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Abstract

Today’s embedded distributed real-time systems, are exposed to
large variations in resource usage due to complex software ap-

plications, sophisticated hardware platforms, and the impact of their
run-time environment. As efficiency becomes more important, the ap-
plications running on these systems are extended with on-line resource
managers whose job is to adapt the system in the face of such varia-
tions. Distributed systems are often heterogeneous, meaning that the
hardware platform consists of computing nodes with different per-
formance, operating systems, and scheduling policies, linked through
one or more networks using different protocols.

In this thesis we explore whether resource managers used in such
distributed embedded systems are stable, meaning that the system’s
resource usage is controlled under all possible run-time scenarios. Sta-
bility implies a bounded worst-case behavior of the system and can be
linked with classic real-time systems’ properties such as bounded re-
sponse times for the software applications. In the case of distributed
systems, the stability problem is particularly hard because software
applications distributed over the different resources generate complex,
cyclic dependencies between the resources, that need to be taken into
account. In this thesis we develop a detailed mathematical model of
an adaptive, distributed real-time system and we derive conditions
that, if satisfied, guarantee its stability.
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Popupärvetenskaplig
sammanfattning

Vi är omgivna av ett ständigt ökande antal inbyggda datorsy-
stem. De finns exempelvis i v̊ara bilar, telefoner, fotokameror

och tvättmaskiner. V̊ar förväntning är att dessa produkter ska va-
ra säkra, effektiva samt h̊alla hög kvalitet p̊a de tjänster de tillhan-
dah̊aller. Detta innebär bland annat att de datorsystem som finns
inbyggda i v̊ara bilar inte f̊ar leda till att passagerare skadas eller i
värsta fall mister sina liv. Av en telefon förväntar vi oss l̊ang bat-
teritid även om vi använder dessa dagligen för att prata och skicka
SMS, lyssna p̊a musik, ta bilder, läsa nyheter och skicka e-post. Vi
förväntar oss samtidigt att de tjänster och funktioner som finns i v̊ara
mobiltelefoner h̊aller hög kvalitet. Alla v̊ara krav och förväntningar
kan endast uppfyllas om systemens inbyggda resurser används p̊a ett
effektivt sätt. Exempel p̊a s̊adana resurser är processorer, minnen,
batterier och kommunikationsmedier.

I denna avhandling beskrivs hur resurser i inbyggda datorsystem
bör användas och kontrolleras för att optimera dess tjänster. Vidare
tas hänsyn till att ett modernt system har stora variationer i resur-
sanvändning. Detta beror delvis p̊a att det m̊angfald av tjänster som
finns i dagens moderna datorsystem i allra högsta grad best̊ar av kom-
plex programvara. Detta beror även p̊a den komplicerade och sofisti-
kerade h̊ardvara som behövs för att stödja all inbyggd programvara
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samt p̊averkan fr̊an systemets omgivning.
För att kunna förlita oss p̊a dessa inbyggda system är det nödvändigt

att studera huruvida dess resurshanterare är stabila. Denna avhand-
ling presenterar villkor för stabilitet vilket innebär att resursernas
användning är kontrollerbar under alla tänkbara scenarier. Vi visar
att detta begrepp kan överbryggas till realtidsegenskaper s̊asom be-
gränsade responstider för all inbyggd programvara. Stabilitetskravet
är sv̊art att hantera i synnerhet för distribuerade system eftersom pro-
gramvaran är utspridd p̊a olika systemresurser. I denna avhandling
visar vi att detta leder till cykliska resursberoenden samt tar hänsyn
till dessa komplicerade egenskaper för att härleda villkor för stabilitet.
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1
Introduction

The topic of this thesis is stability of adaptive real-time systems.
The main contributions are a detailed mathematical modeling of

such systems and conditions that these systems must satisfy in order
to be stable. In this chapter we shall introduce and motivate this
research topic as well as give a general description about adaptive
real-time systems and the problems they face. We shall present here
our contributions and an overview of the organization of this thesis.

1.1 Motivation

Today’s embedded systems, together with the real-time applications
running on them, have a high level of complexity [Kop11]. Moreover,
such systems very often are exposed to varying resource demand due
to e.g. variations in the execution times of the software tasks in
the system. When these variations are large and system efficiency is
required, on-line resource managers may be deployed to control the
system’s resource usage. Among the goals of such a resource manager
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2 CHAPTER 1. INTRODUCTION

is to maximize the resource usage while minimizing the amount of
time the system spends in overload situations.

Examples of such systems are found in, for example, multimedia
devices [Lee99], automotive applications [Bur98], or control applica-
tions [Set96]. The resources might represent the different computa-
tion nodes and the communication infrastructure in the system and
the variations in resource demand might, for example, originate from
sensors that provide different inputs to software tasks which leads to
variations in their execution times. A resource manager will monitor
the resources and control the behavior of the system such that it keeps
its real-time properties e.g. all computations finish and all messages
are sent in finite amounts of time.

A key question to ask for such systems is whether the deployed
resource managers are safe, meaning that the resource demand is
bounded under all possible runtime scenarios. This notion of safety
can be linked with the notion of stability of control systems. In con-
trol applications, a controller controls the state of a plant towards a
desired stationary point. The system is stable if the plant’s state re-
mains within a bounded distance from the stationary point under all
possible scenarios [Gla00, Son98]. By modeling the real-time system
as the plant and the resource manager as the controller, one may be
able to reason about the stability of the system.

1.2 Problem Description

In this work we describe adaptive distributed real-time systems as
being composed of three elements:

1. hardware platform, which comprises the resources of the system,

2. software applications, captured as acyclic task graphs, and

3. resource manager, which adapts the system according to chang-
ing resource demand.
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Resources in the system are all the hardware components which are
accessed by the software application tasks. Examples of such resource
are CPUs, accessed via the task schedulers built inside their operat-
ing systems, and communication links scheduled according to their
protocols. In this thesis we can handle any non-idling scheduling
policy, thus, covering a large class of resource schedulers currently
used [But97].

The software applications running on the system are seen as a
set of acyclic task graphs [Cof72, Cas88], each task representing a
piece of code that takes a number of inputs and produces a number
of outputs. The links in the task graph represent the input-output
dependencies between the tasks. As the system runs, it repetitively
releases instances of the task graphs with new inputs. Each task
occupies only one resource and its resource usage refers to the amount
of time that the resource is held executing the code associated with
the task. With regards to communication links, a task represents the
message that needs to be sent across it.

The resource manager changes parameters of the system in or-
der to adapt it the to changing resource demand. The goal of the
adaptation is to improve system performance in average-case scenar-
ios while keeping the system stable during its worst-case behavior. In
this thesis we handle adaptations through:

• changes in the rate at which task graph instances get released,

• changes of resource capacity,

• admission/dropping of task graph instances, and

• changes in task execution times.

Changes in task graph rates are used in applications such as web
servers [Hen04] and teleconferencing systems [Gho03] where they pro-
vide differentiation in quality-of-service levels to end users. Examples
of changes of resource capacity are dynamic voltage and frequency
scaling and their application is typical for thermal aware and low
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power embedded systems [Mar07, Bao09] and wireless communica-
tion [Chi06]. Admission control/job dropping is used in applications
such as web servers [Abd03] where the system, at times, is subjected
to very large numbers of incoming requests that cannot be serviced
in a timely manner. Adaptation through changes in task execution
time is done in systems supporting imprecise computations, such as
real-time database servers [Ami06].

1.3 Problem Formulation

The amount of time a task needs to execute before it finishes varies
from instance to instance and depends on the inputs given to the
task (influencing e.g. what branch of the task’s code gets chosen),
the state of the resource (state of CPU pipeline and cache memo-
ries), the scheduler, etc. and, in general, it cannot be determined
precisely. The goal of the resource manager is to adapt the system
to such variations in order to improve system performance, but also
to avoid situations when task instances queue up in an unbounded
way, without being executed. In such situations the system looses its
real-time properties and may become hazardous to the environment
in which it is deployed.

Our goal is to model and analyze the behavior of the system and
resource manager in order to determine conditions under which the
whole system is guaranteed to be stable. By stability we mean that
all accumulations of task instances are bounded.

1.4 Contributions

In this work we consider a distributed real-time platform formed of
a number of resources (processors, buses, etc.) and applications seen
as a set of task graphs mapped across the different resources. We
assume that the task graphs can release jobs at variable rates and
we require knowledge of the intervals in which execution times of
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jobs of tasks vary (with respect to communication resources, tasks
represent messages and jobs correspond to message instances). We
allow these jobs to be scheduled on their resources using any kind of
non-idling scheduling policy. We also allow that the schedulers are
heterogeneous (different schedulers for different resources). Before
being scheduled for execution, jobs accumulate in queues, one for each
tasks in the system. We consider that the system possesses a resource
manager (also distributed across the different resources) whose job is
to adjust task rates subject to the variation in job execution times.

We develop criteria that, if satisfied by the system and the resource
manager, render the adaptive real-time system stable under any re-
source demand pattern (execution time variation pattern). Stability
implies bounded queues of jobs, for all tasks in the system, and can
be linked with bounded worst-case response times for jobs of tasks
and bounded throughput.

With the criteria developed in this work we guarantee the sta-
bility of the system in all possible cases, meaning that the proposed
framework is suitable even for adaptive hard real-time systems.

Before discussing stability, we go through a somewhat involving
modeling phase where we develop a detailed, non-linear model of our
system (Chapter 4). Our model tracks the evolution in time of the
accumulation of execution time on each resource. The accumulation
of execution time is the sum of execution times of the queued jobs of
all tasks running on a resource. From this model we build a worst-case
evolution model that we use when deriving our stability results.

For modeling purposes we need to overcome several challenges.
First we need to recognize the parameters whose behavior can be
modeled. The state of the system should be formed of the queue sizes
of the queues of all tasks in the system. However, since modeling their
evolution is not possible, as it depends on the schedulers used, we need
to replace this with a more general type of information that describes
in an aggregated fashion the queue sizes. We identify this information
to be the accumulation of execution times on each resource.
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Second, we need to build the model of the system describing the
evolution in time of the accumulations of execution times on each re-
source. Third, we need to determine what is the worst-case behavior
of the system. The fourth and final challenge that we face is due to the
distributed nature of the system since the accumulation of execution
times flows between resources and, thus, we may experience very rich
behavior patterns that need to be accounted for when determining
the worst-case behavior of the system. We illustrate the sometimes
counter intuitive behavior, with regards to stability, of distributed
systems in Section 5.1 with a simple example. Our worst-case behav-
ior model is that of a linear switching system with random switching,
where the system evolves linearly according to one of several branches,
but may randomly switch to a different one at any time.

Given this worst-case behavior model of the adaptive real-time
system we develop three criteria that determine if the system is stable
or not. The first two criteria (Sections 5.1 and 5.2) consider the topol-
ogy and parameters of the system (worst-case execution times and
rates, mapping, etc.) and determine if there exist resource managers
that can keep the system stable. Although the number of branches
in our worst-case behavior model is exponential in the number of re-
sources, and we need to account for all possible switching behavior,
we manage to formulate conditions whose complexity is linear in the
number of resources in the system.

The last criterion (Section 5.3) describes conditions that a resource
manager needs to satisfy in order to keep the system stable. Unlike
the previous literature (with the possible exception of [Cuc10]) in this
paper we do not present a particular, customized method for stabi-
lizing a real-time system. We do not present a certain algorithm or
develop a particular controller (e.g. PID, LQG, or MPV controller).
Instead, we present a criterion which describes a whole class of meth-
ods that can be used to stabilize the system. Also, in this work,
we do not address any performance or quality-of-service metric, since
our criterion is independent of the optimality with which a certain re-
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source manager achieves its goals in the setting where it is deployed.
The criterion that we propose may be used in the following ways:

1. to determine if an existing resource manager is stable,

2. to help build custom, ad-hoc resource managers which are sta-
ble, and

3. to modify existing resource managers to become stable.

In this thesis we aim at building a general theory for adaptive
distributed real-time systems which describes, in a unified way, the
behavior of a large and diversified class of systems (large in terms
of all the scheduling and resource management policies accepted) and
which solves the basic problem of ensuring system stability in the face
of perturbations. The main contributions of the thesis are:

1. Modeling of the evolution in time of adaptive distributed real-
time systems that employ non-idling schedulers for their re-
sources.

2. Determining the worst-case behavior of the system.

3. Determining conditions on the parameters of the system that,
if satisfied, guarantee the existence of resource managers which
can stabilize the system.

4. Determining a condition on the resource manager that, if satis-
fied, guarantees that the system will remain stable under all its
possible evolution patterns.

1.5 List of Publications

Parts of this thesis are presented in the following publications:

• Sergiu Rafiliu, Petru Eles, Zebo Peng.
“Low Overhead Dynamic QoS Optimization Under Variable
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Task Execution Times.” 16th IEEE International Conference
on Embedded and Real-Time Computing Systems and Appli-
cations (RTCSA 2010), Macau SAR, P.R.C., August 23-25,
2010 [Raf10].

• Sergiu Rafiliu, Petru Eles, Zebo Peng.
“Stability Conditions of On-line Resource Managers for Systems
with Execution Time Variations.” 23rd Euromicro Conference
on Real-Time Systems (ECRTS 2011), Porto Portugal, June
6-8, 2011 [Raf11].

• Sergiu Rafiliu, Petru Eles, Zebo Peng.
“Stability of Adaptive Feedback-based Resource Managers for
Systems with Execution Time Variations.” Real-Time Systems
Journal, vol. 49, issue 3, 2013 [Raf13].

• Sergiu Rafiliu, Petru Eles, Zebo Peng, and Michael Lemmon.
“Stability of On-line Resource Managers for Distributed Sys-
tems under Execution Time Variations.” Under review at the
ACM Transactions on Embedded Computing Systems Jour-
nal [Raf–].

The following publication is not covered in this thesis but is di-
rectly related to the field of distributed real-time systems:

• Soheil Samii, Sergiu Rafiliu, Petru Eles, Zebo Peng.
“A Simulation Methodology for Worst-Case Response Time Es-
timation of Distributed Real-Time Systems.” Design, Automa-
tion, and Test in Europe (DATE 2008), Munich, Germany,
March 10-14, 2008, pp. 556-561 [Sam08].

1.6 Thesis Overview

This thesis is organized in eight chapters. The presentation in Chap-
ters 3–5 is done on a simplified version of the system in order to keep
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the discussion concise and to limit the number or mathematical no-
tations and other possible sources of distraction. In Chapters 6–8 we
eliminate this limitations in order to make our theory more relevant
and useful to our domain.

