
Quality-Driven Synthesis of Embedded Multi-Mode Control Systems

Soheil Samii
Dept. of Computer and

Information Science
Linköping University
Linköping, Sweden

sohsa@ida.liu.se

Petru Eles
Dept. of Computer and

Information Science
Linköping University
Linköping, Sweden
petel@ida.liu.se

Zebo Peng
Dept. of Computer and

Information Science
Linköping University
Linköping, Sweden
zpe@ida.liu.se

Anton Cervin
Dept. of Automatic

Control
Lund University
Lund, Sweden

anton@control.lth.se

ABSTRACT
At runtime, an embedded control system can switch between al-
ternative functional modes. In each mode, the system operates
by using a schedule and controllers that exploit the available
computation and communication resources to optimize the con-
trol performance in the running mode. The number of modes
is usually exponential in the number of control loops, which
means that all controllers and schedules cannot be produced
in affordable design-time and stored in memory. This paper
addresses synthesis of multi-mode embedded control systems.
Our contribution is a method that trades control quality with
optimization time, and that efficiently selects the schedules and
controllers to be synthesized and stored in memory.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-Based Systems]:
process control systems, real-time and embedded systems; D.4.1
[Operating Systems]: Process Management—scheduling ; J.6
[Computer-Aided Engineering]: computer-aided design; J.7
[Computers in Other Systems]: industrial control

General Terms
Algorithms, Design, Performance, Theory

Keywords
control performance, embedded control, multi-mode systems

1. INTRODUCTION AND RELATEDWORK
In systems that control several physical plants, mode changes
occur at runtime either as responses to external events or at
predetermined moments in time. In an operation mode, the
system controls a subset of the plants by executing several con-
trol applications concurrently—one for each controlled plant in
the mode. The application tasks execute periodically (reading
sensors, computing control signals, and writing to actuators) on
a platform comprising several computation nodes connected to
a bus. Such systems have complex timing behavior that leads
to bad control performance if not taken into account during
controller design [10]. To achieve good control performance in
a certain mode, system scheduling must be integrated with con-
troller design (periods and control laws). A mode change means
that some of the running control loops are deactivated, some
are activated, or both. This leads to a change in the execution
and communication demand and, consequently, a new sched-
ule and new controllers must be used to achieve best possible
control performance by an efficient use of the resources.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2009, July 26–31, 2009, San Francisco, California, USA.
Copyright 2009 ACM 978-1-60558-497-3/09/07 ...$5.00.

Control–scheduling co-design methods in the literature focus
on single-mode control systems. Sampling-period optimization
for mono-processor systems with multiple control loops and
priority-based scheduling was first studied by Seto et al. [9].
Bini and Cervin improved their work by considering controller
delays in the optimization process [2]. Rehbinder and Sanfrid-
son proposed optimal control strategies for static scheduling
of controllers on a mono-processor system [7]. In our previ-
ous work, we proposed a framework [8] for the scheduling and
synthesis of controllers on distributed execution platforms.

The contribution of this paper is a scheduling and synthe-
sis method for embedded multi-mode control systems. The
number of modes to be considered in the synthesis is usually
exponential in the number of control loops and leads to two
problems: (1) all modes cannot be synthesized in affordable
time, and (2) all synthesized controllers and schedules cannot
be stored in memory. With the objective of optimizing the con-
trol performance in a multi-mode control system, we address
these problems by a limited exploration of the set of modes, fol-
lowed by a selection of the produced schedules and controllers
to store in memory.

2. MULTI-MODE SYSTEMS
Given is a set of plants P, indexed by IP, where each plant Pi

(i ∈ IP) is described by a continuous-time linear model [11]
ẋi = Aixi + Biui + vi, yi = Cixi + ei. (1)

The vectors xi and ui are the plant state and controlled input,
respectively, and the vector vi models plant disturbance as a
continuous-time white-noise process with intensity R1i. The
continuous-time output yi is measured and sampled periodi-
cally and is used to produce the control signal ui. The mea-
surement noise ei in the output is modeled as a discrete-time
white-noise process with variance R2i. The control signal is up-
dated at discrete time instants and is held constant between two
updates (zero-order hold [11]). As an example, let us consider
three inverted pendulums P = {P1, P2, P3}. Each pendulum
Pi (i ∈ IP = {1, 2, 3}) is modeled according to Equation 1,

with Ai =

»
0 1

g/li 0

–
, Bi =

ˆ
0 g/li

˜T
, and Ci =

ˆ
1 0

˜
,

where g ≈ 9.81 m/s2 and li are the gravitational constant and
length of pendulum Pi, respectively (all pendulums have equal
length, li = 0.2 m). For the plant disturbance and measure-
ment noise, we have R1i = BiB

T
i and R2i = 0.1.

