Exploiting GPU On-Chip Shared Memory for
Accelerating Schedulability Analysis

Swaroop Nunng Unmesh D. Bordoldi, Samarjit Chakraborty Petru Ele$, Zebo Peng
1TU Munich, Germany
2Linkopings Universitet, Sweden
'E-mail: {swar oop. nunna, samarjit.chakraborty}@cs. ei.tum de
2E-mail:{unnbo, pet el , zebpe}@da. | i u. se

Abstract— Embedded electronic devices like mobile phones
and automotive control units must perform under strict timing
constraints. As such, schedulability analysis constitutes an im- m
. . Constraints Parameters
portant phase of the design cycle of these devices. Unfortundye Violated
schedulability analysis for most realistic task models turn out
to be computationally intractable (NP-hard). Naturally, in the

recent past, different techniques have been proposed to accedée

schedulability analysis algorithms, including parallel computing Tlmlng Constraints are]
on Graphics Processing Units (GPUs). However, applying tra- Satisfied ? Analysis
ditional GPU programming methods in this context restricts Ves ﬂ

the effective usage of on-chip memory and in turn imposes w

limitations on fully exploiting the inherent parallel processing

capabilities of GPUs. In this paper, we explore the possibility

of accelerating schedulability analysis algorithms on GPUs while Fig. 1. The iterative design cycle.

exploiting the usage of on-chip memory. Experimental results
demonstrate upto9x speedup of our GPU-based algorithms over Firstly, modern GPUs are extremely powerful; high-end
the implementations on sequential CPUs. GPUs, such as the nVIDIA GeForce 8800 GTX, have a
FLOPS rates of around 330 GigaFLOPS, whereas high-end
general-purpose processors are only capable of around 25
Many embedded devices like mobile phones and automoti@qagaFLops. Secondly, GPUs are now commodity items
control units have to satisfy strict timing constraints.nide, as their costs have dramatically reduced over the last few
the design cycles of these devices involve a schedulaljkears. Hence, the attractive price-performance ratios of
ity or timing analysis phase. Typically, a system design@pyus give us an enormous opportunity to change the way
would choose the values of certain parameters (e.g., ocesomputer-aided tools for embedded system design perform,
frequency and task deadlines) and invoke a schedulabiligyth almost no additional cost. In fact, recent years haense
analysis tool to determine whether the timing constraimés ahe increasing use of graphics processing units (GPUs) for
met. If such an analysis returns a negative answer, then sogiferent general-purpose computing tasks. These spasscr
of the parameters are modified and the analysis is invokgfmerical algorithms [11], computational geometry [1],
once again. This iterative adjustment of the System pametdatabase processing [2]’ image processing [14] Of lagzeth
is repeated till the performance constraints are satistibt has also been a lot interest in accelerating computatiponall
process is illustrated in Figure I. However, schedulqbilitexpensive algorithms in the computer-aided design of
analysis for most realistic task models are computatignalbjectronic systems [10], [9], [12] using GPUs. Our paper
intractable (NP-hard) [7]. Hence, each iteration takesraylofollows this line of work and proposes a novel technique to

time to run. This critically impacts the usability of the toojmplement schedulability analysis algorithms on GPUs.
in the interactive design sessions. In order to reduce thg lo

running timeS, in this paper, we propose a technique for'accgelated Work and Our Contributions: To accelerate the
erating a schedulability analysis algorithm by implemegtit tedious design cycles associated with schedulability yanal
on Graphics Processing Units (GPUs). In particular, we shé, many different approaches have been proposed in the
that effectively exploiting the GPU on-chip shared memary c literature. In [3], [8], approximation algorithms have bee

lead to more speedups compared to a straightforward paraiféroduced, while aninteractive analysis scheme has been
implementation of the algorithm on the GPU. presented in [5]. However, unlike exact schedulability lana

ysis, approximate schedulability analysis might returlsda
Motivation for using GPU: Our work has been motivated bypositives or false negatives. For example, if the algoriiem
the recent trend of applying GPUs to accelerate non-graphailowed to return false positives, then, in some casespadth
applications. There are many compelling reasons behiadask set is not schedulable, the algorithm incorrectiyrnst
exploiting GPUs for such non-graphics related applicatiorschedulable. Nevertheless, it can be guaranteed that aven i
(in contrast to using, say, ASIC/FPGA-based acceleratorsich cases no task will miss its deadline by more than a

