
Immune Genetic Algorithms for Optimization of Task Priorities and
FlexRay Frame Identifiers

Soheil Samii1, Yanfei Yin1,2, Zebo Peng1, Petru Eles1, Yuanping Zhang2

1Department of Computer and Information Science 2School of Computer and Communication
Linköping University, Sweden Lanzhou University of Technology, China

Abstract—FlexRay is an automotive communica-
tion protocol that combines the comprehensive time-
triggered paradigm with an adaptive phase that is
more suitable for event-based communication. We
study optimization of average response times by
assigning priorities and frame identifiers to tasks
and messages. Our optimization approach is based
on immune genetic algorithms, where in addition
to the crossover and mutation operators, we use
a vaccination operator that results in considerable
improvements in optimization time and quality.

I. Introduction and Related Work

The FlexRay [2] communication protocol is major com-
munication component in many modern automotive em-
bedded systems. The development of the protocol was
initiated partly by the need to integrate traditional
time-triggered protocols (e.g., TTP [6]) with adaptive,
event-driven protocols like CAN [1], which has been
used for decades in the automotive applications do-
main. FlexRay supports communication in two peri-
odic phases: a static phase and a dynamic phase. The
static phase is based on a TDMA scheme that provides
deterministic and comprehensive timing behavior. The
dynamic phase is based on a flexible TDMA scheme
and is typically used to implement communication for
applications with relaxed timing constraints (e.g., em-
bedded control applications)—although recent research
results [10], [4] enable designers to implement hard real-
time communication also in the dynamic phase.

An important task in the design process is to de-
cide parameters for execution and communication (e.g.,
task and message priorities, or start times for task
executions and message transmissions). Pop et al. [9]
proposed a solution to the problem of assigning frame
identifiers to messages in the dynamic phase of FlexRay
such that strict timing constraints are satisfied. Other
design methods for systems with the TTP or CAN
protocols have been reported by Pop et al. [8], [7] and
Harbour et al. [3]. An important objective for many
embedded applications is the minimization of average
delays, especially for embedded control applications [14].
The contribution of this paper is a method for priority
assignment and bus-access optimization for FlexRay-
based embedded systems, where the objective is to
minimize the average end-to-end delays. We propose

γ
112

γ
212

γ
213

γ
234

τ22

τ23 τ24

τ21

Bus
CC CC

τ11 τ12

N2N
1

Figure 1. Platform and application example

M
S

M
S

M
S

M
S

M
S

M
S

M
S

M
S

M
S

M
S

M
S

M
S

M
S

M
S

M
S

M
S

M
S

M
S

M
S

M
S

Dynamic phase Dynamic phase

One bus cycle

Static phase Static phase

Figure 2. Bus cycle

an optimization method based on traditional genetic
algorithms [5] and a vaccination operator [12], [13],
resulting in so-called immune genetic algorithms.

II. System Model

A. Platform Model

The execution platform consists of a set of computa-
tion nodes N, indexed by IN, that are connected by
a communication controller to a bus. Figure 1 shows
a system with two nodes (N1 and N2) connected by
communication controllers (denoted CC in the figure) to
a bus. The figure also shows a set of application tasks;
we shall discuss this in Section II-B. The communication
in the system is conducted according to the FlexRay
protocol. The bus cycle is periodic and is composed of
two phases: the static phase and the dynamic phase.
Each of the two phases is of fixed and given length. The
static phase is divided into static slots of equal lengths.
Each static slot is assigned one node; thus, a node has
a set of static slots (possibly no slots assigned) and can
send messages in the static phase only in those slots.
Figure 2 shows an example of a FlexRay bus cycle with
two static slots in the static phase.

The dynamic phase is divided into minislots. The bus
cycle in Figure 2 has 10 equal-length minislots (denoted
MS) in the dynamic phase. The communication in the
dynamic phase is conducted in dynamic slots (as opposed
to static slots of fixed size in the static phase). The slots
in the dynamic phase are of varying size depending on
whether messages are sent in certain minislots and the

number of minislots that are needed to send a particular
message. The maximum number of dynamic slots nDYN

is given as a part of the FlexRay configuration. Each
dynamic slot is assigned one node. Thus, given is a
function dyn : {1, . . . , nDYN} −→ N that assigns a
computation node to each dynamic slot. Let us also
introduce the function dyn∗ : N −→ 2{1,...,nDYN} that
gives the set of dynamic slots assigned to a node—thus,
dyn∗(Nd) = {δ ∈ {1, . . . , nDYN} : dyn(δ) = Nd}.
B. Application Model

On the execution platform runs a set of applications Λ,
indexed by the set IΛ. An application Λi ∈ Λ (i ∈ IΛ)
is modeled as a directed acyclic graph (Ti,Γi), where
the nodes Ti, indexed by Ii, represent computation
tasks and the edges Γi ⊂ Ti × Ti represent data
dependencies between the tasks. The set TΛ =

⋃
i∈IΛ

Ti

represents all application tasks. Let us also introduce
the set Itasks = ∪i∈IΛ

(∪j∈Ii
{(i, j)}) that is used to

index all application tasks in the system. In the system
depicted in Figure 1, we have two applications, Λ1 and
Λ2. Application Λ1 consists of two tasks, T1 = {τ11, τ12},
depicted with grey circles. The second application con-
sists of four tasks depicted with black circles. The tasks
have data dependencies that are indicated by the arrows
in the figure. For example, task τ12 receives a message
γ112 = (τ11, τ12) from task τ11.