The execution platform comprises a set of nodes N, indexed
by IN, which are connected by a communication controller to a
bus; common communication protocols in automotive systems
are TTP [5], FlexRay [4], and CAN [3], which all are sup-
ported by our framework. On the execution platform runs a
set of applications Λ, indexed by the set IΛ = IP. Application
Λi ∈ Λ (i ∈ IΛ) controls plant Pi and is modeled as a directed
acyclic graph Λi = (Ti,Γi), where the nodes Ti, indexed by
Ii, represent computation tasks and the edges Γi ⊂ Ti × Ti

represent data dependencies between tasks. Figure 1 shows
two nodes N = {N1, N2} connected to a bus. Three applica-
tions Λ = {Λ1, Λ2, Λ3} are mapped to the nodes and control



2scτ2c τ
2a γ

3ca
γ

2s

N2

N

3sc

1

Bus

3aτ τ3s τ3c

(4) (6)

(4) (12)

(6)

(10)

(2)

(4)

(4)

(4)

(2)

(4)

τ1c 1aτ1s
γ

τ
γ
1ca

γ

1sc

γ
2caτ

(4)

Figure 1: Motivational example

{ }

1Λ , 2Λ{ } 3Λ2Λ1Λ , 3Λ

2Λ1Λ{ } 3Λ

0

{ },{ }

} { }

1Λ , 3Λ2Λ ,

{

Figure 2: Hasse diagram of modes

Table 1: Individual control costs
Mode M JM

1 JM
2 JM

3

{Λ1, Λ2, Λ3} 2.98 1.19 2.24
{Λ1, Λ2} 1.60 1.42 -
{Λ1, Λ3} 1.60 - 1.95
{Λ2, Λ3} - 1.36 1.95
{Λ1} 1.60 - -
{Λ2} - 1.14 -
{Λ3} - - 1.87

the three pendulums P1, P2, and P3 in the example before. For
this example, the task set of application Λi is Ti = {τis, τic, τia}
(Ii = {s, c, a}). The data dependencies are given by the edges
Γi = {γisc = (τis, τic), γica = (τic, τia)}. The sensor task is τis,
the controller task is τic, and the actuator task is τia.

The system can run in different operation modes, where each
mode is characterized by a set of running applications. A mode
is a subset M ⊆ Λ, indexed by IM ⊆ IΛ = IP, that contains
the applications that are running in that mode. The complete
set of modes is M = 2Λ and its cardinality is |M| = 2|Λ|.
The set of modes M is a partially ordered set under the sub-
set relation ⊂. For our example with the three applications in
Figure 1, we show in Figure 2 the Hasse diagram of the par-
tially ordered set of modes M = 2Λ = 2{Λ1,Λ2,Λ3}. A mode
M′ ∈ M is called a submode of M if M′ ⊂ M. Mode M is
called a supermode of mode M′. We define the set of submodes
of M ∈ M as M(M) = {M′ ∈ M : M′ ⊂ M}. Similarly, the
set of supermodes of M is denoted M(M). The idle mode
is the empty set ∅, which indicates that the system is inac-
tive, whereas the mode Λ indicates that all applications are
running. It can be the case that certain modes do not oc-
cur at runtime—for example, because certain plants are never
controlled concurrently. Let us therefore introduce the set of
functional modes Mfunc ⊆ M that can occur during execution.
Modes Mvirt = M \ Mfunc do not occur at runtime and are
therefore called virtual modes. In a given mode M ∈ M, an
application Λi ∈ M (i ∈ IM) releases jobs for execution peri-

odically with the period hM
i . Job q of task τij is denoted τ

(q)
ij .

For a message γijk = (τij , τik) ∈ Γi, the message instance pro-

duced by job τ
(q)
ij is denoted γ

(q)
ijk. An edge γijk = (τij , τik) ∈ Γi

means that the earliest start time of a job τ
(q)
ik is when τ

(q)
ij has

completed its execution and the produced data (i.e., γ
(q)
ijk) has

been communicated to τ
(q)
ik . We define the hyperperiod hM of

M as the least common multiple of the periods {hM
i }i∈IM .

Each task is mapped to a node; in Figure 1, task τ1s is
mapped to N1 and τ1c is mapped to N2. A message between
tasks that are mapped to different nodes is sent on the bus. For
a message γijk between two nodes, we denote with cijk the com-
munication time when there are no conflicts on the bus. We
model the execution time of task τij as a stochastic variable
cij with probability function ξcij . We assume that the execu-
tion time of τij is bounded by given best-case and worst-case
execution times. In Figure 1, the execution times (constant
in this example) and communication times for the tasks and
messages are given in milliseconds in parentheses. We support
static-cyclic and priority-based scheduling of tasks and mes-
sages [5]. In static-cyclic scheduling, the period of the sched-
ule is the hyperperiod hM of the applications in the running
mode M. The schedule determines the start times of the jobs
and message instances that are released within a hyperperiod of
the mode. Further, the schedule must satisfy precedence con-
straints, which are given by the data dependencies, and account
for the worst-case execution times of the tasks and the commu-
nication times of the messages. For preemptive priority-based
scheduling, the tasks and messages are scheduled at runtime

based on fixed priorities that are decided at design time.
As an example of a static-cyclic schedule, let us consider the

system in Figure 1 and the schedule in Figure 3. All times
are given in milliseconds in the discussion that follows. The
schedule is constructed for mode M = Λ (i.e., for the mode in
which all three applications are running concurrently) and for
the periods hM

1 = 40, hM
2 = 20, and hM

3 = 40. The period of
the schedule is hM = 40 (the hyperperiod of M). Considering
the periods of the applications, the jobs to be scheduled on

node N1 are τ
(1)
1s , τ

(1)
2c , τ

(2)
2c , τ

(1)
2a , τ

(2)
2a , τ

(1)
3s , and τ

(1)
3a . The jobs

on node N2 are τ
(1)
1c , τ

(1)
1a , τ

(1)
2s , τ

(2)
2s , and τ

(1)
3c . The message

transmissions on the bus are γ
(1)
1sc, γ

(1)
2sc, γ

(2)
2sc, γ

(1)
3sc, and γ

(1)
3ca.

