
An Integrated Framework for the Design and
Optimization of SOC Test Solutions

Erik Larsson and Zebo Peng

Embedded Systems Laboratory
Department of Computer and Information Science,

Linköpings Universitet, Sweden.

Abstract1

We propose an integrated framework for the design of SOC test solutions, which includes a set of algorithms
for early design space exploration as well as extensive optimization for the final solution. The framework deals
with test scheduling, test access mechanism design, test sets selection, and test resource placement. Our
approach minimizes the test application time and the cost of the test access mechanism while considering
constraints on tests and power consumption. The main feature of our approach is that it provides an integrated
design environment to treat several different tasks at the same time, which were traditionally dealt with as
separate problems. We have made an implementation of the proposed heuristic used for the early design space
exploration and an implementation based on Simulated Annealing for the extensive optimization. Experiments
on several benchmarks and industrial designs show the usefulness and efficiency of our approach.

1. Introduction

The testing of System-on-Chip (SOC) is a crucial and time
consuming problem due to the increasing design
complexity. Therefore it is important to provide the test
designer with support to develop an efficient test solution.

The work-flow for a test designer developing a test
solution consists typically of two consecutive parts: an early
design space exploration and an extensive optimization for
the final solution. During the process, conflicts and
limitations must be carefully considered. For instance, tests
may be in conflict with each other due to the sharing of test
resources; and power consumption must be controlled,
otherwise the system may be damaged during test.
Furthermore, test resources such as external testers support
a limited number of scan-chains and have a limited test
memory, which also introduce constraints.

Research has been going on in developing techniques for
test scheduling, test access mechanism (TAM) design and
testability analysis. For example, a framework to support
the design of test solutions for SOC with Built-In Self-Test
(BIST) has been proposed by Benso et al. [2]. In this paper,
we combine and generalize several approaches in order to
create an integrated framework for the development of SOC
test solutions where:

• tests are scheduled to minimize the total test time,
• a minimal TAM is designed,
• test resources are floor-planned, and
• test sets for each core with test resources are selected.

The above set of tasks is performed in a single algorithm,
which considers test conflicts, power limitation and test
resource constraints [17,18,19]. The algorithm is suitable
for early design space exploration due to its low
computational complexity, which is an advantage since it
will be used iteratively many times.

Chakrabarty showed that test scheduling is equal to the
open-shop scheduling [4], which is known to be NP-
complete and the use of heuristics are therefore justified.
Several heuristics have been proposed [1,4,5,9,11,14,23,
27]; however, they have been evaluated using rather small
benchmarks. For such benchmarks, a technique based on
Mixed-Integer Linear-Programming (MILP) can be used
[4]. A disadvantage is the complexity of solving the MILP
model since the size of it quickly grows with the number of
tests making it infeasible for large industrial designs. We
have therefore made an implementation based on Simulated
Annealing for the extensive optimization of the test
schedule and the TAM design for the final solution [16]. We
have performed experiments on several benchmarks and on
an Ericsson design consisting of 170 tests to show the
efficiency and usefulness of our approach.

The rest of the paper is organised as follows. Related
work is outlined in Section 2 and the system modelling is
introduced in Section 3. Factors affecting the test solution
are presented in Section 4. The integrated algorithm is
described in Section 5 and how we used Simulated
Annealing is outlined in Section 6. The paper is concluded
with experimental results in Section 7 and conclusions are
in Section 8.

1. This work has partially been supported by the Swedish Agency for Innovation Systems (VINNOVA) and Ericsson.

2. Related Work

The basic problem in test scheduling is to assign a start time
for all tests. In order to minimize the test application time,
tests are scheduled as concurrent as possible, however,
various types of constraints must be considered.

A test to be scheduled consists of a set of test vectors
produced or stored at a test source (placed on-chip or off-
chip). The test response from the test is evaluated at a test
sink (placed on-chip or off-chip). When applying a test, a
test conflict may occur, which must be considered during
the scheduling process. For instance, often a testable unit is
tested by several test sets (usually an external test set and a
on-chip test set are required to reach high test quality). If
several tests are used for a testable unit, only one test can be
applied to the testable unit at a time.

Constraints on power consumption must be considered
otherwise the system can be damaged. During testing mode,
the power consumption is usually higher compared to
normal operation [12]. For instance, consider a memory,
which often is organized in memory banks. During normal
operation, only a single bank is activated. However, during
testing mode, in order to test the system in the shortest
possible time it is desirable to concurrently activate as many
banks as possible [9].

The use of different test resources may entail constraints
on test scheduling. For instance, external testers have
limitations of bandwidth due to that a scan chain operates
usually at a maximum frequency of 50 MHz [13]. External
testers can usually only support a maximum of 8 scan
chains [13], resulting in long test application time for large
designs. Furthermore, an external tester’s memory is
limited by its size [13].

Zorian proposed a test scheduling technique for fully
BISTed systems where test time is minimized while power
constraint is considered [27]. The tests are scheduled in
sessions where tests at cores placed physically close to each
other are grouped in the same test session. In a fully BISTed
system, each cores has its dedicated test source and test
sink; and there might not be any conflicts among tests, i.e.
the tests can be scheduled concurrently. However, in the
general case, conflicts among tests may occur. Garg et al.
proposed a test scheduling technique where test time is
minimized for systems with test conflicts [11] and for core-
based systems a test scheduling technique is proposed by
Chakrabarty [4, 5]. Chou et al. proposed an analytic test
scheduling technique where test conflicts and power
constraints are considered [9]. A resource graph is used to
model the system where an arc between a test and a resource
indicate that the resource is required for the test, Figure 1.
From the resource graph, a test compatibility graph (TCG)
is generated (Figure 2) where each test is a node and an arc
between two nodes indicates that the tests can be scheduled
concurrently. For instance t1 and t4 can be scheduled at the

same time. Each test is attached with its test time and its
power consumption and the maximal allowed power
consumption is 10. The tests t1 and t5 are compatible,
however, due to the power limit they cannot be scheduled at
the same time.

Another test scheduling approach is proposed by
Muresan et al. where constraints among tests and power
consumption are considered [23]. Favour is given to reduce
the test time by allowing new tests to start even if all tests in
a session are not completed. Iyengar and Chakrabarty
proposed a pre-emptive test scheduling technique where the
test for a testable unit may be interrupted and resumed later,
i.e. the test set is partitioned into several test sets [14]. Using
a scheme by Craig et al., the above discussed scheduling
techniques can be grouped in [10]:

• nonpartitioned testing,
• partitioned testing with run to completion, and
• partitioned testing.

The differences among the grouping are illustrated with five
tests (t1,..., t5) in Figure 3. The scheduling strategies
proposed by Zorian [27] and Chou et al. [9] are
nonpartitioned (Figure 3(a)), the strategy proposed by
Muresan et al. is partitioned testing with run to completion
(Figure 3(b)) and the approach proposed by Iyengar and
Chakrabarty [14] is partitioned testing (Figure 3(c)).

A test infrastructure is responsible for the transportation
of test vectors from test sources to cores under test and test
responses from cores under test to test sinks. It consists of
two parts; one for the test data transportation and one for the
control of the transportation. In the approach for fully
BISTed systems proposed by Zorian [27], tests at cores
placed physically close to each other are grouped in the
same test session. The main advantage is that the same
control structure can be used for all tests in the session,
which minimizes the routing of control wires. In general,

Figure 1. Resource graph of an example system.

t1 t2 t3 t4 t5

r5r4r3r2r1

Figure 2. Test compatibility graph (TCG) of the
example system (Figure 1).

t1
(5,3)

t5
(6,2)

t4
(4,2)

t2
(3,5)

t3
(4,2)

test
(power,time)

power limit = 10

systems are not tested with a BIST structure only for each
testable unit and therefore a TAM is required [6,7,8,24].
Chakrabarty proposed an integer linear programming (ILP)
for the allocation of TAM width [6,7,8] and the effect on test
time for systems using various design styles for test access
with the TestShell wrapper is analysed by Aertes and
Marinissen [1].