I. INTRODUCTION

prespecified time interval. (e=2,d=4)
On the other hand, thénteractive analysis scheme [5] V1O
exploits the repetitive nature of the iterative design eyicl 5 10
order to achieve speedup. When the algorithm is invoked for Vs
the first time, the full algorithm is allowed to run, but cénta (e=3, d=7) Q V3 (e=6, d=10)
data structures are created and stored. When the algorithm
is invoked in successive iterations after modifying a small 15 20
set of system parameters, these data structures are exploit A Q
to partially run the algorithm and still guarantee the cctre
result. However, this scheme allows onlys@all number of
the system parameters to be changed in each iteration, and
hence doesn't scale well for large number of changes or when

a completely new design needs to be analyzed. triggered, it generates a job which has to be executed (for
Recently, Graphics Processor Units (GPUs) were also UWimount of time withind(v) time units from the triggering-
lized to improve the running times of the schedulabilityyme. Each directed edgéu,v) in the graph is associated

analysis engine [6]. Unlike the techniques mentioned abovgith a minimum intertriggering separatign(u, v), denoting
the approach proposed in [6] always gives optimal resulige minimum amount of time that must elapse before vertex
and it is not restricted tesmall number of Changes to thev can be triggered after the triggering of vertex
parameters to achieve the speed up. However, this techniqughe semantics of the execution of such a task graph state
used a traditional GPU programming model with Cg [13hat the source vertex can be triggered at any time, and if
and OpenGL [16]. This model does not expose the on-chigme vertexu is triggered then the next vertex can be
memory to the programmers and thus, imposes limitations @fygered only if there exists a directed edge v) and at
fully exploiting the inherent parallel processing capiiet of |eastp(u, v) amount of time has passed since the triggering
GPUs. In this context, Compute Unified Device Architecturgf the vertexu. If there are directed edgés, v;) and (u, vs)
(CUDA) [15] — which is a new parallel computing architecfrom the vertex: (representing a conditional branch) then only
ture based on GPUs — seems to be a promising alternatiyge among, andv, can be triggered, after the triggering of
Unlike the traditional GPU programming model, CUDA GPUs,. The triggering of the sink vertex can be followed by the
can be programmed using an extension of C and requires difurce vertex getting triggered again but any two consezuti
previous expertise in graphics programming. In this papefiggerings of the source vertex should be separated)
we explore the possibility of accelerating system-levedigie ynits of time, called theperiod of the task graph.
analysis algorithms with General Purpose GPU (GPGPU)Therefore, a sequence of vertices, v, ...,v; getting
programming with CUDA. In particular, we present the exeriggered at time instants;, ¢, .. ., t, is legal if and only if
cution speed-ups achieved by implementing the scheditabilhere are directed edgés;, v 1), andt, 1 —t; > p(vi, vig1)
analysis on CUDA as well as the performance enhancemefgg; — 1,2, ...,k — 1. The only exception is that;; can
corresponding to the usage of on-chip memory. also be the source and the sink vertex. In this case if there
We demonstrate our technique using the schedulability- angkists some vertex; with j < i in the sequence such that
ysis algorithm of the recurring real-time task model prabs is also the source vertex, thep,; —t; >= P(T) must be
by Baruah in [4]. We chose this task model because it iiditionally satisfied. The real-time constraints reqtlia the
especially suited for accurately modeling conditional4&ge job generated by triggering vertex, wherei = 1,2,... k,
code with recurring behavior, i.e., where code blocks hayg assigned the processor fgj[;z) amount of time within the
conditional branches and run in an infinite loop, as is the cagme interval (¢;, t; + d(v;)].
in many embedded applications. We describe the recurringFigure |l illustrates an example of a recurring real-time
real-time task model and its schedulability analysis in th@sk. In this task, vertexs, for instance, has an execution
next section. Section Il describes the CUDA architecturé arequiremente(vs) = 6, which must be met withinl0 time
programming model. Thereafter, our proposed technique-of ainits (its deadline) from its triggering time. The edae, v3)
celerating the schedulability analysis using CUDA is diggtt has been labeleti0, which implies that the vertexs can be
in Section IV and the results are reported in Section V. triggered only after a minimum of0 time units from the
Il. RECURRING REAL-TIME TASK MODEL triggering of v; (i.e., the minimum intertriggering separation
time). Edges(vy, v2) and (v, v3) from vertexwv; imply that
As mentioned above, in this paper we consider the 'Bither v, or v can be triggered aftes;. The period of the
curring real-time task model. A recurring real-time tafk task (the minimum time interval between two consecutive
is represented by a task graph which is a directed aCyCﬂH@ggerings of the source vertex) i6).
graph with a unique source (a vertex with no incomin .)
edges) and a unique sink (a vertex with no outgoing edge8). Task Sets and Schedulability Analysis
Associated with each vertex of this graph is its execution A task setT = {T1,Ts,...,T,} consists of a collection of
requiremente(v), and deadlinel(v). Whenever a vertex is task graphs, the vertices of which can get triggered indepen