In Chapter 2 we introduce the necessary concepts regarding
adaptive distributed real-time systems needed as a context for this
thesis. Here we present the different types of adaptation mechanisms
together with their applications. We also present the state-of-the-art
research done in the area and show how our work relates to it.

In Chapter 3 we present the system architecture that we con-
sider, together with all concepts and mathematical notations needed
later in the thesis.

In Chapter 4 we develop the formal model of our system. We
then use this model to determine and develop a model of the worst-
case behavior of the system. We end the chapter with an illustrative
example and an in-depth informal discussion about the interpretation
of the model.

In Chapter 5 we develop the main results of this thesis, which
are the three stability criteria that allow us to determine whether a
given system can be stabilized at all, and if it is stable under the
control of its resource manager.

In Chapter 6 we present a discussion on the meaning, features,
and limitations of our model and of the derived stability criteria.
Here we eliminate the previously imposed limitations on the model
and extend our stability criteria to handle more general systems.

In Chapter 7 we show how to apply our stability criteria on
several examples, and we show how these are useful in determining
meaningful real-time system properties such as worst-case response
times.

In Chapter 8 we conclude this thesis and we outline several di-
rections of future research that closely relate to the theory developed
here.
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2
Background and Related

Work

The purpose of this chapter is to review some of the efforts made
in order to bring adaptivity to embedded real-time systems.

Initially embedded real-time systems were simply designed to meet
worst-case guarantees [Liu73]. This approach works fine for appli-
cations where safety is critical and cost is no issue. Such systems
are called hard real-time systems. However, for the majority of sys-
tems (e.g. real-time systems embedded in consumer electronics) hard
real-time constraints are usually not mandatory while cost becomes
the dominant issue [Abe98]. Such systems are often designed for
average-case performance and are called soft real-time systems. They
are often characterized by different modes of operation [Kop11] such
that a static optimization, which does not consider the switches be-
tween the different modes that can happen at run-time, leads to poor
performance and suboptimal resource usage. Also, it is often the
case that systems optimized for average-case behavior, have sharp

11
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drop-offs in performance at their worst-case [Ce03b]. Adaptivity is
desirable in such systems in order to achieve graceful performance
degradation.

2.1 Adaptive Real-Time Systems

We can think of adaptive systems as having three features:

1. performance metric that is to be optimized at run-time,

2. constraints that need to be satisfied for correct system opera-
tion, and

3. actuation mechanisms that are used by the resource manager
to trade-off performance for satisfying the constraints.

The resource manager of an adaptive real-time system, in essence,
solves an optimization problem whose goal is to maximize perfor-
mance (given by the performance metric1) subject to satisfying the
constraints. It runs periodically in the system and, during each run,
it detects the state of the system and decides on the achievable per-
formance under current conditions. The resource manager, then, im-
plements the decision via its actuation mechanisms.

The performance metric that adaptive systems optimize on-line,
varies greatly from system to system. The performance metric can
be represented as: jitter, delay, or quality-of-control for systems run-
ning control applications [Ast97]; quality-of-service functions for sys-
tems running multimedia applications [Ng02] or web-services [Abd00];
power consumption for low-power devices [Bha10, Zha06]; etc.

Constraints can also be expressed differently between different sys-
tems, however, they usually stem from the need of timeliness in real-
time systems and can be represented as schedulability tests [Cer02]
or tests regarding deadline violations [Abe04].

1In optimization theory literature, this is called cost function. In the context

of this discussion we prefer the term performance metric as we use the word cost

to denote the actual cost of building the system.
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Actuation mechanisms are of great importance as they depend on
the capabilities of the system and greatly affect the efficiency of the
resource manager. For the theoretical framework that we develop in
this thesis, the actuation mechanisms are also important as they need
to be modeled. We present actuation mechanisms in more detail in
Section 2.2.

In this thesis we focus on building a general theory for adaptive
real-time systems. To this end, we focus on the least common denom-
inator that all of these systems feature. Here we do not consider any
particular performance metrics of the resource management policy, as
these vary greatly between different types of adaptive systems. To a
large extent, the constraints that adaptive systems must satisfy also
vary greatly, however, all the considered systems have in common
their need for timeliness: they all must guarantee that their jobs exe-
cute in a timely fashion. In the theory that we develop in this thesis,
we focus on a very basic form of timeliness which implies, that every
job entering the system must exit it in a finite amount of time. We
call systems satisfying this property stable and the main focus of the
thesis is to provide conditions that systems must satisfy for stability.

2.2 Types of Actuation Mechanisms

There exists a vast literature regarding resource adaptation, target-
ing different types of real-time systems and using different adapta-
tion mechanisms. Figure 2.1 illustrates a real-time system and some
‘knobs’ that can be used for adaptation. Adjustments can be applied
to the jobs that enter or are already in the system, to the resources,
or to the schedulers related to those resources. We, thus, propose the
following four classes of adaptation mechanisms:

1. Job Flow adaptation: these are mechanisms that adapt the in-
coming flow of task instances (jobs) according to the current
state of the system,
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Figure 2.1: A real-time system, together with the possible actuation
mechanisms (‘knobs’) that the resource managers may use in order
to provide adaptation.

2. Resource adaptation: these mechanisms adapt the resource, de-
pending on the current usage pattern required by the applica-
tion,

3. Task Mode adaptation: these are mechanisms that adapt the
way the already released jobs get to access the resource,

4. Schedule adaptation: these are mechanisms that try to adapt
various parameters of the scheduler to improve the performance
of the running applications.

Job flow adaptation mechanisms work by shaping the input to
the system in order to match its processing capacity. The adaptation
is done by changing the software tasks release rates (making jobs
appear more slowly) or by admission control (eliminating some of the
incoming jobs before they enter the system and use its resources).
Papers that fall in this class are [Lee98, But98, But02, But04, Mar07,
Lu02, Abd03, Cer02].
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Resource adaptation mechanisms work by shaping the resource
capacity to meet the incoming demand. This is directly opposite
to job flow adaptation mechanisms. Resource adaptation works by
changing the capacity of the resources via techniques such as voltage
or frequency scaling for processors, or by increasing buss speed for
networks. In this category fall methods such as the ones presented
in [Mar07].

Task mode adaptation mechanisms work by adapting the behavior
of the jobs already admitted into the system to meet the system’s
resource capacity. This is useful because the resource demand in
the system comes both from the incoming jobs (to be released in the
future) and from the released, but not yet executed jobs that lie in the
system. The adaptation mechanisms are task mode changes, such as
in the case of imprecise computation, where computations associated
with the jobs are iterative and the number of iterations can be altered
to trade-off precision in output for better execution time. An extreme
example of this is job dropping where the computation is iterated 0 or
1 times. This class is comprised of methods such as the ones described
in [Lee98, Com08, Abd03].

Scheduler adaption mechanisms refer to changes done to the sched-
uler for improved system response. These adaptation mechanisms are
feasible in the case when it is known that the resource demand is gen-
erally below the resource capacity. Over short intervals of time, how-
ever, resource demand may spike above resource capacity and produce
deadline misses, if jobs are not scheduled for execution in the correct
order. Works such as [Pa09a, Cuc10, Com08, Liu07, Yao08, Ce03a]
fall in this class.

The methods in the first three classes achieve similar goals, they
try to keep the utilization of the resources at a prescribed level in the
face of varying job execution times and/or arrival patterns. While
doing so they also try to maximize one or more quality-of-service or
performance metrics. The methods in the fourth class adjust sched-
uler parameters in an attempt to match the resource demand of each
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task to a specific share of the capacity of the resource, with the goal of
minimizing deadline misses and maximizing various performance or
quality-of-service metrics. When discussing the stability of adaptive
real-time systems, the issue of handling overload situations arises. By
overload we mean that more jobs arrive per unit of time than can be
processed by the resource. Only methods from the first three classes
can handle these overloads as they adjust the incoming job flow or
the capacity of the resource to preserve equilibrium between demand
and capacity. The methods from the fourth class are complementary
methods that help improve the performance of the system [Liu07].

2.3 Related Work

The aim of this thesis is to build a general theory of modeling and
analyzing adaptive real-time systems. As such, there is no direct pre-
vious work that we can compare with. In this section we present
the state of the art regarding methods for adaptation used in vari-
ous adaptive real-time systems by following several popular research
directions.

Lee et al. proposed the QRAM algorithm in [Raj97, Lee98, Lee99].
The model consists of a number of resources that software applica-
tions can use in parallel and a number of abstract quality dimensions.
When the algorithm runs, it optimizes the overall quality subject to
keeping the resource constraints. It does so by interpreting all quality
options in terms of resource demand and it increases its quality along
the dimension with the steepest slope, until the resource capacity is
fully consumed. The motivation for this work comes from multime-
dia applications where quality dimensions might be audio and video
sampling rates and stream encodings. Sampling rates are an example
of job flow adaptation as they affect the stream of incoming frames
to be processed, while stream encodings are an example of task mode
adaptation as they affect the processing time of a frame. In this line
of works, software applications are not given more detailed model-
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ing, except for saying that they may consume multiple resources at
the same time. The QRAM resource management policy is success-
ful in dealing with abstract notions of quality, and how to determine
the optimum balance point between resource demand and capacity.
However, little attention is given to the actuation mechanism of the
resource manager and how to deal with backlogs of queued-up data
due to previous mismatches between demand and capacity. Further
work addressed some of the limitations of the algorithm by better
defining the actuation mechanism [Gho03, Gho04] and the applica-
tion model [Kan07].

Buttazzo et al. [But98] introduced the elastic model where each
task’s rate can change within a certain interval. The quality of service
delivered by each task is modeled as a spring with a given elastic
coefficient. Tasks with a lower elastic coefficients will allow for larger
variation in rate. The rates change when a task is added to or removed
from the system. Further work deals with unknown and variable
execution times [But02], optimal control, when the applications are
controllers [But04], when dealing with energy minimization [Mar07],
and for managing the utilization in computer networks [Ped03]. The
problem of overloads was specifically addressed in [But04, But07].
The mechanism for solving overloads is based on acting as soon as an
overload has been detected and on delaying the next job release of
the overloading task until all pending jobs of this task get executed.
The main criticism of this method is that the performance metric is
hardwired into the algorithm and may not be changed. This has been
addressed in [Hu06, Cha09] where the authors extended the elastic
method to general metrics.

Another widely used category of methods for adaptation are server
based methods first formalized in [Raj98]. In this formalism tasks are
attached to servers which execute on the resource. Each server obtains
a portion of the resource’s capacity, thus acting as a virtual resource
for the tasks assigned to it. Adaptation is done using a combination
of two types of methods:
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1. resource reclaiming which detects the unused capacity of idling
servers and gives it to overloaded servers, and

2. resource reservation which decides on the reserved capacity al-
located to each server.

This category of methods involves two levels of scheduling:

1. scheduling of the servers on the resource, and

2. scheduling of the tasks inside each server.

The adaptation mechanisms affect the first level only. Both these
adaptation methods are part of the class of schedule adaptation mech-
anisms (class 4 in Section 2.2). Job dropping is typically required for
each server in order to deal with overloads in the system. Earlier
notions included the constant utilization server [Den97] and the total
bandwidth server [Spu94, Spu96]. However, the most widely used for-
malism has been the constant bandwidth server (CBS) first described
in [Abe98]. Various adaptation methods based on CBS have been
proposed [Ce03a, Cer05, Liu07, Fon10, Fon11, Kha11, Kha13].

In [Ce03a, Cer05] the authors develop the control server model for
scheduling and propose an approach to schedule control tasks in order
to minimize jitter and latency. These methods tune the scheduler
parameters such that jobs are schedulable as long as the incoming
load in the system is below a certain bound (less or equal to 1) and
they aim at gracefully degrading the quality-of-service experienced by
the user when the incoming load is above the bound.

Liu et al. [Liu07, Yao08] presented a Recursive Least Squares
based controller to control the utilization of a distributed system by
means of rate adjustment. The authors consider distributed systems
where tasks are schedulable if the utilization on each resource is kept
at or below certain bounds. In [Liu07] the load on one resource is
influenced by the load on the other resources via some coefficients
which are estimated on-line, while in [Yao08] the model of the system
is learned on-line.
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In [Fon10, Fon11] the authors present a number of feedback-based
algorithms for adaptive reservation. The aim is to control the delay
properties of control tasks by measuring and reacting to the delay
error (the difference between the prescribed and the measured delay).
The actuation mechanism is adjustments in the parameters of the
servers on which the tasks are running. The resource management
policies are based on control theory and formal proofs of their stability
are given.

Khalilzad et al. [Kha11, Kha13] presented a feedback-based con-
trol algorithm for scheduling multimedia tasks with extremely large
variations in resource demand. The method adapts the parameters
of a hierarchical schedule [Nol09] subject to variations in resource de-
mand. A protection mechanism is devised based on the elastic model,
to gracefully degrade the performance of the system in overload con-
ditions.

Many resource management policies use ideas from control theory
to control the resource demand and capacity in real time systems. Lu
et al. [Lu02] described a framework for feedback control scheduling,
where the source of non-determinism is execution time variation, and
the actuation method is admission control and task rate change. The
authors treat overloads by actuating based on utilization and deadline
miss ratio. Both measures, however, saturate at 100% and thus are
limited in their capability of describing overloads in the system.

Cervin et al. [Cer02] proposed to overcome the overload issue by
using a feedback-feedforward resource manager, where small varia-
tions in execution times are handled by a feedback mechanism and
large variations are handled, before they happen, by a feedforward
mechanism. This means that this method is only applicable to sys-
tems where the application can warn the resource manager about
large increases of execution times in advance.

Combaz et al. [Co05a, Co05b, Com08] proposed a QoS scheme for
applications composed of tasks, each described as graphs of subtasks,
and each subtask has a number of modes.
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In [Abd03] the authors propose a model where the state of the
system is composed of the sizes of queues where jobs accumulate
before being executed and the goal of the adaptation mechanism is
to keep these queues at a certain level of occupancy. This model
is stemmed from the functioning of web servers. It is well suited
for accurately describing situations where overloads occur. However,
queue sizes are values that saturate at 0 (they are positive values) and
the proposed model linearizes the behavior of queues to the region
where they are not empty. This means that the resource manager
must always keep the queues sizes at positive (not necessary small)
levels. Since non-empty queue sizes are generally associated with
overloaded systems, this means that the system is always kept at a
certain level of overload. This behavior may not be acceptable for
systems where it is important that end-to-end delays are kept small.

Palopoli et al. [Pa09a, Cuc10] consider resource-reservation sched-
ulers and propose a feedback based technique for adjusting the quotas
of tasks in reaction to task execution time variations. In [Cuc10] tasks
share several resources and the quotas of tasks on all resources are
determined together, in order to minimize end-to-end delays.