To ease test access the cores can be placed in wrappers
such as Boundary scan [3], TestShell [20] or P1500 [15, 21].
The Boundary scan technique, developed for PCB designs,
suffers from long testing time due to the shifting process,
and it becomes even worse for SOC designs since the
amount of test data to be transported increases. An
alternative is to use an architectures as proposed by Aertes
and Marinissen (Figure 4.(a,b,c)) where the test time only
depends on the number of flip-flops within the cores and the
number of test vectors, i.e. the transportation to and from a
core is free [1]. The daisy-chained architecture uses a
clocked bypass, however, Marinissen et al. have also
proposed a wrapper design library allowing bypass
structures without clock delay [22].

The above scheduling techniques all assume that all
testable units have their selected test sets. Sugihara et al.
proposed a technique for selecting test sets where each core
may be tested by one test set from an external tester and one
test set from a dedicated test generator for the core [25].

3. System modelling

This section describes the formal notation we use to model
the SOC under test. An example of a system under test is
given in Figure 5 where each core is placed in a wrapper to
ease test access. A DFT technique is added to each core and
in this example all cores are tested using the scan technique.
The test access port (tap) is the connection to an external
tester and for instance the test source, test source 1, and test
sink, test sink 1, are implemented on-chip [17,19]. Applying
several sets of tests, where each test set is produced or

stored at a test source and the test response is analysed at a
test sink, tests the system.

The system in Figure 5 can be modelled as a design with
test, DT = (C, Rsource, Rsink, pmax, T, source, sink, core,
constraint, mem, bw), where:

C = {c1, c2,..., cn} is a finite set of cores where each core
ci∈ C is characterized by pidle(ci): idle power;

Rsource = {r1, r2,..., rp} is a finite set of test sources;
Rsink = {r1, r2,..., rq} is a finite set of test sinks;
pmax: maximal allowed power at any time;
T = {t1, t2,..., to} is a finite set of tests, each consisting of

a set of test vectors. Several tests form a core test (CT) and
each core, ci, can be associated with several core tests, CTij
(j=1,2,...,l).

Each test ti is characterized by:
τ test(ti): test time for test ti,
ptest(ti): test power for test ti,
bw(ti): bandwidth required for ti
mem(ti): memory required for test pattern storage.

source: T→Rsource defines the test sources for the tests;
sink: T→Rsink defines the test sinks for the tests;
core: T→C: the core where a test is applied;
constraint: T→2C: the set of cores required for a test;
mem(ri): memory available at test source ri∈ Rsource;
bw(ri): bandwidth at test source ri∈ Rsource.

Figure 3. Scheduling approaches.

t2a

(c) Partitioned testing

t5

t1
t4

t3
t2b

(b) Partitioned testing with run to completion

t2
t5 t4

t1 t3

(a) Nonpartitioned testing
session 1 session 2 session 3

t2
t5

t4
t1

t3

Figure 4. Multiplexing, distribution and daisy-
chain architecture [1].

test sinkN

test sink

test sink

A

A

A B

B

B N

NN

N
Ntest source

test source

test source

N1+N2=NN1N1

N2 N2

N

N

N

N

N

(a) Multiplexing architecture

(b) Distribution architecture

(c) Daisy-chain architecture

Figure 5. An example system.

TAP source

TAP sink

test sink 1

test source 1
test sink 2

wrapperwrapper

wrapper

core 1 (c1) core 2(c2)

core 3(c3)
test source 2

scan-chain 1

scan-chain 1

scan-chain 1

scan-chain 2

scan-chain 3

For each test, one test sink and one test source are
required. In our model, it is possible for every test to
combine any type of test source (on-chip or off-chip) with
any type of test sink (on-chip or off-chip), which is
important to allow high flexibility. To further give the
designer a high flexibility to explore different combinations
of tests, it is possible to define several set of tests (CTij) for
each core where each such set tests the core.

Given a system as in Figure 5 where for each of the cores
c1, c2, c3, one CT exists. For core c1, CT11={t1, t2}, for core
c2, CT21={t4, t5} and for c3, CT31={t3}. The on-chip test
source 1 is required by t1 and t3 and the on-chip test sink 1
is required by t3 and t5. The resource graph in Figure 1 and
the test compatibility graph in Figure 2 model the system
when r3 (test source 1) is needed by t1 and t3 and r4 (test sink
1) needed by t3 and t5.

4. The SOC Test Issues

In this section we discuss the different issues considered by
our SOC test framework. We also demonstrate the
importance of considering them in an integrated manner.

4.1 Test Scheduling

The test scheduling problem can be seen as placing all tests
in a diagram as in Figure 6 while satisfying all constrains.
For instance, t1 and t2 cannot be applied at the same time
since both tests the same core, c1 (example in Section 3).

The basic difference between our scheduling technique
[17,19] and the approaches proposed by Zorian [27] and
Chou et al. [9] is, besides that we design the TAM while
scheduling the tests, that Zorian and Chou et al. do not
allow new tests to start until all tests in a session are
completed. It means that if t3 is about to be scheduled it
cannot be scheduled as in Figure 6. In the approach
proposed by Muresan et al. [23], t3 can be scheduled if it is
completed no later than t2.

In our approach it is optional if tests may start before all
tests in a session are completed (nonpartitioned testing) or
not (partitioned testing with run to completion). The
advantage of using the latter is that it gives more flexibility.

Let a schedule S be an ordered set of tests such that:

where S(ti) defines the position of test ti in S; τstart(ti)
denotes the time when test ti is scheduled to start, and
τend(ti) its completion time:

For each test, ti, the start time and the wires for test data
transportation have to be determined before it is inserted
into the schedule, S.

Let the Boolean function scheduled(ti, τ1, τ2) be true if
test ti is scheduled in such a way that the test time overlaps
with the time interval [τ1, τ2], i.e.,

An example to illustrate the function scheduled for a set
of scheduled tests is shown in Figure 7.

The Boolean function scheduled(ri, τ1, τ2) is true if a
source ri is used by a test tj between τ1 and τ2, i.e.:

A similar definition is used if a sink ri is scheduled (used
by any test) between τ1 and τ2. The Boolean function
scheduled(constraint(ti), τ1, τ2) is true if:

4.2 Power Consumption

Generally speaking, there are more switching activities
during the testing mode of a system than when it is operated
under the normal mode. The power consumption of a
CMOS circuit is given by a static part and a dynamic part
where the latter dominates and can be characterized by:

where the capacitance C, the voltage V, and the clock
frequency f are fixed for a given design [26]. The switch
activity α , on the other hand, depends on the input to the
system, which during testing are test vectors and therefore
the power dissipation vary depending on the test vectors.

An example illustrating the test power dissipation
variation over time τ for two test ti and tj is in Figure 8. Let
pi(τ) and pj(τ) be the instantaneous power dissipation of two
compatible tests ti and tj, respectively, and P(ti) and P(tj) be
the corresponding maximal power dissipation.

If pi(τ) + pj(τ) < Pmax, the two tests can be scheduled at
the same time. However, instantaneous power of each test
vector is hard to obtain. To simplify the analysis, a fixed
value ptest(ti) is usually assigned for all test vectors in a test
ti such that when the test is performed the power dissipation
is no more then ptest(ti) at any moment.