Fig. 2. An example recurring real time task.

(e=2, d=10)

dently of each other. A triggering sequence for such a task dgorithm 1 ComputingT.dbf(t) using dynamic programming
T is legal if and only if for every task grap;, the subset Require: Task graphr”, and a real number > 0

of vertices of the sequence belongingZoconstitute a legal = . (_im T i e(u) = e

triggering sequence fdf;. In other words, a legal triggering 3: PRI otherwise
sequence foff is obtained by merging together (ordered byz: engfer -

I I I i i i I ieri 5: for i<+ 1to —1do
triggering times, with ties broken arbitrarily) legal tgering o forie dton -1 de

sequences of the constituting tasks. I Let there be directed‘edges from the vertiegs, v, . - - s Uiy, 10 V41
The schedulability analysis of a task §ets concerned with - min{t:j:’efe(vprl) — d(vi;) + p(vij, vit1)

determining whether the jobs generated by all possiblel leg&" titie & +d(it1) |5 =1,2,...,k} if e(vig1) <e,
d(viq1) if e(vit1) =e, and oo otherwise

triggering sequences of can be scheduled such that their g fii1e « min{ts o, £l)
associated deadlines are met. In this paper, we assumeseartio: end for e
deadline first (EDF) based preemptive uniprocessor schgdulll: end for
However, all results presented here can be extended to otA&r 7-bf (1) « max{e|tn. <t}
scheduling policies (e.qg., fixed-priority) as well.
A demand bound criteria-based schedulability analysis
states that a task sef is schedulable if and on_Iy if more detailed description, refer to [4])
YorerT.dbf(t) <t foral 0 <t < tya. FOr any given
task T, the functionT.dbf(t) is referred to as thelemand- 7.dbf(t) = max{[t/P(T)|E(T) + T.dbf(t mod P(T)),
bound function. It takes as an argument a positive real number (|¢t/P(T)| — 1)E(T) + T.dbf(P(T) + t mod P(T))} (1)
t and returns the maximum possible cumulative execution
requirement of jobs that can be legally generatedZbgnd To computeT.dbf(t) for “small” values oft, [4] constructs
which have their ready-times and deadlines both within @tina new task graph by taking two copies of the task grapf of

interval of lengtht. It can be proved that and adding an edge from the sink vertex of the first graph to
o durer 2E(T) the source vertex of the second and finally replacing thecgour
R T vertex of the first with a “dummy” vertex with execution

requirement and deadline equal to zero. The intertriggerin
where E(T) is the maximum cumulative execution requireseparations on all edges outgoing from this source vertex is
ment arising from a sequence of vertices on any path froaso made equal to zer@.dbf(t) for all values oft are then
the source to the sink vertex of the task gréph(see [4] calculated by enumerating all possible paths in this neyplgra
for details). The schedulability analysis algorithm tlere For arbitrary task graphs, this incurs a computation timeiwh

involves two steps. is exponential in the number of vertices in the task graph.
(i) ComputingT.dbf(t) for all t < tax @andT € T, and We first outline an algorithm for computing the demand-
(i) Checking thaty" .., T dbf(t)_< EYO<t<t ’ bound function of a task graph for “small values” ©ofUsing
e . I 2 = btmax-