An application Λi ∈ Λ has a release period hi. At
time (q − 1)hi, a job of each task in the application is
released for execution. Job q of task τij is denoted τ

(q)
ij

and is released at time (q − 1)hi. For a message γijk =
(τij , τik) ∈ Γi, the message instance produced by job τ

(q)
ij

is denoted γ
(q)
ijk. An edge γijk = (τij , τik) ∈ Γi indicates

that the earliest start time of a job τ
(q)
ik is when τ

(q)
ij

has completed its execution and the produced data
(i.e., γ

(q)
ijk) has been communicated to τ

(q)
ik . We also define

the hyperperiod hΛ as the least common multiple of the
periods {hi : i ∈ IΛ}. The time difference between the
completion and release of a job is called its response time.
Thus, if job τ

(q)
ij finishes at time t, then its response

time is defined as r
(q)
ij = t − (q − 1)hi. The response

time is a key consideration in the design phase of real-
time systems. The worst-case response time of a task is
one of the most important characterizations of hard real-
time applications. In other application domains (e.g.,
for control systems), average response times are more
important parameters of the system performance.

C. Mapping and Execution Times

Each task is mapped to a node. The mapping is given
by a function map : TΛ −→ N. Let us also introduce
the function map∗ : N −→ 2TΛ that, given a node Nd,
gives the set of tasks that are mapped to Nd—thus,

map∗(Nd) =
{
τij ∈ ⋃

i∈IΛ
Ti : map(τij) = Nd

}
. We

remind that Figure 1 also shows the mapping of our
example system. A message between tasks mapped
to different nodes is sent on the bus; thus, the set of
messages that are communicated on the bus is Γbus =
{γijk = (τij , τik) ∈ Γi : map(τij) �= map(τik), i ∈ IΛ}.
For a message instance γ

(q)
ijk, we denote with cijk the

communication time when there are no conflicts on the
bus. Given a mapping of the tasks to the nodes, for each
task, we have a specification of possible execution times.
The execution time of task τij is modeled as a stochastic
variable cij with probability function ξcij

, and it is
bounded by given best-case and worst-case execution
times that are denoted cbc

ij and cwc
ij , respectively.

D. Task and Message Scheduling

The tasks are scheduled on each node according to fixed
priorities. When a job is released for execution, it is
assigned the priority of the task that released it. At any
point in time, the job with highest priority executes. An
executing job can be preempted by a higher-priority job.

Let us now consider message transmission in the dy-
namic phase of the FlexRay bus cycle (see Figure 2). The
dynamic phase has a given length and consists of a given
number of minislots; the length of a minislot is thus also
given. Given is also the maximum number of dynamic
slots nDYN within one dynamic phase. These parameters
for the bus configuration were discussed in Section II-A.
There, we also introduced the dynamic-slot mapping to
computation nodes as a function dyn. In Figure 3, we
show the communication subsystem of the example in
Figure 1. We can see that the first node has two dynamic
slots assigned (slots 1 and 3), whereas the second node
can send messages only in the second dynamic slot. The
total number of dynamic slots is three in this example.
A node has in its communication controller a message
queue for each assigned dynamic slot. The message
queues are depicted with white rectangles in Figure 3.
When a task terminates and produces a message to
a task on another computation node, the message is
transferred to the designated queue. The communication
controller transmits the message on the bus when the
corresponding dynamic slot of the queue starts.

Each message γijk = (τij , τik) ∈ Γbus on the bus is
assigned a frame identifier fijk. The message is sent in
the dynamic slot indicated by the assigned frame identi-
fier. The frame identifier must be assigned a value that
corresponds to a dynamic slot available to the sending
computation node—thus, fijk ∈ dyn∗(map(τij)). In the
example in Figure 3, we have four messages. Message
γ112 is assigned frame identifier 1 and is thus sent in the
first dynamic slot. Messages that are assigned the same
frame identifier might be readyfor transmission at the
same time during runtime. Those messages are ordered

γ
234

γ
212

γ
213γ

112

Bus
CC CC

31 2

Figure 3. Dynamic-slot assignment

M
S

M
S

M
S

M
S

M
S

M
S

M
S

M
S

M
S

M
S

Static phase Static phase

2 2 311Dynamic slot: 3

M
S

M
S

M
S

M
S

M
S

M
S

M
S

M
S

M
S

M
S

Dynamic phase Dynamic phase

γ
112

γ
212

γ
234

γ
213

Figure 4. Communication in dynamic slots

by priorities. Each message is given a fixed priority,
which decides the position of the message in the message
queue in the communication controller. Messages γ212

and γ213 have been assigned the same frame identifier.
We consider that γ213 has the higher priority.