Figure 6. Example of test scheduling.

power limit
power

t4
t1

t5
t2

t3

τ1 τ2 τ

S ti() S tj()< τstart ti() τstart tj()≤ i j≠ ti∀ S∈ tj S∈∀, , ,{ },

τend ti() τ start ti() τ test ti().+=

ti S∈ τ end ti() τ 1< τstart ti() τ2>∨()¬∧{ } .

Figure 7. The function scheduled.

¬ (tend(ti)<τ1 ∨ tstart(ti)>τ2)

i=1: ¬ (True ∨ False) → False
i=2: ¬ (False ∨ False) → True
i=3: ¬ (False ∨ False) → True
i=4: ¬ (False ∨ False) → True
i=5: ¬ (False ∨ True) → False
i=6: ¬ (False ∨ False) → True

t1
t2

t3
t4

t5
t6

ττ1 τ2

tj S∈∃ r
i

source tj()= scheduled tj τ1τ2,() } .∧{

tj S∈ core tj() constraint ti()∈ scheduled tj τ1 τ2, ,() } .∧∃{

p C V
2

f α×××=

The ptest(ti) can be assigned as the average power
dissipation over all test vectors in ti or as the maximum
power dissipation over all test vectors in ti. The former
approach could be too optimistic, leading to an undesirable
test schedule, which exceeds the test power constraints. The
latter could be too pessimistic; however, it guarantees that
the power dissipation will satisfy the constraints. Usually, in
a test environment the difference between the average and
the maximal power dissipation for each test is often small
since the objective is to maximize the circuit activity so that
it can be tested in the shortest possible time [9]. Therefore,
the definition of power dissipation ptest(ti) for a test ti is
usually assigned to the maximal test power dissipation
(P(ti)) when test ti alone is applied to the device. This
simplification was introduced by Chou et al. [9] and has
been used by Zorian [27] and by Muresan et al. [23].We will
use this assumption also in our approach.

Let psch(τ1, τ2) denote the peak power between τ1 to τ2:

where scheduled(ti, τ)=scheduled(ti, τ, τ).
As an example, applying the function psch(τ1, τ2) on the

schedule for a system with 5 tests as in Figure 6, with τ1 and
τ2 as indicated in the figure, returns ptest(t2) + ptest(t5)
+pidle(c3), the peak power consumption between τ1 and τ2.

In our approach, the maximal power consumption should
not exceed the power constraint, pmax, for a schedule to be
accepted. That is, psch(0, ∞) ≤ pmax.

4.3 Test Source Limitations

A test source usually has a limited bandwidth. For instance,
external tester may only support a limited number of scan
chains at a time [13]. There could also be a limitation in
number of available pins. For each test source, this

information is given in the attribute bandwidth.
The function bwalloc(ri, τ1, τ2) gives the maximal number

of wires allocated between τ1 and τ2 for a source ri, i.e.:

For instance, in Figure 9 a test source r1 feeds test t5
using wire w2 and w3. In this example, bw(r1)=6 and
bwalloc(ri, τ1, τ2) = 4 since wire w2 and w3 are used by t3 and
t5 and w5 and w6 are used by t2.

A test generator (test source) may use a memory for
storing the test patterns. In particular, external test
generators use such a memory with a limited size, which
may lead to additional constraints on test scheduling [13].

The function memalloc(ri, τ1, τ2) gives the allocated
memory between time τ1 and τ2 for a given source ri, i.e.:

4.4 Test Set Selection

A test set is attached with its test power consumption, test
application time, bandwidth requirement and memory
requirement (Section 3). The required test source and the
test sink are also defined for each test set. In the approach
proposed by Sugihara et al. each testable unit can be tested
by two test sets using a dedicated BIST resource and an
external tester [25]. In our approach, we assume that an
arbitrary number of test sets can be used for each testable
unit where each test set can be specified using any type of
test resource. For instance, we allow the same test resource
to be used by several test sets at different testable units. The
major advantage is that the designer can define and explore
a wider range of test sets. Due to that the test resources are
defined for each test set it is possible to make a comparison
of different test sets not only in terms of the number of test
vectors but also in respect to test resources.

For each testable unit, the designer defines a core test set
where each set is a set of test vectors. For instance, if the
following CT11={t1, t2}, CT12={t6}, CT13={t7, t8, t9} is
given for core c1. One of CT11, CT12 or CT13 must be
selected and all tests with in the selected CT must be
scheduled and no other tests from any other CT for core c1
should be scheduled.

Figure 8. Power dissipation as a function of time [9].

Power

Time, τ

Pmax

ti

ti+tj

P(ti, tj) = | pi(τ) + pj(τ) |

P(ti) + P(tj) = | pi(τ) | + | pj(τ) |

P(ti) = | pi(τ) |

P(tj) =| pj(τ) |

pi(τ) = instantaneous power dissipation of test ti

P(ti) = | pi(τ) | = maximum power dissipation of test ti

tj

dissipation

max ptest ti() pidle core ti()()– +

tischeduled ti τ,()∀
∑

pidle ci() τ τ1 τ2,[]∈,
ci C∈∀
∑

,

max twires tj()
tjscheduled tj τ,() ri source tj()=∧∀

∑

τ τ 1 τ2,[] } .∈,

Time, ττ2τ1

Figure 9. The TAM allocation.

w1
w2
w3
w4
w5
w6

t5 t3

t2

Test source r1

max mem

tjscheduled tj τ,() ri source tj()=∧∀
∑ tj()

τ τ 1 τ2,[] } .∈,

4.5 Test Access Mechanism

A test infrastructure transports and controls the flow of test
data in the system under test. The Boundary scan technique
can be used for these purposes, however, it suffers from
long testing times and due to the amount of test data to be
transported in the system, we assume an infrastructure
consisting of test wires (lines). It means we add needed
number of test wires from test sources to cores and from
cores to test sinks. The time to transport a test vector from a
test source to a core and the time to transport test response
from a core to a test sink is neglected, which means that the
test time is determined by the test vectors and design
characteristics of each core.

When adding a TAM between a test source and a core or
between a core and a test sink, and the test data has to pass
another core, ci, several routing options are possible:

1. through the core ci using its transparent mode;
2. through an optional bypass structure of core ci; and
3. around core ci and not connecting it to the TAM.

The model in Figure 10(a) of the example system in Figure
5 illustrates the advantage of alternatives 1 and 2 (Figure 10
(b)) compared to alternative 3 (Figure 10 (c)) since the TAM
can be reused in the former two cases. However, a delay
may be introduced when the core is in transparent mode or
its by-pass structure is used as in the TestShell [21]. On the
other hand, Marinissen et al. recently proposed a library of
wrapper cells allowing a flexible design where it is possible
to design non-clocked bypass structures of TAM width [22].
In the following, we assume that bypass may be solved
using such non-delay mechanism.

When designing the TAM, two problems must be solved:

• the design and routing of the TAMs, and
• the scheduling of tests using the TAMs.

In order to minimize the routing, few and short wires are
desired. However, such approach increases the test time of
the system. For instance, consider System S [5] (Table 1)
where we added the floor planning (x, y co-ordinates for
each core). A minimal TAM would be a single wire starting
at the TAP, connecting all cores and ending at the TAP.

However, such TAM leads to high test application time
since no tests can be applied concurrently, all tests have to
be applied in a sequence.