The schedule in Figure 3 is shown with three rows for node N1,
the bus, and node N2, respectively. The small boxes depict
task executions and message transmissions. The white, grey,
and black boxes show the execution of applications Λ1, Λ2,
and Λ3, respectively. Each box is labeled with an index that
indicates a task or message, and with a number that specifies
the job or message instance. The black box labeled c(1) shows

that the execution of job τ
(1)
3c on node N2 starts at time 8 and

completes at time 20. The grey box labeled sc(2) shows the
second message between the sensor and controller task of Λ2.

An implementation of a mode M ∈ M comprises the pe-
riod hM

i and control law uM
i of each control application Λi ∈ M

(i ∈ IM), and the schedule (or priorities) for the tasks and
messages in the mode. We denote with memM

d the memory
consumption on node Nd ∈ N (d ∈ IN) of the implementation
of M. An implementation of a mode can serve as an imple-
mentation of all its submodes. This means that the system can
run in a submode M′ ⊂ M (M′ �= ∅) with the same controllers
(periods and control laws) and schedule as for mode M—for
example, by not running the applications in M \M′ or by not
writing to their outputs. However, to achieve better perfor-
mance in mode M′, a customized set of controllers and sched-
ule for submode M′ can exploit the available computation and
communication resources that are now not used by the other
applications M \ M′. To have a correct implementation of
the whole system, for each functional mode M ∈ Mfunc, there
must exist an implementation in memory, or there must exist
an implementation of at least one of its supermodes. The set
of implemented modes is Mimpl ⊆ M\ {∅}.

3. CONTROL QUALITY AND SYNTHESIS
The quality of a controller Λi for plant Pi (Equation 1) is given
by the quadratic cost [11]

Ji = lim
T→∞

1

T
E

(Z T

0

»
xi

ui

–T

Qi

»
xi

ui

–
dt

)
. (2)

The matrix Qi, which is given by the designer, is a positive
semi-definite matrix with weights for the magnitude of the plant
states and the control signals (E {·} denotes the expected value
of a stochastic variable). For a given sampling period hi and
a given constant sensor–actuator delay (i.e., the time elapsed
between sampling the output yi and updating the controlled
input ui), it is possible to find the control law ui that minimizes
Ji [11]. The cost Ji of a controller is increased (its quality is



10 20 30 40

N2

N1

Bus

0

s(1) s(1) c(1) a(1) a(1) c(2) a(2)

sc(1) ca(1) sc(2)

s(1) c(1) s(2) c(1) a(1)

sc(1)sc(1)

Figure 3: Schedule for mode {Λ1, Λ2, Λ3} with periods
h1 = 40, h2 = 20, and h3 = 40

N1

N2

Bus

0 10 20 30

sc(1)

c(1) a(1)

s(1) c(1) a(1)

sc(1)

s(1)

Figure 4: Schedule for mode {Λ1, Λ2} with periods h1 =
30 and h2 = 30

degraded) if the sensor–actuator delay at runtime is different
from what was assumed during control-law synthesis, or if this
delay is not constant (i.e., there is jitter). Given the delay
characteristics, we compute this cost Ji with Jitterbug [6].

We have developed a framework [8] to synthesize controllers
and schedule their execution and communication for single-
mode systems. In this paper, we use the framework to obtain an
implementation of a certain mode M ∈ M \ {∅} such that the
total control cost of the mode JM =

P
i∈IM

JM
i is minimized,

where JM
i is the cost of controller Λi. The produced mode im-

plementation comprises the periods hM
i , control laws uM

i , and
system schedule (schedule table or priorities). We also obtain
the memory consumption memM

d ∈ N of the implementation on
each computation node Nd ∈ N (d ∈ IN).

4. MOTIVATIONAL EXAMPLE
In this section, we shall highlight the two problems that are ad-
dressed in this paper: (1) the time complexity of the synthesis
of embedded multi-mode control systems, and (2) the memory
complexity of the storage of produced mode implementations.
Let us consider our example in Section 2 with three applications
Λ = {Λ1, Λ2, Λ3} that control the three inverted pendulums
P = {P1, P2, P3}. For the computation of the control cost in
Equation 2, we have used Qi = diag(CT

i Ci, 0.002) as the weight
matrix for each inverted pendulum Pi.