In all works regarding adaptive systems, the issue of stability
arises. Stability has slightly different meaning for the different works,
but it always includes the idea that a system is stable when it is able to
avoid situations where jobs released for execution can accumulate in
an unbounded way, without being executed in a timely fashion. The
above related works deal with stability in several ways: by propos-
ing methods derived from control theory [Lu05, Ce03a, Liu07, Yao08,
Abd03, Pa09a, Cuc10, Fon11, Kha11], by developing custom analy-
sis to the proposed methods [Lee98, But98, But02, But04, Mar07],
and by empirical simulation [Lu02, Cer02]. All these works give spe-
cific solutions (methods for adaptivity together with their stability
analysis) to specific types of problems. However, none of the above
works provides hints about how to answer basic stability questions
for generic adaptive distributed real-time system.
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In this thesis we do not give a specific method for adaptation as
in the related works. Instead we build a framework for modeling and
analyzing generic real-time systems, with the goal of assuring worst-
case stability of the system. We focus on making our framework
as generic as possible in order for it to be appropriate for a large
class of real-time systems. The stability analysis presented in this
paper is done for adaptation mechanisms in the first class (Job Flow
Adaptation), but we later show how it can be extended for methods
from classes 2 and 3.

We do not address adaptation mechanisms from the last class (sched-
uler adaptation) as they have limited capacity for handling overload
situations. If the system finds itself in a situation where the incom-
ing load is above 1 for extended periods of time, methods from this
class are powerless at preventing accumulations from happening and
possibly leading to system crashes. Methods such as [Ce03a, Pa09a,
Liu07, Com08, Yao08, Cuc10, Fon11, Kha11] need to relay on adapta-
tion mechanisms from the other classes to handle such cases. We view
these methods as being complementary with the ones from the for-
mer three classes [Lee98, But98, But02, But04, Mar07, Lu02, Abd03,
Cer02], their goal being to improve system performance rather than
assuring worst-case stability. This view is in agreement with the one
presented in [Liu07].

2.4 Link with Queueing Networks

The theory presented in this paper has similarities with the theory
on queueing networks [Ke79]. Queueing networks describe systems
where workers service a queue of packets by using a work-station.
For some systems, several workers must share a station. Such sys-
tems are called multi-class queueing networks. The concepts of pack-
ets, workers, and stations are depicted in Figure 2.2 where we have a
queueing network composed of four workers chained together, where,
workers 1 and 4 share station 1, and workers 2 and 3 share station 2.
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Figure 2.2: Example of a queueing network with two stations and
four workers.

Packets arrive in the networks following a given distribution, with an
average inter-arrival time of m (average arrival rate of 1/m). Each
worker services a package in an amount of time that varies stochas-
tically according to a distribution, with a known average execution
time. Queueing networks theory is used to model computer networks,
telecommunication systems, distribution chains and warehouses, the
manufacturing of products in factories, etc. (see [Bra08]).

The real-time systems that are described in this thesis can be
modeled as queueing networks where workers are tasks, jobs are pack-
ets, and resources are stations. In Figure 2.3 we present the real-time
system that is equivalent with the queueing network presented in Fig-
ure 2.2. In a real-time system, a job does not move from the queue
of a task to the next, instead jobs of all tasks in that task graph are
released for execution simultaneously2, however, they become ready
for execution only when their dependencies are satisfied. Dependen-
cies are modeled by the links in the task graph, thus, for the example,
in Figure 2.3 only the kth job of task τ1 is ready for execution upon
release. After its completion the kth job of τ2 will become ready
for execution, and so on. This behavior of jobs, however, simulates
the behavior of packets (where packets move from worker to worker),
thus allowing us to model real-time systems as queueing networks.

2A release models the event in a real-time system when the computation mod-

eled by the software task graph is called for execution.
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Figure 2.3: Example of a real-time system with two resources and
four tasks. This example can be modeled as the queueing network in
Figure 2.2.

We, therefore, express ourselves by saying that jobs move from one
task to the next.

The main problem with queueing networks is determining if they
are stable, that is, if packets exit the network at the same rate (on
average) at which they enter. This is an important problem since
queues are assumed to be of finite size and, if packets exit the network
at a slower rate compared with their input rate, then the queues
inside the network will overflow. This problem is formulated in two
settings [Bra08]:

• stochastic stability of a queueing network, where both input
rates and execution times vary, according with certain stochas-
tic distributions, and

• deterministic stability of a queueing network, where the input
rates and execution times are assumed fixed at given values.

There exist several solutions to these problems, in both settings,
for simple instances of queueing networks which can be modeled as
markov processes [Ke79] or continuous flow models [Dai96]. For more
advanced networks, such as multi-class queueing networks, however,
there are results only for particular example systems [Kum95]. An
important result in queueing networks theory is the subcriticality con-
dition for a queueing network, which is a necessary condition for sta-
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bility, generally applicable to any network [Bra08]. A series of papers
in the early 1990s [Kum90, Lu91, Ryb92] have shown that there exists
a need for general solutions to the above problems as the number of
subcritical unstable queueing networks is potentially very large.

In the theory that we develop in this thesis, the modeling that
we propose has some similarities with modeling applied to queueing
networks, and the necessary condition for stability that we derive in
Section 5.1 has a similar meaning with the notion of subcriticality
of queueing networks. However, in this thesis we deal with absolute
stability, that is, we bound the behavior of the system in the worst
case, while in queueing networks theory stochastic stability is used,
where only bounds on the expected behavior are determined. The
results that we obtain in Section 5.2 provide a general solution to
the deterministic stability problem described above. Furthermore,
the rest of the results presented in this thesis (Section 5.3) use the
concept of resource manager and have no counterpart in results known
from queueing networks theory.



3
Preliminaries

In this chapter we introduce the necessary notations used through-
out the thesis to describe and model the system. We also introduce

the control theoretic notions of stability that we later use in our sta-
bility analysis.

3.1 Mathematical Notations

In this thesis we use standard mathematical notations. We describe
a set of elements as: S = {si, i ∈ IS} where IS ⊂ Z+ is the index set
of S. We make the convention that if S = {si, i ∈ IS} is an ordered
set, then si appears before si′ in the set if and only if i < i′, for all
si, si′ ∈ S, si �= si′ . P(S) is the power set of S.

We denote a n×m matrix as A = [ai,j ]n×m where n is the number
of rows and m is the number of columns. We denote with 0n×m the
matrix whose elements are all 0 and with In the n×n identity matrix.
We denote a column vector as �v = (v1, v2, · · · vn)T or more compactly
as �v = [vi]n. We denote with 0n and 1n the n-dimensional column

25
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vectors formed of all elements equal to 0 and 1 respectively. In an
n-dimensional normed space V we denote the norm of a vector �v with
|�v|. For a given matrix A, its kernel space is Ker(A) = {x|Ax = 0}
and its image space is Im(a) = {x|Ax = x}. We say that a matrix A

is idempotent if A2 = A.
When we compare two vectors �v = [vi]n and �u = [ui]n, we use the

notations �, ≺, �, and �. For example the relationship �v � �u means
vi ≥ ui, ∀i ∈ {1, 2, · · · , n}. Similarly for the rest of the notations as
well.

We recall that a function γ : R≥0 → R≥0 is a K-function if it is
continuous, strictly increasing, and γ(0) = 0. A function γ : R≥0 →
R≥0 is a K∞-function if it is a K-function and it is unbounded. A
function β : R≥0 × R≥0 → R≥0 is a KL-function if for each fixed
t ≥ 0 the function β(·, t) is a K-function and for each fixed s ≥ 0 the
function β(s, ·) is decreasing and β(s, t) → 0 as t → ∞.

3.2 Description of the System

We consider that our distributed platform is composed of a finite set
of n resources (e.g. processors and buses) R =

{
Ni, i ∈ IR

}
, IR =

{1, · · · , n}. Each resource is characterized by the finite set of tasks
that compete for it Ni = {τj , j ∈ INi}. In this thesis we only consider
time-shared mutual-exclusive resources, where only one task may use
the resource at any given time. Each resource is, therefore, equipped
with a scheduler to schedule the succession of tasks. The scheduler
is embedded (as part of the hardware or the software middleware) in
the resource.

The applications running on this platform are a finite set of acyclic
task chains A = {Cp, p ∈ IA}, formed of tasks linked together through
data dependencies1. A task chain is a finite ordered set of tasks: Cp =

1In Section 6.2 we will generalize application models to acyclic task graphs

where tasks may have multiple data dependencies to their predecessors, and their

output may be a dependency for several successor tasks.
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Figure 3.1: Distributed system example.

{τj , j ∈ ICp}. With each task chain Cp we associate the set of rates at
which it can release new instances for execution: Pp ⊆ [ρmin

p , ρmax
p ].

The tasks of all task chains are mapped on the resources of the system.
Each task in the task chain Cp has at most one data depen-

dency to the previous task in Cp. Figure 3.1 shows an example
of a system with 4 resources R = {N1,N2,N3,N4}, where N1 =
{τ1, τ6, τ7},N2 = {τ4, τ9, τ10}, and N3 = {τ2, τ12} are processors and
N4 = {τ3, τ5, τ8, τ11} is a communication link. The application is com-
posed of 4 task chains A = {C1, C2, C3, C4}, where C1 = {τ1} contains
only one task, C2 = {τ2, τ3, τ4, τ5, τ6} contains 5 tasks and is spread on
all resources, and C3 = {τ7, τ8, τ9} and C4 = {τ10, τ11, τ12} contain 3
tasks and are spread on {N1,N4,N2} and {N2,N4,N3} respectively.
Observe that we treat both processors and communication links as
resources. Because of this, messages sent on communication links are
called tasks in our notation. In Figure 3.1, τ3, τ5, τ8, and τ11 are, in
fact, messages since N4 is a communication link.

All tasks of a task chain Cp release jobs periodically and simul-
taneously2, at the variable rate ρp chosen from the set Pp. We de-

2To describe this phenomenon, we also say that an instance of the task chain

Cp is released at a rate ρp.
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note the kth job of task τj as τjk. However, jobs cannot be exe-
cuted before their data dependency is solved. We define a task τj

by the interval of execution times that jobs of this task can have
τj =

(
Cj = [cmin

j , cmax
j ]

)
. A task may only belong to one task chain

and may only consume one resource. The set of all tasks in the ap-
plication is Θ =

⋃
p∈IA

Cp. We denote the index set of all tasks in the

application as IΘ. Also, we denote with P =
∏

p∈IA

Pp the space of

rates and with �ρ a vector in this space.
Based on the above defined sets and assuming the existence of

element ξ /∈ IΘ we define the following mappings:

• γ : IΘ → IA, γ(j) = p if τj ∈ Cp, which is a mapping from tasks
to task chains,

Example: γ(5) = 2 in the example from Figure 3.1 since
τ5 belong to C2. We then use Cγ(5) when dealing with C2.�

• ν : IΘ → IR, ν(j) = i if τj ∈ Ni which is a mapping from tasks
to resources,

Example: ν(5) = 4 in the example from Figure 3.1 since
τ5 is mapped to resource N4. We then use Nν(5) when
dealing with N4. �

• π : IΘ → P(IΘ), π(j) = S ⊂ ICp is the set of all indexes of
tasks that are predecessors (direct or indirect) of τj in the task
chain,

Example: π(5) = {2, 3, 4} in Figure 3.1 since tasks τ2,
τ3, and τ4 are the predecessors of task τ5 in C2. �

• ϕ : IR → P(IR), ϕ(i) = SN ⊂ IR, is the set of all indexes of
resources whose tasks have successors on resource Ni,

Example: ϕ(4) = {1, 2, 3, 4} in Figure 3.1 because tasks
running on N4 have predecessors from all resources in the
system:
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– τ7 on N1 is a predecessor of τ8 on N4,

– τ4 and τ10 on N2 are the predecessor of τ5 and τ11

respectively, on N4,

– τ2 on N3 is a predecessor of τ3 on N4, and

– τ3 on N4 is a predecessor of τ5 on N4. �

• p : IΘ → IΘ ∪ {ξ}, p(j) = j′ �= ξ if τj′ is the predecessor of τj ,
or p(j) = ξ if τj has no predecessor.

Example: In Figure 3.1, p(5) = 4 since τ4 is the direct
predecessor of τ5 in C2, while p(10) = ξ since τ10 does not
have a predecessor in C4. �

Using the above mappings, the predecessor task of τj (assuming τj

has one) is τp(j) and the release rate of the task chain, of which τj

is part of, is ργ(j). The resource on which the predecessor of τj is
running is Nν(p(j)).

A job of a task in the system is the tuple: τjk =
(
cjk, ρjk, rjk

)
where: cjk, ρjk, and rjk, are the execution time, rate, and response
time of the kth job of task τj . The response time of any job of a task
represents the interval of time between the release and the finish time
of the job. A job τjk can be in one of the following states:

1. Released when it has been released at the rate of the task chain,

2. Ready for Execution when the job’s data dependency was solved,
that is, when the corresponding job of the predecessor of this
task τp(j)k has finished executing,

3. Under Execution when the job has been partially executed, that
is, when it occupied the resource for a portion of its execution
time, and

4. Finished when the job has been fully executed.
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The tasks in the system are scheduled, on their particular re-
sources, using any scheduler which satisfies the following properties:

1. it is non-idling : it does not leave the resource idle if there are
pending jobs;

2. it executes successive jobs of the same task in the order of their
release.

At a certain moment in time, due to the functioning of the sched-
ulers, at most one job of any task may be under execution. We con-
sider that all jobs which are ready for execution and under execution
are accumulated in queues, one for each task in the application. For
tasks that have no data dependencies, a job becomes ready for execu-
tion whenever it is released. Whenever a job finishes its execution, it
is removed from its task’s queue. At the same time, the correspond-
ing job of the task’s successor becomes ready for execution and, thus,
gets added to the successor task’s queue. We assume that this event
takes place instantaneously. This is acceptable because we treat com-
munication links as resources, which means that data dependencies
are just virtual constructs in the model.

3.3 Resource Manager

The system features a resource manager whose goal, among others,
is to measure execution times and, then, adjust task chain release
rates such that the jobs pending on all resources are executed in a
timely fashion and the amount of time spent in overload situations is
minimized. We consider the system stable if, under the worst possible
run-time scenario, the overload in the system is kept finite, meaning
that the system does not keep accumulating jobs without having a way
of executing them. The resource manager is part of the middleware
of the system and is, in general, distributed over all resources.

Whenever the resource manager is activated, we assume that it
has a worst-case response time of Δ < h, where h is its actuation
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period, and that it has a worst-case execution time on each resource
of less than Δ. We assume that the resource manager imposes the
newly computed task chain rates simultaneously, on all resources, at
Δ after it has been activated. This means that all jobs released during
the running of the resource manager are still released at the old task
chain rates. We treat all parts of the resource manager as tasks from
the application set, and we include them in the task sets Ni on their
particular resources.