The system (for instance the example system in Figure 5
or System S) can be modelled as a directed graph, G=(V,A),
where V consists of the set of cores (the testable units), C,
the set of test sources, Rsource, and the set of test sinks, Rsink,
i.e. V=C∪ Rsource∪ Rsink [17,19]. An arc ai∈ A between two
vertices vi and vj indicates a TAM (a wire) where it is
possible to transport test data from vi to vj. Initially no TAM
exists in the system, i.e. A=∅ . However, if the functional
infrastructure may be used, it can be included in A initially.
A test wire wi is a path of edges {(v0,v1),.,(vn-1,vn)} where
v0∈ Rsource and vn∈ Rsink. Let ∆yij be defined as

and ∆xij as , where x(vi) and y(vi)
are the x-placement respectively the y-placement for a
vertex vi and the distance between vertex vi and vj is:

The Boolean function scheduled(wi, τ1, τ2) is true when
a wire wi is used between τ1 to τ2:

where tam(tj) is the set of wires allocated for test tj.
The information of the nearest core in four direction,

north, east, south and west, are stored for each vertex. The
function south(vi) gives the closest vertex south of v:

The functions north(vi), east(vi) and west(vi) are defined
in similar ways. The function insert(vi, vj) inserts a directed
arc from vertex vi to vertex vj if and only if the is true:

The function closest(vi, vj) gives a vertex, vk, in the
neighbourhood of vi with the shortest distance to vj. The
function add(vi, vj) adds arcs from vi to vj in the following
way: (1) find vk=closest(vi, vj); (2) add an arc from vi to vk;
(3) if vk = vj, terminate otherwise let vi=vk and go to (1).

The total length of a path is the sum of all individual
edges. An example to illustrate the calculation of the length

Figure 10. Illustrating TAM design
alternatives using the example in Figure 5.

core ci
test source r1
test sink r2

r1 r2

(a)

(b) (c)

c3

c2c1

r1 r2

c3

c2c1r1 r2

c3

c2c1

Core Index i External test
cycles, ei

BIST cycles,
bi

Placement

x y

c880 1 377 4096 10 10

c2670 2 15958 64000 20 10

c7552 3 8448 64000 10 30

s953 4 28959 217140 20 30

s5378 5 60698 389214 30 30

s1196 6 778 135200 30 10

Table 1. Test data for the cores in System S.

y vi() y vj()– x vi() x vj()–

dist vi vj,() yij∆()2
xij∆()2

.+=

tj S w∈∃
i

tam tj()∈ scheduled tj τ1 τ2, ,() },∧{

south vi()
yij∆
xij∆

--------- 1>
yij∆
xij∆

--------- 1–<∨

 ,

=

y vj() y vi()< i, j≠ min dist vi vj,(){ } .,

south vi vj,() north vi vj,() west vi vj,() east vi vj,()∨ ∨ ∨{ } .

of a test wire on the example system (Figure 5) defined as a
path is in Figure 11 (in this path core c3 is not included).

4.6 Test Floor-planning

In the approach proposed by Sugihara et al. each testable
unit is tested by a test sets using a dedicated BIST resource
and an external tester [25]. However, we allow the sharing
of test resources and if a BIST resource is shared among
several cores, the floor-planning is not trivial.

For instance, if two cores in the example design
(Figure 5) both uses a single on-chip test source and test
sink, it is most feasible to place the test source at one core
while the test sink is placed at the other core.

Initially, the test resources may not be placed. Our
algorithm described in the next section, determines their
placement in this case.

5. The Heuristic Algorithm

In this section the issues discussed above are combined into
an algorithm. The algorithm assumes that the tests are
initially sorted according to a key k, which characterizes
power(p), test time(t) or power×test time(p×t).

Let T be the ordered set of the tests, which are ordered
based on the key k. If the scheduling approach is partitioned
testing with run to completion the function nexttime(told)
gives the next time where it is possible to schedule a test:

otherwise if nonpartitioned testing is used the function
nexttime(told) is defined as:

The algorithm depicted in Figure 12 can basically be
divided into four parts for:

• constraint checking,
• test resource placement,
• test access mechanism design and routing, and
• test scheduling.

A main loop is terminated when there exists a core test (CT)
for each core such that all tests within the selected CT are
scheduled. In each iteration at the loop over the tests in T a
test cur is checked. A check is also made to determine if all

constraints are fulfilled, i.e. it is possible to schedule test cur
with a start at τ and an end time at τend=τ+τ test:

• ¬ ∃ tf (tf ∈ CTij∧ tf ∈ S∧ cur ∉ CTij) checks that another
core test set for current core is not used in the schedule,

• psch(τ, τend)+ptest(cur)<pmax checks that the power con-
straint is not violated,

• ¬ scheduled(va, τ, τend) checks that the test source is not
scheduled during τ to τend,

• ¬ scheduled(vc, τ, τend) checks that the test sink is not
scheduled during τ to τend,

• ¬ scheduled(constraint(cur), τ, τend) checks that all
cores required for cur are available during τ to τend,

• the available bandwidth at test source va is checked to
see if: bw(va) > bw(cur) + bwalloc(va, τ, τend) and

• the available memory test source va is checked to see if:
mem(va)>mem(cur)+memalloc(va, τ, tend).

Figure 11. Computing the TAM length.

Tam length=dist(v0,v1)+dist(v1,v2)+dist(v2,v3)

v0=test source, v1=c1, v2=c2, v3=test sink

dist(v0,v1) dist(v1,v2)

dist(v2,v3)

v0, (x,y) v1, (x,y) v2, (x,y)

v3, (x,y)

τend ti() min τend ti()() τold τend ti() ti S∈∀,<,{ },

τend ti() max τend ti()() τold τend ti() ti∀ S∈,<,{ } .

Sort T according to the key (p, t or p×t);
S=∅ ; τ=0;
until ∀ bpq∃ CTpq∀ ts∈ S do

for all cur in T do
va=source(cur);
vb=core(cur);
vc=sink(cur);
τend=τ+ttest(cur);
if all constraints are satisfied then begin

¬ scheduled(va, 0, tend) floor-plan va at vb;
¬ scheduled(vc, 0, tend) floor-plan vc at vb;
for all required test resources begin

new=length of a new wire wj connecting va, vb and vc;
u=number of wires connecting va, vb and vc not

scheduled from τ to τend;
v=number of wires connecting va, vb and vc;
for all min(v-u, bw(cur))wires wj

extend=extend+length of an available wire(wj);
if (bw(cur)>u)

extend=extend+new×(par-u);
move=par(va) × min{dist(va, vb),dist(vb, vc)};
if (move≤min{extend, new × bw(cur)})

vx, vy=min{dist(va, vb), dist(vb, vc)}, dist(va, vb)>0,
dist(vb,vc)>0

add par(va) wires between vx and vy;
if (vx=source(cur)) then floorplan va at vb;
if (vy = sink(cur)) then floorplan vc at vb;

end
for r = 1 to bw(cur)

if there exists a not scheduled wire during τ to τend
connecting va, vb and vc it is selected

else
if (length of a new wire < length of extending a wire wj)

wj=add(va, vb)+add(vb, vc);
else

extend wire;
schedule cur and remove cur from T;

end;
τ = nexttime(τ).

Figure 12. The system test algorithm.

Then the placement of the test resources is checked. If the
test resources are on-chip resources and not placed in the
system, they are placed at core ci. If they are floor-planned,
a check is performed to determine if they are to be moved.

When the placement of the test resources for the selected
test is determined, the test access mechanism is designed
and routed. The basic question is if existing wires can be
used or new wires must be added. If no routed connection is
available connecting all required cores, the distance for
adding a completely new connection is re-calculated due to
a possible moving of test resources.

Examples of the produced results from the algorithm
using System S [5] (Table 1) are the TAM design as in
Figure 13 and the test schedule as in Figure 14. The TAM
wires 1 to 5 in Figure 13 correspond to the TAM 1 to 5 in
Figure 14. For instance, b5 is the BIST test of core indexed
5 (s5378) and e5 is the external test of s5378 (note that the
BIST tests bi do not require a TAM but they are placed in
Figure 14 to illustrate when they are scheduled).

