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Both analysis and design optimisation of real-time systems has predominantly concentrated on

considering hard real-time constraints. For a large class of applications, however, this is both un-

realistic and leads to unnecessarily expensive implementations. This paper addresses the problem

of task priority assignment and task mapping in the context of multiprocessor applications with

stochastic execution times and in the presence of constraints on the percentage of missed deadlines.

We propose a design space exploration strategy together with a fast method for system performance

analysis. Experiments emphasize the efficiency of the proposed analysis method and optimisation

heuristic in generating high-quality implementations of soft real-time systems with stochastic task

execution times and constraints on deadline miss ratios.
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1. INTRODUCTION

For the large majority of applications, if not all, the task execution times are
not fixed, but vary from one activation of the task to the other. This vari-
ability may be caused by application-dependent factors (data-dependent loops
and branches) [Hughes et al. 2001], architectural factors (unpredictable cache
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Fig. 1. Execution time probability density.

and pipeline behavior, dynamic branch predictors), or environment-dependent
factors (network load, for example). In the case of safety-critical applications
(avionics, automotive, medicine, and nuclear plant control systems), the design-
ers have to deal with the worst-case scenario, in particular, with worst-case task
execution times (WCET). An impressive amount of research results, both for
analyzing and designing these systems has been published [Buttazzo 1997].

Designing the system based on the worst-case execution times (WCET) guar-
antees that no timing requirement is broken. However, for large classes of appli-
cations, the soft real-time systems, breaking a timing requirement, though not
desirable, is tolerated provided that this happens with a sufficiently low prob-
ability. Typical applications are, for example, telecommunications, multimedia
applications like MPEG and JPEG, and audio encoding. Thus, for example, Ng
et al. report that 1–4 B-frames out of a group-of-pictures (a group of 12 frames
ordered as IBBPBBPBBPBB, where I, B, and P are frame types defined by the
MPEG standard) may be lost in an MPEG decoding without compromising the
required QoS [Ng et al. 2002]. While in the case of safety critical systems, the de-
signers stress safety at the expense of product cost, in the case of soft real-time
systems, cost reduction can be a strong incentive for using cheap architectures.

While in hard real-time analysis the tasks are assumed to execute for the
amount of time that leads to the worst-case scenario, in soft real-time anal-
ysis task execution time probability distributions are preferred in order to be
able to determine execution time combinations and their likelihoods. These dis-
tributions can be extracted from performance models [van Gemund 1996] by
means of analytic methods or simulation, and profiling [van Gemund 2003b;
Gautama and van Gemund 2000; Gautama 1998]. Obviously, the worst-case
task execution time model is a particular case of such a stochastic one.

Let us consider a cheap processor and a task that runs on it. The probability
density function of the task execution time (ETPDF) on the cheap processor
is depicted in Figure 1a. If the imposed deadline of the task is t, as shown in
the figure, then the cheap processor cannot guarantee that the task will always
meet its deadline, as the WCET of the task exceeds the deadline. If no deadline
misses were tolerated, a faster and more expensive processor would be needed.
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Fig. 2. Motivational example.

The ETPDF of the task on the faster processor is depicted in Figure 1b. In this
case, the more expensive processor guarantees that no deadlines are missed.
However, if a miss deadline ratio of, at most, 15% is tolerated, then even the
cheaper processor would suffice.

The problem of finding the deadline miss ratios, given a hardware platform
and an application, is not trivial and has attracted relatively recent research
work both for mono [Tia et al. 1995; Lehoczky 1996; Sun et al. 1997; Zhou et al.
1999; Gardner 1999; Gardner and Liu 1999; Hu et al. 2001; Manolache et al.
2001, 2004b; Dı́az et al. 2002; Burns et al. 2003] and for multiprocessor systems
[Lehoczky 1997; Kalavade and Moghé 1998; Nissanke et al. 2002; Manolache
et al. 2002, 2004a; van Gemund 2003a].

This work addresses the complementary problem: given a multiprocessor
hardware architecture and a functionality as a set of task graphs, find a task
mapping and priority assignment such that the deadline miss ratios satisfy
imposed constraints.

A naı̈ve approach to this problem would be to optimize the system based on
fixed execution time models (average, median, worst case execution time, etc.)
and to hope that the resulting designs would be optimal or close to optimal
from the point of view of the percentage of missed deadlines. The following
example illustrates the pitfalls of such an approach and emphasizes the need
for an optimisation technique, which considers the stochastic execution times.
Let us consider the application in Figure 2a. The circles denote the tasks and
their shades denote the processors they are mapped onto. The marked edges
show the interprocessor communication. The arrows between the tasks indi-
cate their data dependencies. All the tasks have period 20 and the deadline of
the task graph is 18. Tasks t1, t2, t3, and t4 have constant execution times of 1,
6, 7, and 8, respectively. Task t5 has a variable execution time whose probabil-
ity is uniformly distributed between 0 and 12. Hence, the average (expected)
execution time of task t5 is 6. The interprocessor communication takes 1 time
unit per message. Let us consider the two mapping alternatives depicted in
Figure 2a and 2b, respectively. The two Gantt diagrams in Figure 3a and 3b
depict the execution scenarios corresponding to the two considered mappings if
the execution of task t5 took the expected amount of time, that is 6. The shaded
rectangles depict the probabilistic execution of t5. A mapping strategy based
on the average execution times would select the mapping in Figure 2a as it
leads to a shorter response time (15 compared to 17). However, in this case,
the worst-case execution time of the task graph is 21. The deadline miss ratio

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 2, Article 19, Publication date: February 2008.



19:4 • S. Manolache et al.

P1

P2

t1
t2 t4

t3
t5

Bus

18

18

1815

15

time

time

time

miss 25%

21

(a)

P1

P2

t1
t2

t3 t4

t5

Bus

18

18

18 time

time17

time

19

miss 8.33%

(b)

Fig. 3. Gantt diagrams of the two mapping alternatives in Figure 2.
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Fig. 4. Motivational example.

of the task graph is 3/12 = 25%. If we took into consideration the stochastic
nature of the execution time of task t5, we would prefer the second mapping
alternative, because of the better deadline miss ratio of 1/12 = 8.33%. If we
considered worst-case response times, instead of average ones, then we would
chose the second mapping alternative, the same as the stochastic approach.
However, approaches based on worst-case execution times can be dismissed by
means of very simple counterexamples.

Let us consider a task τ , which can be mapped on processor P1, or on processor
P2. P1 is a fast processor with a very deep pipeline. Because of its pipeline
depth, mispredictions of target addresses of conditional jumps, though rare,
are severely penalized. If τ is mapped on P1, its ETPDF is shown in Figure 4a.
The long and flat density tail corresponds to the rare, but expensive, jump target
address misprediction. If τ is mapped on processor P2, its ETPDF is shown in
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Figure 4b. Processor P2 is slower with a shorter pipeline. The WCET of task τ

on processor P2 is smaller than the WCET if τ ran on processor P1. Therefore,
a design space exploration tool based on the WCET would map task τ on P2.
However, as Figure 4 shows, the deadline miss ratio in this case is larger than
if task τ was mapped on processor P1.

The remainder of the paper is structured as follows. The next section presents
some of the related work in the area and underlines our contribution. Section 3
introduces our system model and gives the problem formulation. Section 4
presents the design space exploration strategy detailing the neighborhood re-
striction heuristic. Section 5 describes the fast approximate method for system
analysis. Section 6 presents a set of experiments we conducted in order to eval-
uate and demonstrate the efficiency of the proposed heuristic. Finally, Section 7
draws conclusions.

2. RELATED WORK AND CONTRIBUTIONS

An impressive amount of work has been carried out in the area of schedulability
analysis of applications with worst-case task execution times both for monopro-
cessor platforms [Liu and Layland 1973; Bini et al. 2001; Leung and Whitehead
1982; Lehoczky et al. 1989; Audsley et al. 1991; Blazewicz 1976; Audsley et al.
1993b; Sun et al. 1997; Spuri and Stankovic 1994; González Harbour et al.
1991] and multiprocessor platforms [Sun and Liu 1995; Sun 1997; Audsley
1991; Audsley et al. 1993a; Tindell and Clark 1994; Palencia Gutiérrez and
González Harbour 1998] under fairly general assumptions.

Fewer publications address the analysis of applications with stochastic task
execution times. Moreover, most of them consider relatively restricted applica-
tion classes, limiting their focus on monoprocessor systems, or on exponential
task execution time probability distribution functions. Some approaches ad-
dress specific scheduling policies or assume high-load systems.