III. FlexRay Communication Example

Let us consider again the system depicted in Figure 1.
The bus is configured like in Figure 2 with a static phase
comprising two static slots (not used in this example)
and a dynamic phase comprising 10 minislots. The max-
imum number of dynamic slots is three (nDYN = 3).
The dynamic slots have been assigned to the two nodes
as shown in Figure 3. The figure shows the messages
γ112, γ212, γ213, γ234 and with arrows their corresponding
frame identifiers, which indicate the dynamic slot of
each message. Initially, only task τ11 can be executed on
node N1 and only τ21 can be executed on node N2. The
other tasks are waiting for messages. Let us assume that
both tasks execute and finish during the static phase.
When the dynamic phase starts, messages γ112 (to task
τ12), γ212 (to task τ22), and γ213 (to task τ23) are in
the corresponding message queues in the communication
controllers and are ready to be transmitted. Message
γ112 has been assigned frame identifier 1 and is therefore
sent in the first dynamic phase. This is indicated in the
bus schedule in Figure 4. The length of the message is
three minislots, which means that, in this bus cycle, the
first dynamic slot comprises three minislots.

The second dynamic slot starts at the end of the
third minislot. As we can see in Figure 3, both γ212

and γ213 have been assigned frame identifier 2. Message
γ213 has higher priority than γ212 and is therefore the
message that is transmitted in the second dynamic slot
(as indicated in Figure 4). The length of the message
is four minislots. When this message has been received
by N1, task τ23 can start its execution. If message γ212

is assigned a higher priority, it will affect the temporal
characteristics of γ213, which is the message that will be
sent in the second dynamic phase. The third dynamic
slot starts at the end of minislot 7. The only message
that is assigned frame identifier 3 is γ234 on node N1.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 200 400 600 800 1000 1200 1400 1600 1800

R
el

at
iv

e
fr

eq
ue

nc
y

Response time

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 200 250 300 350 400 450 500 550

R
el

at
iv

e
fr

eq
ue

nc
y

Response time

Figure 5. Response-time distributions

However, because τ23 has not yet finished its execution,
the message is not ready to be sent. In this first bus
cycle, nothing is sent in the third dynamic slot (the slot
comprises one minislot). The length of a dynamic slot is
one minislot if no message is transmitted, or the length
of the message if a message is transmitted.

In the second bus cycle, we assume that τ23 finishes
its execution during the static phase. At the start of
the second dynamic phase, messages γ212 and γ234 (from
task τ23) are ready for transmission. The first dynamic
phase is one minislot, because no message with frame
identifier 1 is available. Message γ212 is sent in the second
dynamic phase and occupies 3 minislots. Message γ234

is transmitted in the third dynamic slot. The waiting
tasks will execute upon reception of messages. Note that
a message will be transmitted only if there are enough
minislots left until the end of the dynamic phase. If there
are not enough minislots, the message transmission is
delayed to the next bus cycle.

Let us end this section by highlighting that the tem-
poral behavior of the system is affected by the task
priorities and the frame identifiers. We have conducted
two simulations of a system with 35 tasks and considered
the response time of one task. Each simulation is per-
formed for a certain assignment of priorities and frame
identifiers. Figure 5 shows two histograms of response
times, corresponding to the two different assignments
of priorities and frame identifiers, respectively. On the
horizontal axis, we depict the response time, whereas on
the vertical axis, we show the number of times a certain
response time occurred relative to the total number of
response times observed during simulation. Each graph
represents the response-time distribution of a task. The
average response time for the left graph is 477, whereas
for the right graph it is 369. The priorities and frame
identifiers corresponding to the right graph lead to much
better temporal behavior and average response time in
particular, compared to the priorities and frame identi-
fiers corresponding to the left graph.

IV. Problem Formulation

The inputs to our design-optimization problem are
• a set of applications Λ, indexed by IΛ,
• a release period hi for each application Λi (i ∈ IΛ),
• a set of computation nodes N connected to a bus,
• a mapping function map : TΛ −→ N of the whole

task set,

• the length of the static and dynamic phase of the
FlexRay communication cycle,

• the number of minislots in the dynamic phase,
• the number of dynamic slots nDYN and the

dynamic-slot assignment dyn : {1, . . . , nDYN} −→ N
to the computation nodes, and

• execution-time distributions of the tasks and com-
munication times of messages.

The outputs are a fixed priority for each task, and a
frame identifier and priority for each message.

Before we discuss the optimization objective, let us
define what constitutes a solution. A solution consists of
three parts: (1) the task priorities, (2) the frame identi-
fiers for the messages, and (3) the message priorities. We
represent a solution as a sequence ψ = (ρ,f ,ω) consist-
ing of the three parts. Let σT : {1, . . . , |TΛ|} −→ TΛ be
any bijection, giving an ordering of the tasks. The first
part ρ (the task priorities) is a tuple

(ρ1, . . . , ρ|TΛ|) ∈ N × . . . × N︸ ︷︷ ︸
|TΛ| times

= N
|TΛ|,

where each ρk is the priority of task σT(k). We require
unique task priorities—that is, ρk �= ρl for k �= l. The
set of allowed priority assignments is

P =
{

(ρ1, . . . , ρ|TΛ|) ∈ N
|TΛ| : ρk �= ρl, k �= l

}
.