By using our framework for controller scheduling and synthe-
sis [8], we synthesized an implementation of mode M123 = Λ

with the periods hM123
1 = 40, hM123

2 = 20, and hM123
3 = 40

and the schedule in Figure 3. The outputs of the plants are
sampled periodically without jitter (e.g., by some mechanism
that stores the sampled data in buffers). The actuations of Λ1

and Λ3 finish at times 40 and 28, respectively. Because the
schedule is periodic, the delay from sampling to actuation is 40
in each instance of Λ1 (i.e., constant). Similarly, application Λ3

has the constant sampling–actuation delay 28. Two instances
are scheduled for application Λ2. The first actuation finishes at
time 20, whereas the second actuation finishes at time 38. By
considering the sampling period 20, we note that the sampling–
actuation delay of Λ2 during periodic execution of the sched-
ule is either 20 or 18. With this implementation, we obtained
the individual control costs JM123

1 = 2.98, JM123
2 = 1.19, and

JM123
3 = 2.24. Table 1 contains the individual controller costs

of the modes considered in this section.
Let us now consider mode M12 = {Λ1, Λ2} in which Λ3 is not

executing. The system can operate in the new mode by using
the schedule and control laws from mode M123. This can be
done by not writing to the actuators of Λ3 or by omitting the
execution and communication of Λ3. By using the implemen-
tation of mode M123, the overall control cost of mode M12 is
JM123

1 + JM123
2 = 2.98 + 1.19 = 4.17. This cost can be reduced

because, compared to mode M123, there is now more compu-
tation and communication power available for applications Λ1

and Λ2. Thus, it is worth investigating whether a better imple-
mentation (e.g., with reduced periods and delays) can be pro-

duced for mode M12. By running the synthesis of M12, we ob-
tained an implementation with the periods hM12

1 = hM12
2 = 30

and the schedule in Figure 4. Note from the new schedule that
both the period and delay of Λ1 have been reduced. The costs
of Λ1 and Λ2 with the new implementation are JM12

1 = 1.60

and JM12
2 = 1.42 (Table 1). The cost of Λ1 is reduced signifi-

cantly as a result of the reduction in sampling period and delay.
The sampling period of Λ2 is increased, which results in a small
increase in the cost of Λ2. This cost increase is accepted be-
cause it makes possible a significant quality improvement of Λ1,
which leads to a significant cost reduction of mode M12 to 3.02.

To achieve the best control performance, implementations
of all functional modes have to be produced at design time.
However, the number of modes is exponential in the number
of control loops that run on the platform. Thus, even if some
modes are functionally excluded, implementations of all pos-
sible functional modes cannot be produced in affordable time
(except cases with small number of control loops). Let us con-
sider that we can only run the synthesis of three modes at
design time. Modes M123 and M12 have already been dis-
cussed. Considering the third mode to be M13, the synthesis
resulted in the costs JM13

1 = 1.60 and JM13
3 = 1.95 (Table 1).

When using the implementation of M123, the costs of Λ1 and
Λ3 are 2.98 and 2.24, respectively. By running M13 with the
new implementation thus leads to a significant improvement in
control performance, compared to when using the implementa-
tion of M123. At runtime, the system has implementations of
the modes Mimpl = {M123,M12,M13} in memory. For modes
that are not implemented, the system chooses an implementa-
tion at runtime based on the three available implementations.
For example, mode M2 = {Λ2} does not have an implemen-
tation but can run with the implementation of either M12 or
M123. The cost of Λ2 when running with the implementation
of M12 is JM12

2 = 1.42, whereas it is JM123
2 = 1.19 for the im-

plementation of M123. Thus, at runtime, the implementation
of M123 is chosen to operate the system in mode M2.

We now consider that memory limitations in the platform im-
ply that we can only store implementations of two modes out
of the three modes in Mimpl. We cannot use the implementa-
tion of M12 or M13 to run the system in mode M123 and thus
we cannot remove its implementation. As we discussed in the
beginning of this section, the total control cost when running
mode M12 with the implementation of M123 is 4.17, compared
to the total cost 3.02 when running with the implementation
of M12. The implementation of M12 thus gives a total cost
reduction of 1.15. If, on the other hand, M13 runs with the
implementation of M123, the total cost is JM123

1 + JM123
3 =

2.98 + 2.24 = 5.22. If M13 runs with its produced implemen-
tation, the total cost is JM13

1 + JM13
3 = 1.60 + 1.95 = 3.55.

This gives a total cost reduction of 1.67, which is better than
the reduction obtained by the implementation of M12. Thus,
in the presence of memory limitations, the implementations of
M123 and M13 should be stored in memory to achieve the best
control performance. In this discussion, we have assumed that
M12 and M13 are equally important. However, if M12 occurs
more frequently than M13, the cost improvement of the imple-
mentation of M12 becomes more significant. In this case, the
best selection could be to exclude the implementation of M13

and store implementations of M123 and M12 in memory.
As the last example, let us consider that M123 is a vir-

tual mode (i.e., it does not occur at runtime). Let Mimpl =
{M12,M13,M23} be the set of modes with produced implemen-
tations. We have run the synthesis of mode M23 = {Λ2, Λ3}
and obtained a total cost of 3.31. Let us assume that the three
produced implementations of the modes in Mimpl cannot be all
stored in memory. If the implementation of M23 is removed,



for example, there is no valid implementation of the functional
mode M23 in memory. To solve this problem, we implement
the virtual mode M123. Its implementation can be used to run
the system in all functional modes—however, with degraded
control performance. The available memory allows us to fur-
ther store the implementation of one of the modes M12, M13,
or M23. We choose the mode implementation that gives the
largest cost reduction, compared to the implementation with
M123. By looking in Table 1 and with the cost reductions in
our discussions earlier in this example, we conclude that M13

gives the largest cost reduction among the modes in Mimpl.
The best control performance under these tight memory con-
straints is achieved if the virtual mode M123 and functional
mode M13 are implemented and stored in memory. This shows
that memory limitations can lead to situations in which virtual
modes must be implemented to cover a set of functional modes.