Burns et al. [Burns et al. 1999] address the problem of a system breaking its
timeliness requirements because of transient faults. In their case, the execution
time variability stems from task reexecutions. The shortest interval between
two fault occurrences such that no task exceeds its deadline is determined by
sensitivity analysis. The probability that the system exceeds its deadline is
given by the probability that faults occur at a faster rate than the tolerated
one. Broster et al. [Broster et al. 2002] propose a different approach to the
same problem. They determine the response time of a task given that it reexe-
cutes k ∈ N times resulting for faults. Then, in order to obtain the probability
distribution of the response time, they compute the probability of the event
that k faults occur. The fault occurrence process is assumed to be a Poisson pro-
cess in both of the cited works. Burns et al. [2003] extend Broster’s approach
in order to take into account statistical dependencies among execution times.
While their approaches are applicable to systems with sporadic tasks, they
are unsuited for the determination of task deadline miss probabilities of tasks
with generalised execution time probability distributions. Their approaches
are also confined to sets of independent tasks implemented on monoprocessor
systems.
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Bernat et al. [Bernat et al. 2002] address a different problem. They deter-
mine the frequency with which a single task executes for a particular amount
of time, called execution time profile. This is performed based on the execution
time profiles of the basic blocks of the task. The strength of this approach is
that they consider statistical dependencies among the execution time profiles
of the basic blocks. However, their approach would be difficult to extend to the
deadline miss ratio analysis of multitask systems because of the complex in-
terleaving that characterizes the task executions in such environments. This
would be even more difficult in the case of multiprocessor systems.

Abeni and Buttazzo’s work [Abeni and Butazzo 1999] addresses both sched-
uling and performance analysis of tasks with stochastic parameters. Their focus
is on how to schedule both hard and soft real-time tasks on the same processor,
in such a way that the hard ones are not disturbed by ill-behaved soft tasks. The
performance analysis method is used to assess their proposed scheduling policy
(constant bandwidth server) and is restricted to the scope of their assumptions.

Tia et al. [Tia et al. 1995] assume a task model composed of independent
tasks. Two methods for performance analysis are given. One of them is just an
estimate and is demonstrated to be overly optimistic. In the second method,
a soft task is transformed into a deterministic task and a sporadic one. The
latter is executed only when the former exceeds the promised execution time.
The sporadic tasks are handled by a server policy. The analysis is carried out
on this particular model.

Gardner et al. [Gardner 1999; Gardner and Liu 1999], in their stochastic time
demand analysis, introduce worst-case scenarios with respect to task release
times in order to compute a lower bound for the probability that a job meets its
deadline. Their approach, however, does not consider data dependencies among
tasks and applications implemented on multiprocessors.

Zhou et al. [Zhou et al. 1999] and Hu et al. [Hu et al. 2001] root their work in
Tia’s. However, they do not intend to give per-task guarantees, but characterize
the fitness of the entire task set. Because they consider all possible combinations
of execution times of all requests up to a time moment, the analysis can be
applied only to small task sets because of complexity reasons.

Dı́az et al. [Dı́az et al. 2002] derive the expected deadline miss ratio from the
probability distribution function of the response time of a task. The response
time is computed based on the system-level backlog at the beginning of each hy-
perperiod, i.e., the residual execution times of the jobs at those time moments.
The stochastic process of the system-level backlog is Markovian and its sta-
tionary solution can be computed. Dı́az et al. consider only sets of independent
tasks and the task execution times may assume values only over discrete sets.
In their approach, complexity is mastered by trimming the transition probabil-
ity matrix of the underlying Markov chain or by deploying iterative methods,
both at the expense of result accuracy. According to the published results, the
method is exercised only on extremely small task sets.

Kalavade and Moghé [Kalavade and Moghé 1998] consider task graphs
where the task execution times are arbitrarily distributed over discrete sets.
Their analysis is also based on Markovian stochastic processes. Each state in
the process is characterized by the executed time and lead time. The analysis is
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performed by solving a system of linear equations. Because the execution time
is allowed to take only a finite (most likely small) number of values, such a set
of equations is small.

Kim and Shin [Kim and Shin 1996] consider applications that are imple-
mented on multiprocessors and modeled them as queueing networks. They
restricted the task execution times to exponentially distributed ones, which
reduces the complexity of the analysis. The tasks were considered to be sched-
uled according to a particular policy, namely first-come-first-served (FCFS). The
underlying mathematical model is then the appealing continuous time Markov
chain.

In previous work [Manolache et al. 2004b], we presented a memory and time-
efficient approach for the deadline miss ratio analysis. While the approach is
significantly less restrictive than previous approaches from the assumptions
point of view, it is restricted to monoprocessor systems. Therefore, we intro-
duced a different approach [Manolache et al. 2002] in which we overcome this
restriction. Nevertheless, the analysis time is too large in order to use the al-
gorithm inside an optimization loop, which is the goal of this paper.

Most of the mentioned approaches are inefficient if used inside optimization
loops. In some cases, they work only on severely restricted systems (e.g., small
number of tasks, or particular execution time probability distribution functions,
or monoprocessor systems), while in other cases they are too slow. Therefore, in
this work we propose a fast deadline miss ratio analysis approach that balances
speed with analysis accuracy. The approach is discussed in detail in Section 5.

While there still exists a sizable amount of work on analysis of real-
time applications with stochastic task execution times, almost no publica-
tion addresses the complementary problem: Given a system with stochastic
task execution times, optimize the design such that performance metrics are
maximized.

Hua et al. [Hua et al. 2003] propose an approach that reduces power con-
sumption of a system while keeping task graph deadline miss ratios below
imposed thresholds. The deadline miss ratio analysis deployed by Hua et al. is
based on a heuristic that computes upper bounds of task execution times such
that the task graph deadline is not violated. Once such a task execution time
upper limit assignment is determined, the probability that every task runs less
than or equal to its upper execution time limit is determined. If an assign-
ment of upper limits on task execution times is found that leads to successful
completion probabilities above the imposed threshold, a task execution order
together with task-specific execution voltages are determined. Their approach
only considers monoprocessor systems and, therefore, task mapping is not of
interest. In this case, the execution time of a task graph is simply the sum
of the execution times of its tasks, which greatly simplifies the problem. An-
other simplifying assumption is that Hua et al. consider discrete execution time
probability distributions.

The contribution of our work consists of the following aspects.

1. We show that the stochastic rather than average character of execution times
has to be considered in order to minimize deadline miss ratios.
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2. We propose a fast heuristic for task mapping and priority assignment with
the goal to optimize the deadline miss ratios of tasks and task graphs exe-
cuted on multiprocessor systems.

3. We introduce a fast approximate analysis algorithm for the deadline miss ra-
tios of tasks and task graphs. This algorithm is used inside the optimization
loop of the proposed heuristic.

3. SYSTEM MODEL AND PROBLEM FORMULATION

3.1 Architecture Model

The hardware model consists of a set of processing elements. These can be
programmable processors of any kind (general purpose, controllers, DSPs,
ASIPs, etc.). Let PE = {PE1, PE2, . . . , PEp} denote the set of processing ele-
ments. A bus may connect two or more processing elements in the set PE. Let
B = {B1, B2, . . . , Bl } denote the set of buses. Data sent along a bus by a pro-
cessing element connected to that bus may be read by all processing elements
connected to that bus.

Unless explicitly stated, the two types of hardware resources, processing
elements, and buses, will not be treated differently, and, therefore, will be de-
noted with the general term of processors. Let M = p + l denote the number of
processors and let P = PE ∪ B = {P1, P2, . . . , PM } be the set of processors.

3.2 Application Model

The functionality of an application is modeled as a set of processing tasks,
denoted with t1, t2, . . . , tn. Let PT denote the set of processing tasks. Processing
tasks are graphically represented as large circles, as shown in Figure 2a.

Processing tasks may pass messages to each other. The passing of a message
between tasks mapped to different processors is modeled as a communication
task, denoted with χ . Let CT denote the set of communication tasks. They are
graphically depicted as small disks, as shown in Figure 2a.

Unless explicitly stated, the processing and the communication tasks will
not be differently treated and, therefore, will be denoted with the general term
of tasks. Let N be the number of tasks and T = PT ∪ CT = {τ1, τ2, . . . , τN }
denote the set of tasks.

Data dependencies are graphically depicted as arrows from the sender task
to the receiver task, as shown in Figure 2a.

The task that sends the message is the predecessor of the receiving task,
while the receiving task is the successor of the sender. The set of predecessors
of task τ is denoted with ◦τ , while the set of successors of task τ with τ ◦. A
communication task has exactly one predecessor and one successor and both
are processing tasks. For illustration (Figure 2a), task t2 has one predecessor,
namely, the processing task t1, and it has two successors, namely, tasks t4 and χ2.