Let us now continue with the remaining two parts
and introduce σΓ : {1, . . . , |Γbus|} −→ Γbus as any
bijection. The second part f (the frame identifiers)
assigns a frame identifier to each message and is a tuple
f = (f1, . . . , f|Γbus|), where fk is the frame identifier of
message σΓ(k). The frame identifiers must be assigned
according to the dynamic-slot assignments to computa-
tion nodes. This means that

f ∈ F = {(f1, . . . , f|Γbus|) ∈ N
|Γbus| :

fk ∈ dyn∗(map(τij)), (τij , τ) = σΓ(k)}.
The third part of the solution comprises the message
priorities. They are used to prioritize among messages
with the same frame identifier. The message priorities
are given by a tuple ω = (ω1, . . . , ω|Γbus|), where ωk is the
priority of message σΓ(k). The set of allowed message-
priority assignments, from which ω can be chosen, is

Ω =
{

(ω1, . . . , ω|Γbus|) ∈ N
|Γbus| : ωk �= ωl, k �= l

}
.

Having defined the solution space, our optimization
objective is to find a solution ψ = (ρ,f ,ω) ∈ P × F ×
Ω that minimizes a cost C. This cost is defined as a
weighted sum of average response times

C =
∑

(i,j)∈Itasks

wijRij , (1)

where Rij denotes the average response time of task τij .
The weights wij � 0 are given by the designer. We are
interested to minimize the delays of selected tasks in the
system. Many of the weights are usually zero.

System specification

Generate population

Population

Evaluate costs

Population costs

New population

Stop?

Crossover

Mutation

Vaccination

No

Yes

D
on

e

Figure 6. Flowchart of the otimization approach

V. Optimization Approach

We propose an immune genetic algorithm [12], [13] for
the assignment of priorities and frame identifiers to
the application tasks and messages. A flowchart of our
approach is depicted in Figure 6. We start by generating
a given number of solutions randomly, also called mem-
bers. These members comprise the initial population
Ψ1 ⊂ P × F × Ω. We proceed by evaluating the cost
of each member in the population. Then, we check for
a convergence criterion to determine whether we should
proceed or stop the optimization. We shall discuss this
stopping condition later in this section. After this step,
if it is decided to continue the optimization, we create a
new generation and go back to the evaluation step.

Let us now consider any iteration k > 0 in the
optimization process. The population is denoted Ψk and
contains the members to be evaluated. We compute the
cost of each member by simulation. Given a member
ψ = (ρ,f ,ω) ∈ Ψk (priorities and frame identifiers),
we use our simulation environment for distributed real-
time systems [11] to obtain an approximation of the av-
erage response times, which constitute our optimization
objective. In addition to the given priorities and frame
identifiers, the simulation environment considers the
execution-time distributions of the tasks and the given
communication times of messages. During simulation, we
compute the average response times periodically with
the period hΛ. Let R(k)

ij denote the set of response times
of task τij that occur in the time interval [0, khΛ[during

simulation (k > 0). At times qhΛ during simulation, we
compute the average delays

R
(q)

ij =
∑

r∈R
(q)
ij

r

/∣∣∣R(q)
ij

∣∣∣
for each task τij with wij �= 0. The simulation is termi-
nated at the first simulated time-instant q′hΛ (q′ > 1)
in which the condition∣∣∣R(q′)

ij − R
(q′−1)

ij

∣∣∣
R

(q′−1)

ij

< ζsim

is satisfied for all tasks τij with wij �= 0. The param-
eter ζsim is given as an input; we have experimentally
tuned this parameter to ζsim = 0.05, which means that
the simulation is stopped when the average response
time of each task has changed with less than 5 percent.
After the simulated time q′hΛ, we have the average
response time as Rij = R

(q′)
ij . We compute then the cost

Cψ of solution ψ according to Equation 1.
We keep track off the best solution found up to any

point in the optimization process. After the evaluation
step in an iteration, we find the solution with the small-
est cost in the population. If this cost is smaller than
the cost of the best solution found so far, then this best
solution is updated. The optimization terminates if the
best solution is unchanged for five consecutive iterations.
If this last condition is not satisfied, we generate a
population Ψk+1 to be evaluated in the next iteration.
In the remainder of this section, we shall discuss the
generation of the next population; this generation step
(the dashed box in Figure 6) is the most important
part of the whole optimization approach. The first two
steps in the dashed box are crossover and mutation
(Sections V-A and V-B). The third and last step is the
application of a vaccination operator (Section V-C).

A. Crossover

After the evaluation of the current population Ψk

(simulation of each member ψ ∈ Ψk), we identify
the two solutions ψfirst and ψsecond with the smallest
cost and second-smallest cost, respectively. These two
members shall survive to the next generation; that is,
ψfirst,ψsecond ∈ Ψk+1. It remains to generate the other
|Ψk| − 2 members (we require |Ψk| to be even). Thus,
after the identification of the two best members in
Ψk, the next step is to perform crossover. A crossover
operation is initiated by choosing two distinct parent
members ψ(1),ψ(2) ∈ Ψk. Then, with probability ζco, we
generate two offsprings ψ′(1) and ψ′(2) from the parents
ψ(1) and ψ(2). All operations on the members are done
individually on the three parts of the solution.