5. PROBLEM FORMULATION
In addition to the plants, control applications, and their map-
ping to an execution platform (Section 2), the inputs to the
problem that we address are

• a set of functional modes1 Mfunc ⊆ M that can occur at
runtime (the set of virtual modes is Mvirt = M\Mfunc),

• a weight2 wM > 0 for each mode M ∈ Mfunc (wM = 0
for M ∈ Mvirt), and

• the available memory in the platform, modeled as a mem-
ory limit memmax

d ∈ N for each node Nd (d ∈ IN).
The outputs are implementations of a set of modes Mimpl ⊆
M\{∅}. For each functional mode M ∈ Mfunc\{∅}, there must
exist an implementation (i.e., M ∈ Mimpl) or a supermode
implementation (i.e., Mimpl ∩M(M) �= ∅).

If M ∈ Mimpl, the cost JM is given from the scheduling and
synthesis step that produces the implementation (Section 3).
If M /∈ Mimpl and M �= ∅, the cost JM is given by the avail-
able supermode implementations: Given an implemented su-
permode M′ ∈ Mimpl ∩ M(M) of M, the cost of M when
using the implementation of M′ is

JM(M′) =
X

i∈IM

JM′
i = JM′ −

X
i∈IM′\IM

JM′
i . (3)

At runtime, we use the supermode implementation that gives
the smallest cost, and thus

JM = min
M′∈Mimpl∩M(M)

JM(M′).

The cost of the idle mode ∅ is defined as J∅ = 0. The objective
is to find a set of modes Mimpl and synthesize them such that
their implementations can be stored in the available memory
of the platform. The cost to be minimized is

Jtot =
X

M∈Mfunc

wMJM. (4)

6. SYNTHESIS APPROACH
Our synthesis approach consists of two sequential parts. First,
we synthesize implementations for a limited set of functional
modes (Section 6.1). Second, we select the implementations
to store under given memory constraints, and if needed, we
produce virtual-mode implementations (Section 6.2).

1
Due to the large number of modes, it can be nonpractical (or even

impossible) to explicitly mark the set of functional modes. In such cases,
however, the designer can indicate control loops that cannot be active
in parallel due to functionality restrictions. Then, the set of functional
modes Mfunc includes all modes except those containing two or more
mutually exclusive controllers. If no specification of functional modes is
made, it is assumed that Mfunc = M.
2
It can be impossible for the designer to assign weights to all functional

modes explicitly. An alternative is to assign weights to some particularly
important and frequent modes (all other functional modes get a default
weight). Another alternative is to correlate the weights to the occurrence
frequency of modes (e.g., obtained by simulation).

Initialization:
1. Mimpl := ∅
2. list edges := empty

For each mode M ∈ Mfunc
↑ , perform Steps 3–5 below.

3. Synthesize M and set Mimpl := Mimpl ∪ {M}
4. For each M′ ∈ M−(M), add the edge (M,M′) to the

beginning of the list edges

5. while edges �= empty
(a) Remove edge (M,M′) from the beginning of edges

(b) if M′ ∈ Mvirt and M′ �= ∅, for each M′′ ∈
M−(M′), add (M,M′′) to the beginning of edges

(c) else if M′ ∈ Mfunc \Mimpl and M′ �= ∅
i. Synthesize M′ and set Mimpl := Mimpl ∪ {M′}
ii. ΔJM′

(M) :=
“
JM′

(M) − JM′”.
JM′

(M)

iii. Compute the average weight wavg of the imme-
diate functional submodes of M′

iv. if ΔJM′
(M) � λ

wavg , for each M′′ ∈ M−(M′),
add (M′,M′′) to the beginning of edges

Figure 5: Synthesis with improvement factor λ

6.1 Control-Quality versus Synthesis Time
Our heuristic is based on a limited depth-first exploration of the
Hasse diagram of modes. We use an improvement factor λ � 0
to limit the exploration and to trade quality with optimization
time. Given a set of modes M′ ⊆ M, let us introduce the
set M′

↑ = {M ∈ M′ : M(M) ∩ M′ = ∅}, which contains the
modes in M′ that do not have supermodes in the same set M′.
Such modes are called top modes of M′. For example, mode Λ
is the only top mode of M (i.e., M↑ = {Λ}). We introduce the
set of immediate submodes of M ∈ M as M−(M) = {M′ ∈
M(M) : |M|−1 = |M′|}, and the set of immediate supermodes
as M+(M) = {M′ ∈ M(M) : |M| + 1 = |M′|}—for example,
M+({Λ2}) = {{Λ1, Λ2}, {Λ2, Λ3}}.