. . . this, we then compute the demand-bound function for any
For the recurring real-time task model, it turns out th lue of¢ as explained above

computing T.dbf(t) for any ¢ is NP-hard (see [7]) and = Gjyen 5 task grapht’, let T’ denote the graph formed by

therefore forms the computationally intensive kernel of ”}oining two copies ofT" by adding an edge from the sink

schedulability analysis algorithm. In what follows, we g ey of the first graph to the source vertex of the second and
a dynamic programming (DP) based algorithm for Compu“%placing the source vertex of the first copy by a “dummy”

T.dbf(t) for any task graphl” and time interval lengtlt. ooy The newly added edge is labeled with an intertrigger

For details on this algorithm, we refer the reader to [8]. 'Eeparation 0p = d(vyimy.). Now we give a pseudo-polynomial

Section IV, we describe our approach to reformulate thicﬁgorithm based on dynamic programming, for computing

algorithm in order to implement it effectively using CUDA. T'".dbf(t) for values oft that do not involve any looping

_ _ through 7", i.e., we consider only “one-shot” executions of
B. Computing the demand-bound function T'. Let there ben vertices inT”’ denoted byv;,vs, ..., vn,

In this section we present a dynamic programming a|g@.nd without any loss of generality we assume that there can
rithm for computing the demand-bound functidhdbf(t) be a directed edge fromy to v; only if i < j. Following our
for any task graphl’. For any task grapi’, computing the notation above, associated with each vertgs its execution

value of T'dbf(t) for some (large) value of < tyax MIGht yoq iremente(v;) which here is assumed to be integral, and
involve multiple traversals (loops) through the task grajph . : ! . , =
was shown in [4] that if for a task gragh, T.dbf(t) is known its deadlined(v;). Associated with each edge;,v;) is the

for all “small values” oft then it is possible to calculate, fromminimum intertriggering separation(v;, v;).
these, the value df'.dbf(t) for any t. “Small values” oft for Let t; . be the minimum time interval within which the
a task grapHhl” are those for which the sequence of verticegsk 7/ can have an execution requirement of exaetifme

that contribute towards computifdgdb f(¢) contain the source | e que to some legal triggering sequence, considerihg on

vertex at most once. The value @tdbf(t) for larger values . .
of ¢ is made up of some multiple o{;j(()T) plung.dbf(t’) a subset of vertices from the séty,vs,...,v;}, if all the

wheret’ is “small” in the sense described above. It followdriggered vertices are to meet their respective deadlibes.
that T.dbf(t) for any ¢t can be computed as follows (for at; . be the minimum time interval within which a sequence

of vertices from the sefvy, v ..., v;}, and ending with the GPU-DRAM Grids

vertexwv;, can have an execution requirement of exaettyme Thread Blocks

units, if all the vertices have to meet their respective tiras. Global <—L =

Lastly, let E = max;—; i—s._ e(v;). Clearly,nE is an upper Memony S | IE=SIES | e Thread fock

bound onT”.dbf(¢) for any ¢ > 0 for one-shot executions of Ji) EES| 555 |:| |:| |:|

T’. It can be shown by induction that Algorithm 1 correctly EEENIEEENN

computesT”.dbf(t), and has a running time @ (n*FE). Constant | | — |:| |:| |:|
We would like to emphasize that'.dbf(t) values obtained Memory _1 s

from Algorithm 1 are essentially the values @fdbf(t) for CERIEEE

“small” values oft. The notation7” was used in the above T ==

explanation in order to explicitly denote the graph formed | ropure | —|B22| [EEE

by joining two copies ofT. Thus, 7’ is an input to the Memory | —»|[EEE|[EEE

Algorithm 1 and the output ig.dbf(t) for “small” values ==

of ¢. Following this, one may now use Equation 1 to calculate
T.dbf(t) for any value oft.

