computation of our
DP-based matrix we need to perform both read (to fetch values
from previously computed rows) and write (to update the DP-
matrix with the values of the row computed in the current
iteration) operations which can only be done explicitly with
Global Memory. Also, note that, we have not used the on-
chip Shared Memory because the size of theShared Memory
is typically quite small (see Section III) and the entire DP-
matrix cannot fit into it.

However, the on-chipShared Memory can be exploited to
store other frequently accessed data structures. To identify
such data structures, we once again focus on the kernel
operations of our algorithm (lines8 and9 in Algorithm 1). We
note that the computation ofti+1

i+1,e andti+1,e values of vertex
vi+1 (i.e., the i + 1-th row of the DP-matrix) needs certain
values from the verticesvi1 , vi2 , . . . , vik , wherevi+1 has an
incoming edge from each of these vertices. Let us denote the
tuple{p(vij , vi+1), d(vij)} asΩi,j . Thus, from the lines8 and
9 of Algorithm 1, the computationi + 1-th row of the DP-
matrix requires the valuesΩi,1,Ωi,2, . . . ,Ωi,k.

The set,{Ωi,2, . . . ,Ωi,k}, is essentially a subset of the
overall specification of the task graph. Also, in iterationi+1
of computing the DP-matrix this set of required data structure
remains constant, i.e., information about the other parts of the
task graph is not required. This set changes only at the next
iteration because it corresponds to a different vertex which
might have a different set of incoming edges. This observation
provides an opportunity to significantly reduce the GPU based
execution times by loading these values{Ωi,2, . . . ,Ωi,k} to
the on-chipShared Memory at the beginning of each iteration.
Compared to the DP-matrix, this set of values is much
smaller and can fit into the on-chip shared memory. Figure 4
illustrates our scheme of prefetching the required data structure
from Global Memory to Shared Memory at the start of each
iteration. The figure shows a thread block (which consists of
32 threads) fetching the required data from theGlobal Memory
at thei+ 1-th iteration.

We recall from Section III that the on-chip memory is
shared only between the threads within a single block. Hence,
configuring the thread blocks to an appropriate size is also
important to effectively exploit the GPU on-chip memory.
For example, on one hand, if we choose a very small thread
block size, then the computation of each row in our DP-based
matrix will involve lot of thread blocks. However, only the
threads within a thread block share the same chunk of on-
chip memory. This implies that data from theGlobal Memory
to Shared Memory will have to be transfered for a large

Global

Memory 1,1 1,2
 1,k0

 2,1 2,2
 2,k1

 n,1 n,2
 n,kn!1

 i+1,1 i+1,2
 i+1,ki

0 311

Shared

Memory
 i+1,1 i+1,2

 i+1,ki

Data fetched at (i+1)!th iteration

Thread block

D
a
ta

 s
tr
u
ct
u
re
s
a
cc
e
ss
e
d

 b
y

 v
e
rt
ic
e
s

V
1

V
2

V
i+1

V
n

Fig. 4. Accessing data fromShared Memory. Since on-chipShared Memory
space is limited, data structures are selectively prefetched at each iteration.

number of thread blocks, inspite of the fact that, all the
threads in a single iteration need the same data structures -
{Ωi,2, . . . ,Ωi,k}, as described above. This in turn obscures
the speedups that can be achieved. On the other hand, one can
choose a thread block of very large size which has a lot of
threads in each block. In this case each thread block will be
executed on a single multiprocessor via time slicing because
the number of processors on multiprocessor are typically
around 8, while there are thousands of threads running in
parallel. This time slicing will also inhibit the acceleration that
can be achieved. To strike the right balance with the size of
the thread block, we perform experiments with different thread
block sizes. Note that CUDA allows thread block sizes only
as powers of 2. Hence the design space for exploration is not
huge and it is possible to find the right size in reasonable time.
Moreover, after a threshold size the performance deteriorates
or remains constant and hence it is not necessary to experiment
with larger sized thread blocks beyond this threshold.

V. EXPERIMENTAL RESULTS

For our experiments, we compared three different imple-
mentations of the the schedulability analysis algorithm — on
the CPU (as described in Algorithm 1), on GPU without using
shared memory and on GPU while exploiting shared memory
(as described in Section IV). We randomly generated synthetic
task graphs consisting of10, 20, 30, 40 and 50 vertices
respectively. The value ofE which represents the maximum
possible execution time for a vertex was set to10, 000. It
may be noted that the execution requirement associated with
any vertex of a graph is expressed in terms oftime units.
Such time units depend on the application at hand and might
denote milliseconds, microseconds, or even the number of
clock cycles of the processor on which the task graphs are
required to execute. Hence, experiments with values ofE like
10, 000 are realistic.

All the experiments were conducted on a machine with
3.0 GHz Intel Pentium 4 CPU and 1 GB RAM running
Windows XP. The machine was equipped with a nVIDIA
GeForce 8800 GTX GPU, which was used for our GPU
based implementations. The code has been implemented and
compiled with release mode in Microsoft Visual Studio 2005
which had CUDA Toolkit 1.1 integrated into it.

0

2000

4000

6000

8000

10000

12000

14000

16000

0 10 20 30 40 50 60

T
im

e
 i

n
 M

il
li

se
co

n
d

s

Task Graph Size

CPU

GPU

GPU-SM

Fig. 5. Comparison of CPU, GPU and GPU-SM execution times.