Tasks with no predecessors are called root tasks, while tasks with no succes-
sors are called leaf tasks. In Figure 2a, task t1 is a root task, while tasks t3, t4,
and t5 are leaf tasks.
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Let us consider a sequence of tasks (τ1, τ2, . . . , τk), k > 1. If there exists a
data dependency between tasks τi and τi+1, ∀1 ≤ i < k, then the sequence
(τ1, τ2, . . . , τk) forms a computation path of length k. We say that the computa-
tion path leads from task τ1 to task τk . Task τi is an ancestor task of task τ j if
there exists a computation path from task τi to task τ j . Complementarily, we
say that task τi is a descendant task of task τ j if there exists a computation
path from task τ j to task τi. We do not allow circular dependencies, i.e., no task
can be both the ancestor and the descendant of another task. In Figure 2a,
(t1, t2, χ2, t5) is an example of a computation path of length 4 and task t2 is an
ancestor of tasks t4, t5, and χ2.

The set of tasks of an application is partitioned into g partitions. Any two
tasks within the same partition have a common ancestor or a common descen-
dant or are in a predecessor–successor relationship. Two tasks belonging to
different partitions have no common ancestor, nor any common descendant,
neither are they in a predecessor–successor relationship.

The task partitions are denoted V1, V2, . . ., Vg . An application consists of a
set � = {�1, �2, . . . , �g } of g task graphs, �i = (Vi, Ei ⊂ Vi × Vi), 1 ≤ i ≤ g . A
directed edge (τa, τb) ∈ Ei, τa, τb ∈ Vi, represents the data dependency between
tasks τa and τb, denoted τa → τb.

The application in Figure 2a consists of a single task graph that includes all
the processing and communication tasks.

Task instantiations (also known as jobs) arrive periodically. The ith job of
task τ is denoted (τ, i), i ∈ N.

Let �T = {πi ∈ N : τi ∈ T } denote the set of task periods, or job interarrival
times, where πi is the period of task τi. Instantiation u ∈ N of task τi demands
execution (the job is released or the job arrives) at time moment u · πi. The
period πi of any task τi is assumed to be a common multiple of all periods of
its predecessor tasks (π j divides πi, where τ j ∈ ◦τi). Let kij denote πi

π j
, τ j ∈ ◦τi.

Instantiation u ∈ N of task τi may start executing if, and only if, instantiations
u · kij, u · kij + 1, . . . , u · kij + kij − 1 of tasks τ j , ∀τ j ∈ ◦τi, have completed their
execution.

Let �� = {π�1
, π�2

, . . . , π�g } denote the set of task graph periods, where π� j

denotes the period of the task graph � j . π� j is equal to the least common multi-
ple of all πi, where πi is the period of τi and τi ∈ Vj . Task τi ∈ Vj is instantiated

Ji = π� j

πi
times during one instantiation of task graph � j . The kth instantiation

of task graph � j , k ≥ 0, denoted (� j , k), is composed of the jobs (τi, u), where
τi ∈ Vj and u ∈ {k · Ji, k · Ji +1, . . . , k · Ji + Ji −1}. In this case, we say that task
instantiation (τi, u) belongs to task graph instantiation (� j , k) and we denote it
with (τi, u) ∈ (� j , k).

The model, where task periods are integer multiples of the periods of prede-
cessor tasks, is more general than the model, assuming equal task periods all
for tasks in the same task graph. This is appropriate, for instance, when model-
ing protocol stacks. For example, let us consider a part of baseband processing
on the GSM radio interface [Mouly and Pautet 1992]. A data frame is assem-
bled out of four radio bursts. One task implements the decoding of radio bursts.
Each time a burst is decoded, the result is sent to the frame-assembling task.
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Once the frame-assembling task gets all the needed data, that is, every four
invocations of the burst decoding task, the frame-assembling task is invoked.
This way of modeling is more modular and natural than a model assuming
equal task periods, which would have crammed the four invocations of the ra-
dio burst decoding task in one task. We think that more relaxed models than
ours, with regard to relations between task periods, are not necessary, as such
applications would be more costly to implement and are unlikely to appear in
common engineering practice.

3.3 Mapping and Execution Times

Processing tasks are mapped on processing elements and communication tasks
are mapped on buses. All instances of a processing task are executed by the
same processing element on which the processing task is mapped. Analogously,
all instances of a message are conveyed by the bus on which the corresponding
communication task is mapped.

Our heuristic for finding a task mapping is transformational, i.e., it starts
from an initial mapping that it transforms in every iteration until a mapping is
found that fulfills the problem constraints. Hence, the heuristic operates in ev-
ery iteration on a system with fully mapped functionality and communication.
Therefore, we need to take the mapping into consideration when describing the
system model.

Let MapP : PT → PE be a surjective function that maps processing tasks
on the processing elements. MapP(ti) = Pj indicates that processing task ti is
executed on the processing element Pj . Let MapC : CT → B be a surjective
function that maps communication tasks on buses. MapC(χi) = Bj indicates
that the communication task χi is performed on the bus Bj . For notation sim-
plicity, Map : T → P is defined, where Map(τi) = MapP(τi) if τi ∈ PT and
Map(τi) = MapC(τi) if τi ∈ CT. Conversely, let Tp = {τ ∈ T : Map(τ ) = p ∈ P}
denote the set of tasks that are mapped on processor p. Let Tτ be a shorthand
notation for TMap(τ ). Let PEτ denote the set on processors on which task τ may
be mapped.

The mapping is graphically indicated by the shading of the task. In Figure 2a,
tasks t1, t2, and t4 are mapped on processing element PE1 and tasks t3 and t5

on processing element PE2. Both communication task χ1 and χ2 are mapped on
bus B1.

An edge connects either two processing tasks that are mapped on the same
processing element or a processing task to a communication task or a commu-
nication task to a processing task.

For a processing task ti, ∀1 ≤ i ≤ n, let Exti denote its execution time on
processing element MapP(ti). Let εti be the probability density of Exti .

Let ti and t j be any two processing tasks such that task ti is a predecessor
of task t j (ti ∈ ◦t j ) and tasks ti and t j are mapped on the same processing
element (MapP(ti) = MapP(t j )). In this case, the time of the communication
between task ti and t j is considered to be part of the execution time of task ti.
Thus, the execution time probability density εti accounts for this intraprocessor
communication time.
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Let ti and t j be two processing tasks, let χ be a communication task, let PEa

and PEb be two distinct processing elements, and let B be a bus such that all
of the following statements are true:

—Processing tasks ti and t j are mapped on processing elements PEa and PEb,
respectively (MapP(ti) = PEa and MapP(t j ) = PEb).

—Communication task χ is mapped on bus B (MapC(χ ) = B).

—Bus B connects processing elements PEa and PEb.

—Task χ is a successor of task ti and a predecessor of task t j (χ ∈ t◦
i ∧ χ ∈ ◦t j ).

The transmission time of the message that is passed between tasks ti and t j on
the bus B is modeled by the execution time Exχ of the communication task χ .
Let εχ denote the probability density of Exχ .

Without making any distinction between processing and communication
tasks, we let Exi denote an execution (communication) time of an instantia-
tion of task τi ∈ T and we let ET = {ε1, ε2, . . . , εN } denote the set of N execu-
tion time probability density functions (ETPDFs). No restriction is imposed on
the execution time probability distribution functions, i.e. they are generalised
probability distributions.

3.4 Real-Time Requirements

The real-time requirements are expressed in terms of deadlines. Let �T = {δi ∈
N : τi ∈ T } denote the set of task deadlines, where δi is the deadline of task τi.
If job (τi, u) has not completed its execution at time u · πi + δi, then the job is
said to have missed its deadline.

Let �� = {δ� j ∈ N : � j ∈ �} denote the set of task graph deadlines, where δ� j

is the deadline of task graph � j . If there exists at least one task instantiation
(τi, u) ∈ (� j , k), such that (τi, u) has not completed its execution at time moment
k ·π� j +δ� j , we say that task graph instantiation (� j , k) has missed its deadline.

If Di(t) denotes the number of jobs of task τi that have missed their
deadline over a time span t and Ai(t) = � t

πi

 denotes the total number of

jobs of task τi over the same time span, then limt→∞ Di (t)
Ai (t)

denotes the ex-
pected deadline miss ratio of task τi. Let D� j (t) denote the number of task
graph deadline misses in the interval [0, t) and let A� j (t) = � t

π� j

 denote

-3 the number of instantiations of task graph � j in the same interval. Then,

limt→∞
D� j (t)

A� j (t)
denotes the expected deadline miss ratio of task graph � j .