I1l. CUDA . . .
.)]) o between different threads in a block through on-chip memory
In this section, we provide a brief description of CUDATHs the on-chip memory of a multiprocessor forms the

[15]. CUDA abstracts the GPU as a powerful multi-threadeg,5,eq Memory space of the thread block and is typically in
coprocessor capable of accelerating data-parallel, capyne order of KB.

tionally intense operations. The data parallel operatiaffisch C. Memory Access Latencies
are similar computations performed atreams of data, are
referred to agernels. Essentially, with its programming model
and hardware model, CUDA makes the GPU an efficie
streaming platform. Below, we discuss CUDA's programming
and hardware model, followed by a short insight into t

Fig. 3. CUDA programming model.

A typical memory instruction in CUDA issued by a multi-

rocessor consumes 4 clock cycles. However depending upon

e memory space where the memory location that is being

ccessed resides, there will be additional latencies. &e ca

. hﬁﬁe memory location being accessed resides in GPU-DRAM,

memory accc_ass latencies of the GPU. i.e., either inGlobal, Texture or Constant Memory spaces, the

A. Programming Model memory instruction consumes an additional 400 to 600 cycles
In CUDA, threads execute data parallel computations of th©n the other hand, if the memory location resides on-chip in

kernel and are clustered into blocks of threads referredsto the registers ohared Memory, then there will be almost no

thread blocks. These thread blocks are further clustered imdditional latencies in the absence of memory access dsnflic

grids. During implementation, the designer can configuee tifhese additional latencies might obscure the speedupsahat

number of threads that constitute a block as well as the numlbe achieved due to parallelization and hence the on-chigdha

of blocks that constitute a grid. Each thread inside a blaxk hmemory must be judiciously exploited.

its own registers and local memory. The threads in the same |V. SCHEDULABILITY ANALYSIS USING CUDA

block can communicate with each o@her through a MEMOTY | order to accelerate the schedulability analysis algorit

space shared among all the threads in the block and refer(g

i Shared M H licit icati orithm 1) described in Section Il using CUDA, there
0 as shar ermory. FOWEVET, an expiicit communication 5. v proad challenges. Firstly, we need to identify and

. i "SBolate the data parallel computation of the algorithm st th
blocks IS only possible through GPU.'DRA'_V!' GPU-DRAM 'Sthey may be compiled as tHernels. These kernels must be
the dedicated DRAM for the GPU in addition to DRAM ofthen mapped to CUDA thread blocks. Secondly, one has to

thed?rgg. It'i\j dividedv\i/ntcﬁl?bailhl\/ie&béy, Zon?antd'\q_::t”y efficiently exploit the on-chigghared Memory to enhance the
an ure hemory. WWe note tha onsiant an Ure " achievable speedups. In light of these two challenges, we no

Memory dspages are rea[(:j.-only ;e.glglions wherﬁassz Mercri:;)é provide a systematic implementation of Algorithm 1.
Is a read-write region. Figure 3 lllustrates the above " As mentioned above, our first goal is to identify the data

ggzﬁn p;ogsr:]’:lmergls/lg model. '\.IOte. that in ck:).ntrast to the GIDup'arallel portions (kernels) that can be computed in a SIMD
the Shar emory region 1S a on-chip memory Space ¢, qpion using CUDA threads. The kernels must not have

B. Hardware Model any data dependencies (on each other) because they will be
CUDA hardware architecture is implemented as a set ekecuted by threads running in parallel. Towards this, vt fir

SIMD (Single-Instruction-Multiple-Data) multiprocessowith identify the data dependcies in Algorithm 1. Algorithm hés

on-chip memory. Each of these multiprocessors also coasigi—10) essentially builds a dynamic programming (DP) matrix.

set of registers. The thread blocks (described in the preVihei+1-th row in the matrix corresponds to vertex. ; of the

ous subsection) are executed on these multiprocessors sask graph described in Section Il. Each of the cells in fevi

that each multiprocessor executes one or more thread blockssists oft;; . and t;ﬁ . values wherez = 1,2,... ,nkE.

through time slicing. However, each thread block is proegssAccording to Algorithm 1 (line 8), the computation of these

by a single multiprocessor in order to facilitate commutiara values in the cells of thét-1-th row dependsnly on the values

present in thepreviously computed rows. This implies the - b

values of the cells of theame row in the DP-based matrix can . = T
be computed independently of each other by using different | ||I[; T 1
CUDA threads in a SIMD fashion. Therefore, we segregate
this task (lines 8 and 9 of Algorithm 1) as tlkernel of our
CUDA implementation.