We first generate crossover points κρ ∈ {1, . . . , |TΛ|}
and κf , κω ∈ {1, . . . , |Γbus|} randomly. Let us denote
the first offspring with ψ′(1) = (ρ′(1),f ′(1),ω′(1)) and

consider each of the three parts ρ′(1), f ′(1), and ω′(1)

individually. The sequence ρ′(1) begins with the elements
ρ
(1)
1 , . . . , ρ

(1)
κρ (the first κρ priorities in ρ(1)). We shall

now describe how the remaining |TΛ| − κρ elements
are chosen from ρ(2). For each q ∈ {1, . . . , |TΛ|}, we
remove ρ

(2)
q from ρ(2) if ρ

(2)
q ∈ {ρ(1)

1 , . . . , ρ
(1)
κρ }. Exactly

κρ priorities are removed from ρ(2). Let us denote the
sequence of priorities that remain after the removal
with ρ∗1, . . . , ρ

∗
|ΛT|−κρ

. These are all different from the

priorities ρ
(1)
1 , . . . , ρ

(1)
κρ . Finally, we obtain

ρ′(1) =
(
ρ
(1)
1 , . . . , ρ(1)

κρ
, ρ∗1, . . . , ρ

∗
|ΛT|−κρ

)
.

In this way, we guarantee that the new priority tuple
ρ′(1) assigns a unique priority to each task. The crossover
of the frame identifiers gives

f ′(1) =
(
f

(1)
1 , . . . , f (1)

κf
, f

(2)
κf +1, . . . , f

(2)
|Γbus|

)
.

The message priorities ω′(1) are generated with the
crossover point κω and the parents ω(1) and ω(2) in the
same way as the crossover of the task priorities. The
second offspring ψ′(2) = (ρ′(2),f ′(2),ω′(2)) is given by
the same construction as already described for the first
offspring, but by considering ψ(2) to the left of each
crossover point and ψ(1) to the right.

With probability 1 − ζco, we do not generate the off-
springs but instead let ψ(1) and ψ(2) survive to the next
generation. We repeat this crossover step (|Ψk| − 2)/2
times. The parent members are chosen based on the so-
called ”roulette-wheel selection” scheme, which means
that members are chosen with probabilities induced by
their costs. In this selection scheme, a member with a
smaller cost than another member has a larger proba-
bility to be chosen. The crossover process gives us a set
of members Ψco

k , where |Ψco
k | = |Ψk| − 2. Some of the

members in Ψco
k are taken from Ψk and some are new

offspring members as a result of the crossover step. The
parameter ζco is called the crossover rate and decides
the portion of Ψco

k that are offsprings from the crossover
operation and the portion that contains members from
Ψk that survive into Ψco

k .

B. Mutation
After the crossover step, which combines solutions into
new solutions, we apply the mutation operator on the
population Ψco

k . Mutation is performed on each member
ψ ∈ Ψco

k with probability ζmut, called the mutation rate.
Mutation on a member ψ = (ρ,f ,ω) ∈ Ψco

k generates
a new member ψ′ = (ρ′,f ′,ω′) to replace ψ. We first
generate two distinct positions i, j ∈ {1, . . . , |TΛ|}, i <
j, randomly. These two positions are swapped, obtaining
the mutated task priorities ρ′ =(

ρ1, . . . , ρi−1, ρj , ρi+1, . . . , ρj−1, ρi, ρj+1, . . . , ρ|TΛ|
)
.

Second, mutation is applied on the frame identifiers f .
A position q ∈ {1, . . . , |Γbus|} is generated randomly.
Then, the frame identifier pointed out by this position

is modified to a frame identifier generated randomly from
the set of dynamic slots available to the node that sends
the message. Let (τij , τ) = σΓ(q) be the message. The
new frame identifier f ′

q is chosen randomly from the set
of dynamic slots dyn∗(map(τij)). Thus, we have f ′ =(

f1, . . . , fq−1, f
′
q, fq+1, . . . , f|Γbus|

)
.

Third, mutation is applied to the message priorities
(similar to mutation on task priorities). Two distinct
positions i, j ∈ {1, . . . , |Γbus|}, i < j, are generated
randomly. These two positions are swapped in ω, thus
obtaining ω′. After the mutation step, we have a new
population Ψmut

k , which contains members from Ψco
k

that are either preserved or mutated (the distribution
depends on the chosen mutation rate ζmut).

C. Vaccination

A vaccine is an operator that enforces a certain improv-
ing characteristic into a solution. Typically, a vaccine
changes one or very few positions of a member based
on intuitions or indications of what improves an existing
solution. Such indications are based on offline analysis
of the problem at hand, or based on the results obtained
during the optimization process. Vaccination can achieve
improvements of genetic algorithms, both in terms of
quality of the final solution and in terms of optimization
time (faster convergence).