The resource manager, in general, will be tailored to the appli-
cation at hand and will function such as to optimize specific quality
metrics related to the goal of the particular system, as discussed in
Chapter 2. However, from the point of view of this theoretical frame-
work, we do not impose any constraints on the structure and function
of the resource manager, apart from actuating periodically and having
the goal of keeping the task queues bounded by means of task chain
rate adjustment. In chapter 6 we shall extend the resource manager
definition by allowing for more flexible actuation methods.

3.4 Stability of Discrete-Time Dynamical Sys-

tems

A discrete-time control system is part of a larger class of systems
called discrete-time dynamical systems [Mic08]. A discrete-time dy-
namical system is a tuple {T ,X ,A,S,U} where: T = {t[k]|k ∈
Z+, 0 = t[0] < t[1] < · · · < t[k] < · · ·} is the discrete set of times
at which the system evolves, X is the state space, A ⊂ X is the
set of all initial states of the system (�x[0]), U is the bounded set of
all inputs and S is the set of all trajectories (all solutions of (3.1) :
�x[k] = p(k, �x[0], �u[k]) where t[k] ∈ T , �x[0] ∈ A, and �u[k] ∈ U). The state
space must be a normed space (X , | · |). A dynamical system’s state
is desired to be 0n. Because systems are subject to inputs, this con-
dition does not hold. Under this premise a dynamical system is said
to be stable if its state remains “close” to 0n for all input patterns
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and initial conditions.
For our system we consider the following stability definition (we

recall that notations, such as K and KL-functions are described in
Section 3.1):

Definition 1 (Global Asymptotic Stability):
A dynamical system S, expressed recursively as:

F (�x[k+1], �x[k], �u[k]) = 0n (3.1)

is global asymptotically stable (GAS) [Son01] if there exists a KL-
function β such that for each initial state �x[0] ∈ A and for each input
function �u : Z+ → U we have that:

|p(k, �x[0], �u[k])| ≤ β(|�x[0]|, k) (3.2)
�

Definition 2 (Input-to-State Stability):

A dynamical system S (equation (3.1)) is input-to-state stable (ISS)
[Jia01] if there exists a KL-function β and a K-function γ such that
for each initial state �x[0] ∈ A and for each input function �u : Z+ → U :
we have that:

|p(k, �x[0], �u[k])| ≤ max{β(|�x[0]|, k), γ(||�u||)} (3.3)

where ||�u|| = sup{|�u[k]|, k ∈ Z+}. �

A GAS system approaches its equilibrium point regardless of the
initial state from where it begins. An ISS system initially approaches
its equilibrium point similarly to a GAS system but it stops when its
state becomes bounded in a ball of a certain size around its equilib-
rium point. The size of the ball depends on the magnitude of its input.
We illustrate graphically the meaning of these stability concepts in
Figures 3.2a for GAS and 3.2b for ISS. For a deeper understanding
of these two concepts and the link between them we point the reader
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Figure 3.2: (a) GAS: The system’s state approaches 0n as time passes,
regardless of the initial state. (b)ISS: The system’s state reduces at
first, but then becomes trapped below a bound determined by the
magnitude of the inputs.

to works such as [Son01, Jia01]. We will only note here that a ISS
system is GAS if its input is null and that the ISS property (3.3) may
be written in other ways (of course, for different β and γ functions),
e.g.:

|p(k, �x[0], �u[k])| ≤ β(|�x[0]|, k) + γ(||�u||)

For the system presented in this thesis (modeled as (4.1)) we de-
rive conditions under which it is GAS with respect to its controlled
inputs (�u) and ISS with respect to its perturbations (�w). The norm of
the state of our system will finally become bounded in a ball around
0n. In our case, this means that task queues will be bounded. This
implicitly guarantees various real-time properties e.g. bounded re-
sponse times and end-to-end delays. The system, if stable, will behave
according to the following stability definition, taken from [Mic08]:

Definition 3 (Ultimate Boundedness):

A dynamical system S is ultimately bounded if there exists Ψ > 0
and if corresponding to any α > 0 and t0 ∈ T , there exists t′ ∈
T , (t′(α)) independent of t0 such that for all p(t[k], �x[0]) ∈ S we have
that |p(t[k])| ≤ Ψ, ∀t ≥ t′ whenever |�x[0]| ≤ α. �
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Any system that satisfies the above definition is stable, and this
means that its state becomes trapped in the ball of size Ψ around
0n, after a certain amount of time, regardless of the initial state �x[0].
Each parameter of the state, therefore, will become constrained in a
bounded interval. In our case, this means that task queues will be
bounded.



4
Modeling of the Adaptive

Distributed Real-Time
System

In this chapter we develop a model capturing the evolution in time
of the adaptive distributed real-time system described in the pre-

vious chapter. We continue by determining and modeling its worst-
case behavior which shall be used for developing our main results in
Chapter 5. We end the chapter with an illustrative example and an
informal description meant to help with better understanding of the
system model.

35



36 CHAPTER 4. MODELING OF THE SYSTEM

ρ

c

xu

w

R
es

ou
rc

e
M

an
ag

er

Job Execution
Times

Distributed System

Figure 4.1: Control theoretic view of our adaptive distributed system.

4.1 Control Theoretic View of a Real-Time

System and its Parameters

We model our distributed real-time system as a discrete-time control
system, described by a system of difference equations:

F (�x[k+1], �x[k], �u[k], �w[k]) = 0n (4.1)

Where �x[k+1] and �x[k] are the state vectors of the system at the fu-
ture (t[k+1]) and the current (t[k]) time moments, �u[k] is the current
input, and �w[k], is the current perturbation experienced by the sys-
tem. In our system, input is provided by the resource manager as
the task chain rates vector and the perturbations come from the vari-
ation in execution times of jobs. Finally, the state of the system is
composed of all other time varying quantities that appear in equa-
tion (4.1). This will boil down to the state being represented by the
vector of queue sizes of each task in the system.

The model of our system can be depicted as in Figure 4.1. While
the tasks and the resource manager are distributed over the resources
of the system, from a modeling perspective the tasks and resources
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Figure 4.2: Examples of task chain release patterns.

form the plant, and the resource manager is the controller controlling
the accumulation of execution times by means of adjusting task chain
rates.

We describe the evolution of our system at discrete moments in
time t[k], k ∈ Z+ when one of the following events happens:

1. the resource manager activates,

2. a job of a task τi is released at a different rate than the former
job of this task, or,

3. the scheduler on any resource switches to executing jobs of a
different task than before.

To help with understanding, we show the meaning of the quan-
tities ρp, ∀p ∈ IA, representing the rates of the task chains in the
system, with the help of Figure 4.2, where we show the evolution of
an example system with three task chains Ca, Cb, and Cc between
time moments t[k] and t[k+1]. The meaning of the task chain rates is
simply that the distance between successive job releases of tasks of
a task chain Cp is 1/ρp. We can see from Ca that jobs released after
t[k] are separated by 1/ρa[k] while jobs released before are separated
by 1/ρa[k−1]. In the case of Cb we can observe that t[k] does not cor-
respond with the release of new jobs, thus, there exists an offset φb[k]
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between t[k] and the first jobs released after it. From Cc we observe
that we might not have any jobs released during [t[k], t[k+1]].

4.2 System Model

In this section we develop the system of difference equations that form
the model of our distributed system.

The overload situation in a system is characterized by the queues
in which jobs accumulate before they get executed. The evolution of
the queues of tasks running on a given resource Ni, at the discrete
moments in time defined in the previous section, depends on:

1. the number of jobs arriving to these queues,

2. the execution times of all these jobs, and

3. how the scheduler on that resource decides to execute jobs from
these queues.

We model the evolution of queues of all tasks running on a resource
as an accumulation of execution time that needs to be executed by
the resource. For each resource Ni, i ∈ IR we have:∑

j∈INi

cj[k]qj[k+1] =

max
{

0,
∑

j∈INi

cj[k]qj[k] +
∑

j∈INi

cj[k]sj[k+1]−

(t[k+1] − t[k])
}

(4.2)

The quantities appearing in the above equation have the following
meaning:

• qj[k], ∀j ∈ IΘ represent the queue sizes of the queues of all tasks
in the system,
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• ∑
j∈INi

cj[k]qj[k] is the accumulation of execution time existing in

the queues of the tasks running on resource Ni, at t[k]

• ∑
j∈INi

cj[k]sj[k+1] is the amount of execution time of all incoming

jobs to these queues, and

• ∑
j∈INi

cj[k]qj[k+1] is the amount of execution time remaining in

the queues at t[k+1].

In between the two consecutive moments of time t[k] and t[k+1], the
resource can execute at most an amount of execution time of size
t[k+1] − t[k]. Observe that we have modeled queue sizes as continuous
values. This is in order to accurately represent situations where jobs
remaining in queues are partially executed1.

In equation (4.2) the quantities sj[k+1], ∀j ∈ IΘ represent the
number of jobs of τj that become ready for execution during [t[k], t[k+1]]
and their evolution is described in the following equation:

sj[k+1] =

⎧⎨
⎩�qj′[k]� + sj′[k+1] − �qj′[k+1]�, if j′ = p(j) �= ξ⌈

ργ(j)[k] max{0, (t[k+1] − t[k]) − φγ(j)[k]}
⌉
, otherwise

(4.3)
If τj has τj′ as predecessor then sj[k+1] represents the number of jobs of
τj′ that were executed during [t[k], t[k+1]] (first branch of the equation).
If τj has no predecessor, then sj[k+1] represents the number of jobs
released by the task chain (second branch of the equation).

The quantities φp[k], ∀p ∈ IA represent the offsets from t[k] when
the new instance of task chains Cp gets released into the system (see

1Modeling queues in this fashion is useful for our purpose of analyzing systems

for stability, however, it does not impose any constraints on the functioning of

systems. The resource manager of a system does not need to measure and uti-

lize continuous queue size values in order for this modeling and analysis to be

applicable.
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Figure 4.2) and their evolution in time is given by equation:

φp[k+1] = φp[k]+
1

ρp[k]

⌈
ρp[k] max{0, (t[k+1]−t[k])−φp[k]}

⌉
−(t[k+1]−t[k]),

(4.4)
The quantities cj[k], ∀j ∈ IΘ represent the average execution times

of tasks τj during the time interval [t[k], t[k+1]]. These quantities are
unknown, therefore we will treat them as disturbances. The quantities
ρp[k], ∀p ∈ IA represent the rates at which task chains release new
instances for execution and are the inputs (decided by the resource
manager) to our real-time system.

Equations (4.2) to (4.4) form a preliminary candidate for the
model of our system. For ease of use, we reduce this system as de-
scribed below. By observing from equation (4.4) that⌈

ρp[k] · max{0, (t[k+1] − t[k]) − φp[k]}
⌉

=ρp[k] · (φp[k+1] − φp[k])+

ρp[k] · (t[k+1] − t[k])

and by introducing the expressions of sj[k] into equation (4.2) we
obtain:∑

j∈INi

cj[k]qj[k+1] =

max
{

0,
∑

j∈INi

cj[k]qj[k]+

∑
j∈INi

cj[k]

( ∑
j′∈π(j)

(
�qj′[k]� − �qj′[k+1]�

))
−

∑
j∈INi

cj[k]ργ(j)[k]

(
φγ(j)[k] − φγ(j)[k+1]

)
+

( ∑
j∈INi

cj[k]ργ(j)[k] − 1
)
(t[k+1] − t[k])

}

(4.5)

Equation (4.5), repeated for every resource Ni, i ∈ IR, forms the
model of our system.
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The task chain release rates are the inputs to the system, given
by the resource manager:

�ρ[k] = fc(�x[k]) (4.6)

where fc : X → P is the model of the resource manager. In this work,
we do not concern ourselves with the particular aspect of fc(·) or its
performance when applied to a specific system or class of systems.
Instead, our goal is to find conditions on the perturbations, inputs,
and on the control law (fc(·)) which lead to a stable system.

Stability implies that the state evolves in a bounded interval. Be-
cause we do not have enough equations in our model (we have one
equation for each resource, not one equation for each task) we cannot
determine the precise queue size for each queue, but we shall reason
about the stability of the system nonetheless. We do so by aggregat-
ing the queues of all tasks running on a resource into the accumulation
of execution times on that resource and bounded accumulations will
imply bounded queues.

4.3 Worst-case Behavior of the System

We shall now perform a number of manipulations to the system model
in order to make it easier to handle. First, we define a set of notations
in order to make the formulas more compact to write. Next we develop
an approximative version of the system that describes its behavior in
the worst case. This allows us to eliminate the effect of variations
in execution times. Finally, we write the whole system model in a
matrix form.

In order to simplify the handling of equation (4.5) we define several
notations, for all resources Ni, ∀i ∈ IR. We denote with σi[k] the
accumulation of execution times on resource Ni at time moment t[k]:

σi[k] =
∑

j∈INi

cj[k] · qj[k]
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We denote with ζi[k] the accumulation of execution times flowing into
Ni from tasks predecessor to the ones running on Ni:

ζi[k] =
∑

j∈INi

cj[k] ·
( ∑

j′∈π(j)

�qj′[k]�
)

We use oi[k] to represents the accumulation of execution times deter-
mined by the offsets:

oi[k] =
∑

j∈INi

cj[k] · ργ(j)[k−1]φγ(j)[k]

Finally, we use the value Ui[k] to represents the load added to the
system during the time interval [t[k], t[k+1]]:

Ui[k] =
∑

j∈INi

cj[k] · ργ(j)[k]

With the above notations, we can rewrite equation (4.5) as:∑
j∈INi

cj[k]qj[k+1] =

max

{
0, σi[k] + ζi[k] − ζi[k+1] + oi[k+1] − oi[k]+

(Ui[k] − 1)(t[k+1] − t[k])

}
(4.7)

Because of the way we define the time points t[k] (see Section 4.1), we
are sure that if φj[k] �= 0 then ργ(j)[k−1] = ργ(j)[k] and thus

oi[k] =
∑

j∈INi

cj[k] · ργ(j)[k]φγ(j)[k]

as well. All values σi[k], ζi[k], oi[k], Ui[k] are positive values for all
i ∈ IR and t[k], and are upper bounded by σmax

i[k] , ζmax
i[k] , omax

i[k] , and
Umax

i[k] , respectively:

σmax
i[k] =

∑
j∈INi

cmax
j · qj[k] (4.8)
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ζmax
i[k] =

∑
j∈INi

cmax
j ·

( ∑
j′∈π(j)

�qj′[k]�
)

(4.9)

omax
i[k] =

∑
j∈INi

cmax
j · ργ(j)[k−1]φγ(j)[k] (4.10)

Umax
i[k] =

∑
j∈INi

cmax
j · ργ(j)[k] (4.11)

Let us observe that omax
i[k] ≤∑j∈INi

cmax
j for all t[k]. We claim that

the following inequality holds for every Ni at every t[k] and represents
the worst-case behavior of the system:

σmax
i[k+1] ≤ max

{
0, σmax

i[k] + ζmax
i[k] − ζmax

i[k+1] + omax
i[k+1] − omax

i[k] +

(Umax
i[k] − 1)(t[k+1] − t[k])

}
(4.12)

The worst-case behavior happens when all jobs of all tasks have their
worst-case execution times. We give the proof of inequality (4.12) in
Section 4.3.2.