The computational complexity for the above algorithm,
where the test access mechanism design is excluded in order
to make it comparable with other approaches, comes mainly
from sorting the tests and the two loops. The sorting can be
performed using a sorting algorithm at O(n×log n). The
worst case occurs when in each loop iteration for the loops
only one test is scheduled giving a complexity:

The total worst case execution time is n×log + n2/2 +n/
2, which is of O(n2). For instance, the approach by Garg et
al. [11] and by Chakrabarty [5] both has a worst case
complexity of O(n3).

6. Simulated Annealing

In this section we outline the Simulated Annealing (SA)
technique and describe its adoption to be used for
scheduling and TAM design. The technique proposed by
Kirkpatrick et al. [16] uses a hill-climbing mechanism to
avoid getting stuck in at local optimum.

6.1 The Simulated Annealing Algorithm

The SA algorithm (Figure 15) starts with an initial solution
and a minor modification creates a neighbouring solution.
The cost of the new solution is evaluated and if it is better
than the previous, the new solution is kept. A worse solution
can be accepted at a certain probability, which is controlled
by a parameter referred to as temperature.

The temperature is decreased during the optimization
process, and the probability of accepting a worse solution
decreases with the reduction of the temperature value. The
optimization terminates when the temperature value is
approximately zero.

P i–()

i 0=

P 1–

∑
n

2

2

n
2
---+=

Figure 13. TAM design using our heuristic on System S.

c7552

s1196c2670

s53781s953

2

3

5c880

4

TA
P

Figure 14. TAM schedule on System S
using our heuristic.

time

996194

TAM

2

1

--
--

--
--

--
B

IS
T

--
--

--
--

--

e5

b4

e3

e4

b2

b1

b3

b5

e1 e6

e2

b6

3

4

5

Figure 15. Simulated Annealing algorithm.

1: Construct initial solution, xnow;
2: Initial Temperature: T=TI;
3: while stop criteria not met do begin
4: for i = 1 to TL do begin
5: Generate randomly a neighboring solution

x’∈Ν(xnow);
6: Compute change of cost function

∆C=C(x’)-C(xnow);
7: if ∆C≤0 then xnow=x’
8: else begin
9: Generate q = random(0, 1);
10: if q<e-∆C/T then xnow=x’
11: end;
12: end;
13: Set new temperature T=α×T;
14: end;
15: Return solution corresponding to the minimum

cost function;

6.2 Initial Solution and Parameter Selection

We use our heuristic described in Section 5 with an initial
sorting of the tests based on power (using time and
power×time results after optimization in the same cost)
within the integrated test framework (Section 5) to create
the initial solution [17,19]. An example of an initial solution
produced for System S is in Figure 13 and Figure 14.

The parameters, initial temperature TI, the temperature
length TL and the temperature reduction factor α (0<α<1)
are all determined based on experiments.

6.3 Neighbouring Solution in Test Scheduling

In the case when only test scheduling is considered, i.e. the
TAM is not considered or it is fixed and seen as a resource,
we create a neighbouring solution by randomly selecting a
test from an existing schedule and schedule it as soon as
possible but not at the same place as it was in the original
schedule. For instance, creating a neighbouring solution
given a test schedule as in Figure 6 with resource graph as
in Figure 1 and test compatibility graph as in Figure 2, we
randomly select a test, let say t1. We try to schedule t1 as
soon as possible but not with the same starting time as it had
while fulfilling all constraints. Test t1 was scheduled to start
at time 0 and no new starting point exists where constraints
are fulfilled until end of t3 where t1 now is scheduled. In this
case, the test time increases after the modification (getting
out of a possible local minimum), however, only
temporarily since in the next iteration a test may be
scheduled at time 0 (where t1 used to be).

6.4 Neighbouring Solution in Test Scheduling and
TAM Design

When both the test time and the TAM design are to be
minimized, a neighbouring solution is created by randomly
adding or deleting a wire and then the tests are scheduled on
the modified TAM.

If the random choice is to add a wire, a test is randomly
selected and a wire is added from its required test source to
the core where the test is applied and from the core to the
test sink for the test. For instance, if e3 in System S (Table 1)
is selected, a wire is added from the TAP to core c7552 and
from core c7552 to the TAP.

If the random choice is to delete a wire, a similar
approach is applied. However, a check is performed to
make sure that all tests can be applied.

6.5 Cost function

The cost function of a test schedule, S, and the TAM, A, is:

where: T(S) is the test application time for a sequence of
tests, S, L(A) is the total length of the TAM, β1, β2 are two
designer-specified constants used to determine the
importance of the test time and the TAM.

The test application time, T(S), for a schedule, S, is:

and the length, L(A), of the TAM, A, is given by:

For the test schedule, S, produced by SA for System S
(Figure 16) the test time, T(S) is 996194 (the end time of
test e5) and the length of the TAM (Figure 17) is 160.
Comparing this to the results produced by our heuristic [17]
shows that test time is the same while the TAM is reduced
from 320 (Figure 13) to 160 (Figure 17).

7. Experimental Results

7.1 Benchmarks

We have used the System S [5], which has test conflicts
(Table 1) while all other benchmarks and designs have test
conflicts and power constraints like the ASIC Z design
presented by Zorian [27] with added data made by Chou et
al. [9] (see the floor-plan in Figure 18) and we added the
placement (x,y) coordinates [17]. For instance, RAM2 is
placed at (10,20), which means that the centre of RAM2 has
x-coordinate 10 and y-coordinate 20. The design is fully
BISTed with a power dissipation limit at 900 mW.

We have also used an extended ASIC Z design where
each core is tested by two test sets (one external test and one
BIST) and an interconnection test to a neighbouring core
[19]; in total 27 tests.

C S A,() β1 T S()× β2 L A()×+=

T S() tend ti() ti max tend ti(){ }()∀ ti S∈,{ }=

di

j 0=

wi 1–

∑
wj A∈
∑ st vj vj 1+,() vj vj 1+, wi∈,

Figure 16. Test schedule on System S using SA.

time

996194

TAM

2

1

--
--

--
--

--
B

IS
T

--
--

--
--

--

e5

b4

e3e4

b2

b1

b3

b5
e1e6

e2

b6

Figure 17. TAM design using SA on System S.

s1196c2670

s953 s5378c7552

c880

2
1

TA
P

We have also used a design with 10 tests presented by
Muresan et al. [23] and an industrial design with
characteristics given in Table 2. The power limitation for
the industrial design example is 1200 mW and only one test
may use the test bus or the functional pins (fp) at a time.
Furthermore block-level tests may not be scheduled
concurrently with top-level tests.

The largest design is the Ericsson design [18,19]
consisting of 8 DSP cores plus additional logic cores and
memory banks, see Figure 19. Design characteristics are in
Table 3 where the following notations are used:

• n: DSP core (0≤n≤7),
• i: common program memory (CPM) bank (0≤i≤7),
• j: common data memory (CDM) bank (0≤j≤9),
• l: local data memory (LDM) at a DSP core (0≤l≤3),
• m: local memory (LZM) bank at a DSP core (0≤m≤1).

All logic blocks in the Ericsson design are tested by two test
sets, one using external tester and one using on-chip
resources, while memories are tested with one test set; in
total 170 tests.The test access port may be used by more
than one test concurrently. However, the other test resources
cannot be used concurrently. Furthermore, only one test set

may be applied concurrently to each block and maximal
power dissipation is 5125 mW. For the implementation, we
have simplified our system model (Section 3) regarding the
TAM wire design and only allowing a single wire per test.