Figure 5 outlines our approach. In the first and second step,
the set of modes with produced implementations is initialized
to the empty set and an empty list is initialized. In this first
part of the synthesis, we consider only implementations of func-
tional modes. Virtual modes are implemented only as a solution
to memory constraints (Section 6.2). Note that we must im-
plement the top functional modes (i.e., functional modes that
do not have any functional supermodes). For each such mode
M, we perform Steps 3–5. In Step 3, we run the synthesis for
mode M to produce an implementation (periods, control laws,
and schedule) [8]. After the synthesis of a mode, the set Mimpl

is updated. We proceed, in Step 4, by finding the edges from
mode M to its immediate submodes. These edges are added
to the beginning of the list edges, which contains the edges
leading to modes that are chosen for synthesis.

As long as the list edges is not empty, we perform the sub-
steps in Step 5. First, in Step (a), an edge (M,M′) is removed
from the beginning of edges. In Step (b), if M′ �= ∅ is a vir-
tual mode, we do not consider it in the synthesis and resume
the exploration with its immediate submodes. In Step (c), if
an implementation of the functional mode M′ �= ∅ has not yet
been synthesized, we perform four steps (Steps i–iv). We first
run the synthesis for mode M′. Based on the obtained cost,
we decide whether or not to continue synthesizing modes along
the current path (i.e., synthesize immediate submodes of M′).
To take this decision, we consider the cost improvement of the
implementation of mode M′ relative to the cost when using
the implementation of mode M to operate the system in mode
M′. We also consider the weights of the immediate submodes
of M′. In Step ii, we compute the relative cost improvement

ΔJM′
(M). The cost JM′

of the synthesized mode M′ was de-



1. if
P

M∈Mimpl
↑

memM
d > memmax

d for some d ∈ IN

(a) Find M′ ⊆ S
M∈Mimpl

↑
M+(M) with smallest size

such that, for each M ∈ Mimpl
↑ , M′ ∩M(M) �= ∅

(b) For each M′ ∈ M′, synthesize M′ and set Mimpl :=
Mimpl ∪ {M′}

(c) Repeat Step 1

2. Find bM ∈ {0, 1} for each M ∈ Mimpl such that the
cost in Equation 5 is minimized and the constraint in
Equation 6 is satisfied for each d ∈ IN and bM = 1 for
M ∈ Mimpl

↑
Figure 6: Mode-selection approach

fined in Section 3, whereas the cost JM′
(M) of mode M′ when

using the implementation of mode M is given in Equation 3.
In Step iii, we compute the average weight of the immediate
functional submodes of M′ as

wavg =
X

M′′∈M−(M′)∩Mfunc

wM′′

, ˛̨̨
M−(M′) ∩Mfunc

˛̨̨
.

Based on the given improvement factor λ � 0, the relative

improvement ΔJM′
(M), and the average mode weight wavg, we

decide in Step iv whether to consider the immediate submodes
M−(M′) in the continuation of the synthesis. Note that, in this
way, the submodes with larger weights are given higher priority
in the synthesis. If M−(M′) ∩ Mfunc = ∅ (i.e., all immediate
submodes are virtual), the average weight is set to wavg = ∞,
which means that all immediate submodes are added in Step iv.

The parameter λ � 0 is used to tune the exploration of the
set of functional modes Mfunc; for example, a complete synthe-
sis of the functional modes corresponds to λ = 0. The results
of this first part of the synthesis are implementations of a set
of functional modes Mimpl ⊆ Mfunc. Note that all top func-
tional modes are synthesized, which means that the system can
operate in any functional mode.

6.2 Control-Quality versus Memory Consumption
Given are implementations of functional modes Mimpl as a re-
sult of the first part. We shall now discuss how to select the
implementations to store such that given memory constraints
are satisfied and the system can operate in any functional mode
with the stored implementations. Note that the set of top func-
tional modes Mfunc

↑ must have implementations in memory.
These implementations can be used to operate the system in
any of the other functional modes. If the implementations of
the top functional modes can be stored in the available mem-
ory, we do not need to implement virtual modes. The remaining
problem is to additionally select the remaining implementations
to store in memory. If, however, the implementations of the top
functional modes cannot be stored, we must produce implemen-
tations of virtual modes. These implementations should cover
a large amount of functional modes. An implementation of
a virtual supermode can replace several implementations and,
therefore, save memory space but with degraded control per-
formance in the modes with replaced implementations.

To select the mode implementations to store, we propose the
two-step approach outlined in Figure 6. We first check whether
the implementations of the functional top modes Mimpl

↑ =

Mfunc
↑ can be stored in the available memory on each com-

putation node Nd ∈ N. If not, we proceed by selecting virtual
modes to implement. In Step (a), we find among the immedi-

ate supermodes of the top modes Mimpl
↑ (the supermodes are

virtual modes) a subset M′ with minimal size that contains a
supermode for each top mode. In Step (b), we produce imple-
mentations of the chosen virtual modes M′ and add them to
the set of implemented modes Mimpl. The top modes of Mimpl

is now M′. We go back to Step 1 and check whether the im-
plementations of the new top modes can be stored in memory.
If not, we repeat Steps (a) and (b) and consider larger vir-
tual modes until we find a set of virtual modes that cover all
functional modes and that can be implemented in the available
memory. After this step, we know that the implementations of
Mimpl

↑ can be stored in the available memory and that they are
sufficient to operate the system in any functional mode.