The state of the system in the original model (equation 4.5) is
composed of the values of the queue sizes of all tasks in the system.
For the worst-case behavior model derived above (equation 4.12) the
corresponding state is (σmax

i + ζmax
i ) since these quantities contain

the task queue sizes, whose evolution is of interest to us.
We observe that each resource Ni has two modes of operation,

corresponding to the two arguments to the max operator in inequa-
tion (4.12):

1. starving: when all the queues of tasks running on the resource
are empty, and the resource must sit idle (σmax

i[k+1] = 0), and

2. non-starving: when at least one of the queues of tasks running
on the resource are non-empty and the resource is working ex-
ecuting jobs.
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We rewrite inequation (4.12) (for each resource Ni, i ∈ IR) in such
a way as to highlight the state of the system and the two modes of
operation:

σmax
i[k+1] + ζmax

i[k+1] ≤

⎧⎪⎪⎨
⎪⎪⎩

ζmax
i[k+1], if σmax

i[k+1] = 0

σmax
i[k] + ζmax

i[k] + omax
i[k+1] − omax

i[k] +

(Umax
i[k] − 1)(t[k+1] − t[k]), otherwise

(4.13)
The evolution of the state of the system (associated with Ni) is clear
when the resource Ni is non-starving (the second branch), and it de-
pends on its current state (σmax

i[k] +ζmax
i[k] ), the load added to Ni during

the time interval [t[k], t[k+1]] (Umax
i[k] ) and a random but bounded noise

due to the offsets (omax
i[k+1] − omax

i[k] ). However when Ni is in starving
mode, inequation (4.13) becomes indeterminate (σmax

i[k+1] + ζmax
i[k+1] ≤

ζmax
i[k+1] when σmax

i[k+1] = 0). We deal with this situation by finding an
upper bound on ζmax

i[k+1] which depends on the other resources in the
system (specifically, on the resources containing the predecessors of
the tasks running on Ni).

Considering the following definitions of the coefficients α and β

for each resource Ni in the system:

αii′ =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

max
j∈INi

j′∈INi′
γ(j)=γ(j′)

{
cmax
j

cmax
j′

}
, ∀i′ ∈ ϕ(i)

0, otherwise

(4.14)

βi =
∑

j∈INi

cmax
j

( ∑
j′∈π(j)

1
)

(4.15)

we claim that the following inequality holds. We give its proof, to-
gether with the meaning of the coefficients α and β in Section 4.3.3:
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ζmax
i[k+1] =

∑
j∈INi

cmax
j ·

( ∑
j′∈π(j)

�qj′[k+1]�
)

≤
∑

i′∈ϕ(i)

αii′σ
max
i′[k+1] + βi

≤
∑

i′∈ϕ(i)

αii′(σmax
i′[k+1] + ζmax

i′[k+1]) + βi

≤
∑

i′∈ϕ(i)
σmax

i′[k+1]
�=0

αii′

(
σmax

i′[k] + ζmax
i′[k] + omax

i′[k+1] − omax
i′[k]

)
+

∑
i′∈ϕ(i)

σmax
i′[k+1]

�=0

αii′

(
(Umax

i′[k] − 1)(t[k+1] − t[k])

)
+ βi (4.16)

Plugging in the bound from (4.16) into inequality (4.13) gives us a
working model of the system for predicting its worst-case behavior.
When a resource Ni is starving, the evolution of its state depends on
the other resources in the system which are non-starving (Ni′ , where
i′ ∈ ϕ(i), and σmax

i′[k+1] �= 0). We can thus rewrite inequation (4.13)
for each resource Ni as having 2n branches, each one representing a
different combination of starving and non-starving resources. These
inequations can then be aggregated into a matrix form as follows:

�x[k+1] ≤ Al[k]

(
�x[k] + (�w[k+1] − �w[k]) + (�u[k] − 1n)(t[k+1] − t[k])

)
+�bl[k]

(4.17)
where l : T → {0, 1, · · · , 2n − 1} is a function associated with a
running of the system, that maps time moments to the corresponding
branches (l[k] is the according to which the system evolves from time
t[k] onwards). The matrix Al[k]

and vector �bl[k]
are associated with the

branch taken by the system at time t[k] and belong to the following
sets:

Al[k]
∈ {A0 = 0n×n, A1, · · · , A2n−2, A2n−1 = In}
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�bl[k]
∈ {�b0,�b1, · · · ,�b2n−1 = 0n}

l[k] ∈ {0, 1, · · · , 2n − 1}

The state, disturbance, and input to the system are:

�x[k] =
[
σmax

i[k] + ζmax
i[k]

]
n

(4.18)

�w[k] =
[
omax
i[k]

]
n

(4.19)

�u[k] =
[
Ui[k]

]
n

(4.20)

At each moment in time t[k], the system evolves according to one of
the 2n branches l[k]. The choice of the branch (and, implicitly, the
corresponding matrix Al[k]

and vector�bl[k]
) is unknown to the resource

manager as we cannot tell at t[k] which resource will be starving at
t[k+1]. Such systems are called switching systems with random switch-
ing . The branch having A2n−1 and �b2n−1 represents the case where
all the resources are in non-starving mode. The branch having A0

and �b0 represents the case where all resources are starving, meaning
all queues are empty.

In this section we have determined the worst-case behavior of an
adaptive real-time system, We have done so starting from the general
evolution of such systems described in Section 4.2. Inequation (4.12)
describes an upper bound on the evolution of the accumulation of
execution times on each resource in the system. These inequations
describe the evolution of the resource in two cases: when starving and
when non-starving. With the help of the approximation from inequal-
ity (4.16) we have managed to aggregate all these inequations (in-
equation (4.12) written for all resources in the system) into a matrix
form (inequation (4.17)) that describes the worst-behavior evolution
of the system. By worst-behavior we mean the behavior where the
state of the system grows to its largest value. Our goal for the rest of
the thesis is to take this worst-case behavior model (inequation 4.17)
and determine conditions under which the state of the system remains
bounded. Bounded state in the worst-case means that the system re-
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mains stable for all possible runtime scenarios, thus guaranteeing that
all released jobs will eventually be executed.

4.3.1 System Model Parameters and Properties

We continue with a discussion on the form and properties of the Al

and �bl, l ∈ {0, 1, · · · , 2n − 1} matrices and vectors introduced in in-
equation (4.17). From inequation (4.13) we can observe that the
matrices Al = [alij ] and vectors �bl = [bli]n have a particular form. In
any of the 2n settings in which the system may find itself at a certain
moment in time, all non-starving resources (Ni) evolve depending
only on themselves and, thus, the rows i in Al have all elements 0,
apart from alii which is 1. All starving resources i′ evolve depending
on the non-starving resources only and, thus, the rows i′ in Al have
all elements associated with the starving resources 0. The elements
associated with the non-starving resources on the rows i′ are chosen
from the coefficients α. For the vector �bl all elements associated with
the non-starving resources are 0. The elements associated with the
starving resources are taken from the factors β. For example, for
a certain branch l where resources i to j are non-starving (i < j,
i, j ∈ {1, 2, · · · , n}), and resources 0 to i− 1 and j + 1 to n are starv-
ing, the matrix Al and vector�bl have the form presented in Figure 4.3.
Associated with these matrices we define the mapping:

S : {A0, · · ·A2n−1} → {1, · · ·n}

where S(Al) is the set of indexes of all non-starving resources (the
indexes of all non-0 columns in Al).

For each of the above matrices Al and vectors bl we have the
following two properties:

1. all matrices Al are idempotent: A2
l = Al, ∀l ∈ {0, · · · , 2n − 1} ,

and

2. Al
�bl = 0n, ∀l ∈ {0, · · · 2n − 1}
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4.3.2 Proof of Inequality (4.12)

For any resource Ni and any time interval [t[k], t[k+1]], from equa-
tion (4.5) (and (4.7)) we have two cases to analyze. When σi[k+1] = 0
then inequality (4.12) obviously holds. When σi[k+1] > 0, we re-
member that during [t[k], t[k+1]] only jobs of one task τj� are being
executed (see Section 4.1), therefore for all j ∈ INi \ {j�}, equality

qj[k+1] =qj[k] +
∑

j′∈π(j)

(
�qj′[k]� − �qj′[k+1]�

)
+

ργ(j)[k](φγ(j)[k+1] − φγ(j)[k]) + ργ(j)[k](t[k+1] − t[k])

holds. We rewrite equation (4.5) as:

cj�[k]qj�[k+1] = cj�[k]

(
qj�[k] +

∑
j′∈π(j�)

(
�qj′[k]� − �qj′[k+1]�

)
+

ργ(j�)[k](φγ(j�)[k+1] − φγ(j�)[k])+

ργ(j�)[k](t[k+1] − t[k])
)
− (t[k+1] − t[k])

and by replacing cj�[k] with cmax
j� we rewrite inequation (4.12) as:

cmax
j� qj�[k+1] ≤ cmax

j�

(
qj�[k] +

∑
j′∈π(j�)

(
�qj′[k]� − �qj′[k+1]�

)
+

ργ(j�)[k](φγ(j�)[k+1] − φγ(j�)[k])+

ργ(j�)[k](t[k+1] − t[k])
)
− (t[k+1] − t[k])

By rearranging the terms in the previous inequation we obtain:

cmax
j�

(
qj�[k+1] − qj�[k] −

∑
j′∈π(j�)

(
�qj′[k]� − �qj′[k+1]�

)
−

ργ(j�)[k](φγ(j�)[k+1] − φγ(j�)[k])−

ργ(j�)[k](t[k+1] − t[k])
)

≤ −(t[k+1] − t[k])
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which holds for all moments of time, since all terms are positive values.
Thus, inequation (4.12) holds for all moments of time and represents
the worst-case behavior of the system. �

4.3.3 Proof of Inequality (4.16)

The aim of this inequality is to bound the size of ζmax
i[k+1] (Ni, i ∈ IR

being one of the resources of the system) relative to the states of the
other resources in the system Ni′ , i′ ∈ IR \ {i}.

Let us first deal with the first part of the inequality. By upper
bounding all values �qj′[k+1]� with qj′[k+1] +1 we obtain the first part
of the inequality:

ζmax
i[k+1] =

∑
j∈INi

cmax
j ·

( ∑
j′∈π(j)

�qj′[k+1]�
)

≤
∑

j∈INi

cmax
j ·

( ∑
j′∈π(j)

qj′[k+1]

)
+
∑

j∈INi

cmax
j ·

( ∑
j′∈π(j)

1
)

︸ ︷︷ ︸
βi

(4.21)

We now wish to describe all quantities qj′[k+1] in terms of the max-
imum accumulation of execution times on their particular resources
σmax

ν(j′)[k+1]. We observe the following inequality which expresses that
queue qj′ may, at most, contain all the accumulation of execution
times on its respective resource:

qj′[k+1] ≤
σmax

ν(j′)[k+1]

cmax
j′

, ∀j′ ∈ π(j), j ∈ INi (4.22)

Plugging the above into inequality (4.21) we obtain:

ζmax
i[k+1] ≤

∑
j∈INi

( ∑
j′∈π(j)

cmax
j

cmax
j′

σmax
ν(j′)[k+1]

)
+ βi
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Ni

Ni′

cmax
j1

cmax
j′
1

cmax
j2

cmax
j′
2

τj1τj′
2

τj2

τj′
1

Figure 4.4: The case when two tasks on a resource have predecessors
on a different resource.

which satisfies our goal. However, the above inequality gives us a
very pessimistic upper bound of ζmax

i[k+1] since we may count each accu-
mulation of execution times σmax

i′[k+1], i′ ∈ IR \ {i} multiple times. To
understand this, let us consider the example in Figure 4.4 where the
resource Ni under analysis, has two tasks τj1 and τj2 that both have
predecessors τj′1 and τj′2 respectively, running on resource Ni′ . In this
case ζmax

i[k+1] is computed based on the sizes of the queues qj′1 and qj′2 :

ζmax
i[k+1] ≤ · · · + cmax

j1 qj′1[k+1] + cmax
j2 qj′2[k+1] + · · · + βi

By simply introducing the upper bound from inequality (4.22) we
obtain:

ζmax
i[k+1] ≤ · · · +

cmax
j1

cmax
j′1

σmax
i′[k+1] +

cmax
j2

cmax
j′2

σmax
i′[k+1] + · · · + βi

Here we count σmax
i′[k+1] twice as we assume that this accumulation is

fully contained in both jobs of τj′1 and jobs of τj′2 at the same time.
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This approach is, of course, very pessimistic. A better approach is
to observe that the worst case must happen when the whole accu-
mulation on Ni′ is split between these two tasks only: τj′1 and τj′2 .
The question remaining is how to determine the split between the two
tasks. Since one of the coefficients:

cmax
j1

cmax
j′
1

and
cmax
j2

cmax
j′
2

is larger than the

other, having all the accumulation on Ni′ as jobs of the corresponding
task give the worst case (largest) transfer of accumulation from Ni′

to Ni. For this example, a tight upper bound is thus found as follows:

ζmax
i[k+1] ≤ · · · + max

{
cmax
j1

cmax
j′1

,
cmax
j2

cmax
j′2

}
︸ ︷︷ ︸

αii′

σmax
i′[k+1] + · · · + βi

Applying the idea presented above to inequality (4.21), and consid-
ering the definition of the α coefficients (equation (4.14)) we obtain:

ζmax
i[k+1] ≤

∑
i′∈ϕ(i)

αii′σ
max
i′[k+1] + βi

which represents the first part of our inequality. We observe that
σmax

i′[k+1] ≤ σmax
i′[k+1] + ζmax

i′[k+1] since all these quantities are positive.
By expanding this upper bound using inequation 4.12 (and inequa-
tion (4.13)) we obtain the second half of inequality (4.16) and, thus,
complete the proof. �

4.4 Illustrative Example

In Figure 4.5 we present an example of a system with two resources (N1

and N2) transversed by a task chain (C) of four tasks (τ1, τ2, τ3,
and τ4), two on each resource (τ1 and τ4 on N1, and τ2 and τ3 on
N2). The mapping of tasks to resources forms a cycle in the resource
graph (a dependency from τ1 on N1 to τ2 on N2, and a dependency
from τ3 on N2 to τ4 on N1). At each moment in time t[k], the state,
disturbance, and input to the system (when modeling its worst-case
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τ1 τ2

τ3τ4

N1 N2

Figure 4.5: Example of a system with two resources and one task
chain.

behavior) are (see equations (4.18), (4.19), and (4.20) on page 46):

�x[k] =

⎛
⎜⎜⎜⎜⎝

cmax
1 q1[k] + cmax

4 q4[k]︸ ︷︷ ︸
σmax
1[k]

+ cmax
1 0 + cmax

4 (�q1[k]� + �q2[k]� + �q3[k]�)︸ ︷︷ ︸
ζmax
1[k]

cmax
2 q2[k] + cmax

3 q3[k]︸ ︷︷ ︸
σmax
1[k]

+ cmax
2 �q1[k]� + cmax

3 (�q1[k]� + �q2[k]�)︸ ︷︷ ︸
ζmax
2[k]

⎞
⎟⎟⎟⎟⎠

�w[k] =
(

cmax
1 ρ[k−1]φ1[k] + cmax

4 ρ[k−1]φ4[k]

cmax
2 ρ[k−1]φ2[k] + cmax

3 ρ[k−1]φ3[k]

)

�u[k] =
(

(cmax
1 + cmax

4 )ρ[k]

(cmax
2 + cmax

3 )ρ[k]

)

The coefficients α and β for this system are:

α12 = max
{

cmax
4

cmax
3

,
cmax
4

cmax
2

}
α21 = max

{
cmax
2

cmax
1

,
cmax
3

cmax
1

}
β1 = 3cmax

4 β2 = cmax
2 + 2cmax

3

This system has 22 = 4 branches according to which it can evolve,
with:

Al ∈
{(

0 0
0 0

)
︸ ︷︷ ︸

A0

,

(
1 0

α21 0

)
︸ ︷︷ ︸

A1

,

(
0 α12

0 1

)
︸ ︷︷ ︸

A2

,

(
1 0
0 1

)
︸ ︷︷ ︸

A3

}
and
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�bl ∈
{(

β1

β2

)
︸ ︷︷ ︸


b1

,

(
0
β2

)
︸ ︷︷ ︸


b2

,

(
β1

0

)
︸ ︷︷ ︸


b3

,

(
0
0

)
︸ ︷︷ ︸


b4

}
.

4.5 Understanding the System Model

We shall now give an intuitive, informal discussion about the func-
tioning of our system. The exact worst-case behavior of the system is
given by inequation (4.12) (also written as (4.13)). An upper bound
to this behavior was determined in inequation (4.17) which represents
our worst-case system model. Let us start with inequation (4.13) and
describe its parameters and its functioning. Figure 4.6 presents the
parameters associated with the behavior of resource Ni in between
time moments t[k] and t[k+1]. σmax

i[k] represents the total accumulation
of execution time (assuming worst-case execution times) associated
with the jobs existing at time t[k] in the queues of the tasks running
on Ni. ζmax

i[k] is the accumulation of execution times of all released,
but not yet ready for execution jobs of tasks running on Ni. These
are the jobs in the queues of all tasks that precede the tasks on Ni on
their respective task chains. At a given moment of time t[k] the state
of the system is �xi[k] = σmax

i[k] + ζmax
i[k] and represents the maximum

amount of execution time that Ni has to process in order to finish
executing all currently released jobs. If the currently released jobs
have execution times smaller than their worst-case execution times,
the accumulation is smaller and can be executed faster. Hence the
less-or-equal sign in equation (4.13) which described the evolution of
�xi[k].

The amount Umax
i[k] (t[k+1] − t[k]) + omax

i[k+1] − omax
i[k] represents the

amount of execution time, meant for Ni, added into the system be-
tween t[k] and t[k+1]. We prefer writing the incoming accumulation
in this form because Ui[k] represents the worst-case load (computed
assuming worst-case execution times) that Ni should be subjected
to during [t[k], t[k+1]]. The exact load (Ui[k]) added into the system,
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for each resource, should be less than one as the jobs will become un-
schedulable on the resource otherwise. At times, the resource manager
may wish to decrease the queue sizes and, in order to guarantee that,
it may select task chain rates such that Umax

i[k] ≤ 1.

The amount t[k+1] − t[k] represents the maximum amount of exe-
cution time removed from �xi during [t[k], t[k+1]]. New jobs enter as an
accumulation of execution times in the ζmax

i part of the state. From
there they move to σmax

i where they can be executed and removed
from the state.

When Ni is non-starving, the σmax
i part of the state is sufficiently

large to allow the resource to execute jobs continuously, without
idling, during [t[k], t[k+1]]. In this case the evolution of the state of the
system, in the worst-case when the execution times of all jobs are at
their largest, is easy to describe, since we know precisely how much
accumulation enters and leaves the resource.

When Ni is starving σmax
i = 0 and no jobs get executed during

[t[k], t[k+1]] and we know the rate at which ζmax
i is increasing. But

is there any bound on the growth of ζmax
i or not? To answer this

question we remember that ζmax
i is formed of the queues of jobs of

the tasks that are predecessors, in their respective task chains, to the
tasks running on Ni. Not all queues are empty and thus, the resources
running the tasks that have non-empty task queues (such as Ni′ in
Figure 4.6) are not starving. All such resources Ni′ are executing
jobs, but these jobs must be jobs of tasks which do not have successors
on Ni, otherwise these jobs will keep Ni from idling. At some point,
however these resources (that run tasks predecessor to the ones on Ni)
will deplete all their other queues and then they must begin executing
jobs that will reach Ni and move it into a non-starving state. This
suggests that the bound of the increase of ζmax

i , when Ni is starving,
is given by the worst-case amount of execution times (σmax

i′ ) existing
in the other non-starving resources in the system. To compute the
accumulation of execution times, we have assumed for all jobs that
will reach Ni the worst-case execution times associated with their
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tasks running on Ni. Similarly, we do so for all other resources in the
system. When computing the bound on ζmax

i (when Ni is starving)
we must rewrite the accumulations on the other resources in terms
of the execution times of the tasks running on Ni. We do so by
multiplying them with the coefficients α described in equation (4.16)
since they describe the worst-case accumulation that is added to σmax

i

when a job moves from another resource into Ni.
We conclude this section with a discussion on the potential pes-

simism characteristic to the worst-case system model derived in Sec-
tion 4.3. The model presented in equation (4.13) is an accurate de-
scription of the worst-case behavior of the system, since the situation
described there corresponds with all jobs of all tasks executing with
their worst-case execution time. However, as explained in Section 4.3,
this model is indeterminate when a resource starves. We fix that by
developing equation (4.17) which introduces pessimism into the model
due to the upper bounding done in inequality (4.16):

ζmax
i[k+1] ≤

∑
i′∈ϕ(i)

αii′σ
max
i′[k+1] + βi ≤

∑
i′∈ϕ(i)

αii′(σmax
i′[k+1] + ζmax

i′[k+1]) + βi

The pessimism appears because we consider σmax
i′[k+1] + ζmax

i′[k+1] instead
of σmax

i′[k+1]. We present the effects of the pessimism with the help of
Figure 4.7 where for resource N5 the quantity ζmax

5 is approximated
in the following way:

ζmax
5 =cmax

9

(
�q3� + �q6�

)
+ cmax

10

(
�q4� + �q7�

)
≤
(
cmax
9

(
q3 + q6

)
+ cmax

10

(
q4 + q7

))
+
(
2cmax

9 + 2cmax
10

)︸ ︷︷ ︸
β5

=

((cmax
9

cmax
3

cmax
3 q3 +

cmax
9

cmax
6

cmax
6 q6

)
+

(cmax
10

cmax
4

cmax
4 q4 +

cmax
10

cmax
7

cmax
7 q7

))
+ β5
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τ1
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τ5
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C2
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C4

C5

ζmax
5

ζmax
3

ζmax
4

Figure 4.7: Example illustrating the pessimism of the method.

≤max
{cmax

9

cmax
3

,
cmax
10

cmax
4

}
︸ ︷︷ ︸

α52

σmax
2 +

cmax
9

cmax
6︸ ︷︷ ︸
α53

σmax
3 +

cmax
10

cmax
7︸ ︷︷ ︸
α54

σmax
4 + β5

≤
(

α52(σmax
2 + 0︸︷︷︸

ζmax
2

) + α53

(
σmax

3 + cmax
6 �q3� + cmax

5 �q2�︸ ︷︷ ︸
ζmax
3

)
+

α54

(
σmax

4 + cmax
7 �q4�︸ ︷︷ ︸

ζmax
4

) )
+ β5

We can see from the figure and from the above computation that by
including α53ζ

max
3 +α54ζ

max
4 we end up counting the jobs of Ni twice

(α52σ
max
2 ), thus introducing pessimism.

The amount of pessimism increases with longer task chains be-
cause they pass through more resources Ni′ , i′ ∈ ϕ(i) before arriving
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at the resource of interest Ni and, thus, including more pessimistic
approximations of the form σmax

i′ ≤ σmax
i′ + ζmax

i′ .
The consequences of the above pessimism are twofold: firstly the

pessimism affects the state of the system making it appear larger
than it is. This is important as the largest state of the system helps
us determine bounds on the real-time properties such as worst-case
response times (larger bounds for larger state, see Section 6.3). Sec-
ondly the pessimism affects the system stability property where, as
we shall see in Section 5.2, the sufficient condition for a system to
have stable resource managers depends on the coefficients of the Al,
l ∈ {0, 1, · · · 2n − 1} matrices and smaller coefficients generally imply
better stability properties.
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5
Stability Conditions

Up to this point we have determined that our distributed real-
time system can be modeled as a switching system with random

switching. This system evolves according to one of 2n possible sce-
narios and, at every moment in time, the scenario may switch to a
different one. As described in Section 3.4, the system is stable when
a norm of its state (|�x[k]|) remains bounded at all times, regardless of
the switching pattern the system may employ.

At runtime, the system is controlled by its resource manager. For
a given system we may envision a set of resource manager policies
that are able to keep the system stable. These policies may differ
amongst themselves by their performance1 but they are all capable
of keeping the system stable.

In this chapter we wish to determine whether this set of resource
manager policies is empty or not. If this set is empty, the system

1We do not address the performance of a certain resource manager policy in

this work, as performance may mean different things for different systems and

applications.
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cannot be kept stable (assuming its worst-case behavior) regardless
of the resource manager policy used. To this end, we develop a set
of conditions that, if satisfied by the system parameters, guarantee
the existence of resource manager policies that can keep the system
stable.

The developed conditions will be conditions on the parameters of
the system such as the task chain rate sets, the tasks’ execution time
intervals, and the topology of the system (the mapping of tasks to
resources and the interdependencies between resources). These con-
ditions are not conditions on the resource manager. The conditions
come in two flavors:

• Necessary conditions: if not satisfied, there is no resource man-
ager policy that can stabilize the system,

• Sufficient conditions: if satisfied, there certainly exist resource
manager policies that can stabilize the system.

Finally, in Section 5.3 we derive the conditions under which a certain
resource manager is guaranteed to keep the system stable.

5.1 Necessary Condition for Stability

Theorem 1:
A necessary condition for a system to be stable is:∑

j∈INi

cmax
j · ρmin

γ(j) ≤ 1, ∀i ∈ IR (5.1)
�

Proof We prove this by contradiction. We allow equation (5.1) not
to hold and we will show that this leads to an unstable system. If
equation (5.1) does not hold, there exists at least one resource Ni

that will have: ∑
j∈INi

cmax
j · ρmin

γ(τj)
− 1 = βi > 0
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For the worst-case evolution cj[k] = cmax
j , ∀j ∈ INi , ∀k we can rewrite

equation (4.12) as:

σmax
i[k+1] + ζmax

i[k+1] =

max
{

ζmax
i[k+1], σmax

i[k] + ζmax
i[k] − omax

i[k] + omax
i[k+1] + βi(t[k+1] − t[k])

}
It is easy to see from above that:

σmax
i[k+1] + ζmax

i[k+1] ≥ σmax
i[k] + ζmax

i[k] − omax
i[k] + omax

i[k+1] +βi(t[k+1] − t[k]), ∀k.

Since omax
i[k+1] is bounded

0 ≤ omax
i[k+1] ≤

∑
j∈INi

cmax
j , ∀k

we have that

lim
k→∞

σmax
i[k+1] + ζmax

i[k+1] = ∞

which implies that there exists at least one task τj′ , where j′ ∈
INi

⋃(⋃
j∈INi

π(j)
)

such that qj′[k]
k→∞−−−→ ∞. It then follows that

|�x[k]| k→∞−−−→ ∞ and the proof is complete. �

If theorem 1 holds, then the set Γ�, defined below, is not empty:

Γ� =
{
�ρ� ∈ P

∣∣∣ ∑
j∈INi

cmax
j · ρ�

γ(τj)
≤ 1,∀i ∈ IR

}
�= ∅ (5.2)

The Γ� set is important as it describes all other rate vectors (apart
from �ρmin) that can be used to satisfy Theorem 1. If the system
satisfies the sufficient conditions presented in the next section, using
any rate vector from Γ� guarantees that, under any execution time
variations, all resources can handle the amount of execution time
generated for them by the released jobs in the system.
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5.1.1 Example of an Unstable System

We shall now present an example showing that, while condition (5.1)
is necessary, it is not sufficient. The example presented here is a
variation of the classic Lu-Kumar network (see [Bra08] chapter 3)
from the domain of multi-class queueing networks.

Let us consider the system from Figure 4.5 for which we have
cmax
1 = cmax

3 = 1/5, cmax
2 = cmax

4 = 3/5 and the input rate is ρmin = 1.
All these numbers are given in appropriate time units. This system
obviously satisfies Theorem 1.