Let us define a vaccine as a function v : P×F×Ω −→
P × F × Ω that enforces some characteristic into a
member. Vaccination of a member ψ ∈ Ψmut

k generates a
new member v(ψ) to be included in the next population
Ψk+1. Vaccines can be combined together to form a
new vaccine. For example, the composition v1 ◦ v2 of
two vaccines is another vaccine. When applied to a
member ψ ∈ Ψmut

k , it produces a vaccinated member
(v1 ◦ v2)(ψ) = v1(v2(ψ)). Let us now describe how vac-
cines are created during the optimization process. Then,
we describe how we select members for vaccination.

1) Vaccine Creation: In each iteration, after the eval-
uation of the members in the current population Ψk,
we identify the member ψbest

k ∈ Ψk with smallest cost
among all members. To avoid memory explosion, we
consider only the best members of the last 100 iterations,
which means that old solutions are replaced with new
solutions. At any iteration k > 0, we have a set

Ψbest
k =

{ {ψbest
1 , . . . ,ψbest

k } if k � 100
{ψbest

k−99, . . . ,ψ
best
k } if k > 100

of the best members available. Table I shows an the
contents of the set Ψbest

5 with the best solutions found
during the first five iterations of an optimization process.
Each row in the table shows a solution and its value at
each position. There are four tasks and three messages.
The task priorities are displayed first, followed by the
frame identifiers and priorities of the messages. The best
solution of the fourth iteration assigns priority 3 to the

Table I
Best obtained solutions

Iteration ρ1 ρ2 ρ3 ρ4 f1 f2 f3 ω1 ω2 ω3

1 3 1 2 4 3 2 3 3 1 2
2 1 4 2 3 3 3 3 1 3 2
3 2 4 1 3 1 1 1 2 1 3
4 1 3 2 4 3 1 3 1 2 3
5 3 4 2 1 3 4 2 2 1 1

Dom. value – 4 2 – 3 1 3 – 1 –
Dominance – 0.6 0.8 – 0.8 0.4 0.6 – 0.6 –

second task and frame identifier 3 to the first message.
At each iteration k > 0, we create vaccines based

on Ψbest
k . For each position in the members in Ψbest

k ,
we are interested in the value that occurs most fre-
quently. This value is called the dominating value of
that position. In general, for the task priorities and for
each position q ∈ {1, . . . , |TΛ|}, we build the sequence
(ρq)ψ=(ρ,f ,ω)∈Ψbest

k
and denote with ρdom

q the value that
occurs most frequent in that sequence. Each column in
Table I represents such a sequence. The value ρdom

q is
the dominating value of position q of the task priorities.
Similarly, for each position in q ∈ {1, . . . , |Γbus|}, we
have the dominating values of the frame identifier and
message priority as fdom

q and ωdom
q , respectively. In

Table I, the second position ρ2 of the task priorities has
the dominating value 4, as indicated on the first of the
last two row in the table. The dominating values are also
given for the frame identifiers and message priorities.

After identifying the dominating values of each po-
sition, we count the number of solutions in Ψbest

k that
have this value in the position we are considering. Let
us introduce the notation ηρ

q for the relative occurrence
frequency of the value ρdom

q in position ρq (i.e., the num-
ber of times the dominating value occurs in the sequence
divided by

∣∣Ψbest
k

∣∣). We also refer to ηρ
q as the dominance

factor. Similarly, for each position in q ∈ {1, . . . , |Γbus|},
we have the dominance factors ηf

q and ηω
q . The last

row in the Table I shows the dominance factor of each
dominating value. For example, the dominance factor is
0.6 in position ρ2, which has the dominating value 4.

Having extracted the dominating values and their
dominance factors from Ψbest

k , we proceed by creating
the vaccines to be used in the next step. We require a
dominance threshold ηmin as a parameter (0 � ηmin � 1).
This is used to determine the dominating values to use
as vaccines. We shall create vaccines based on those
dominating values with dominance factor larger than or
equal to the given ηmin. Considering the task priorities,
for each position q ∈ {1, . . . , |TΛ|}, if ηρ

q � ηmin, we
create a vaccine vρ

q that, when applied to a member
ψ = (ρ,f ,ω) ∈ Ψmut

k , swaps the values of position
q and the position in ρ that has the value ρdom

q . In
this way, task σT(q) will be forced to have the priority
ρdom

q . For the frame identifiers, if for some position
q ∈ {1, . . . , |Γbus|} the dominance factor is above the

threshold, we create a vaccine vf
q . When applied to a

member ψ = (ρ,f ,ω) ∈ Ψmut
k , the vaccine produces

vf
q (ψ) =

(
ρ,

(
f1, . . . , fq−1, f

dom
q , fq+1, . . . , f|Γbus|

)
,ω

)
.

For the message priorities, we produce vaccines vω
q in

the same way as the vaccines for the task priorities. Let
us denote with Vk the set of vaccines generated from
Ψbest

k . For each vaccine v ∈ Vk, we denote with ηv the
dominance factor of the corresponding position in the
solution that the vaccine v modifies.

