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Abstract
Many embedded control systems comprise several control loops
that are closed over a network of computation nodes. In such
systems, complex timing behavior and communication lead to
delay and jitter, which both degrade the performance of each
control loop and must be considered during the controller syn-
thesis. Also, the control performance should be taken into
account during system scheduling. The contribution of this
paper is a control–scheduling co-design method that integrates
controller design with both static and priority-based schedul-
ing of the tasks and messages, and in which the overall control
performance is optimized.
1. Introduction and Related Work
The design of embedded control systems involves two main
activities: synthesis of the controllers, and implementation of
the control applications on a given execution platform. In
the controller synthesis, given the plant to be controlled, a
sampling period and a control law are chosen. It is also com-
mon to account for a constant sampling–actuation delay dur-
ing the control-law computation. The synthesized controllers
are implemented as a set of periodic tasks that read sensors,
compute control signals, and write to actuators; the tasks can
also implement other operations (e.g., signal processing). The
platform, on which the applications execute, very often com-
prises a set of computation nodes that communicate on one or
several buses; such distributed execution platforms are very
common in, for example, automotive and avionics systems.
The tasks and messages are scheduled on the nodes and the
bus, respectively, either offline (static-cyclic scheduling [6]) or
online (e.g., based on priorities [8]).

In addition to the computation delay of a control applica-
tion itself, resource sharing and communication contribute to
the delay in the control loop. It is well-known that not only
the average delay degrades the control performance, but also
the variance of the delay [15]—also called jitter. To achieve a
good performance of distributed embedded control systems,
it is thus important to consider the system timing during
controller synthesis, and to consider the control performance
during system scheduling. Such control–scheduling co-design
problems [16] have become important research directions.

Seto et al. [14] studied mono-processor systems that run
several control tasks. They solved the problem of optimal
period assignment to each controller, with timing constraints
given by two common scheduling policies: rate-monotonic and
earliest-deadline-first scheduling [8]. The optimization goal is
to maximize the performance of the running controllers. How-
ever, their approach does not take into account the delays in
the control loop. Ben Gaid et al. [2] considered static schedul-
ing of control signals, given one single control loop, which is
closed over a communication channel, and the sampling pe-
riod of the controller. The plant to be controlled, with given
initial state, is assumed to be noise free. The result of the
optimization is a finite sequence of control signals and start
times for their transmissions over the communication channel
to the actuator. Di Natale and Stankovic [4] proposed a sim-

ulated annealing-based approach that, given the application
periods, constructs static schedules that minimize the jitter
in distributed embedded systems with precedence and timing
constraints. They did not, however, consider the impact of
the schedules on the control performance.

The contribution of this paper is the formulation and solu-
tion of a control–scheduling co-design problem, where the goal
is to optimize the overall performance of several control loops.
Given is a set of plants with disturbance and measurement
noise. As part of the optimization, we synthesize a controller
(sampling period and control law) for each plant. Further,
considering both static-cyclic scheduling and priority-based
scheduling, we schedule the execution and communication of
the control applications on the given distributed execution
platform, such that the overall performance of the control
loops is optimized.

2. System Model
Given is a set of plants P, indexed by the set IP, for which
controllers and their implementation are to be synthesized.
Each plant Pi (i ∈ IP) is described by a continuous-time
linear model [17]

dxi/dt = Aixi + Biui + vi, yi = Cixi + ei, (1)
where the vectors xi and ui are the plant state and con-
trolled input, respectively, and the vector vi models plant
disturbance as a continuous-time white-noise process with in-
tensity R1i. The continuous-time output yi is measured and
sampled periodically and is used to produce the control sig-
nal ui. The measurement noise ei is modeled as a discrete-
time white-noise process with variance R2i. The control signal
is updated at discrete time-instants tk and is held constant be-
tween two updates (zero-order hold [17]). The control signal
can thus be viewed as a sequence {ui,k}, where the index k is
used to denote updates (i.e., ui(t) = ui,k for tk � t < tk+1).
As an example, let us consider a set of two inverted pendu-
lums P = {P1, P2}. Each pendulum Pi (i ∈ IP = {1, 2})
is modeled according to Equation 1, with Ai =

[
0 1

g/li 0

]
,

Bi =
[

0 g/li
]T, and Ci =

[
1 0

]
, where g ≈ 9.81 m/s2

and li are the gravitational constant and length of pendu-
lum Pi, respectively (l1 = 0.2 m and l2 = 0.1 m). For the
plant disturbance and measurement noise, respectively, we
have R1i = BiB

T
i and R2i = 0.1.