Let MissedT = {mτ1
, mτ2

, . . . , mτN } be the set of expected deadline miss ratios
per task. Similarly, the set Missed� = {m�1

, m�2
, . . . , m�g } is defined as the set

of expected deadline miss ratios per task graph.
The designer may specify upper bounds for tolerated deadline miss ratios,

both for tasks and for task graphs. Let 
T = {θτ1
, θτ2

, . . . , θτN} be the set of
deadline miss thresholds for tasks and let 
� = {θ�1

, θ�2
, . . . , θ�g} be the set of

deadline miss thresholds for task graphs.
Some tasks or task graphs may be designated as being critical by the

designer, which means that deadline miss thresholds are not allowed to be
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violated. The deadline miss deviation of task τ , denoted devτ , is defined as

devτ =

⎧⎪⎨
⎪⎩

∞ mτ > θτ , τ critical

mτ − θτ mτ > θτ , τ not critical

0 mτ ≤ θτ

(1)

Analogously, we define the deadline miss deviation of a task graph. Designating
some tasks as being critical and assigning a deadline miss threshold of 0 to them
allows us to specify systems with both hard and soft real-time tasks.

We say that a task graph instantiation (�, k), k ≥ 0, is active in the system
at time t if there exists at least one task instantiation (τ, u) ∈ (�, k) such that
job (τ, u) has not completed its execution at time t.

Whenever a new instantiation of task graph �i, ∀1 ≤ i ≤ g , arrives and there
exists an already active instantiation in the system at the time of the arrival
of the new instantiation, the existing active instantiation of task graph �i is
discarded. Discarding a task graph implies:

—The running jobs belonging to the task graph to be discarded are immediately
removed from the processors they run onto. These jobs are eliminated from
the system, i.e., their execution is never resumed and all resources that they
occupy (locks, memory, process control blocks, file control blocks, etc.) are
freed.

—The ready-to-run and blocked-on-I/O jobs belonging to the task graph to be
discarded are immediately removed from the ready-to-run and waiting-on-
I/O queues of the scheduler. They are also eliminated from the system.

In the common case of more than one task mapped on the same processor,
a scheduler selects the next task to run based on the priority associated to the
task off line. Because of complexity reasons when dealing with the analysis of
systems with stochastic task execution times, we impose that task execution is
nonpreemptive.1 To circumvent such limitation, the designer may define pre-
emption points for a task. The task is decomposed at these points into subtasks.
The task execution may then be preempted at the preemption points.

3.5 Problem Formulation

The problem addressed in this paper is formulated as follows.
The problem input consists of

—The set of processing elements PE, the set of buses B, and their connection
to processors,

—The set of task graphs �,

—The set of task periods �T and the set of task graph periods ��,

—The set of task deadlines �T and of task graph deadlines ��,

—The set PEτ of allowed mappings of τ for all tasks τ ∈ T ,

1Based on these assumptions, and considering the communication tasks, we are able to model any

priority based bus arbitration protocol as, for instance, CAN [Bosch 1991].
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—The set of execution time probability density functions corresponding to each
processing element p ∈ PEτ for each task τ ,

—The set of communication time probability density functions corresponding
to each bus b ∈ PEχ for each communication task χ ,

—The set of task deadline miss thresholds 
T and the set of task graph deadline
miss thresholds 
�, and

—The set of tasks and task graphs that are designated as being critical.

The problem output consists of a mapping and priority assignment such that
the cost function2

∑
dev =

N∑
i=1

devτi +
g∑

i=1

dev�i (2)

giving the sum of miss deviations is minimized. If a mapping and priority as-
signment is found such that

∑
dev is finite, it is guaranteed that the deadline

miss ratios of all critical tasks and task graphs are below their imposed thresh-
olds.

Because the defined problem is NP-hard (see the complexity of the classi-
cal mapping problem [Garey and Johnson 1979]), we have to rely on heuristic
techniques for solving the formulated problem.

Two problems have to be solved:

—find an efficient design space exploration strategy, and

—develop a fast and sufficiently accurate analysis, providing the needed indi-
cators.

An accurate estimation of the miss deviation, which is used as a cost function
for the optimization process, is in itself a complex and time-consuming task
[Manolache et al. 2002]. Therefore, a fast approximation of the cost function
value is needed to guide the design space exploration.

Section 4 discusses the first subproblems, while Section 5 focuses on the
system analysis we propose.

4. MAPPING AND PRIORITY ASSIGNMENT HEURISTIC

In this section, we propose a design space exploration strategy that maps tasks
to processors and assigns priorities to tasks in order to minimize the cost func-
tion defined in Eq. (2). The exploration strategy is based on the tabu search
(TS) heuristic [Glover 1989].

4.1 The Tabu Search Based Heuristic

Tabu search is a heuristic introduced by Glover [Glover 1989]. It has been suc-
cessfully used for various system-level design problems, such as yield maximiza-
tion problems [Alippi et al. 2003], FIR filter design [Traferro et al. 1999], map-
ping and scheduling of task graphs on SoCs [Wild et al. 2003], and latency-area

2The designers may add weights to the terms of the sums if different criticality degrees need to be

assigned to the deadline miss events.
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tradeoffs for NoCs [Cardoso et al. 2005]. Several researchers have compared
tabu search with other optimization heuristics, such as simulated annealing
and genetic algorithms and shown the superiority of tabu search with regard
to optimization time and quality of results [Hajji et al. 2002; Wild et al. 2003;
Pierre and Houeto 2002; Krishnamachari and Wicker 2000; Eles et al. 1997].

We believe that the message of our paper, namely, that considering the prob-
ability distributions of the task execution times is crucial for obtaining low
deadline miss ratios, would hold even if any other search methods were de-
ployed. Our primary goals are to show that optimization considering stochastic
execution times is possible, how it can be done, how the analysis can be made
fast enough, what the basic moves for design space exploration are, and that
using tabu search is an efficient alternative for design space exploration. Af-
ter reading this paper, and using the analysis approach, as well as the moves
defined by us, it will be a relatively straightforward exercise for the interested
reader to implement the design space exploration using simulated annealing
(SA), genetic algorithms (GA), or a particular, customized design space explo-
ration approach.

We use an extended variant of Tabu search, which is described in this sec-
tion. The variant is not specific to a particular problem. After explaining the
heuristic in general, we will become more specific at the end of the section
where we illustrate the heuristic in the context of task mapping and priority
assignment.

Typically, optimization problems are formulated as follows: Find a configu-
ration, i.e. an assignment of values to parameters that characterize a system,
such that the configuration satisfies a possibly empty set of imposed constraints
and the value of a cost function is minimal for that configuration.

We define the design space S as a set of points (also called solutions), where
each point represents a configuration that satisfies the imposed constraints. A
move from one solution in the design space to another solution is equivalent to
assigning a new value to one or more of the parameters that characterise the
system. We say that we obtain solution s2 by applying the move m on solution
s1, and we write s2 = m(s1). Solution s1 can be obtained back from solution s2

by applying the negated move m, denoted m (s1 = m(s2)).
Solution s′ is a neighbor of solution s if there exists a move m such that

solution s′ can be obtained from solution s by applying move m. All neigh-
bors of a solution s form the neighborhood V (s) of that solution (V (s) = {q :
∃m such that q = m(s)}).

The exploration algorithm is shown in Figure 5. The exploration starts from
an initial solution, labeled also as the current solution (line 1) considered as the
globally best solution so far (line 2). The initial solution may be generated with
a fast greedy algorithm or may be even randomly generated. The initial solution
has typically a reduced impact (or no impact at all) on the quality of the final
solution and on the convergence rate. This insensitivity to the initial solution is
because of the diversification phase (explanation later in this Section) of tabu
search and the fact that tabu search does not get stuck in local minima of the
search space. These two properties ensure that unexplored parts of the search
space are eventually explored by the tabu search heuristic.
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Fig. 5. Design space exploration algorithm.

The cost function is evaluated for the current solution (line 3). We keep track
of a list of moves TM that are marked as tabu. A solution will leave the tabu
list after a certain number of iterations (the tabu tenure). Initially the list is
empty (line 4).

We construct CM, a subset of the set of all moves that are possible from the
current solution point (line 7). Let N (CM) be the set of solutions that can be
reached from the current solution by means of a move in CM.3 The cost func-
tion is evaluated for each solution in N (CM). Let m ≤ m′ if cost(m(crt sol )) ≤
cost(m′(crt sol )). A move in CM is selected (line 8) as follows.