The second step selects mode implementations to store in the
available memory such the control quality is optimized. This
selection is done by solving a linear program with binary vari-
ables: Given the set of implemented modes, possibly including
virtual modes from Step 1 in Figure 6, let us introduce a binary
variable bM ∈ {0, 1} for each mode M ∈ Mimpl. If bM = 1, it
means that the implementation of M is selected to be stored
in memory, whereas it is not stored if bM = 0. For a correct
implementation of the multi-mode system, we must store the
implementation of each top mode M ∈ Mimpl

↑ , and thus bM = 1
for those modes. To select the other mode implementations to
store, we consider the obtained cost reduction by implementing
a mode. Given M ∈ Mimpl \Mimpl

↑ , this cost reduction is

ΔJM = min
M′∈Mimpl∩M(M)

ΔJM(M′),

where ΔJM(M′) is given in Step ii in Figure 5. By removing

a mode M ∈ Mimpl \Mimpl
↑ (i.e., setting bM = 0), we lose this

cost improvement. The cost to be minimized is the overall loss
of cost reductions for mode implementations that are removed
from Mimpl \Mimpl

↑ . This cost is formulated asX
M∈Mimpl\Mimpl

↑

(1 − bM)wMΔJM. (5)

The memory consumption of an implementation of mode M
is memM

d on node Nd ∈ N. This information is given as an
output of the controller scheduling and synthesis (Section 3).
The memory constraint on node Nd ∈ N isX

M∈Mimpl

bMmemM
d � memmax

d , (6)

considering a memory limit memmax
d on node Nd. After solving

the linear program in Step 2, we store the implementations of
the selected modes {M ∈ Mimpl : bM = 1} and the multi-mode
system synthesis is completed.

7. EXPERIMENTAL RESULTS
We have conducted experiments to evaluate our proposed ap-
proach. We created 100 benchmarks using a database of in-
verted pendulums, ball and beam processes, DC servos, and
harmonic oscillators [11]. Such plants are acknowledged as rep-
resentatives of realistic control problems and are used exten-
sively for experimental evaluation. We considered 10 percent of
the modes to be virtual for benchmarks with 6 or more control
loops. We generated 3 to 5 tasks for each control application;
thus, the number of tasks in our benchmarks varies from 12 to
60. The tasks were mapped randomly to platforms comprising
2 to 10 nodes. Further, we considered uniform distributions of
the execution times of tasks. The best-case and worst-case ex-
ecution times of the tasks were chosen randomly from 2 to 10
milliseconds and the communication times of messages were
chosen from 2 to 4 milliseconds.

The first set of experiments evaluate the synthesis heuristic
in Section 6.1. The synthesis was run for each benchmark and
for different values of the improvement factor λ. All experi-
ments were run on a PC with a quad-core CPU at 2.2 GHz,
8 Gb of RAM, and running Linux. For each value of λ and
for each benchmark, we computed the obtained cost after the

synthesis. This cost is J
(λ)
tot =

P
M∈Mfunc wMJM (Equation 4)

and, because of the large number of modes, we could compute



 25

 30

 35

 40

 45

 50

 55

 60

 65

 4  5  6  7  8  9  10  11  12

A
ve

ra
ge

 c
os

t-
im

pr
ov

em
en

t [
%

]

Number of control loops

λ = 0
λ = 0.1
λ = 0.3
λ = 0.5

Figure 7: Control-performance im-
provements

 0

 200

 400

 600

 800

 1000

 1200

 1400

 4  5  6  7  8  9  10  11  12

A
ve

ra
ge

 C
P

U
 ti

m
e 

[s
ec

on
ds

]

Number of control loops

λ = 0
λ = 0.1
λ = 0.3
λ = 0.5

Figure 8: CPU times for mode syn-
thesis

 0

 0.2

 0.4

 0.6

 0.8

 1

 4  5  6  7  8  9  10  11  12

A
ve

ra
ge

 C
P

U
 ti

m
e 

[s
ec

on
ds

]