Test Block Test Test time Test power Test port

B
lo

ck
-l

ev
el

te
st

s

A Test A 515 379 scan

B Test B 160 205 testbus

C Test C 110 23 testbus

E Test E 61 57 testbus

F Test F 38 27 testbus

I Test I 29 120 testbus

J Test J 6 13 testbus

K Test K 3 9 testbus

L Test L 3 9 testbus

M Test M 218 5 testbus

To
p-

le
ve

l
te

st
s

A Test N 232 379 fp

N Test O 41 50 fp

B Test P 72 205 fp

D Test Q 104 39 fp

Table 2. Characteristics for the industrial design.

Figure 18. ASIC Z floor-plan.

RAM 2

(i)

(f)

(c)

(d) (e)

tg.ram

sa.ram
sa.rf

tg.rf

tg.rl1 sa.rl1

(10,20)

(30,10)

(40,10) (50,10)

(40,30)

RL 2
(g)tg.rl2 sa.rl2(40,20)

RL 1

tap
(50,20)

RFRAM 1RAM 4ROM 2

(b)

sa.rom

(20,10)

ROM 1

(a)

tg.rom

(10,10)

RAM 3

(h)(20,20)

Block Test number Test
time

Test
Power

Test
source

Test
sink

RX0C
1 970 375 TAP TAP

2 970 375 TG0 TRA0

RX1C
3 970 375 TAP TAP

4 970 375 TG0 TRA0

DSPIOC
5 1592 710 TAP TAP

6 1592 710 TG0 TRA0

CPMC
7 480 172 TAP TAP

8 480 172 TG0 TRA0

DMAIOC
9 3325 207 TAP TAP

10 3325 207 TG0 TRA0

CKReg
11 505 118 TAP TAP

12 505 118 TG0 TRA0

CDMC
13 224 86 TAP TAP

14 224 86 TG0 TRA0

TXC
15 364 140 TAP TAP

16 364 140 TG0 TRA0

CPMi 17+i 239 80 TG1 TRA1

CDMj 25+j 369 64 TG1 TRA1

D
S

P n

LPM 35+17×n 46 16 TGn,0 TRAn,0

LDMl 36+17×n+l 92 8 TGn,0 TRAn,0

LZMm 40+17×n+m 23 2 TGn,0 TRAn,0

Logic0
17×n+42 4435 152 TAP TAP

17×n+43 4435 152 TGn,1 TRAn,1

Logic1
17×n+44 4435 152 TAP TAP

17×n+45 4435 152 TGn,1 TRAn,1

Logic2
17×n+46 7009 230 TAP TAP

17×n+47 7009 230 TGn,1 TRAn,1

Logic3
17×n+48 7224 250 TAP TAP

17×n+49 7224 250 TGn,1 TRAn,1

Logic4
17×n+50 7796 270 TAP TAP

17×n+51 7796 270 TGn,1 TRAn,1

Table 3. The Ericsson design characteristics.

DSP6 DSP7 DSP0 DSP1

DSP4 DSP5 DSP2 DSP3

RX1C

RX0C

CPM CDMDSPIOC

DMAIOC

CKReg

CDMC

CPMC TXC

Figure 19. The Ericsson design.

When discussing about our algorithm we use our1, our2
and our3, which corresponds to the initial sorting based on
test power(p), test time(t) and test power×test time(p×t).

Unless stated, we use partitioned testing with run to
completion, for the cost function (Section 6.5) β1=β2=1 and
we have used a Sun Ultra10, 450 MHz CPU, 256 MB RAM.

7.2 Test Scheduling

We have compared our algorithm (nonpartitioned testing)
with the nonpartitioned testing approaches proposed by
Zorian [27] and Chou et al. [9]. We have used the same
assumptions as Chou et al. and the results are in Table 4.
Our approaches (our1, our2, and our3) results, in all cases,
in a test schedule with three test sessions (ts) at a test time
of 300 time units, which is 23% better than Zorian’s
approach and 9% better than the approach by Chou et al.

In System S, no power constraints are given and
therefore only our2 can be used. Our approach finds using
partitioned testing with run to completion after 1 second the
optimal solution; see Table 5 (first group).

The results on the industrial design are in Table 5 (second
group) where the industrial designer’s solution is 1592 time
units while our test scheduling achieve a test time of 1077
time units, the optimum, in all cases (our1, our2, and our3),
which is 32.3% better than the designer’s solution.

The results on design Muresan are in the third group of
Table 5. The test time using the approach by Muresan et al.
is 29 time units and the results using our approaches our1,
our2, and our3 are 28, 28 and 26, respectively, all produced
within 1 sec. Our SA (TI=400, TL=400, α=0.97) improves
to 25 time units using 90 seconds.

When not considering idle power on ASIC Z, the test
schedules using our1, our2, and our3 (fourth group in
Table 5) all result in a test time of 262. The SA (TI=400,
TL=400 and α=0.97) did not find a better solution.

In the experiments considering idle power (fifth group of
Table 5), our heuristic approaches our1, our2, and our3
resulted in a solution of 300, 290 and 290, respectively,

each produced within 1 second. The SA (TI=400, TL=400
and α=0.99) produced a solution of 274 requiring 223 sec.,
i.e. a cost improvement in the range of 6% to 10%.

The results on Extended ASIC Z when not considering
idle power are 313 (our1), 287 (our2) and 287 (our3) (sixth
group in Table 5), which were produced by our heuristic
after 1 second. The SA optimization (TI=TL=400, α=0.97)
produced a solution at a cost of 264 running for 132
seconds, i.e. a cost improvement in the range of 9% to 18%.

The results on the Ericsson design (seventh group of
Table 5) are 37226, 34762, 34762 produced by our heuristic
our1, our2, and our3 (within 3 sec.). The SA algorithm
(TI=200, TL=200, α=0.95) produced a solution at 30899
after 3260 seconds.

7.3 Test Resource Placement

In the ASIC Z design all cores have their own dedicated
BIST structure. Let us assume that all ROM cores share one

ts
Zorian Chou et al. Our1, Our2, Our3

Cores Time Cores Time Cores Time

1 RAM1,
RAM4, RF 69 RAM1,RAM3,

RAM4, RF 69 RL2, RL1,
RAM2 160

2 RL1,
RL2 160 RL1,

RL2 160 RAM1,ROM1,
ROM2 102

3 RAM2,RAM3 61 ROM1, ROM2,
RAM2 102 RAM3,

RAM4, RF 38

4 ROM1,
ROM2 102

Test time: 392 331 300

Table 4. ASIC Z test scheduling.

Design Approach Test time Diff. to
SA/optimum CPU

System S

[5]

Optimal solution 1152180 - -

Chakrabarty 1204630 4.5% -

Our2 (t) 1152180 0% 1 sec.

Industrial

design

Optimal solution 1077 - -

Designer 1592 47.8% -

Our1 (p) 1077 0% 1 sec.

Our2 (t) 1077 0% 1 sec.

Our3 (p×t) 1077 0% 1 sec.

Muresan
[23]

SA 25 - 90 sec.

Muresan [23] 29 16% -

Our1 (p)[17] 28 12% 1 sec.

Our2 (t)[17] 28 12% 1 sec.

Our3 (p×t)[17] 26 4% 1 sec.

ASIC Z
(1)

SA 262 - 74 sec.

Our1 (p) 262 0% 1 sec.

Our2 (t) 262 0% 1 sec.

Our3 (p×t) 262 0% 1 sec.

ASIC Z
(2)

SA 274 - 223 sec.

Our1 (p)[17] 300 10% 1 sec.

Our2 (t)[17] 290 6% 1 sec.

Our3 (p×t)[17] 290 6% 1 sec.