Each plant has a controller that runs as an application
mapped to an execution platform. The platform consists
of a set of computation nodes N, indexed by IN, that are
connected by a communication controller to a bus with a
given communication protocol. Figure 1 shows two nodes
(N = {N1, N2}) that are connected to a bus (the communica-
tion controllers are denoted CC). On the execution platform
runs a set of applications Λ, indexed by the set IΛ (the set
of applications may include other applications than the con-
trol applications—thus, IΛ ⊇ IP). An application Λi ∈ Λ
(i ∈ IΛ) is modeled as a directed acyclic graph (Ti,Γi),
where the nodes Ti, indexed by Ii, represent computation
tasks and the edges Γi ⊂ Ti × Ti represent data dependen-



cies between the tasks. In Figure 1, we show two applica-
tions Λ = {Λ1,Λ2}, which are controllers for the two pendu-
lums P1 and P2 in the example before. For i ∈ IΛ, the task
set of application Λi is Ti = {τis, τic, τia} (Ii = {s, c, a}).
Changing back to the general discussion, for each i ∈ IP,
application Λi is the controller for plant Pi. For each such
application, we denote with τia (a ∈ Ii) the actuator task in
the controller for plant Pi.

An application Λi ∈ Λ has a release period hi. At time
(q − 1)hi, a job of each task in the application is released for
execution. Job q of task τij is denoted τ

(q)
ij and is released

at time (q − 1)hi. For a message γijk = (τij , τik) ∈ Γi, the
message instance produced by job τ

(q)
ij is denoted γ

(q)
ijk. An

edge γijk = (τij , τik) ∈ Γi indicates that the earliest start time
of a job τ

(q)
ik is when τ

(q)
ij has completed its execution and the

produced data (i.e., γ
(q)
ijk) has been communicated to τ

(q)
ik . We

also define the hyperperiod hΛ as the least common multiple
of the periods {hi : i ∈ IΛ}. Further, a task can have a
deadline, which means that any job of that task must finish
within a given time relative to its release. Control applications
do not typically have hard timing constraints, but instead the
goal is to achieve a good quality of control.

Each task is mapped to a node. The mapping is given
by a function map :

⋃
i∈IΛ

Ti −→ N. Let us also intro-

duce the function map∗ : N −→ 2
S

i∈IΛ
Ti that, given a

node Nd, gives the set of tasks that are mapped to Nd—thus,
map∗(Nd) =

{
τij ∈ ⋃

i∈IΛ
Ti : map(τij) = Nd

}
. A message

between tasks mapped to different nodes is sent on the bus;
thus, the set of messages that are communicated on the bus is
Γbus = {γijk = (τij , τik) ∈ Γi : map(τij) �= map(τik), i ∈ IΛ}.
For a message instance γ

(q)
ijk, we denote with cijk the commu-

nication time when there are no conflicts on the bus. Given
a mapping of the tasks to the nodes, for each task, we have
a specification of possible execution times. We model the
execution time of task τij as a stochastic variable cij with
probability function ξcij

. The execution time is bounded by
given best-case and worst-case execution times, denoted cbc

ij

and cwc
ij , respectively. In Figure 1, the execution times (con-

stant in this example) and communication times for the tasks
and messages are given in milliseconds inside parentheses.

3. Control Quality and Synthesis
We measure the quality of a controller Λi for a plant Pi (Equa-
tion 1) with a quadratic cost [17]

Ji = lim
T→∞

1
T

E

{∫ T

0

[
xi

ui

]T

Qi

[
xi

ui

]
dt

}
. (2)

The weight matrix Qi, which is given by the designer, is a
positive semi-definite matrix with weights for the magnitude
of the plant states and the control signals (E {·} denotes the
expected value of a stochastic variable).