Let us assume that the schedulers on each resource are fixed pri-
ority based where τ4 and τ2 have the highest priority on their respec-
tive resources. Let us also assume that the resource manager always
chooses the minimum task chain release rate ρmin and the system
evolves such that execution times are always at their maximum. If at
time t = 0, q1 = 2N and all other queues are empty, then the evolu-
tion in time of the system is as shown in Table 5.1. At time t = 1/5 a
job of τ1 gets executed and moves to the queue of q2. From this point
on tasks τ1 on N1 and τ2 on N2 execute jobs in parallel. The jobs
executed from q2 are moved to q3, but because τ2 has priority over τ3,
N2 will execute jobs from q3 only after q2 becomes empty. Because
the execution time of jobs of τ1 is smaller than the execution time of
jobs of τ2, jobs from q1 move to q2 faster than from q2 to q3, thus N2

only begins executing jobs of τ3 when the initial jobs in the system
have been processed by τ1 and τ2. During the execution of these jobs,
new jobs arrive into the system and move from q1 to q2. Considering
the rate at which jobs arrive into the system (1 job every 1 time unit)
the queue of τ2 will finally become empty at time t = 3N + 4/5 time
units. At this time the queue of τ3 will now contain q3 = 5N +1 jobs.
One job from q3 gets executed until t = 3N +1 time units and moves
to q4. From this point on, τ3 and τ4 execute jobs in parallel until q3

empties (because jobs of τ3 have smaller execution times than jobs of
τ4). On N1, τ4 has priority over τ1 so, while q4 empties, jobs accumu-
late on q1. τ4 has to execute 5N + 1 jobs, so they will be finished in
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Table 5.1: Possible behavior of the system presented in Figure 4.5.

t 0 1
5 3N + 4

5 3N + 1 6N + 8
5

q1 2N 2N − 1 0 1 3N + 1
q2 0 1 0 0 0
q3 0 0 5N + 1 5N 0
q4 0 0 0 1 0

3/5 ∗ 5N + 3/5 time units. During this time 3N + 1 jobs accumulate
in q1. We can observe that at t = 6N + 8/5 the state of the system
is similar with the one at t = 0 in the sense that queues q2, q3 and q4

are empty but the size of q1 has increased from 2N to 3N + 1 jobs.
Since N has been chosen arbitrarily, we can see that the behavior of
the system is cyclic and the sizes of q1 increases progressively with
every cycle and, thus, the system is unstable, even though Theorem 1
is satisfied.

5.2 Sufficient Condition for Stability

In this section we augment the conditions derived above with suf-
ficient conditions that, if satisfied by a system, guarantee that the
state of the system reduces when rates from Γ� are applied by the
resource manager. The conditions that we will derive emerge from
the topology (the mapping of tasks chains to resources) and parame-
ters (execution time and rate intervals) of the system. They are not
conditions on the behavior of the resource manager.

In this section we will show that the system is stable when sub-
jected to an un-controlled but bounded input. Here we treat as inputs
both the input �u[k] (which is bounded to all possible values generated
by the rate vectors in Γ�) and the perturbation �w[k] (which is also
bounded: 0n � �w[k] � �wmax = [�wmax

i ]n where �wmax
i =

∑
j∈INi

cmax
j ).

By stability, we mean uniform boundedness (see Section 3.4) where
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the norm of the state decreases, in time, from its initial value |�x[0]|
down below some non-0 bound [Mic08].

Theorem 2:
For each matrix Al = [alkp]n×n from (4.17) we define the matrix
Bl = [blkp]n×n as:

blkp =

⎧⎨
⎩μ, if k = p

−alkp, otherwise
; where k, p ∈ {1, · · · , n}; 0 < μ < 1

For a system that satisfies Theorem 1 the system modeled in equa-
tion (4.17) can be stabilized using rates from the set Γ� if there exits
a point �p = [pi]n, pi > 0, pn+1 > 0, and some 0 < μ < 1 such that:(

Bl −bl

0, 0, · · · 0 μ

)(
�p

pn+1

)
� 0, ∀l ∈ {1, · · · , 2n} (5.3)

�

Proof We construct the proof in three steps:

1. We construct a norm | · |p for the system:

�x[k+1] = Al[k]
�x[k] (5.4)

such that:
|�x[k+1]|p ≤ |�x[k]|p, ∀k ∈ Z+ (5.5)

where the matrices Al[k]
are the same as in equation (4.17).

2. We show that using the above determined norm, the system

�x[k+1] = Al[k]

(
�x[k] + (�w[k+1] − �w[k]) + (�u[k] − 1n)(t[k+1] − t[k])

)
(5.6)

which evolves such that �x[k] � 0n, ∀k ∈ Z+ is GAS with respect
to �u and ISS with respect to �w.

3. We extend the above discussion to the model of our system
presented in equation (4.17)
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Step 1. We claim that the norm

|�x|p = max
i∈IR

{ |xi|
pi

}
, �p = [pi]n, pi > 0 (5.7)

that satisfies:
Bl�p � 0n, ∀l ∈ {1, 2, · · · , 2n} (5.8)

for some 0 < μ < 1 is a norm that satisfies condition (5.5). To prove
this, let us show that if there exits �p such that Bl�p � 0n for some l

than |Al�x|p ≤ |�x|p for any �x. Remembering that with S(Al) we denote
the set of non-starving resources when the system evolves according
with branch l, let us observe that:

Bl�p � 0n ⇒

⎧⎪⎨
⎪⎩

μpi −
∑

i′∈S(Al)
alii′pi′ ≥ 0, ∀i ∈ IR \ S(Al)

μpi′ ≥ 0, ∀i′ ∈ S(Al)

⇒
∑

i′∈S(Al)

alii′
pi′

pi
≤ μ < 1, ∀i ∈ IR \ S(Al)

We then have:

|Al�x|p = max

{
max

i∈IR\S(Al)

{∣∣∣ ∑
i′∈S(Al)

alii′xi′
∣∣∣

pi

}
, max
i′∈S(Al)

{ |xi′ |
pi′

}}

(5.9)

For all ∀i ∈ IR \ S(Al) we have the following inequality:∣∣ ∑
i′∈S(Al)

alii′xi′
∣∣

pi
≤

∑
i′∈S(Al)

alii′
pi′

pi

|xi′ |
pi′

≤ 1
μ

∑
i′∈S(Al)

alii′
pi′

pi

|xi′ |
pi′

≤

∑
i′∈S(Al)

alii′
pi′
pi

|xi′ |
pi′∑

i′∈S(Al)
alii′

pi′
pi

≤ max
i′∈S(Al)

{ |xi′ |
pi′

}
≤ |�x|p (5.10)
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and thus |Al�x|p ≤ |�x|p. If there exists a point �p such that condi-
tion (5.8) is satisfied, then norm (5.7) is a norm that satisfies condi-
tion (5.5) for system (5.4).
Step 2. We recursively expand equation (5.6) as:

�x[k+1] = Al[k]
Al[k−1]

· · ·Al[1]�x[0] + �US [k] + �ΩS [k]

where:

�US [k] =Al[k]
(�u[k] − 1n)(t[k+1] − t[k])+

Al[k]
Al[k−1]

(�u[k−1] − 1n)(t[k] − t[k−1])+

· · · + Al[k]
Al[k−1]

· · ·Al[1](�u[0] − 1n)(t[1] − t[0])

�ΩS [k] =Al[k]
(�w[k+1] − �w[k]) + Al[k]

Al[k−1]
(�w[k] − �w[k−1])+

· · · + Al[k]
Al[k−1]

· · ·Al[1](�w[1] − �w[0])

Let us observe that �ρ[k] ∈ Γ� implies that �u[k] � 1n (see equa-
tions (4.11) and 4.20) which implies that �US [k] � 0n. We then have:

|�x[k+1]| ≤ |Al[k]
Al[k−1]

· · ·Al[1]�x[0] + �US [k]|p + | �ΩS [k]|p

Since �x[k] � 0n, ∀k ∈ Z+ we have that:

Al[k]
Al[k−1]

· · ·Al[1]�x[0] � Al[k]
Al[k−1]

· · ·Al[1]�x[0] + �US [k] � − �ΩS [k]

and thus:

|�x[k+1]| ≤ max{| �ΩS [k]|p, |Al[k]
Al[k−1]

· · ·Al[1]�x[0]|p} + | �ΩS [k]|p

We want to show that the sequence
{
| �ΩS [k]|p

}
k

is bounded. We ob-
serve that:

�ΩS [k] =Al[k]
(�w[k+1] − �w[k]) + Al[k]

�ΩS [k−1]

=Al[k]
(�w[k+1] − �w[k]) + Al[k]

Al[k−1]
(�w[k] − �w[k−1])+

Al[k]
Al[k−1]

�ΩS [k−2]
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= · · ·

Let us analyze the behavior of the sequence in two extreme cases:

1. if the matrices Al[k]
are such that S(Al[k]

) ⊆ S(Al[k−1]
), ∀k ∈

Z+, then one can directly verify that Al[k]
Al[k−1]

· · ·Al[1] = Al[k]
.

Then we have:

�ΩS [k] = Al[k]
(�w[k+1] − �w[k] + �w[k] − �w[k−1] + · · · − �w[0])

= Al[k]
(�w[k+1] − �w[0])

and it follows that:

| �ΩS [k]|p ≤ |�wmax|p, ∀k ∈ Z+

2. if the matrices Al[k]
are such that S(Al[k]

)∩S(Al[k−1]
) = ∅, ∀k ∈

Z+, then one can verify – by successive application of norm (5.7)
to �x, Al[k]

�x, Al[k]
Al[k−1]

�x, . . . as in (5.9) and by repeating the
reasoning from inequality (5.10) – that |Al[k]

Al[k−1]
�x|p ≤ μ|�x|p,

|Al[k]
Al[k−1]

Al[k−2]
|p ≤ μ2|�x|p, . . . , ∀�x and then we have the fol-

lowing inequality:

| �ΩS [k]| ≤ |�wmax|p
k∑

k′=1

μk′−1 ≤ |�wmax|p
1 − μ

, ∀k ∈ Z+

In the general case, while a resource is non-starving, the component of
�ΩS [k] associated with it behaves as in the first case (we can observe this
from inequation (4.13) upon which our model is based). Meanwhile,
the components of �ΩS [k] associated with starving resources behave
as in the second case (we can observe that from inequality (5.10)).
Finally we have that:

| �ΩS [k]|p ≤ max
{
|�wmax|p,

|�wmax|p
1 − μ

}
=

|�wmax|p
1 − μ

, ∀k ∈ Z+

and thus the sequence
{
| �ΩS [k]|p

}
k

is bounded.
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Since | �ΩS [k]|p ≤ |
wmax|p
1−μ we have that the system captured by

equation (5.6) is GAS with respect to �w and ISS with respect to
�u, and thus stable.
Step 3. Our system model (4.17) may be rewritten in homogeneous
coordinates as:(

�x[k+1]

1

)
=

(
Al[k]

�bl[k]

0, · · · 0 1

)(
�x[k]

1

)
+

(
Al[k]

�bl[k]

0, · · · 0 1

)(
�w[k+1] − �w[k]

0

)
+

(
Al[k]

�bl[k]

0, · · · 0 1

)(
�u[k] − 1n

0

)
(t[k] − t[k−1]) (5.11)

One may verify – using the properties of Al and �bl from Section 4.3.1

– that

(
Al

�bl

0, 0, · · · 0 1

)
, l ∈ {0, 1, · · · 2n−1} are idempotent and, thus,

the above system represents the system (5.6) written in one dimension
higher. Therefore, our system model written in equation (4.17) can
be stabilized if condition (5.3) is satisfied. �

The criterion in the above theorem may seem to be complex to ap-
ply since it requires 2n matrix checks (see condition (5.3)). However,
all the resulting (n + 1)2n conditions are of the form:

μpi′ −
∑
i∈Si′

αi′ipi − βi′pn+1 ≥ 0, ∀Si′ ⊆ {1, 2, · · ·n} \ {i′},

∀i′ ∈ {1, 2, · · ·n}

By remembering that all coefficients are positive values, the above
conditions all are satisfied if the following n conditions are satisfied:

μpi′ −
n∑

i=1
i�=i′

αi′ipi − βi′pn+1 ≥ 0, ∀i′ ∈ 1, 2, · · ·n (5.12)

Thus the criterion in Theorem 2 simplifies to only checking the above
n conditions, where n is the number of resources in the system.
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5.2.1 Sufficient Condition for a System of Two Resources

We shall now exemplify how to apply the above conditions on the
example presented in Section 4.4, Figure 4.5. The matrices Bl are:

B0 =

⎛
⎜⎝μ 0 −β1

0 μ −β2

0 0 μ

⎞
⎟⎠ , B1 =

⎛
⎜⎝ μ 0 0
−α21 μ −β2

0 0 μ

⎞
⎟⎠ ,

B2 =

⎛
⎜⎝μ −α12 −β1

0 μ 0
0 0 μ

⎞
⎟⎠ , B3 =

⎛
⎜⎝μ 0 0

0 μ 0
0 0 μ

⎞
⎟⎠

Theorem 2 requires that there exists a coefficient 0 < μ < 1 and
a point [pi]3 � 03 such that the following 12 conditions are satisfied:

B1[pi]3 � 03 ⇒

⎧⎪⎪⎨
⎪⎪⎩

μp1 − β1p3 ≥ 0

μp2 − β2p3 ≥ 0

μp3 ≥ 0

B2[pi]3 � 03 ⇒

⎧⎪⎪⎨
⎪⎪⎩

μp1 ≥ 0

μp2 − α21p1 − β2p3 ≥ 0

μp3 ≥ 0

B3[pi]3 � 03 ⇒

⎧⎪⎪⎨
⎪⎪⎩

μp1 − α12p2 − β1p3 ≥ 0

μp2 ≥ 0

μp3 ≥ 0

B1[pi]3 � 03 ⇒

⎧⎪⎪⎨
⎪⎪⎩

μp1 ≥ 0

μp2 ≥ 0

μp3 ≥ 0

When applying the sufficient conditions for this example, in order to
determine [pi]3 � 03 we obtain the above system of 12 inequalities
that further simplifies into the following system of only two inequali-
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ties (according to (5.12)):⎧⎨
⎩μp2 − α21p1 − β2p3 ≥ 0

μp1 − α12p2 − β1p3 ≥ 0

This system has the solutions:

p1 ≥
β1 + α12β2

μ

μ − α12α21
μ

p3 and p2 ≥
β2 + α21β1

μ

μ − α12α21
μ

p3

if μ − α12α21

μ
> 0 and p3 > 0

Ultimately, the example system from Figure 4.5 is stable if:

α12α21 < μ2 < 1 (5.13)

The meaning of condition (5.13) is that when accumulation of exe-
cution times moves circularly through the system e.g. from N1 to
N2 and then back again to N1, the final accumulation on N1 is less
then the initial one. For the particular case presented on page 65, we
have α12 = max{3

5/1
5 , 3

5/3
5} = 3 and α21 = max{3

5/1
5 , 1

5/1
5} = 3. We

then have α12α21 = 9 > 1, thus the system is unstable, as previously
illustrated following Table 5.1.