If ∃m ∈ CM such that m ≤ m′∀m′ ∈ CM ∧ cost(m(crt sol )) ≤ global best,
then move m is selected. Else, if ∃m ∈ CM\TM such that m ≤ m′∀m′ ∈ CM\TM,
then move m is selected. Else, m ∈ TM such that m ≤ m′∀m′ ∈ TM is selected.

The new solution is obtained by applying the chosen move m on the current
solution (line 11). The reverse of move m is marked as tabu such that m will not
be reversed in the next few iterations (line 12). The new solution becomes the
current solution (line 15). If it is the case (line 16), the new solution becomes
also the globally best solution reached so far (lines 17–18). However, it should be
noted that the new solution could have a larger cost than the current solution.
This could happen if there are no moves that would improve on the current

3If CM is the set of all possible moves from crt sol then N (CM) = V (crt sol ) W.
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solution or all such moves would be tabu. By this, the heuristic has the potential
to escape from local minima. Placing the reverse of the most recent moves
into the list TM of tabu moves also avoids cycling, which could occur if the
move returns to a recently visited solution. The procedure of building the set of
candidate moves and then choosing one according to the criteria listed above is
repeated. If no global improvement has been noted for the past W iterations, the
loop (lines 10–23) is interrupted (line 10). In this case, a diversification phase
follows (line 25) in which a rarely used move is performed in order to force the
heuristic to explore different regions in the design space. The whole procedure
is repeated until the heuristic iterated for a specified maximum number of
iterations (line 9). The procedure returns the solution characterized by the
lowest cost function value that it found during the design space exploration
(line 28).

Two issues are of utmost importance when tailoring the general tabu search-
based heuristic, described above for particular problems.

First, there is the definition of what is a legal move. On one hand, the trans-
formation of a solution must result in another solution, i.e., the resulting param-
eter assignment must satisfy the set of constraints. On the other hand, because
of complexity reasons, certain restrictions must be imposed on what constitutes
a legal move. For example, if any transformation were a legal move, the neigh-
borhood of a solution would comprise the entire solution space. In this case, it
is sufficient to run the heuristic for just one iteration (max iterations = 1), but
that iteration would require an unreasonably long time, as the whole solution
space would be probed. Nevertheless, if moves were too restricted, a solution
could be reached from another solution only after applying a long sequence of
moves. This makes the reaching of the far-away solution unlikely. In this case,
the heuristic would be inefficient as it would circle in the same region of the
solution space until a diversification step would force it out.

The second issue is the construction of the subset of candidate moves. One
solution would be to include all possible moves from the current solution in the
set of candidate moves. In this case, the cost function, which sometimes can
be computationally expensive, has to be calculated for all neighbors. Thus, we
would run the risk to render the exploration slow. If we had the possibility to
quickly assess which are promising moves, we could include only those in the
subset of candidate moves.

For our particular problem, namely, the task mapping and priority assign-
ment, each task is characterized by two attributes: its mapping and its priority.
In this context, a move in the design space is equivalent to changing one or both
attributes of one single task.

In the following section, we discuss the issue of constructing the subset of
candidate moves.

4.2 Candidate Move Selection

The cost function is evaluated |CM| times at each iteration, where |CM| is the
cardinality of the set of candidate moves. Let us consider that task τ , mapped
on processor Pj , is moved to processor Pi and there are qi tasks on processor
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Pi. Task τ can take one of qi +1 priorities on processor Pi. If task τ is not moved
to a different processor, but only its priority is changed on processor Pj , then
there are qj − 1 possible new priorities. If we consider all processors, there are
M − 2 + N possible moves for each task τ , as shown in the equation

qj − 1 +
M∑

i=1
i�= j

(qi + 1) = M − 2 +
M∑

i=1

qi = M − 2 + N (3)

where N is the number of tasks and M is the number of processors. Hence, if
all possible moves are candidate moves,

N · (M − 2 + N ) (4)

moves are possible at each iteration. Therefore, a key to the efficiency of the
algorithm is the intelligent selection of the set CM of candidate moves. If CM
contained only those moves that had a high chance to drive the search toward
good solutions, then fewer points would be probed, leading to a speed up of the
algorithm.

In our approach, the set CM of candidate moves is composed of all moves that
operate on a subset of tasks. Tasks are assigned scores and the chosen subset
of tasks is composed of the first K tasks with respect to their score. Thus, if we
included all possible moves that modify the mapping and/or priority assignment
of only the K highest-ranked tasks, we would reduce the number of cost function
evaluations N/K times.

We illustrate the way the scores are assigned to tasks based on the example
in Figure 2b. As a first step, we identify the critical paths and the noncritical
computation paths of the application. The average execution time of a compu-
tation path is given by the sum of the average execution times of the tasks
belonging to the path. A path is critical if its average execution time is the
largest among the paths belonging to the same task graph. For the example in
Figure 2b, the critical path is t1 → t2 → t4, with an average execution time of
1+6+8 = 15. In general, noncritical paths are those paths starting with a root
node or a task on a critical path, ending with a leaf node or a task on a critical
path and containing only tasks that do not belong to any critical path. For the
example in Figure 2b, noncritical paths are t1 → t3 and t2 → t5.

For each critical or noncritical path, a path-mapping vector is computed. The
mapping vector is a P -dimensional integer vector, where P is the number of
processors. The modulus of its projection along dimension pi is equal to the
number of tasks that are mapped on processor pi and that belong to the consid-
ered path. For the example in Figure 2b, the vectors corresponding to the paths
t1 → t2 → t4, t1 → t3 and t2 → t5 are 2i + 1j, 1i + 1j, and 2i + 0j respectively,
where i and j are the versors along the two dimensions. Each task is character-
ized by its task-mapping vector, which has a modulus of 1 and is directed along
the dimension corresponding to the processor on which the task is mapped. For
example, the task-mapping vectors of t1, t2, t3, t4, and t5 are 1i, 1i, 1j, 1j, and
1i, respectively.

Next, for each path and for each task belonging to that path, the angle be-
tween the path- and the task-mapping vectors is computed. For example, the
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task-mapping vectors of tasks t1 and t2 form an angle of arccos 2√
5

with the path-

mapping vector of critical path t1 → t2 → t4 and the task-mapping vectors of
task t1 and t3 form an angle of 45◦ with the path-mapping vector of the non-
critical path t1 → t3. The mapping vector of task t4 forms an angle of arccos 1√

5

with the mapping vector of the critical path t1 → t2 → t4.
The score assigned to each task is a weighted sum of angles between the

task’s mapping vector and the mapping vectors of the paths to whom the task
belongs. The weights are proportional to the relative criticality of the path.
In our example, we weight angles between task-mapping vectors and mapping
vectors of critical paths with 4, while angles between task-mapping vectors and
mapping vectors of noncritical paths have weight 1. Hence, the score of task t1

is 4.0 · arccos 2√
5

+ 1.0 · π
4

≈ 2.64, that of task t2 is 4.0 · arccos 2√
5

≈ 1.85, that

of task t3 is π
4

≈ 0.78, that of task t4 is 4.0 · arccos 1√
5

≈ 4.43, and the score of

task t5 is 0. Task t4 has the highest score and moves that change its mapping
or priority are promising candidate moves. Intuitively, this approach attempts
to map the tasks that belong to critical paths on the same processor (in our
example, to move task t4 from the shaded to the white processor such that the
whole critical path t1 → t2 → t4 is mapped on the same processor). In order to
avoid processor overload, the scores are penalized if the task is intended to be
moved on highly loaded processors.

Once scores have been assigned to tasks, the first K = N/c tasks are selected
according to their scores. In our experiments, we use c = 2. In order to further
reduce the search neighbourhood, not all possible moves that change the task
mapping and/or priority assignment of one task are chosen. Only two processors
are considered as target processors for each task. The selection of those two
processors is made based on scores assigned to processors. These scores are a
weighted sum of the potential reduction of interprocessor communication and
processor load.

We will illustrate how the scores are computed using the application exam-
ple in Figure 2a. On the white processor, task t2 communicates with one task
(t5) over the bus, while it does not use the bus to communicate with tasks t1

and t4. If we moved task t2 on the shaded processor, we would obtain two inter-
processor communications (from task t1 and to task t4) and one intraprocessor
communication (to task t5). Thus, moving task t2 would imply increasing the
IPC from 1 to 2, i.e., an increase of 100%.