For a given sampling period hi and a given, constant
sensor–actuator delay δsa

i (i.e., the time between sampling the
output yi and updating the controlled input ui), it is possible
to find the control law ui that minimizes the cost Ji [17]. The
quality of a controller is degraded (its cost Ji is increased) if
the sensor–actuator delay is different from what was assumed
during the control-law synthesis, or if this delay is not con-
stant (i.e., there is jitter). Assuming that the sensor–actuator
delay is represented as a stochastic variable Δsa

i with probabil-
ity function ξsa

Δi
, the cost Ji can be computed with MATLAB

and the Jitterbug toolbox [7].

4. Motivational Example
In Section 2, we introduced an example in which two inverted
pendulums are controlled over a network of two computation
nodes. Each application Λi in Figure 1 consists of three tasks,
denoted τis, τic, and τia, respectively. All time quantities
are given in milliseconds throughout this section. We use
static-cyclic scheduling of the tasks and messages. The weight
matrix of each inverted pendulum is Qi = diag

(
CT

i Ci, 0.002
)
.

First, let us assign the periods of the controllers as h1 = 20
and h2 = 30. Let us also consider that each control law ui is
computed for the chosen period hi and a constant delay equal
to the sum of task execution times (i.e., cis + cic + cia). Thus,
control law u1 is computed for the period 20 and the con-
stant delay 9, whereas u2 is computed for the period 30 and
the constant delay 13. We have computed the individual con-
troller costs, given that the sampling–actuation delays during
execution are exactly those that were assumed during the con-
troller design. We obtained the costs J1 = 0.9 and J2 = 2.4;
the total cost is Jtot = J1 + J2 = 3.3. However, it is of-
ten not possible to schedule the task executions and message
transmissions in a way that leads to the delay characteristics
assumed during controller design. One system schedule is de-
picted in Figure 2. We show the schedule with three rows for
node N1, the bus, and node N2, respectively. The boxes de-
pict the task executions and message transmissions. The grey
boxes show the execution of control application Λ1, whereas
the white boxes show the execution of Λ2. Each box is la-
beled with an index that specifies the corresponding task or
message, and with a number that specifies the job or message
instance. For example, the white box labeled a(2) shows the
execution of job τ

(2)
2a of the actuator task τ2a. The job starts

and finishes at times 50 and 54, respectively. The grey box
labeled sc(1) shows the first message γ

(1)
1sc between the sensor

and controller task of Λ1. The schedule period is 60.
The outputs of the plants are sampled periodically with-

out jitter (e.g., by some dedicated hardware mechanism that
stores the sampled data in buffers, which are read by the
sensor tasks). Let us now study the sampling–actuation de-
lay Δsa

i of the two control loops. In the schedule in Figure 2,
we have three instances of Λ1. The three actuations τ

(1)
1a ,

τ
(2)
1a , and τ

(3)
1a finish at times 32, 49, and 54, respectively. By

considering the sampling period 20, we obtain the sampling–
actuation delays 32, 29, and 14. Each of these delays oc-
cur with the same frequency during execution. This means
that the nonzero function values of the probability function
are ξsa

Δ1
(14) = ξsa

Δ1
(29) = ξsa

Δ1
(32) = 1/3. Thus, as a result of

the implementation in Figure 2, the actual delay is different
from 9, which is the delay assumed during controller synthe-
sis, and, moreover, it is not constant. By using the Jitterbug
toolbox and providing as input the probability function ξsa

Δ1
,

we obtained a much higher cost J1 = 4.2 of the implemented
controller. Similarly, the two instances of application Λ2 have
the delays 44 and 24—that is, ξsa

Δ2
(24) = ξsa

Δ2
(44) = 1/2. The

corresponding cost is J2 = 6.4. The total cost of the whole
system is Jtot = 10.6 and has increased significantly (from 3.3)
as a result of the implementation.

To obtain a better control performance, it is important
to reduce the delay and jitter. Let us study the schedule
in Figure 3, without changing the periods and the control
laws. The sensor–actuator delay is now 14 for all the three
instances of Λ1 (i.e., ξsa

Δ1
(14) = 1). Similarly, we obtain

ξsa
Δ2

(18) = ξsa
Δ2

(24) = 1/2 (the second control loop has a
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Figure 4. Optimized schedule for h1 = 30 ms and h2 = 20 ms
smaller delay with less jitter than in Figure 2). Consider-
ing the new schedule, the costs are J1 = 1.1 and J2 = 5.6; the
total cost is thus Jtot = 6.7. We note that the performance is
improved if the tasks and messages are properly scheduled to
decrease the delay and jitter. With the same schedule (Fig-
ure 3), we can further improve the control performance by
recomputing the control laws. Therefore, let us assume that
the control law for P1 is recomputed for the delay 14, which is
the constant sensor–actuator delay in the schedule. The con-
trol law for P2 is recomputed for the average sensor–actuator
delay E {Δsa

2 } = 21. With the new controllers, the costs of
the implementation are J1 = 1.0 and J2 = 3.7; the total cost
is Jtot = 4.7, which indicates the performance improvement
that is achieved by taking the schedule into account during
controller design.