Extended
ASIC Z

(3)

SA 264 - 132 sec.

Our1 (p) 313 18% 1 sec.

Our2 (t) 287 9% 1 sec.

Our3 (p×t) 287 9% 1 sec.

Ericsson

SA 30899 - 3260 sec.

Our1 (p) 37336 20% 3 sec.

Our2 (t) 34762 12% 3 sec.

Our3 (p×t) 34762 12% 3 sec.

Table 5. Test scheduling results.

BIST structure and all RAM memories share another BIST
structure; the rest of the cores have their own dedicated
BIST structure. Using our placement strategy the test
resources in ASIC Z will be placed as in Figure 18.

7.4 Test Access Mechanism Design

Assume for ASIC Z (Figure 18) that all tests are scan-based
(1 scan-chain per core) applied with an external tester
allowing a maximum of 8 scan chains to operate
concurrently. The results using our1, our2, and our3
considering idle power are collected in Table 6. The test
schedule and the TAM schedule achieved with heuristic
our3 are in Figure 20. The total length of the test access
mechanism is 360 units and it is routed as in Figure 21. All
solutions were produced within 1 second.

7.5 Test Scheduling and TAM Design

We have made experiments using System S and ASIC Z to
demonstrate the importance of integrating test scheduling
and TAM design. The ASIC Z is fully BISTed; however, in
this experiment we assume all tests are applied using an
external tester able of supporting several tests concurrently.
We have used two naive approaches, Naive1 and Naive2.
Naive1 uses a minimal TAM design connecting all cores in
a ring and Naive 2 uses an extensive TAM where each core
gets its own dedicated TAM.

For the cost function, we have for ASIC Z used β1=β2=1
and for System S β1=1/1000 and β2=1 and the results are
collected in Table 7. Naive 1 produces a low cost TAM
design but the test time is long leading to high total cost due

to that all tests have to be scheduled in a sequence. The total
cost of using the approach Naive 2 is also high due to the
extensive TAM design. Such extensive TAM gives more
flexibility, however, other constraints in the design limits its
use. Our approaches (our1, our2, and our3) produces better
results indicating the importance of considering TAM
design and test scheduling in an integrated manner. The
TAM design (Figure 13) and the test schedule (Figure 14)
achieved using our heuristic for System S (Table 1) have a
test time of 996194 and a TAM length of 320 computed
within 1 second. The SA (TI=TL=100, α=0.99) was
running for 1004 seconds producing a test schedule (Figure
16) and a TAM design (Figure 17) with a test time of
996194 and a TAM length of 160, a TAM improvement of
50%. For ASIC Z, the SA (TI=TL=300, α=0.97) produced
after 855 seconds a solution with a cost of 514 (334 for test
time and 180 for TAM).

The results comparing our heuristic with SA are
collected in Table 8 where, for instance, our heuristic our1
produced a solution for ASIC Z with a total cost of 660 (a
test time of 290 and a TAM cost of 360) after 1 second. The
test time results are in the range of 10% to 13% better using
our fast heuristic (in all cases) compared to the SA
optimization. However, the TAM results are much worse
using our heuristics and the total cost improvements by the
SA are in the range from 21% to 28%.

The results from experiments on Extended ASIC Z are in
Table 8 (second group). Our heuristic our1 produced a
solution after 1 second with a test time of 313 and a TAM
cost of 720, resulting in a total cost of 1033. The solution
produced after 4549 seconds by our SA (TI=TL=200,
α=0.97) optimization has a test time of 270 and a TAM cost
of 560. In this experiment, SA produced a better total cost
(range 14% to 24%) as well as better cost regarding test
time (range 6% to 16%) and TAM cost (range 18% to 29%).
The results on the Ericsson design are collected in Table 8

Figure 20. Test schedule for ASIC Z.

time

power/TAM

(a)

(b)(c)

(d)(e)

(g)

(f)

(h)

(i)

power limit

134 160 236 290

1

2

3

4

Figure 21. ASIC Z with test data access mechanism.

i h

f

a b c ed

tap

g

(2)

(4)(3)

(1)

Approach Test time TAM cost

Our1 (p) 300 360

Our2 (t) 290 360

Our3 (p×t) 290 360

Table 6. Results on ASIC Z.

Approach
System S ASIC Z

Time TAM Total Time TAM Total

Naive 1 1541394 100 1641 699 110 809

Naive 2 996194 360 1356 300 500 800

Our 1 (p) - - - 300 360 660

Our 2 (t) 996194 320 1316 290 360 650

Our 3 (p×t) - - - 290 360 650

SA 996194 160 1156 334 180 514

Table 7. TAM design and test scheduling.

(third group). For instance, our heuristic our1 results in a
solution with a test time of 37336 and a TAM cost of 8245,
which took 81 seconds to produce. The total cost is 53826
when using β1=1 and β2=2. The SA (TI=TL=200, α=0.95)
optimization produced a solution with a test time of 33082
and a TAM cost of 6910 after 15 hours. In all cases, the SA
produces better results. Regarding test time the SA
improvement is in the range from 5% to 11%, for the TAM
cost in the range from 19% to 35% and the total cost in the
range from 10% to 15%.

For all experiments with the SA, the computational cost
is extremely higher compared to our heuristics. A finer
tuning of the SA parameters could reduce it, however, the
extensive optimization is only used for the final design and
therefore a high computational cost can be accepted.

8. Conclusions

For complex systems such as SOCs, it is a difficult problem
for the test designer to develop an efficient test solution due
to the large number of factors involved. The work-flow

consists of two consecutive parts: an early design space
exploration and an extensive optimization for the final
solution. In this paper we have proposed a framework
suitable for these two parts where test scheduling, test
access mechanism design, test set selection and test
resource placement are considered in an integrated manner
minimizing the test time and the size of the test access
mechanism while satisfying test conflicts and test power
constraint. For the early design space exploration, we have
implemented an algorithm running at a low computational
cost, which is suitable to be used iteratively many times. For
the final solution, a more extensive optimization can be
justified and we have proposed and implemented a
technique based on Simulated Annealing for test scheduling
and test access mechanism design.

We have performed several experiments on benchmarks
and industrial designs to show the efficiency and usefulness
of our approach.

References
[1] J. Aerts and E. J. Marinissen, “Scan Chain Design for Test

Time Reduction in Core-Based ICs”, Proceedings of IEEE
International Test Conference (ITC), pp. 448-457,
Washington, DC, October 1998.

[2] A. Benso, S. Cataldo, S. Chiusano, P. Prinetto, and Y. Zorian,
“A High-Level EDA Environment for the Automatic
Insertion of HD-BIST Structures”, Journal of Electronic
Testing; Theory and Applications (JETTA),Vol.16.3, pp 179-
184, June 2000.

[3] H. Bleeker, P. Van Den Eijnden, and F. De Jong, “Boundary-
Scan Test: A Practical Approach”, Kluwer Academic
Publishers, ISBN 0-7923-9296-5, 1993.

[4] K. Chakrabarty, “Test Scheduling for Core-Based Systems
Using Mixed-Integer Linear Programming”, IEEE
Transactions on Computer-Aided Design of Integrated
Circuits and Systems, Vol. 19, No. 10, pp. 1163-1174,
October 2000.

[5] K. Chakrabarty, “Test Scheduling for Core-Based Systems”,
Proceedings of IEEE/ACM International Conference on
Computer Aided Design (ICCAD), page 391-394, San Jose,
CA, November 1999.

[6] K. Chakrabarty, “Design of System-on-a-Chip Test Access
Architecture under Place-and-Route and Power
Constraints”, Proceedings of ACM/IEEE Design Automation
Conference. (DAC), pp. 432-437, Los Angeles, CA, June
2000.