If we moved task t3 from the shaded processor to the white processor, all the
interprocessor communication caused by task t3 disappears (task t3 communi-
cates only with task t1, which is on the white processor). We would reduce the
interprocessor communication with 100%. If the score contained only the IPC
reductions, the algorithm would try to cluster all tasks on a single processor.
In order to counter that, we added the processor load as a penalty in the score
calculation. Moving task t3 from the shaded to the white processor would reduce
the IPC of task t3 with 100%, but would also increase the load of the white pro-
cessor with the load caused by task t3. As the white processor has to cope with
an average work load of 15 units (the average execution times of tasks t1, t2, and
t4), the 100% reduction would be penalized with an amount proportional to 15.
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Because we add two different types of quantities (IPC modification and pro-
cessor load modification), we need to weight them differently in order to get
meaningful scores. The weights are obtained empirically. We observe which are
the typical IPC modifications and which are the typical processor load modifica-
tions as a result of moving a task from one processor to another. In our case, we
weight the processor load modification with −5.5 and the IPC modification with
1. The processor load is weighted with a negative weight, in order to penalize
overload.

On average, there will be N/M tasks on each processor. Hence, if a task is
moved to a different processor, it may take N/M + 1 possible priorities on its
new processor. By considering only N/2 tasks and only two target processors
for each task, we restrict the neighborhood to

N/2 · 2 · (1 + N/M ) = N · (1 + N/M ) (5)

candidate moves on average. This restricted neighborhood is approximately

N · (M − 2 + N )/(N · (1 + N/M )) ≈ M (6)

times smaller than the neighborhood that resulted from the application of all
possible moves. We will denote this method as the restricted neighborhood
search. In Section 6, we will compare the restricted neighborhood search with
an exploration of the complete neighborhood.

5. ANALYSIS

This section presents our analysis algorithm that is used for evaluation of the
cost function that is driving the design space exploration. The first part of the
section discusses the deduction of the algorithm itself, while the second part
presents some considerations on the approximations that were made and their
impact regarding the accuracy.

5.1 Analysis Algorithm

The cost function that is driving the design space exploration is
∑

dev, where
dev is the miss deviation, as defined in Eq. (2). The miss deviation for each task
is obtained as the result of a performance analysis of the system.

In previous work [Manolache et al. 2002], we presented a performance
analysis method for multiprocessor applications with stochastic task execu-
tions times. The method is based on the Markovian analysis of the underlying
stochastic process. As the latter captures all possible behaviors of the system,
the method gives great insight regarding the system’s internals and bottle-
necks. However, its relatively large analysis time makes its use inappropriate
inside an optimization loop. Therefore, we propose an approximate analysis
method of polynomial complexity. The main challenge is in finding those de-
pendencies among random variables that are weak and can be neglected, such
that the analysis becomes of polynomial complexity and the introduced inaccu-
racy is within reasonable bounds.

Before proceeding with the exposition of the approximate analysis approach,
we introduce the notation that we use in the sequel.
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The finishing time of the j th job of task τ is the time moment when (τ, j )
finishes its execution. We denote it with Fτ, j . The deadline miss ratio of a job
is the probability that its finishing time exceeds its deadline:

mτ, j = 1 − P(Fτ, j ≤ δτ, j ) (7)

The ready time of (τ, j ) is the time moment when (τ, j ) is ready to execute, i.e.,
the maximum of the finishing times of jobs in its predecessor set. We denote
the ready time with Aτ, j and we write

Aτ, j = max
σ∈◦τ

Fσ, j (8)

The starting time of (τ, j ) is the time moment when (τ, j ) starts executing. We
denote it with Sτ, j . Obviously, the relation

Fτ, j = Sτ, j + Exτ, j (9)

holds between the starting and finishing times of (τ, j ), where Exτ, j denotes the
execution time of (τ, j ). The ready and starting times of a job may differ because
the processor might be busy at the time the job becomes ready for execution.
The ready, starting, and finishing times are all random variables.

Let Lτ, j (t) be a function that takes value 1 if (τ, j ) is running at time moment
t and 0 otherwise. In other words, if Lτ, j (t) = 1, processing element Map(τ ) is
busy executing job j of task τ at time t. If (τ, j ) starts executing at time t,
Lτ, j (t) is considered to be 1. If (τ, j ) finishes its execution at time t ′, Lτ, j (t ′) is
considered to be 0. For simplicity, in the sequel, we will write Lτ, j (t) when we
mean Lτ, j (t) = 1. Also, Lτ (t) is a shorthand notation for

∑
j∈N

Lτ, j (t). Lτ, j (t) = 1
if an instantiation of task τ is running at time t.

Let Iτ, j (t) be a function that takes value 1 if

—All tasks in the ready-to-run queue of the scheduler on processor Map(τ ) at
time t have a lower priority than task τ , and

—
∑

σ∈Tτ \{τ } Lσ (t) = 0,

and it takes value 0 otherwise, where Tτ = TMap(τ ) is the set of tasks mapped
on the same processor as task τ . Intuitively, Iτ, j (t) = 1 implies that (τ, j ) could
start running on processing element Map(τ ) at time t if (τ, j ) becomes ready at
or prior to time t. Let Iτ, j (t, t ′) be a shorthand notation for ∃ξ ∈ (t, t ′] : Iτ, j (ξ ) = 1,
i.e., there exists a time moment ξ in the right semiclosed interval (t, t ′], such
that (τ, j ) could start executing at ξ if it become ready at or prior to ξ .

In order to compute the deadline miss ratio of (τ, j ) (Eq. 7), we need to
compute the probability distribution of the finishing time Fτ, j . This, in turn,
can be precisely determined (Eq. 9) from the probability distribution of the
execution time Exτ, j , which is an input data, and the probability distribution of
the starting time of (τ, j ), Sτ, j . Therefore, in the sequel, we focus on determining
P(Sτ, j ≤ t).

We start by observing that Iτ, j (t, t +h) is a necessary condition for t < Sτ, j ≤
t + h. Thus,

P(t < Sτ, j ≤ t + h) = P(t < Sτ, j ≤ t + h ∩ Iτ, j (t, t + h)) (10)
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We can write

P(t < Sτ, j ≤ t + h ∩ Iτ, j (t, t + h))

= P(t < Sτ, j ∩ Iτ, j (t, t + h))

− P(t + h < Sτ, j ∩ Iτ, j (t, t + h)) (11)

Furthermore, we observe that the event

t + h < Sτ, j ∩ Iτ, j (t, t + h)

is equivalent to

(t + h < Aτ, j ∩ Iτ, j (t, t + h))

∪ (sup{ξ ∈ (t, t + h] : Iτ, j (ξ ) = 1} < Aτ, j ≤ t + h ∩ Iτ, j (t, t + h))

In other words, (τ, j ) starts executing after t + h when the processor was avail-
able sometimes in the interval (t, t + h] if, and only if, (τ, j ) became ready to
execute after the latest time in (t, t + h] at which the processor was available.
Thus, we can rewrite Eq. (11) as follows:

P(t < Sτ, j ≤ t + h ∩ Iτ, j (t, t + h))

= P(t < Sτ, j ∩ Iτ, j (t, t + h))

− P(t + h < Aτ, j ∩ Iτ, j (t, t + h))

− P(sup{ξ ∈ (t, t + h] : Iτ, j (ξ ) = 1} < A ≤ t + h

∩ Iτ, j (t, t + h)) (12)

After some manipulations involving negations of the events in the above equa-
tion, and by using Eq. (10), we obtain

P(t < Sτ, j ≤ t + h) = P(Aτ, j ≤ t + h ∩ Iτ, j (t, t + h))

− P(Sτ, j ≤ t ∩ Iτ, j (t, t + h))

− P(sup{ξ ∈ (t, t + h] : Iτ, j (ξ ) = 1} < Aτ, j ≤ t + h

∩ Iτ, j (t, t + h)) (13)

When h becomes very small, the last term of the right-hand side of the above
equation becomes negligible relative to the other two terms. Hence, we write
the final expression of the distribution of Sτ, j as follows:

P(t < Sτ, j ≤ t + h)

≈ P(Aτ, j ≤ t + h ∩ Iτ, j (t, t + h))

− P(Sτ, j ≤ t ∩ Iτ, j (t, t + h)) (14)

We observe from Eq. (14) that the part between t and t + h of the probability
distribution of Sτ, j can be calculated from the probability distribution of Sτ, j

for time values less than t. Thus, we have a method for an iterative calculation
of P(Sτ, j ≤ t), in which we compute

P(kh < Sτ, j ≤ (k + 1)h), k ∈ N

at iteration k + 1 from values obtained during previous iterations.
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A difficulty arises in the computation of the two joint distributions in the
right-hand side of Eq. (14). The event that a job starts or becomes ready prior
to time t and that the processor may start executing it in a vicinity of time t is a
very complex event. It depends on many aspects, such as the particular order of
execution of tasks on different (often all) processors, and on the execution time
of different tasks, quite far from task τ in terms of distance in the computation
tree. Particularly, the dependence on the execution order of tasks on different
processors makes the exact computation of

P(Aτ, j ≤ t + h ∩ Iτ, j (t, t + h))

and

P(Sτ, j ≤ t ∩ Iτ, j (t, t + h))

of exponential complexity. Nevertheless, exactly this multitude of dependencies
of events Iτ, j (t, t +h), Aτ, j ≤ t +h, and Sτ, j ≤ t on various events makes the de-
pendency weak among the aforementioned three events. Thus, we approximate
the right-hand side of Eq. (14) by considering the joint events as if they were
conjunctions of independent events. Hence, we approximate P(t < Sτ, j ≤ t + h)
as follows:

P(t < Sτ, j ≤ t + h)

≈ (P(Aτ, j ≤ t + h) − P(Sτ, j ≤ t)) · P(Iτ, j (t, t + h)) (15)

The impact of the introduced approximation on the accuracy of the analysis is
discussed in Section 5.2, based on a nontrivial example.