We store the DP-matrix irGlobal Memory space, i.e., in
GPU-DRAM. Note that we us&lobal Memory space instead
of Constant or Texture Memory becauseConstant and Texture
Memory are read-only regions. During the computation of our
DP-based matrix we need to perform both read (to fetch values
from previously computed rows) and write (to update the DP-
matrix with the values of the row computed in the curremtig. 4. Accessing data froghared Memory. Since on-chigghared Memory
iteration) operations which can only be done explicitly hwit space is limited, data structures are selectively prefetetieeach iteration.
Global Memory. Also, note that, we have not used the on- o
chip Shared Memory because the size of tfhared Memory number of thread blocks, inspite of the fact that, all the

is typically quite small (see Section IIl) and the entire ppthreads in a single iterati_on need the same data structures -
matrix cannot fit into it. {Q2,...,Q; 1}, as described above. This in turn obscures

However, the on-chigshared Memory can be exploited to the speedups that can be achieved. On the other hand, one can

store other frequently accessed data structures. To fgenffn00S€ & thread block of very large size which has a lot of
such data structures, we once again focus on the kerf¥gads in each block. In this case each thread block will be

operations of our algorithm (linesand9 in Algorithm 1). We executed on a single multiprocessor _via time slicing be@_;aus
note that the computation ‘Dﬂe andt; 1 . values of vertex the number _of processors on multiprocessor are typma_lly
vis1 (ie., thei + 1-th row of the DP-matrix) needs certain@round 8, vyhll_e the_re_ are .thousa}nd.s _of threads_runmng in
values from the vertices;,, vs,, .. .,v;,, wherev;s; has an parallel. Thl_s time shcmg_ will alsollnh|b|t the accglewm tha}t
incoming edge from each of these vertices. Let us denote " Pe achieved. To strike the right balance with the size of
tuple {p(vi;, vit1),d(vi;)} as€2; ;. Thus, from the lines and the thre_ad block, we perform experiments with dn‘fere_nemi
9 of Algorithm 1, the computatiori + 1-th row of the DP- block sizes. Note that CUDA a_IIows thread block sizes _only
matrix requires the valueg; 1, % o, . .., 1. as powers qf 2. He_nce thg deS|gn. space fqr exploration is not
The set, {Q.», ;Qi,k}a’ is éssentially a subset of thehuge and itis possible to find the right size in reasonable.tim

overall specification of the task graph. Also, in iteration1 Moreover, after a threshold size the performance deteesra
of computing the DP-matrix this set of required data strrectu®' 'éMains constant and hence it is not necessary to experime