[7] K. Chakrabarty, “Optimal Test Access Architectures for
System-On-A-Chip”, ACM Trans. on Design Automation of
Electronic Systems, vol. 6, pp. 26-49, January 2001.

[8] K. Chakrabarty, “Design of System-on-a-Chip Test Access
Architectures Using Integer Linear Programming”,
Proceedings of IEEE VLSI Test Symposium (VTS), pp. 127-
134, Montreal, Canada, April 2000.

Approach SA Our1 Our2 Our 3

A
S

IC
Z

Test time 334 300 290 290

Diff to SA - -10% -13% -13%

TAM cost 180 360 360 360

Diff to SA - 100% 100% 100%

Total Cost 514 660 650 650

Diff to SA - 28% 21% 21%

Comp. cost 855 sec. 1 sec. 1 sec. 1 sec.

Diff to SA - -85400 -85400% -85400%

E
xt

en
de

d
A

SI
C

Z

Approach SA Our 1 Our 2 Our 3

Test time 270 313 287 287

Diff to SA - 16% 6% 6%

TAM cost 560 720 660 660

Diff to SA - 29% 18% 18%

Total Cost 830 1033 947 947

Diff to SA - 24% 14% 14%

Comp. cost 4549 sec. 1 sec. 1 sec. 1 sec.

Diff to SA -454800% -454800% -454800%

E
ri

cs
so

n

Approach SA Our1 Our2 Our3

Test time 33082 37336 34762 34762

Diff to SA - 11% 5% 5%

TAM 6910 8245 9350 8520

Diff to SA - 19% 35% 23%

Total Cost 46902 53826 53462 51802

Diff to SA - 15% 14% 10%

Comp. cost 15h 81 sec. 79 sec. 62 sec.

Diff to SA -66567% -68254% -86996%

Table 8. TAM and scheduling results.

[9] R. Chou, K. Saluja, and V. Agrawal, “Scheduling Tests for
VLSI Systems Under Power Constraints”, IEEE
Transactions on VLSI Systems, Vol. 5, No. 2, pp. 175-185,
June 1997.

[10] G. L. Craig, C. R. Kime, and K. K. Saluja, “Test Scheduling
and Control for VLSI built-in-self-test”, IEEE Transactions
on Computers, Vol. 37, No. 9, pp. 1099-1109, September
1988.

[11] M. Garg, A. Basu, T. C. Wilson, D. K. Banerji, and J. C.
Majithia, “A New Test Scheduling Algorithm for VLSI
Systems”, Proceedings of the CSI/IEEE Symposium on VLSI
Design, pp. 148-153, New Delhi, India, January 1991.

[12] S. Gerstendörfer and H.-J. Wunderlich, “Minimized Power
Consumption for Scan-Based BIST”, Proceedings of IEEE
International Test Conference (ITC), pp 77-84, Atlantic City,
NJ, September 1999.

[13] G. Hetherington, T. Fryars, N. Tamarapalli, M. Kassab, A.
Hassan, and J. Rajski, “Logic BIST for Large Industrial
Designs: Real Issues and Case Studies”, Proceedings of
IEEE International Test Conference (ITC), pp. 358-367,
Atlantic City, NJ, September 1999.

[14] V. Iyengar and K. Chakrabarty, “Precedence-Based,
Preemptive, and Power-Constrained Test Scheduling for
System-on-a-Chip”, Proceedings of IEEE VLSI Test
Symposium (VTS), pp. 368-374, Marina Del Rey, CA, April
2001.

[15] IEEE P1500 Web site. http://grouper.ieee.org/groups/1500.

[16] S. Kirkpatrick, C. Gelatt, M. Vecchi, “Optimisation by
Simulated Annealing”, Science, Vol. 220, No. 4598, pp. 671-
680, 1983.

[17] E. Larsson and Z. Peng, “An Integrated System-On-Chip
Test Framework”, Proceedings of the Design, Automation
and Test in Europe Conference (DATE), Munchen,
Germany, pp 138-144, March 2001.

[18] E. Larsson, Z. Peng and G. Carlsson, “The Design and
Optimization of SOC Test Solutions”, Proceedings of IEEE/
ACM International Conference on Computer-Aided Design
(ICCAD), pp. 523-530, San Jose, CA, November 2001.

[19] E. Larsson, “An Integrated System-Level Design for
Testability Methodology”, Ph. D. thesis no. 660, Linköpings
universitet, Sweden 2000.

[20] E. J. Marinissen, R. Arendsen, G. Bos, H. Dingemanse, M.
Lousberg, and C. Wouters, “A Structured and Scalable
Mechanism for Test Access to Embedded Reusable Cores”,
Proceedings of IEEE International Test Conference (ITC),
pp 284-293, Washington, DC, October 1998.

[21] E. J. Marinissen, Y. Zorian, R. Kapur, T. Taylor, and L.
Whetsel, “Towards a Standard for Embedded Core Test: An
Example”, Proceedings of IEEE International Test
Conference (ITC), pp. 616-627, Atlantic City, NJ, September
1999.

[22] E. J. Marinissen, S. K. Goel, and M. Lousberg, “Wrapper
Design for Embedded Core Test”, Proceedings of IEEE
International Test Conference (ITC), pp. 911-920, Atlantic
City, NJ, October 2000.

[23] V. Muresan, X. Wang, V. Muresan, and M. Vladutiu, “A
Comparison of Classical Scheduling Approaches in Power-
Constrained Block-Test Scheduling”, Proceedings of IEEE
International Test Conference (ITC), pp. 882-891, Atlantic
City, NJ, October 2000.

[24] M. Nourani and C. Papachristou, “An ILP Formulation to
Optimize Test Access Mechanisms in System-On-A-Chip
Testing”, Proceedings of IEEE International Test
Conference (ITC), pp 902-910, Atlantic City, NJ, October
2000.

[25] M. Sugihara, H. Date, and H. Yasuura, “A Test Methodology
for Core-Based System LSIs”, IEICE Transactions on
Fundamentals, Vol. E81-A, No. 12, pp. 2640-2645,
December 1998.

[26] N. Weste and K. Eshraghian, “Principles of CMOS VLSI
Design”, Addison-Wesley, ISBN 0-201-53376-6, 1993.

[27] Y. Zorian, “A distributed BIST control scheme for complex
VLSI devices”, Proceedings of the IEEE VLSI Test
Symposium (VTS), pp. 4-9, Atlantic City, NJ, April 1993.

Erik Larsson received his M.S. and Ph.D. degrees in
Computer Systems from Linköping University in 1994 and
2000, respectively. Since October 2001, he is on leave from
his Assistant Professor position at the Computer Science
department at Linköping University for a Research Fellow
position at Fujiwara Laboratory, Nara Institute of Science
and Technology, Japan, funded by JSPS (Japan Society for
the Promotion of Science). His main research interests are
system-level design for testability and design of SOC test
solutions.

Zebo Peng is Professor of the chair in Computer Systems,
Director of the Embedded Systems Laboratory, and
Chairman of the Division for Software and Systems at
Linköping University. He received his Ph.D. degree in
Computer Science from Linköping University in 1987.

Prof. Peng's current research interests include design and
test of embedded systems, electronic design automation,
design for testability, hardware/software co-design, and
real-time systems. He has published over 120 technical
papers in these areas and coauthored the book "System
Synthesis with VHDL" (Kluwer Academic, 1997). He was
corecipient of two best paper awards at the European
Design Automation Conferences (EURO-DAC) in 1992
and 1994. He has served on the program committee of
several IEEE/ACM conferences and workshops and was
the General Chair of the 6th IEEE European Test Workshop.