In order to fully determine the probability distribution of Sτ, j (and implicitly
of Fτ, j and the deadline miss ratio), we need the probability distribution of Aτ, j

and the probability P(Iτ, j (t, t +h)). Based on Eq. (8), if the finishing times of all
tasks in the predecessor set of task τ were statistically independent, we could
write

P(Aτ ≤ t) =
∏
σ∈◦τ

P(Fσ ≤ t). (16)

In the majority of cases, the finishing times of all tasks in the predecessor
set of task τ are not statistically independent. For example, if there exists a
task α and two computation paths α → σ1 and α → σ2, where tasks σ1 and
σ2 are predecessors of task τ , then the finishing times Fσ1

and Fσ2
are not

statistically independent. The dependency becomes weaker the longer these
computation paths are. Also, the dependency is weakened by the other factors
that influence the finishing times of tasks σ , for example, the execution times
and execution order of the tasks on processors Map(σ1) and Map(σ2). Even if no
common ancestor task exists among any of the predecessor tasks σ , the finishing
times of tasks σ may be dependent, because they or some of their predecessors
are mapped on the same processor. However, these kind of dependencies are
extremely weak as shown by Kleinrock [Kleinrock 1964] for computer networks
and by Li [Li and Antonio 1997] for multiprocessor applications. Therefore, in
practice, Eq. (16) is a good approximation.

Last, we determine the probability P(Iτ, j (t, t + h)), i.e., the probability that
processor Map(τ ) may start executing (τ, j ) sometimes in the interval (t, t + h].
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Fig. 6. Approximate analysis algorithm.

This probability is given by the probability that no task is executing at time t,
i.e.,

P(Iτ, j (t, t + h)) = 1 −
∑

σ∈Tτ \{τ }
P(Lσ (t) = 1) (17)

The probability that (τ, j ) is running at time t is given by

P(Lτ, j (t)) = P(Sτ, j ≤ t) − P(Fτ, j ≤ t) (18)

The analysis algorithm is shown in Figure 6. The analysis is performed over
the interval [0, LCM ), where LCM is the least common multiple of the task
periods. The algorithm computes the probability distributions of the random
variables of interest parsing the set of tasks in their topological order. Thus,
we make sure that ready times propagate correctly from predecessor tasks to
successors.

Line 7 of the algorithm computes the probability that job (τi, j ) starts its
execution sometime in the interval (t, t +h] according to Eq. (15). The finishing
time of the job may lie within one of the intervals (t + BCETi, t + h + BCETi],
(t +BCETi +h, t +2h+BCETi], . . . , (t +WCETi, t +h+WCETi], where BCETi

and WCETi are the best- and worst-case execution times of task τi, respec-
tively. There are �(WCETi − BCETi)/h� such intervals. Thus, the computation
of the probability distribution of the finishing time of the task (line 8) takes
�|ETPDFi|/h� steps, where |ETPDFi| = WCETi − BCETi.

Let |ETPDF| = max1≤i≤N �|ETPDFi|/h�. Then, the complexity of the algo-
rithm is O(N · LCM/h · �|ETPDF|/h�), where N is the number of processing
and communication tasks.

The choice of the discretization resolution h is done empirically such that we
obtain a fast analysis with reasonable accuracy for the purpose of task mapping.
The designers could use an arbitrary task mapping and priority assignment and
analyze the system with a more accurate, but slower, method (e.g., Manolache
et al. [2002]). They could then experiment with various values for h and use
the results of the slower method as a reference. Once a convenient value for h
is found, it is used for the fast analysis that drives the optimization.
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Fig. 7. Application example.

5.2 Approximations

We have made several approximations in the algorithm described in the previ-
ous section. These are:

1. The discretization approximation used throughout the approach, i.e., the
fact that the probability distributions of interest are all computed at discrete
times {0, h, 2h, . . . , �LCM/h
},

2. P(Aτ ≤ t) ≈ ∏
σ∈◦τ P(Fσ ≤ t),

3. P(Aτ, j ≤ t + h ∩ Iτ, j (t, t + h)) ≈ P(Aτ, j ≤ t + h) · P(Iτ, j (t, t + h)) and P(Sτ, j ≤
t ∩ Iτ, j (t, t + h)) ≈ P(Sτ, j ≤ t) · P(Iτ, j (t, t + h)).

The first approximation is inevitable when dealing with continuous func-
tions. Moreover, its accuracy may be controlled by choosing different discretiza-
tion resolutions h.

The second approximation is typically accurate as the dependencies between
the finishing times Fσ are very weak [Kleinrock 1964] and we will not focus on
its effects in this discussion.

In order to discuss the last approximation, we will introduce the following
example. Let us consider the application depicted in Figure 7. It consists of five
tasks, grouped into two task graphs �1 = {A, B, C, D} and �2 = {E}. Tasks A
and B are mapped on the first processor, while tasks C, D, and E are mapped
on the second processor. The two black dots on the arrows between tasks A and
C, and tasks B and D represent the interprocessor communication tasks. Tasks
C, D, and E have fixed execution times of 4, 5, and 6 time units, respectively.
Tasks A and B have execution times with exponential probability distributions,
with average rates of 1/7 and 1/2, respectively.4 Each of the two interprocessor
communications takes 0.5 time units. Task A arrives at time moment 0, while
task E arrives at time moment 11. Task E is the highest priority task. The
deadline of both task graphs is 35.

Because of the data dependencies between the tasks, task D is the last
to run among the task graph �1. The probability that processor two is exe-
cuting task D at time t is analytically determined and plotted in Figure 8a
as a function of t. On the same figure, we plotted the approximation of the
same probability as obtained by our approximate analysis method. The prob-
ability that task E is running at time t and its approximation are shown in
Figure 8b.

4We chose exponential execution time probability distributions only for the scope of this illustrative

example. Thus, we are able to easily deduce the exact distributions in order to compare them to

the approximated ones. Note that our approach is not restricted to exponential distributions and

we use generalized distributions throughout the experimental results.
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Fig. 8. Approximation accuracy.

In Figure 8a, we observe that large approximation errors occur at times
around the earliest possible start time of task D, i.e., around time 4.5.5 We can
write

P(AD ≤ t + h ∩ ID(t, t + h))

= P(ID(t, t + h)|AD ≤ t + h) · P(AD ≤ t + h)

5The time when task D becomes ready is always after the time when task C becomes ready. Task

C is ready the earliest at time 0.5, because the communication A → C takes 0.5 time units. The

execution of task C takes 4 time units. Therefore, the processor is available to task D the earliest

at time 4.5.
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P(ID(t, t + h)|AD ≤ t + h) is interpreted as the probability that task D may
start to run in the interval (t, t + h] knowing that it became ready to execute
prior to time t + h. If t + h < 4.5, and we took into consideration the fact that
AD ≤ t + h, then we know for sure that task C could not have yet finished its
execution of four time units (see footnote). Therefore,

P(ID(t, t + h)|AD ≤ t + h) = 0, t + h < 4.5

However, in our analysis, we approximate P(ID(t, t + h)|AD ≤ t + h) with
P(ID(t, t + h)), i.e., we do not take into account that AD ≤ t. Not taking into
account that task D became ready prior to time t, opens the possibility that
task A has not yet finished its execution at time t. In this case, task C has not
yet become ready, and the processor on which tasks C and D are mapped could
be idle. Thus,

P(ID(t, t + h)) �= 0

because the processor might be free if task C has not yet started. This illustrates
the kind of approximation errors introduced by

P(AD ≤ t + h ∩ ID(t, t + h)) ≈ P(ID(t, t + h)) · P(AD ≤ t + h)

However, what we are interested in is a high-quality approximation closer to
the tail of the distribution, because typically there is the deadline. As we can
see from the plots, the two curves almost overlap for t > 27. Thus, the approx-
imation of the deadline miss ratio of task D is very good. The same conclusion
is drawn from Figure 8b. In this case, too, we see a perfect match between the
curves for time values close to the deadline.