remains constant, i.e., information about the other pdrtheo With larger sized thread blocks beyond this threshold.
task graph is not required. This set changes only at the next V. EXPERIMENTAL RESULTS
iteration because it corresponds to a different vertex Wwhic For our experiments, we compared three different imple-
might have a different set of incoming edges. This obsesmatimentations of the the schedulability analysis algorithm A o
provides an opportunity to significantly reduce the GPU Hdaséhe CPU (as described in Algorithm 1), on GPU without using
execution times by loading these valugg; »,...,9Q; x} to shared memory and on GPU while exploiting shared memory
the on-chipShared Memory at the beginning of each iteration.(as described in Section IV). We randomly generated syisthet
Compared to the DP-matrix, this set of values is mudask graphs consisting of0, 20, 30, 40 and 50 vertices
smaller and can fit into the on-chip shared memory. Figurerdspectively. The value of which represents the maximum
illustrates our scheme of prefetching the required datecttre possible execution time for a vertex was setltg 000. It
from Global Memory to Shared Memory at the start of each may be noted that the execution requirement associated with
iteration. The figure shows a thread block (which consists ahy vertex of a graph is expressed in termstiofe units.
32 threads) fetching the required data from@&lebal Memory Such time units depend on the application at hand and might
at thei + 1-th iteration. denote milliseconds, microseconds, or even the number of
We recall from Section Ill that the on-chip memory ilock cycles of the processor on which the task graphs are
shared only between the threads within a single block. Hencequired to execute. Hence, experiments with valueg tike
configuring the thread blocks to an appropriate size is al$0,000 are realistic.
important to effectively exploit the GPU on-chip memory. All the experiments were conducted on a machine with
For example, on one hand, if we choose a very small threddd GHz Intel Pentium 4 CPU and 1 GB RAM running
block size, then the computation of each row in our DP-bas®¥dindows XP. The machine was equipped with a nVIDIA
matrix will involve lot of thread blocks. However, only theGeForce 8800 GTX GPU, which was used for our GPU
threads within a thread block share the same chunk of dmsed implementations. The code has been implemented and
chip memory. This implies that data from tkgobal Memory compiled with release mode in Microsoft Visual Studio 2005
to Shared Memory will have to be transfered for a largewhich had CUDA Toolkit 1.1 integrated into it.

Shared

Global
Memory|

Data structures accessed by vertices|

16000 Size CPU Time GPU Time GPU-SM Time
(milliseconds) | (milliseconds)| (milliseconds)

1000 ; 10 147.683716 | 34.910538 28.038548
4, 12000 . 20 955.779358 192.749374 146.997284
'g 30 4346.823242| 720.375671 537.149719
g 10000 40 7945.673828 | 1344.817139 987.577637
g 8000 <4 — CPU 50 13490.95606 | 2783.330078| 1496.557251
c / <% GPU
‘g 6000 - GPU-SM TABLE |
'E 2000 P EXECUTION TIMES OFCPU, GPUAND GPU-SMIMPLEMENTATIONS.

/ -
2000 7 . alone C codes and they did not make use of any graph-
0 PO AT e ical interfaces for specifying the task graphs. Instea@ th
0 o030 a0 S0 6 code was specifically optimized for running the scheduilgbil
Task Graph Size

analysis. In practice, a design tool supporting schediithabi
analysis would be more involved. More specifically, the task

In our experiments, we measured the execution time of tgeaphs might be integrated W't_h _other appllcatlon-spec_lf_lc
three different implementations for each of the tasks gsaptfidt@ structures that are not optimized for the schedutibili
Table | presents the exact values of these measurements3&RlYSis a'QO“th”;]- :jn ISl:)(':Ih casels, the §p§egups obtained by
task graphs of different sizes. The first column correspcl:()dso,urhmter"’mt've sche ﬁa Iltyl analysis m'ﬁ t be consitiéy
the execution time on CPU referred to as ‘CPU Time'. Thiigher compared to the results reported here.
second column corresponds to the execution time on GPU VI. CoNcLusioN
without any optimizations involving exploitation dghared In this paper, we presented a technique to implement a
Memory space and is referred to as ‘GPU Time'. The thirdomputationally expensive schedulability analysis atpaor
column referred to as ‘GPU-SM Time’ corresponds to the exen GPUs. Our proposed method can effectively utilize the on-
cution time on GPU as well but with the exploitation®fared chip shared memory, which was not possible with previously
Memory as described in Section IV. Figure 5 provides a visugroposed techniques.
representation of these speedups. As mentioned in Sedfjon | REFERENCES
we experimented with different sizes Of. thread blocks. W?l] P. K. Agarwal, S. Krishnan, N. H. Mustafa, and S. Venkat@amanian.
observed a performance enhancement (i.e., speed ups) as we(Book Chapter). Streaming geometric optimization using giph
increased the thread block size upto 512. However, wittetarg ~ hardware. InEuropean Symposium on Algorithms, pages 544-555.