Let us consider our example in Table I again and
assume that the dominance threshold is ηmin = 0.7. In
this case, in iteration 5, only the positions ρ3 and f1

have dominance factors larger than 0.7 and thus two
vaccines vρ

3 and vf
1 are created. Vaccine vρ

3 enforces the
priority 2 in position ρ3 (the priority of task σT(3))
when applied to a member. Let us consider a member
ψ = (ρ,f ,ω) given by row 3 in Table I. Then, after
vaccination in position ρ3, we obtain a new member
ψ′ = vρ

3 (ψ) = ((1, 4,2, 3),f ,ω). The bold values in-
dicate the positions that have been changed to enforce
priority 2 in position ρ3. Vaccine vf

1 enforces the frame
identifier 3 in position f1, without modifying the rest
of the solution. When applied to ψ′, it produces the
vaccinated member vf

1 (ψ′) = ((1, 4, 2, 3), (3, 1, 1),ω).
2) Vaccination of the Population: We shall now apply

the vaccines in Vk on selected members from Ψmut
k ,

which is the population generated with the crossover and
mutation operators applied on Ψk. The portion of Ψmut

k

to be vaccinated is decided by the vaccination rate ζvacc.
Each member ψ ∈ Ψmut

k is chosen to be vaccinated with
probability ζvacc. The vaccination of ψ is done in two
steps: First, a set of vaccines are chosen from the set
of available vaccines Vk in the current iteration, and
second, the chosen vaccines are applied to generate the
vaccinated member. We decide randomly a number of
vaccines p ∈ {1, . . . , |Vk|} to be chosen and applied
to the solution ψ. Then, we select p distinct vaccines
v1, . . . , vp from Vk randomly. The probability of select-
ing a vaccine v ∈ Vk is larger the larger its corresponding
dominance factor ηv is. Having selected the vaccines, we
obtain the vaccinated member (v1 ◦ v2 ◦ . . . ◦ vp)(ψ).
The members that were not selected for vaccination
together with the vaccinated members constitute the
vaccinated population Ψvacc

k . We have now generated the
next population Ψk+1 = Ψvacc

k ∪ {ψfirst,ψsecond}.
D. Tuning of Parameters

We have run the optimization for different values of
the parameters (population size, crossover rate, muta-
tion rate, vaccination rate, dominance threshold, and
stopping condition). The population size is constant
through the iterations and is chosen to be |Ψk| =
2 (|TΛ| + |Γbus|). The crossover and mutation rates have
been tuned experimentally to ζco = 0.65 and ζmut = 0.1,

 1260
 1280
 1300
 1320
 1340
 1360
 1380
 1400
 1420
 1440
 1460

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

S
m

al
le

st
 c

os
t f

ou
nd

Vaccination rate

Figure 7. Tuning ζvacc

 1260
 1280
 1300
 1320
 1340
 1360
 1380
 1400
 1420
 1440
 1460

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
m

al
le

st
 c

os
t f

ou
nd

Dominance threshold

Figure 8. Tuning ηmin

respectively. Let us illustrate the tuning of the vacci-
nation rate ζvacc. The dominance threshold was chosen
to be ηmin = 0.4. Figure 7 illustrates the smallest
cost (vertical axis) obtained with different values of
ζvacc (horizontal axis). The figure shows that a pure
genetic algorithm, achieved with ζvacc = 0, results in a
solution with high cost. Better solutions are found as the
vaccination rate is increased. However, larger vaccination
rates than 0.2 result in worse optimization.

We have also tuned the dominance threshold ηmin.
Figure 8 shows the smallest cost (vertical axis) obtained
with different values of ηmin (horizontal axis), while
keeping the other constant. The optimization does not
find good solutions for small dominance thresholds. For
these values, vaccines are created for many positions and
thus the vaccination will be very similar to the mutation
operator. The optimization finds better solutions as the
dominance threshold increases to 0.4. As this value is
increased further, less vaccines are created and therefore
there are smaller number of vaccines available to choose
during the vaccination of the population. Thus, for large
dominance thresholds, vaccines are created for only a
few positions and therefore the optimization quality
decreases. We have chosen the dominance threshold as
ηmin = 0.4 and the vaccination rate as ζvacc = 0.2 for
the extensive experiments reported in the next section.

VI. Experimental Results

Let us consider the optimization of a system with 35
tasks. Figure 9 shows the progress of the optimization.
On the horizontal axis, we show the iteration of the
algorithm, and on the vertical axis, we show the cost
of the best solution obtained so far in that iteration or
in previous iterations. We show the progress of both the
classical genetic algorithm (GA) and the immune genetic
algorithm (IGA). We can see that the immune genetic
algorithm finds a better solution and also terminates
faster than the classical genetic algorithm.

To study the quality improvement that can be
achieved by optimizing the priorities and frame iden-
tifiers, we defined as a straightforward approach based
on a rate-monotonic assignment of priorities and frame
identifiers. In this approach, application tasks with small
periods are given high priorities. Similarly, messages that
are sent from tasks with small periods are assigned small
frame identifiers (a smaller frame identifier is in general
better because it leads to smaller response times).