Finally, we assessed the quality of our approximate analysis on larger ex-
amples. We compare the processor load curves obtained by our approximate
analysis (AA) with processor load curves obtained by our high-complexity per-
formance analysis (PA) developed in previous work [Manolache et al. 2002].
The benchmark application consists of 20 processing tasks mapped on two pro-
cessors and three communication tasks mapped on a bus connecting the two
processors. Figure 9 gives a qualitative measure of the approximation. It de-
picts the two processor load curves for a task in the benchmark application.
One of the curves was obtained with PA and the other with AA. A quantitative
measure of the approximation is given in Table I. We present only the extreme
values for the average errors and standard deviations. Thus, row 1 in the table,
corresponding to task 19, shows the largest obtained average error, while row 2,
corresponding to task 13, shows the smallest obtained average error. Row 3, cor-
responding to task 5, shows the worst obtained standard deviation, while row 4,
corresponding to task 9, shows the smallest obtained standard deviation. The
average of standard deviations of errors over all tasks is around 0.065. Thus, we
can say with 95% confidence that AA approximates the processor load curves
with an error of ±0.13.

Although the accuracy of this analysis is good, its main purpose is to be used
inside the design space exploration loop. Once the final optimized design has
been produced, our approach from previous work [Manolache et al. 2002] will
be used in order to evaluate the accurate deadline miss ratio.
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Table I. Approximation Accuracy

Task Average error Standard deviation of errors

19 0.056351194 0.040168796

13 0.001688039 0.102346107

5 0.029250265 0.178292338

9 0.016695770 0.008793487

6. EXPERIMENTAL RESULTS

The proposed heuristic for task mapping and priority assignment has been
experimentally evaluated on randomly generated benchmarks and on a real-
life example. This section presents the experimental setup and comments on
the obtained results. The experiments were run on a desktop PC with an AMD
Athlon processor clocked at 1533 MHz.

The benchmark set consisted of 396 applications. The applications con-
tained t tasks, clustered in g task graphs and mapped on p processors, where
t ∈ {20, 22, . . . , 40}, g ∈ {3, 4, 5}, and p ∈ {3, 4, . . . , 8}. For each combination of
t, g , and p, two applications were randomly generated. Three mapping and pri-
ority assignment methods were run on each application. All three implement
a tabu search algorithm with the same tabu tenure, termination criterion, and
number of iterations, after which a diversification phase occurs. In each itera-
tion, the first method selects the next point in the design space while considering
the entire neighborhood of design space points. Therefore, we denote it ENS,
exhaustive neighborhood search. The second method considers only a restricted
neighborhood of design space points when selecting the next design transfor-
mation. The restricted neighborhood is defined as explained in Section 4.2. We
call the second method RNS, restricted neighborhood search. Both ENS and
RNS use the same cost function, defined in Eq. (2) and calculated according to
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Fig. 10. Cost obtained by RNS versus ENS.

the approximate analysis described in Section 5. The third method considers
the tasks as having fixed execution times, equal to the average task execution
times. It is very similar to ENS, as it uses a tabu search with an exhaustive
neighborhood search. The difference to ENS is that the third method is driven
by a different cost function, namely

∑
laxτ , where laxτ is defined as follows

laxτ =
{

∞ Fτ > δτ ∧ τ is critical

Fτ − δτ otherwise
(19)

The third method is abbreviated LO-AET, laxity optimization based on aver-
age execution times. Once LO-AET has produced a solution, the cost function
defined in Eq. (2) is calculated and reported for the produced mapping and
priority assignment.

6.1 RNS and ENS: Quality of Results

The first issue we look at is the quality of results obtained with RNS compared
to those produced by ENS. The deviation of the cost function obtained with RNS
relative to the cost function obtained by ENS is defined as

costRNS − costENS

costENS
(20)

Figure 10 depicts the histogram of the deviation over the 396 benchmark ap-
plications. The relative deviation of the cost function appears on the x axis.
The value on the y axis corresponding to a value x on the x axis indicates the
percentage of the 396 benchmarks that have a cost function deviation equal to
x. On average, RNS is only 1.65% worse than ENS. In 19% of the cases, the
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obtained deviation was between 0 and 0.1%. Note that RNS can obtain bet-
ter results than ENS (negative deviation). This is because of the intrinsically
heuristic nature of tabu search.

6.2 RNS and ENS: Exploration Time

As a second issue, we compared the runtimes of RNS, ENS, and LO-AET.
Figure 11 shows the average times needed to perform one iteration in RNS,
ENS, and LO-AET, respectively. It can be seen that RNS runs on average 5.16–
5.6 times faster than ENS. This corresponds to the theoretical prediction, made
at in Section 4.2, stating that the neighborhood size of RNS is M times smaller
than the one of ENS when c = 2. In our benchmark suite, M , the number of
processors, is between 3 and 8, averaging to 5.5. We also observe that the anal-
ysis time is close to quadratic in the number of tasks, which again corresponds
to the theoretical result that the size of the search neighborhood is quadratic
in N , the number of tasks.

We finish the tabu search when 40 · N iterations have executed, where N
is the number of tasks. In order to obtain the execution times of the three
algorithms, one needs to multiply the numbers on the ordinate in Figure 11
with 40 · N . For example, for 40 tasks, RNS takes circa 26 min while ENS takes
roughly 2 hr 12 min.

6.3 RNS and LO-AET: Quality of Results and Exploration Time

The LO-AET method is marginally faster than RNS. However, as shown in
Figure 12, the value of the cost function obtained by LO-AET is, on average,
almost an order of magnitude worse (9.09 times) than the one obtained by RNS.
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This supports one of the main messages of this article, namely, that considering
a fixed execution time model for optimization of systems is completely unsuit-
able if deadline miss ratios are to be improved. Although LO-AET is able to find
a good implementation in terms of average execution times, it turns out that
this implementation is very poor from the point of view of deadline miss ratios.
What is needed is a heuristic like RNS, which is explicitly driven by deadline
miss ratios during design space exploration.

6.4 Real-Life Example: GSM Voice Decoding

Last, we considered an industrial-scale real-life example from the telecommu-
nication area, namely a smart GSM cellular phone [Schmitz 2003], containing
voice encoder and decoder, an MP3 decoder, as well as a JPEG encoder and
decoder.

In GSM, a second of human voice is sampled at 8 kHz, and each sample is
encoded on 13 bits. The resulting stream of 13,000 bytes per second is then en-
coded using so-called regular pulse excitation long-term predictive transcoder
(GSM 06.10 specification [ETS]). The encoded stream has a rate of 13,000 bits
per second, i.e., a frame of 260 bits arrives every 20 ms. Such a frame is de-
coded by the application shown in Figure 13. It consists of one task graph of 34
tasks mapped on two processors. The task partitioning and profiling was done
by M. Schmitz [Schmitz 2003]. The period of every task is equal to the frame
period, namely 20 ms. The tasks process an input block of 260 bits. The layout
of a 260-bit frame is shown on the top of Figure 13, where the correspondence
between the various fields in the frame and the tasks processing them is also
depicted.
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For all tasks, the deadline is equal to the period. No tasks are critical in this
application, but the deadline miss threshold of every task is 0. Hence, the value
of the cost function defined in Eq. (2) is equal to the sum of the deadline miss
ratios of all 34 tasks and the deadline miss ratio of the entire application.

The restricted neighborhood search found a task mapping and priority as-
signment of cost 0.0255 after probing 729, 662 potential solutions in 1 hr 31
min on an AMD Athlon clocked at 1533 MHz. This means that the deadline
miss ratio of the voice decoding application, if the tasks are mapped and their
priority is assigned as found by the RNS, is less than 2.55%.

7. CONCLUSIONS

In this paper, we addressed the problem of design optimization of soft real-
time systems with stochastic task execution times under deadline miss ratio
constraints. The contribution is threefold. First, we have shown that methods
considering fixed execution time models are unsuited for this problem. Second,
we presented a design space exploration strategy based on tabu search for task
mapping and priority assignment. Third, we introduced a fast and approximate
analysis for guiding the design space exploration. Experiments demonstrated
the efficiency of the proposed approach.
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