h d blocks (1024 and 2048) there were no further Springer Berlin / Heidelberg, 2003.

threa 0CKs (a) ere were no furthe Speefﬁ A. Ailamaki, N. K. Govindaraju, S. Harizopoulos, and D. Nzha.
ups. Thus, 512 was the best size for the thread blocks and Query co-processing on commodity processorsviLDB, 2006.

the 'GPU-SM Time’ reported here correspond to experiment[é”] K. Albe_rs and F. _Slomka. An event stream driven approxiorafor the

. . analysis of real-time systems. ECRTS, 2004.
with thread bloc_k S|z.e 512. From our results, yve observe th% S. Baruah. Dynamic- and static-priority scheduling ouging real-
as we progressively increase the task graph size fiono 50 time tasks.Real-Time Systems, 24(1):93-128, 2003.

h PU implementation with Memory provi [5] U. D. Bordoloi and S. Chakraborty. Interactive schedillty analysis.
the GPU implementatio t OLmared' ip ovides a ACM Trans. Embedded Comput. Syst., 7(1), 2007.

speedup 0f.2x on average and_a maximum o compgred [6] U. D. Bordoloi and S. Chakraborty. GPU-based acceleratif system-
to CPU. The GPU implementation witthared Memory, i.e., level design taskdnternational Journal of Parallel Programming, 38(3-

] . . 4), 2010.

G.PU SM at.tams a maximum speedupof (for a task graph [7] S. Chakraborty, T. Erlebach, and L. Thiele. On the comiplerf

with 50 ver.t|ces.) and an averag.e oftx speedup compared to scheduling conditional real-time code. IRroc. 7th International

the execution times on CPU. It is noteworthy that the GPU-SM Workshop on Algorithms and Data Sructures (WADS), Lecture Notes
implementation provi % leration compar in Computer Science 2125, pages 38—49, 2001.

pe e tation pro .des L.thb86 acceleration co __pa ?d o [8] S. Chakraborty, S. Knzli, and L. Thiele. Approximate schedulability
a GPU implementation without shared memory utilization. analysis. INRTSS, 2002.

From these results it is evident that as the size of th&] D-tCTattelfJ'E_e. 'IA.t'De Q{Lob%ng Q’/UBegigl%).ZC?O%S: Highfpenance

H . ate-level simulation wi - S. y .

task graph Increases, memory.access Iatenqles can deg[ﬂﬂ . Gulati and S. P. Khatri. Towards acceleration of fasimulation
the speedups that can be attained by GPU implementation. using graphics processing units. DAC, 2008.
This can be noticed from the measurements correspondlhy J- Kriger and R. Westermann. Linear algebra operators for GPU im-
to task graphs of sizes0 and 50. In case of graph with plementation of numerical algorithm&CM Transactions on Graphics,

. C) , 22(3):908-916, 2003.
10 vertices, the GPU and GPU-SM implementations providez] B. A. Jose S. K. Shukla M. Nanjundappa, H. D Patel. Sagpdi fast
4.2x and 5.3x speedups respectively. However, in the cas%] \?\ystRem,\(A? Sli(ml;{latgr cgl gpl_J”S- HEP-AE?(AIC, 2010d M3 Kilarde

. . . R. Mark, R. S. Glanville, K. Akeley, an . J. KilgardCg: a
graph V_”thSO vertices these speedup values &te< and9x, system for programming graphics hardware in a C-like languAgiM
respectively for GPU and GPU-SM. These numbers, therefore, Transactions on Graphics, 22(3):896-907, 2003.
indicate that for GPU-based implementations, exploitimg o[14] K. Mueller and F. Xu. Ultra-fast 3d filtered backprojiect on com-
Chip Shared Memory is an effective method to overcome modity graphics hardware. Imternational Symposium on Biomedical

; . Imaging, pages 571-574, 2004.
performance degradations caused by memory access laengig] NVIDIA. CUDA Programming Guide version 1.0, 2007.

It may be noted that all our implementations were stan#] R-J. RostOpenGL Shading Language. Addison-Wesley, 2006.

Fig. 5. Comparison of CPU, GPU and GPU-SM execution times.