As a last step, we show that the overall performance can be
further improved by another selection of the sampling periods.
Let us change the periods of the two control applications to
h1 = 30 and h2 = 20. Figure 4 shows a schedule with two
instances of Λ1 and three instances of Λ2 (the period of the
schedule is 60). The delays in the first control loop are 13
and 23—thus, ξsa

Δ1
(13) = ξsa

Δ1
(23) = 1/2. This means that the

first control loop has some jitter, which is not the case in the
schedule in Figure 3. We have designed the control law for the
constant delay E {Δsa

1 } = 18. The delay in the second control
loop is 14 (constant), for which we designed the control law.
The evaluation resulted in the costs J1 = 1.3 and J2 = 2.1—
thus, Jtot = 3.4. The example in this section demonstrates
that a good selection of controller periods, combined with
integrated scheduling and controller design, is important to
design high-performance embedded control systems.

5. Problem Formulation
The inputs to the control–scheduling co-design problem are
• a set of plants P to be controlled,
• a set of applications Λ among which a subset of them are

the controllers for the plants (IP ⊆ IΛ),
• a set of available sampling periods Hi (i ∈ IP) for each

control application Λi and the release period for each of
the other applications,

• deadlines of a subset of the tasks (possibly no deadlines),
• a set of computation nodes N connected to a bus,
• a scheduling policy for the tasks and messages,
• a mapping function map of the whole task set, and
• execution-time distributions of the tasks and communi-

cation times of messages.

The outputs related to the controller synthesis are the pe-
riod hi ∈ Hi and the control law ui for each plant Pi. The
outputs related to the scheduling depends on the scheduling
policy. For static-cyclic scheduling, the output is a schedule
table with start times of the job executions and the commu-
nications on the bus. In the case of priority-based scheduling,
the output is a priority for each task and message. In both
cases, it must be guaranteed that task deadlines are met at
runtime. The cost function to be minimized is a weighted sum∑

i∈IP
wiJi of the individual controller costs Ji (Equation 2).

The weights wi and Qi are given as inputs by the designer.
6. Scheduling and Synthesis Approach
6.1. Overall Solution
Figure 5 illustrates the overall approach. The dashed box
in the figure shows the portion of the flowchart that is spe-
cific for static-cyclic scheduling (Section 6.2). If priority-based
scheduling is used, this box is replaced by the flowchart in
Figure 6 (Section 6.3). In the outer loop, we iterate over
different assignments of the controller periods. In each it-
eration, we choose a period for each control application in
the set of available periods; thus, we choose a vector h =
(h(1), . . . , h(|IP|)) ∈ HσP(1) × · · · × HσP(|IP|) =

∏|IP|
i=1 HσP(i),

where σP : {1, . . . , |IP|} −→ IP is any bijection and
∏

de-
notes the Cartesian product of sets. The period of controller
Λi (i ∈ IP) is thus hi = h(σ−1

P (i)). For such a period assign-
ment h, we perform the following steps (the dashed rectangle
in Figure 5): schedule the whole system (Sections 6.2 and 6.3),
synthesize the control law for each plant, and compute the cost
of each control loop, obtaining a final cost Jh of the period
assignment h. The last two steps are described in the contin-
uation of this section. In the end of this section, we describe
the period-exploration process. Let us first, however, intro-
duce the stochastic variable Δsa

i for the sampling–actuation
delay of controller Λi (i ∈ IP). The probability function ξsa

Δi

of this delay is determined by the execution-time distribu-
tions ξcij

of the tasks and the scheduling of the whole system.
In Sections 6.2 and 6.3, we elaborate on how to derive ξsa

Δi
for

the case of static and priority-based scheduling, respectively.
Given is an assignment of controller periods h =