 560

 580

 600

 620

 640

 660

 680

 700

 0 20 40 60 80 100 120 140 160 180 200

S
m

al
le

st
 c

os
t

Iteration

GA
IGA

Figure 9. Optimization progress

 5

 10

 15

 20

 25

 30

 35

 10 20 30 40 50 60 70

A
ve

ra
ge

 c
os

t i
m

pr
ov

em
en

t [
%

]

Number of tasks

GA
IGA

Figure 10. Achieved improvements

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 10 20 30 40 50 60 70

A
ve

ra
ge

 r
un

tim
e

[s
ec

on
ds

]

Number of tasks

GA
IGA

Figure 11. Optimization time

We have evaluated our optimization framework
through experiments on 144 benchmarks that were gen-
erated with an in-house tool. We considered systems
with 14 to 67 tasks and 2 to 9 nodes. We have run each
benchmark with three approaches: the rate-monotonic
approach (RM), the genetic algorithm (GA), and the
immune genetic algorithm (IGA). For each of the two
genetic algorithm-based approaches (GA and IGA), we
computed the achieved cost-improvement relative to
the RM approach. Thus, for each benchmark, we com-
puted the relative cost improvements ΔCGA = (CRM −
CGA)/CRM and ΔCIGA = (CRM − CIGA)/CRM, where
CRM, CGA, CIGA, respectively, are the costs obtained
with the RM, GA, and IGA approaches. The vertical axis
in Figure 10 shows the average relative improvement,
considering the benchmarks with the number of tasks
given on the horizontal axis. For systems with small
number of tasks, the optimization achieves a very large
improvement, compared to the rate-monotonic assign-
ment scheme. For larger number of tasks, the improve-
ments are fairly constant. The genetic algorithm achieves
a relative improvement around 10 percent. We can also
see that this improvement decreases for benchmarks
with large number of tasks (systems with more than
50 tasks). The vaccination step is important and leads
to improvements of around 15 percent.

All experiments were run on a PC with CPU frequency
2.2 GHz, 8 Gb of RAM, and running Linux. In Figure 11,
we show the average runtime in seconds as a function
of the number of tasks in the benchmarks requested
for. The complex optimization, involving assignments
of priorities and frame identifiers, can be run with the
immune genetic algorithm in less than 6000 seconds
(corresponding roughly to 1.7 hours) to produce an
efficient implementation for large systems of 67 tasks.

VII. Conclusions

FlexRay is a standard communication component in
many modern automotive embedded systems. Task pri-
orities and frame identifiers are important design param-
eters that affect the temporal behavior of the system. An
efficient implementation can only be achieved by explor-
ing and evaluating different assignments of priorities and
frame identifiers. We proposed to use immune genetic al-
gorithms to optimize average response times. In addition

to the crossover and mutation operators in traditional
genetic algorithms, we used a vaccination operator that
leads to both faster and better optimization.

References

[1] R. Bosch GmbH. CAN Specification Version 2.0. 1991.
[2] FlexRay Consortium. FlexRay Communications System.

Protocol Specification Version 2.1. 2005.
[3] J. J. Gutierrez Garcia and M. Gonzalez Harbour. Op-

timized priority assignment for tasks and messages in
distributed real-time systems. In Proceedings of the
3rd Workshop on Parallel and Distributed Real-Time
Systems, pp. 124–132, 1995.

[4] A. Hagiescu, U. D. Bordoloi, S. Chakraborty, P. Sam-
path, P. V. V. Ganesan, and S. Ramesh. Performance
analysis of FlexRay-based ECU networks. In Proceedings
of the 44th Design Automation Conference, pp. 284–289,
2007.

[5] J. H. Holland. Adaptation in Natural and Artificial
Systems. University of Michigan Press, 1975.

[6] H. Kopetz. Real-Time Systems—Design Principles for
Distributed Embedded Applications. Kluwer Academic,
1997.

[7] P. Pop, P. Eles, and Z. Peng. Schedulability analysis
and optimization for the synthesis of multi-cluster dis-
tributed embedded systems. IEE Computers and Digital
Techniques Journal, 150(5):303–312, 2003.

[8] P. Pop, P. Eles, Z. Peng, and T. Pop. Analysis and
optimization of distributed real-time embedded systems.
ACM Transactions on Design Automation of Electronic
Systems, 11(3):593–625, 2006.

[9] T. Pop, P. Pop, P. Eles, and Z. Peng. Bus access
optimisation for FlexRay-based distributed embedded
systems. In Proceedings of the Design, Automation and
Test in Europe Conference, pp. 51–62, 2007.

[10] T. Pop, P. Pop, P. Eles, Z. Peng, and A. Andrei. Timing
analysis of the FlexRay communication protocol. Real-
Time Systems, 39(1–3):205–235, 2008.

[11] S. Samii, S. Rafiliu, P. Eles, and Z. Peng. A simulation
methodology for worst-case response time estimation of
distributed real-time systems. In Proceedings of the
Design, Automation and Test in Europe Conference, pp.
556–561, 2008.

[12] L. Wang and L. Jiao. The immune genetic algorithm and
its convergence. In Proceedings of ICSP, pp. 1347–1350,
1998.

[13] L. Wang and L. Jiao. Immune evolutionary algorithms.
In Proceedings of ICSP, pp. 1655–1662, 2000.

[14] K. E. Årzén, A. Cervin, J. Eker, and L. Sha. An
introduction to control and scheduling co-design. In
Proceedings of the 39th IEEE Conference on Decision and
Control, pp. 4865–4870, 2000.