In our experiments, we measured the execution time of the
three different implementations for each of the tasks graphs.
Table I presents the exact values of these measurements for
task graphs of different sizes. The first column correspondsto
the execution time on CPU referred to as ‘CPU Time’. The
second column corresponds to the execution time on GPU
without any optimizations involving exploitation ofShared
Memory space and is referred to as ‘GPU Time’. The third
column referred to as ‘GPU-SM Time’ corresponds to the exe-
cution time on GPU as well but with the exploitation ofShared
Memory as described in Section IV. Figure 5 provides a visual
representation of these speedups. As mentioned in Section IV,
we experimented with different sizes of thread blocks. We
observed a performance enhancement (i.e., speed ups) as we
increased the thread block size upto 512. However, with larger
thread blocks (1024 and 2048) there were no further speed
ups. Thus, 512 was the best size for the thread blocks and
the ’GPU-SM Time’ reported here correspond to experiments
with thread block size 512. From our results, we observe that
as we progressively increase the task graph size from10 to 50
the GPU implementation withoutShared Memory provides a
speedup of5.2× on average and a maximum of6× compared
to CPU. The GPU implementation withShared Memory, i.e.,
GPU-SM attains a maximum speedup of9× (for a task graph
with 50 vertices) and an average of7.4× speedup compared to
the execution times on CPU. It is noteworthy that the GPU-SM
implementation provides upto1.86× acceleration compared to
a GPU implementation without shared memory utilization.

From these results it is evident that as the size of the
task graph increases, memory access latencies can degrade
the speedups that can be attained by GPU implementation.
This can be noticed from the measurements corresponding
to task graphs of sizes10 and 50. In case of graph with
10 vertices, the GPU and GPU-SM implementations provide
4.2× and 5.3× speedups respectively. However, in the case
graph with50 vertices these speedup values are4.8× and9×,
respectively for GPU and GPU-SM. These numbers, therefore,
indicate that for GPU-based implementations, exploiting on-
chip Shared Memory is an effective method to overcome
performance degradations caused by memory access latencies.

It may be noted that all our implementations were stand-

Size CPU Time GPU Time GPU-SM Time
(milliseconds) (milliseconds) (milliseconds)

10 147.683716 34.910538 28.038548
20 955.779358 192.749374 146.997284
30 4346.823242 720.375671 537.149719
40 7945.673828 1344.817139 987.577637
50 13490.95606 2783.330078 1496.557251

TABLE I

EXECUTION TIMES OFCPU, GPUAND GPU-SM IMPLEMENTATIONS.

alone C codes and they did not make use of any graph-
ical interfaces for specifying the task graphs. Instead, the
code was specifically optimized for running the schedulability
analysis. In practice, a design tool supporting schedulability
analysis would be more involved. More specifically, the task
graphs might be integrated with other application-specific
data structures that are not optimized for the schedulability
analysis algorithm. In such cases, the speedups obtained by
our interactive schedulability analysis might be considerably
higher compared to the results reported here.

VI. CONCLUSION

In this paper, we presented a technique to implement a
computationally expensive schedulability analysis algorithm
on GPUs. Our proposed method can effectively utilize the on-
chip shared memory, which was not possible with previously
proposed techniques.

REFERENCES

[1] P. K. Agarwal, S. Krishnan, N. H. Mustafa, and S. Venkatasubramanian.
(Book Chapter). Streaming geometric optimization using graphics
hardware. InEuropean Symposium on Algorithms, pages 544–555.
Springer Berlin / Heidelberg, 2003.

[2] A. Ailamaki, N. K. Govindaraju, S. Harizopoulos, and D. Manocha.
Query co-processing on commodity processors. InVLDB, 2006.

[3] K. Albers and F. Slomka. An event stream driven approximation for the
analysis of real-time systems. InECRTS, 2004.

[4] S. Baruah. Dynamic- and static-priority scheduling of recurring real-
time tasks.Real-Time Systems, 24(1):93–128, 2003.

[5] U. D. Bordoloi and S. Chakraborty. Interactive schedulability analysis.
ACM Trans. Embedded Comput. Syst., 7(1), 2007.

[6] U. D. Bordoloi and S. Chakraborty. GPU-based acceleration of system-
level design tasks.International Journal of Parallel Programming, 38(3-
4), 2010.

[7] S. Chakraborty, T. Erlebach, and L. Thiele. On the complexity of
scheduling conditional real-time code. InProc. 7th International
Workshop on Algorithms and Data Structures (WADS), Lecture Notes
in Computer Science 2125, pages 38–49, 2001.

[8] S. Chakraborty, S. K̈unzli, and L. Thiele. Approximate schedulability
analysis. InRTSS, 2002.

[9] D. Chatterjee, A. De Orio, and V. Bertacco. GCS: High-performance
gate-level simulation with GP-GPUs. InDATE, 2009.

[10] K. Gulati and S. P. Khatri. Towards acceleration of fault simulation
using graphics processing units. InDAC, 2008.

[11] J. Krüger and R. Westermann. Linear algebra operators for GPU im-
plementation of numerical algorithms.ACM Transactions on Graphics,
22(3):908–916, 2003.

[12] B. A. Jose S. K. Shukla M. Nanjundappa, H. D Patel. Scgpsim: A fast
SystemC simulator on gpus. InASP-DAC, 2010.

[13] W. R. Mark, R. S. Glanville, K. Akeley, and M. J. Kilgard.Cg: a
system for programming graphics hardware in a C-like language. ACM
Transactions on Graphics, 22(3):896–907, 2003.

[14] K. Mueller and F. Xu. Ultra-fast 3d filtered backprojection on com-
modity graphics hardware. InInternational Symposium on Biomedical
Imaging, pages 571–574, 2004.

[15] NVIDIA. CUDA Programming Guide version 1.0, 2007.
[16] R. J. Rost.OpenGL Shading Language. Addison-Wesley, 2006.