(h(1), . . . , h(|IP|)), where h(i) is the period of controller ΛσP(i),
we shall synthesize the control laws. From the task and mes-
sage scheduling, we obtain the sampling–actuation delay Δsa

i

of each controller Λi. Each control law ui is chosen to mini-
mize the cost Ji for the sampling period h(σ−1

P (i)) and a con-
stant sampling–actuation delay δsa

i = E {Δsa
i } (the expected

value of the delay). This controller synthesis is based on stan-
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dard control-theory [17], provided in the Jitterbug toolbox [7].
For each plant Pi (i ∈ IP), we now have a controller Λi with a
period hi and a control law ui synthesized for a constant de-
lay E {Δsa

i }. The actual implementation, however, results in a
nonconstant sensor–actuator delay. This delay is modeled as a
stochastic variable Δsa

i for which the probability function ξsa
Δi

is given by the system schedule (Sections 6.2 and 6.3). We
compute the cost Ji of each control loop based on Δsa

i . The
total cost of the periods h is Jh =

∑
i∈IP

wiJi.
The period-exploration process is based on a genetic al-

gorithm [12]. An initial population Ψ1 ⊂ ∏|IP|
i=1 HσP(i) is

generated randomly. At each iteration k > 0, the cost Jh of
each member h ∈ Ψk in the population is computed by per-
forming three steps: system scheduling, control-law synthesis
and cost computation. Using the crossover and mutation op-
erators [12] on the current population Ψk ⊂ ∏|IP|

i=1 HσP(i),
we generate a set of offsprings Ψoffspr

k ⊂ ∏|IP|
i=1 HσP(i). We

continue by generating randomly a subset Ψ′
k ⊂ Ψk, for

which |Ψ′
k| =

∣∣∣Ψoffspr
k

∣∣∣, with members that will be replaced
by the generated offsprings; the probability for a member
h ∈ Ψk to be included in Ψ′

k is larger the smaller its cost
Jh is. The population to be evaluated in the next iteration is
Ψk+1 = (Ψk \ Ψ′

k) ∪ Ψoffspr
k .

We have tuned the parameters of the genetic algorithm ex-
perimentally. The population size is constant (|Ψk| = |Ψk+1|)
and is chosen to be 2 |IP|maxi∈IP

|Hi|. The number of off-
springs that are generated in each iteration is

∣∣∣Ψoffspr
k

∣∣∣ =
0.25 |Ψk|, whereas the mutation probability is 0.1. The explo-
ration terminates when the average cost Javg of the current
population is sufficiently close to the cost Jmin of the current
best solution: In our implementation, we stop the period ex-
ploration process when Javg < 1.05Jmin. In the following two
subsections, we shall focus on static-cyclic and priority-based
scheduling separately. In both cases, we consider the period
hi of each application Λi given (i ∈ IΛ); that is, a period
assignment h ∈ ∏|IP|

i=1 HσP(i) is considered.

6.2. Static-Cyclic Scheduling
Given the periods h and the hyperperiod hΛ, let ΘNd

=⋃
τij∈map∗(Nd)

{
τ

(q)
ij : q = 1, . . . , hΛ/hi

}
be the set of jobs that

are released for execution on node Nd (d ∈ IN) in the time
interval [0, hΛ[. Let us also define the set of message in-
stances Θbus that are communicated on the bus in the time in-
terval [0, hΛ[ as Θbus =

⋃
γijk∈Γbus

{
γ

(q)
ijk : q = 1, . . . , hΛ/hi

}
.

A static-cyclic schedule Ω is a set of schedules Ω =⋃
i∈IN

{Ωi} ∪ {Ωbus} for each computation node and the bus.
For each d ∈ IN, the schedule for node Nd is an injec-
tive function Ωd : ΘNd

−→ [0, hΛ[ that gives the start
time of each job. The bus schedule is an injective function
Ωbus : Θbus −→ [0, hΛ[ that gives the start time of each
message instance. The schedule Ω is periodic with the pe-
riod hΛ. Let q′ = 1 + (q − 1 mod hΛ/hi). Then, the peri-
odicity of the schedule means that, for each τij ∈ map∗(Nd),

the start time of job τ
(q)
ij is

⌊
(q − 1)

/
hΛ

hi

⌋
hΛ + Ωd

(
τ

(q′)
ij

)
,

whereas, for each message γijk ∈ Γbus, the start time of γ
(q)
ijk

is
⌊
(q − 1)

/
hΛ

hi

⌋
hΛ + Ωbus

(
γ

(q′)
ijk

)
.