Number of control loops

Figure 9: CPU times for mode se-
lection (λ = 0.3)

it in affordable time for benchmarks with at most 12 control
loops. It is very important to note that the time-consuming
calculation of the cost is only needed for the experimental eval-
uation and is not part of the heuristic. We used the values 0,
0.1, 0.3, and 0.5 for the improvement factor λ. Because of long
runtimes, we could run the synthesis with λ = 0 (exhaustive
synthesis of all functional modes) and λ = 0.1 for benchmarks
with at most 7 control loops. As a baseline for the compar-
ison, we used the cost J↑

tot obtained when synthesizing only
the top functional modes Mfunc

↑ . For each benchmark and for
each value of λ, we computed the achieved cost improvement as

the relative difference ΔJ
(λ)
tot =

“
J↑

tot − J
(λ)
tot

”.
J↑

tot. Figure 7

shows the obtained cost improvements. The vertical axis indi-

cates the average value of the relative cost-improvement ΔJ
(λ)
tot

for benchmarks with number of control loops given on the hor-
izontal axis. The results show that the achieved control per-
formance becomes better with smaller values on λ (i.e., a more
thorough exploration of the set of modes). We also observe that
the improvement is better the larger number of control loops in
the multi-mode system. This demonstrates that for large num-
ber of control loops, it is important to additionally synthesize
other modes than the top functional modes. The experiments
also show that good quality results can be obtained also with
larger values of λ, which provide affordable runtimes for even
larger examples. The runtimes for the synthesis heuristic are
shown in Figure 8. We show the average runtimes in seconds
for the different values of the improvement factor λ and for each
dimension of the benchmarks (number of control loops). Fig-
ures 7 and 8 illustrate how the designer can trade off quality of
the synthesis with optimization time, depending on the size of
the control system. To further illustrate the scaling of synthesis
time, we mention that a system consisting of 20 control loops
on 12 nodes has been synthesized with λ = 0.5 in 38 minutes.

In the second set of experiments, we evaluate the mode-
selection approach. We have run the mode-synthesis heuristic
(Section 6.1) with λ = 0.3. Let us denote with memreq

d the
amount of memory needed to store the generated mode imple-
mentations on each node Nd. We have run the mode selection
(Section 6.2) considering a memory limitation of 0.7memreq

d for
each node. To solve the linear program given by Equations 5
and 6, we used the eplex library for mixed integer programming
in ECLiPSe [1]. The average runtimes are shown in seconds in
Figure 9. Note that the mode selection is optimal if all top
functional modes can be stored in memory. The selection of
modes to store in memory is performed only once as a last step
of the synthesis, and as the figure shows, the optimal selection
is found in neglectable runtime compared to the overall run-
time of the multi-mode system synthesis. To study the quality
degradation as a result of memory limitations, we used a bench-
mark with 12 control loops running on 10 nodes. We have run
the mode synthesis for three scenarios: First, we considered
no memory limitation in the platform, which resulted in a cost
improvement of 48.5 percent, relative to the cost obtained with

the baseline approach (synthesis of only top functional modes).
Second, we considered that only 70 percent of the memory re-
quired by the produced implementations can be used. As a
result of the mode selection, all top functional modes could be
stored, leading to a cost improvement of 41.4 percent (a degra-
dation of 7.1 percent compared to the first scenario without
memory constraints). For the third and last scenario, we con-
sidered memory limitations such that the implementations of
the top functional modes cannot be all stored in memory. After
the mode-selection approach, including the synthesis of virtual
modes, we obtained a solution with a cost improvement of only
30.1 percent (a degradation of 18.4 percent compared to the
case without memory constraints).

8. CONCLUSIONS
We addressed control-performance optimization for embedded
multi-mode control systems. The main design difficulty is raised
by the potentially very large number of possible modes. In this
context, an appropriate selection of the actual modes to be
implemented is of critical importance. We presented our syn-
thesis approach that produces schedules and controllers for an
efficient deployment of embedded multi-mode control systems.

9. REFERENCES
[1] K. R. Apt and M. G. Wallace. Constraint Logic Program-

ming using ECLiPSe. Cambridge University Press, 2007.
[2] E. Bini and A. Cervin. Delay-aware period assignment in

control systems. In Proc. of the 29th Real-Time Systems
Symposium, pp. 291–300, 2008.

[3] R. Bosch GmbH. CAN Specification Version 2.0. 1991.
[4] FlexRay Consortium. FlexRay Communications System.

Protocol Specification Version 2.1. 2005.
[5] H. Kopetz. Real-Time Systems—Design Principles for

Distributed Embedded Applications. Kluwer Academic,
1997.

[6] B. Lincoln and A. Cervin. Jitterbug: A tool for analysis
of real-time control performance. In Proc. of the 41st Con-
ference on Decision and Control, pp. 1319–1324, 2002.

[7] H. Rehbinder and M. Sanfridson. Integration of off-line
scheduling and optimal control. In Proc. of the 12th Eu-
romicro Conference on Real-Time Systems, pp. 137–143,
2000.

[8] S. Samii, A. Cervin, P. Eles, and Z. Peng. Integrated
scheduling and synthesis of control applications on dis-
tributed embedded systems. In Proc. of the Design, Au-
tomation and Test in Europe Conference, pp. 57–62, 2009.

[9] D. Seto, J. P. Lehoczky, L. Sha, and K. G. Shin. On task
schedulability in real-time control systems. In Proc. of the
17th Real-Time Systems Symposium, pp. 13–21, 1996.

[10] K. E. Årzén, A. Cervin, J. Eker, and L. Sha. An introduc-
tion to control and scheduling co-design. In Proc. of the
39th Conference on Decision and Control, pp. 4865–4870,
2000.

[11] K. J. Åström and B. Wittenmark. Computer-Controlled
Systems. Prentice Hall, 1997.