Constructing the static schedule for a hyperperiod implies
the determination of the start times of all jobs and message in-
stances. The schedule must satisfy the precedence constraints,
given by the data dependencies between tasks, and account
for the worst-case execution times of tasks and the communi-
cation times of messages. Moreover, deadlines must be met,
if imposed on certain tasks, and all executions and commu-
nications must finish before the hyperperiod. Finally, at any
time instant, at most one job can execute on a given node,
and at most one message can be transmitted on the bus.

Given a schedule Ω, we are interested in the sensor–
actuator delay Δsa

i of each control application Λi (i ∈ IP).
The probability function of Δsa

i is determined by the start
times of the actuator task τia and the stochastic execution
time cia with given probability function ξcia

. Let Nd =
map(τia) denote the computation node for the actuator task
of controller Λi. For q = 1, . . . , hΛ/hi, in the qth instance
of Λi, the sensors are read at time (q − 1)hi. The start
time of the corresponding actuation is Ωd

(
τ

(q)
ia

)
. Letting

φ
(q)
ia = Ωd

(
τ

(q)
ia

)
− (q − 1)hi, the sampling–actuation delay

in the qth controller instance is distributed between a mini-
mum and maximum delay given by φ

(q)
ia + cbc

ia and φ
(q)
ia + cwc

ia ,
respectively. The probability function of the delay in the qth

instance is therefore ξ
sa(q)
Δi

(δ) = ξcia

(
δ − φ

(q)
ia

)
. Considering

all jobs in the schedule, the probability function of the de-
lay Δsa

i is ξsa
Δi

(δ) = hi

hΛ

∑hΛ/hi

q=1 ξ
sa(q)
Δi

(δ).
Our goal is to find a schedule Ω that minimizes the cost∑
i∈IP

wiJi. In our approach, we use a constraint logic
programming (CLP) formulation [1] of the static-scheduling
problem. We have used the ECLiPSe solver (version 5.10) [1].
It is known that two timing parameters affect the control per-
formance: the average delay and the jitter. During the con-
struction of the schedule, we minimize therefore the quadratic
cost

∑
i∈IP

wi

(
αiE {Δsa

i }2 + βiD {Δsa
i }2

)
, where αi and βi

are designer inputs that specify the sensitivity of plant Pi to
delay and jitter, respectively (D {·} denotes the standard de-
viation of a stochastic variable); we have used αi = βi = 1 in
our experiments. The constraints in the CLP formulation are



given by the definition of a static-cyclic schedule. The CLP
solver is a branch-and-bound search based on constraint prop-
agation [1]. Because the scheduling problem is NP-complete,
we cannot, for a large problem size, afford a complete search
of the set of possible schedules. Therefore, we have configured
the CLP solver to use limited-discrepancy search [1], which is
an incomplete branch-and-bound search.
6.3. Priority-Based Scheduling
In this subsection, we consider preemptive scheduling of tasks
and nonpreemptive scheduling of messages, both based on
fixed priorities. The overall flowchart of the solution for the
case of priority-based scheduling is obtained by replacing the
dashed box in Figure 5 with the flowchart in Figure 6. Given
from the outer loop in Figure 5 are the periods h of all appli-
cations. The goal is to minimize the overall cost by deciding
task and message priorities, and by computing the control
laws. In the outer loop in Figure 6, we iterate over different
priority assignments, and for each assignment we compute the
cost. In the continuation of this section, we describe the com-
putation flow that leads to the cost of a priority assignment.
Last, we describe the priority-exploration approach.

Let us define a priority assignment as a set ρ =⋃
d∈IN

{ρd} ∪ {ρbus}, where ρd : map∗(Nd) −→ N and ρbus :
Γbus −→ N are injective functions that give the priorities of
the tasks on node Nd (d ∈ IN) and the messages on the bus,
respectively (a larger value indicates a higher priority). Given
a priority assignment ρ, we are interested in the temporal be-
havior of the system. Given the periods and priorities, in the
first step, we check whether the system is schedulable; that is,
we run response-time analysis [9, 10, 11] to obtain the worst-
case response time of each task. The system is schedulable
if all worst-case response times exist and are smaller than or
equal to the imposed task deadlines. Note that, in this step,
we check the satisfaction of the imposed hard timing con-
straints by formal response-time analysis. In the next step,
we compute the control laws based on delay distributions ob-
tained with simulation.

Given the periods and priorities, we use our simulation en-
vironment for distributed real-time systems [13] to obtain an
approximation Δ̂sa

i of each sensor–actuator delay Δsa
i . The

probability function of the discrete stochastic variable Δ̂sa
i ,

which approximates Δsa
i , is denoted ξ̂sa

Δi
and is an output of

the simulation. During the simulation, we compute the av-
erage sensor–actuator delays periodically with the period hΛ.
Let Δ(k)

i denote the set of sensor–actuator delays for appli-
cation Λi (i ∈ IP) that, during simulation, occur in the time
interval [0, khΛ] (k > 0). Further, let η

(k)
Δi

: Δ(k)
i −→ Z

+

be a function for which η
(k)
Δi

(δ) is the number of times the
delay δ occurred in the time interval [0, khΛ]. The total num-
ber of delays for Λi in the simulated time interval is η

(k)
i,tot =∑

δ∈Δ
(k)
i

η
(k)
Δi

(δ). At times khΛ during simulation, we com-

pute an average delay δ
(k)
i,avg =

∑
δ∈Δ

(k)
i

δ · η(k)
Δi

(δ)
/

η
(k)
i,tot for

each control application Λi. The simulation is terminated
at the first simulated time-instant k′hΛ (k′ > 1) where the
following condition is true:

∣∣∣δ(k′)
i,avg − δ

(k′−1)
i,avg

∣∣∣/ δ
(k′−1)
i,avg < ζsim

for all i ∈ IP. The parameter ζsim is given as an input;
we have experimentally tuned this parameter to ζsim = 0.05,
which means that the simulation is stopped when the average
delay has changed with less than 5 percent. After the simu-

lated time k′hΛ, the approximation of each Δsa
i is given by

the probability function ξ̂sa
Δi

(δ) = η
(k′)
Δi

(δ)
/

η
(k′)
i,tot. Given the

approximate delay Δ̂sa
i for each control loop, we proceed by

computing the control law ui for a constant delay E
{

Δ̂sa
i

}
.

Finally, the controller cost Ji is computed, using the approx-
imate probability function ξ̂sa

Δi
. The cost of the priority as-

signment ρ, given the periods h, is Jρ|h =
∑

i∈IP
wiJi.

The outer loop in Figure 6, which explores different prior-
ity assignments, is based on a genetic algorithm, similar to
the period exploration in Section 6.1. We generate a popula-
tion randomly and, in the iterations, we evaluate the cost of
priority assignments (offsprings) that are generated with the
crossover and mutation operators [12]. The population size is
constant and equal to the number of tasks and messages in the
system. The number of offsprings that are generated in each
iteration is 25 percent of the population size, whereas muta-
tion is applied with the probability 0.1. The exploration of
priority assignments terminates when Javg < 1.1Jmin, where
Javg is the average cost of the current population and Jmin is
the cost of the current best priority assignment. The cost of
the period assignment h is thus Jh = Jmin.

7. Experimental Results
We have run experiments to study the performance improve-
ments that can be achieved with our control–scheduling co-
design approach. We have defined a straightforward approach
as a baseline for the comparison. In this approach, we design
each controller Λi for a sampling period equal to the average
of the set of available periods Hi, and for a delay equal to the
sum of average task execution times in the control application.
For the implementation, we do the following steps:

1. Assign the period of each control application Λi to the
smallest period in the set of available periods Hi.

2. Schedule the system (depends on the scheduling policy).
(a) Static-cyclic scheduling: Schedule the executions

and communications as soon as possible, taking into
account the schedule constraints.

(b) Priority-based scheduling: Assign priorities rate-
monotonically such that a task with a smaller pe-
riod has a higher priority than a task with a larger
period. The message priorities are assigned in the
same way.

3. If the system is not schedulable, do the following steps:
(a) If, for each application, the current period is the

largest in the original set of available periods, the
straightforward approach terminates.

(b) For each of the control applications with highest uti-
lization, if the current period is not the largest in the
original set of available periods, then remove it from
Hi. Go to step 1.

Thus, the straightforward approach takes designed controllers
and produces a schedulable implementation for as small con-
troller periods as possible, but does not further consider the
control quality.

To investigate the efficiency of period exploration
and appropriate scheduling, we have defined two semi-
straightforward approaches. For the first approach, straight-
forward period assignment, periods are assigned as in the
straightforward approach. The scheduling, however, is per-
formed according to our proposed approach, which integrates
control-law synthesis. For the second approach, straightfor-
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Figure 7. Improvements for static scheduling
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Figure 8. Improvements for priority scheduling

 0

 200

 400

 600

 800

 1000

 1200

 2  3  4  5  6  7  8  9

A
ve

ra
ge

 r
un

tim
e 

[s
ec

on
ds

]

Number of controllers

Static-cyclic scheduling
Priority-based scheduling

Figure 9. Runtimes for the optimization

ward scheduling, periods are chosen according to our proposed
genetic algorithm-based approach, but the scheduling is done
according to Step 2 in the straightforward approach.

For the evaluation, we created 130 benchmarks with vary-
ing number of plants (controllers). We used benchmarks
with 2 to 9 plants that were chosen randomly from a database
with inverted pendulums, ball and beam processes, DC servos,
and harmonic oscillators [17]. For each plant, we generated
a control application with 3 to 5 tasks with data dependen-
cies. Thus, the number of tasks in our benchmark set varies
from 6 to 45. The tasks were mapped randomly to platforms
consisting of 2 to 7 computation nodes. For each controller,
we generated 6 available periods, based on common rules of
thumb [17]. Based on the average values of these periods,
we generated the execution and communication times of the
tasks and messages to achieve maximum node and bus utiliza-
tions between 40 and 80 percent. For the tasks, we considered
uniform execution-time distributions.

For each benchmark, we have run our proposed approach
for both static-cyclic scheduling and priority-based scheduling
of the tasks and messages1. We have also run the two semi-
straightforward approaches. For each of the three approaches,
we obtained a final cost Japproach. We were interested in the
relative cost-improvements (JSF − Japproach)/ JSF, where JSF

is the cost obtained with the straightforward approach. The
average cost-improvements for static-cyclic scheduling and
priority-based scheduling are depicted in Figures 7 and 8,
respectively. In each figure, the vertical axis is the average
cost improvement in percent for all benchmarks, with the
number of controllers given on the horizontal axis. In Fig-
ure 7, for example, the average relative cost-improvements
of the straightforward period-exploration and straightforward
scheduling for 9 controllers are 17.2 and 13.6 percent, re-
spectively. Our proposed approach has, for the same case,
an average cost-improvement of 31.0 percent. For a small
number of controllers, we note that the semi-straightforward
approaches give improvements close to the improvements by
the integrated approach. For larger number of controllers,
however, the design space becomes larger, and thus the semi-
straightforward approaches perform worse. The results show
that it is important to combine period exploration with in-
tegrated scheduling and control-law synthesis to obtain high-
quality solutions.

We have measured the runtimes for the proposed integrated
approach; all experiments were run on a PC with a quad-core
CPU running at frequency 2.2 GHz, 8 Gb of RAM, and run-
ning Linux. In Figure 9, we show, for both static-cyclic and
priority-based scheduling, the average runtime in seconds as a
function of the number of controllers. It can be seen that the

1In the experiments, we have considered a TTP bus [6] for the static-
cyclic scheduling case and a CAN bus [3] for the priority-based scheduling
case. Our implementation also supports the FlexRay protocol [5].

complex optimization, involving period assignment, schedul-
ing (priority assignment), controller design, and cost compu-
tation, can be run in our framework in less than 19 minutes
for large systems of 9 controllers and 45 tasks.
8. Conclusions
Scheduling and communication in distributed embedded con-
trol systems lead to timing behaviors (delay and jitter) that
degrade the overall control performance. In the context of
both static-cyclic scheduling and priority-based scheduling,
we have presented a control–scheduling co-design approach
that integrates task and message scheduling with controller
design (control-period exploration and control-law computa-
tion). The experimental results show that such an integrated
design flow is essential to achieve high control-performance of
control applications on distributed execution platforms.
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