5.3 Stability Analysis

In this section we derive a condition on the behavior of the resource
manager, that will render the whole adaptive real-time system, mod-
eled in Section 4.2, stable.
Theorem 3:
For any system that satisfies conditions (5.1) and (5.3) (Theorems 1

and 2) and for any Ω ≥ 2 |
wmax|p
1−μ , a sufficient condition for stability is

that its resource manager satisfies:

�ρ[k] ∈

⎧⎨
⎩Γ�, if |�x[k]|p ≥ Ω

P, otherwise
; ∀k ∈ Z+ (5.14)

�
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Proof We have shown in the above section that when choosing rate
vectors from Γ�, a norm of the state of the system reduces below
2 |
wmax|p

1−μ . Thus, while �x[k] ≥ Ω as the resource manager assigns rate
vectors �ρ ∈ Γ�, the state norm will reduce until it becomes lower than
Ω.

When the state of the system is such that |�x[k]|p < Ω the state
norm may increase, but the increase is limited to the number of jobs
that can enter the system in between two resource manager actua-
tions. Assuming the highest task graph rates (�ρmax) the norm of the
state may grow until it reaches the bound:

|�x[k]|p ≤ Ψ = Ω + max
i∈IR

{ ∑
j∈INi

cmax
j �ρmax

γ(j)h�

pi

}
(5.15)

at witch point the state norm reduces again. Thus the system con-
trolled by any resource manager that satisfies (5.14) is stable. �

The above theorem is not as straightforward to apply as it may ap-
pear because the resource manager does not actuate at every moment
in time t[k] (see Section 4.1), yet condition (5.14) must be satisfied for
all time moments. This has implications on how the resource man-
ager can choose task chain rate vectors when it must do so from the
set Γ�. When the resource manager actuates, the newly chosen rates
take effect during several time moments following the completion of
the resource manager routine. At these time moments, the rate vec-
tors contain a mixture of new task chain rates, for some chains, and
old task chain rates for the rest. The rate vector choice taken by
the resource manager must be so that these intermediate rate vectors
belong to Γ� as well.

To understand this, let us consider a system with two task chains
which evolves as in Figure 5.1. Let us consider the situation when
the resource manager runs at the time moments: t[k], t[k′], t[k′′], etc.
and starting with t[k] it must choose rates from Γ�. After finishing its
execution at t[k] + Δ, the new jobs of the task chains will be released
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t[k] t[k′] t[k′′]

[time]

[time]

Δ

C1

C2
t[k+1]

t[k+2]
t[k′′+2]

t[k′+1]
t[k′+2]

t[k′′+1]

Figure 5.1: Behavior of a system with two tasks chains.

at their new task rates at time moments t[k+1] for C2 and t[k+2] for C1.
Similarly will happen at t[k′], t[k′′], etc. and we observe that the rates
selected at t[k] (denoted �ρk ∈ Γ�) take effect in the interval of time
[t[k+2], t[k′+1]] and the rates selected at t[k′] (�ρk′ ∈ Γ�) take effect in the
interval of time [t[k′+2], t[k′′+1]] and so on. During, for example, the
interval of time [t[k′+1], t[k′+2]], the system finds itself in a situation
where the rate vector is �ρ[k′+1] = (ρ1(k′), ρ2(k))T of which we do not
know whether it belongs to Γ� or not.

Resource managers must be designed such that when choosing
rates from Γ� they do so such that they can guarantee that all intervals
of time [t[k′+1], t[k′+2]], [t[k′′+1], t[k′′+2]], etc. will have rate vectors from
Γ� as well. This can be achieved by requiring the resource manager to
satisfy condition (5.14) only at all time moments t[k′] when it actuates,
and by adding extra conditions which guarantee that condition (5.14)
is satisfied for the rest.

An example of such extra condition is:

�ρ[k′] � �ρ[k] if |�x[k]|p ≥ Ω and |�x[k′]|p ≥ Ω,

∀k, k′ ∈ Z+two successive resource manager actuations

which requires that, while the manager must choose rate vectors from
Γ�, it does so by choosing vectors with progressively smaller compo-
nents. Since all intermediate rate vectors (at the intermediate time
moments between t[k] and t[k′], containing combinations of the new
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and old rates) have smaller/equal rates than �ρ[k] ∈ Γ�, they are all
part of Γ� and, thus, condition (5.14) is satisfied for all time moments.

5.4 Geometric Interpretation

In this section we aim at presenting geometric interpretations of each
of the three theorems developed in this chapter.

5.4.1 Geometric Interpretation of the Set Γ�

We present the geometric interpretation of the set Γ� with help of the
system in Figure 5.2. This is a system featuring two task chains and
four resources. For this system the set of all possible rate vectors P
is a subset of R

2
+ and the set Γ� ⊂ P is bounded by the following

constraints:

�u1 = cmax
1 ρ1 + cmax

6 ρ2 ≤ 1 �u2 = cmax
2 ρ1 ≤ 1

�u3 = cmax
5 ρ2 ≤ 1 �u4 = cmax

3 ρ1 + cmax
4 ρ2 ≤ 1

The sets P and Γ� are illustrated in Figure 5.3 where the boundary
figured in black represents all rate vectors that, assuming worst-case
execution times, keep one or more resources Ni, i ∈ P at load �ui = 1,
and thus, keep the system at the limit of its schedulability. Any
other rate vectors from Γ� (the gray surface) will keep all resources
underloaded in the worst-case.

5.4.2 Geometric Interpretation of the Worst-Case Be-
havior of Adaptive Real-Time Systems

In this section we present the geometric interpretation that led us
to build the proof of Theorem 2. Let us start first by analyzing our
system’s model for the worst-case from equation (4.17). Our model
has the following features. It is:
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τ1 τ3

τ4τ6

N1 N4τ2

N2

τ5

N3

C1

C2

Figure 5.2: An example of a system with two task chains and four
resources.

ρ2

ρ1ρmin
1 ρmax

1

ρmin
2

ρmax
2

ρ1

u1 = 1 u2 = 1

u3 = 1

u4 = 1Γ


P

Figure 5.3: The sets P and Γ� for the given system.
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• linear – because the formula to determine �x[k+1] is a linear com-
bination of �x[k] (the current state), (�u[k] − 1n)(t[k+1] − t[k]) (the
external inputs), and (�w[k+1] − �w[k]) (the perturbations – also
inputs),

• non-autonomous – because its inputs are not 0,

• non-homogeneous – because of the extra �bl[k]
, and

• has random switching – because Al[k]
and �bl[k]

are changing with
time.

We present our geometric interpretation on a system having the
following simplifying assumptions, that help reduce its behavioral
complexity and allows us to understand its basic underlying behavior:

• �u[k] = 1n and �w[k+1] = �w[k] which makes our system autonomous,
and

• �bl[k]
= 0n, which makes our system homogeneous.

These simplifying assumptions do not greatly affect the behavior of
our system. We can expect that the perturbations are approxima-
tively 0n since �w[k], for all k, is bounded (0n � �w[k] � �wmax, ∀k). The
choice of inputs satisfies at the limit the necessary conditions (see
equation (4.20) and condition (5.1)), implying that the load on each
resource in the system is 1. Choosing any other inputs from Γ� al-
lows for smaller loads and, thus, allows for “more stable” behaviors.
Homogeneity does not affect the behavior of our system since any non-
homogeneous system can be transformed into a homogeneous one by
writing it in homogeneous coordinates, as done for step 3 in the proof
of Theorem 2.

With these simplifying assumptions, our system becomes:

�x[k+1] = Al[k]
�x[k] where Al[k]

∈ {A0, A1, · · · , A2n−1}
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and its solution is:

�x[k+1] = Al[k]
Al[k−1]

· · ·Al[0]�x[0]

The stability of the system depends on the stability of the discrete
linear inclusion Al[k]

Al[k−1]
· · ·Al[0] . Such discrete linear inclusions

are unstable in the case when at least one of the matrices Al, l ∈
{0, 1, · · · , 2n−1} has at least one eigenvalue larger than 1 (see [Dau92,
Dau01, Har02]) and they satisfy various stability properties when
all eigenvalues, of all matrices, are strictly smaller than 1. For the
systems that we model, however, all matrices are oblique projections
and, thus, have eigenvalues which are 0 or 1 making our systems live
in the borderline between stable and unstable. Nevertheless, a linear
switching system is stable if there exists a norm | · | on the state of the
system (see, for example [Gug05, Gug09, Liu13, Dai13, Tei12, Gru67])
such that:

|Al�x| ≤ |�x|, ∀l ∈ {0, 1, · · · , 2n − 1},∀�x ∈ X

We shall now explain the idea behind our norm | · |p for the case of
systems featuring 2 resources (of which the system from Figure 4.5 is
one example). The trajectory of the state of such a system is bounded
in the positive quadrant of a plane, whose origin point represents the
desired state of the system, with 0 accumulation of execution time
for both resources. Such a system has 22 = 4 branches between
which it can switch, each branch characterized by a matrix Al. As
said previously, all matrices are oblique projection matrices, which
project a point �x in space parallel with their kernel Ker(Al) onto
their image Im(Al) (see Figure 5.4). For the 2D case we have the
following 4 matrices together with the eigenvectors of their kernel
and image spaces:

A0 =

(
0 0
0 0

)
, Ker(A0) :

{(
1
0

)
,

(
0
1

)}
; Im(A0) :

{}
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02 x1

x2

Ker(A1)

Im(A1)

~x

A1~x

(a) image and kernel space of A1

02 x1

x2

Ker(A2)

Im(A2)

~xA2~x

(b) image and kernel space of A2

Figure 5.4: Geometric interpretation of the kernel and image spaces,
and the projection effect of matrices A1 and A2.

A1 =

(
1 0
α21 0

)
, Ker(A1) :

{(
0
1

)}
; Im(A1) :

{(
1
α21

)}

A2 =

(
0 α12

0 1

)
, Ker(A2) :

{(
1
0

)}
; Im(A2) :

{(
α12

1

)}

A3 =

(
1 0
0 1

)
, Ker(A3) :

{}
; Im(A3) :

{(
1
0

)
,

(
0
1

)}

Matrices A0 = 0n×n and A3 = In are not interesting as any in-
finite matrix product that includes 0n×n is 0n×n and any product
that includes In remains unchanged. Also, the idempotence property
of oblique projection matrices (A2

1 = A1 and A2
2 = A2) means that

for the case of systems with two resources, the only infinite matrix
products that are of concern are the following four:

~x[k] = A2A1A2A1 · · ·A1~x[0] = (α12α21)b
k
2
c
(

1 0
1
α12

0

)
~x[0]

~x[k] = A2A1A2A1 · · ·A2~x[0] = (α12α21)b
k
2
cA2~x[0]

~x[k] = A1A2A1A2 · · ·A1~x[0] = (α12α21)b
k
2
cA1~x[0]
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02 x1

x2

Ker(A1)

Im(A1)

Ker(A2)

Im(A2)

~x[0]

~x[1]

~x[2]

~x[3]

~x[4]

(a) stable system

02 x1

x2

Ker(A1) Im(A1)

Ker(A2)

Im(A2)

~x[0]

~x[1]
~x[2]

~x[4]

~x[0]

~x[2]

~x[3]

(b) unstable system

Figure 5.5: The evolution in time of two systems.

~x[k] = A1A2A1A2 · · ·A2~x[0] = (α12α21)b
k
2
c
(

0 1
α12

0 1

)
~x[0]

In all cases, the state reduces if α12α21 < 1, which is the result ob-
tained in condition (5.13).

In Figures 5.4a and 5.4b we present the kernel and image space, of
matrices A1 and A2 respectively, together with their projective effect
when applied to a certain state of the system. For both matrices,
we can observe that the projection is done parallel with their kernel
spaces, and that during projection one of the dimensions of the state
remains constant while the other decreases when the state lies in
the non-negative cone formed by the kernel and image space, and
increases when the state lies outside this cone.

In Figure 5.5 we present the evolution of two systems with two
resources. For the stable system (Figure 5.5a) we can observe that,
with the possible exception of the first projection (~x[0] → ~x[1]), the
state of the system moves closer and closer to the origin. For the
unstable system (Figure 5.5b), however, apart from the first projec-
tion, the state of the system moves farther and farther away from its
desired stable state (02). The geometric difference between the two
systems is that for the stable one, the image space of A1 is included
in the non-negative cone formed by the kernel and image space of
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A2 (Im(A1) ⊂ ∠(Ker(A2)02Im(A2)
)
), and vice-versa. For the un-

stable case, this condition does not hold. The significance of this
observation is the following: during the evolution of the system, the
state get projected, successively, from one image space to the next
and, as we have seen from Figure 5.4, states within the non-negative
cone reduce some of their dimensions when projected on the respec-
tive matrix. The states from outside the cone increase some of their
dimensions, thus, successive projecting leads to increase in state and
instability.

To express the idea that the non-negative cones formed by the ker-
nel and image spaces of all matrices must overlap, we say that there
must exist a point ~p in the state space, that belongs to all cones. Since
our state space is the positive quadrant of an n-dimensional space (n
being the number of resources in the system), the point ~p will have
all its coordinates (written in the standard basis of the space Rn) as
positive values. If this point belongs to the non-negative cone formed
by the kernel and image space of a matrix, then its coordinates, writ-
ten in the basis formed by the eigenvectors of the kernel and image
space of that matrix, should all be positive values. For our system of
2 resources, the basis associated with the 4 matrices and non-negative
cones are:

A0 :
{(

1
0

)
,

(
0
1

)}
A1 :

{(
1
α21

)
,

(
0
1

)}

A2 :
{(

1
0

)
,

(
α12

1

)}
A3 :

{(
1
0

)
,

(
0
1

)}

and the above condition, written for every basis of the 4 matrices
becomes:

A0 :

(
1 0
0 1

)−1

︸ ︷︷ ︸
B0

~p � 02, A1 :

(
1 0
α21 1

)−1

︸ ︷︷ ︸
B1

~p � 02
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02 x1

x2

Ker(A1)

Im(A1)

Ker(A2)

Im(A2)

~p

unit ball:
∣∣~x∣∣

p
= 1

Figure 5.6: The unit ball associated with norm | · |p.
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∣∣
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∣∣~x[3]

∣∣
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∣∣~x[4]
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Figure 5.7: The evolution of a stable system, together with the norms
of the figured states and their respective balls.
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02 x1

x2

Ker(A1)

Im(A1)

Ker(A2)

Im(A2)
~x[0]

~b0

~x′
[0]

Figure 5.8: The evolution of a non-homogeneous stable system.

A2 :

(
1 α12

0 1

)−1

︸ ︷︷ ︸
B2

~p � 02 A3 :

(
1 0
0 1

)−1

︸ ︷︷ ︸
B3

~p � 02

These conditions are, in fact, condition (5.3) if µ = 1. By choosing
µ < 1 we are effectively limiting the point ~p to strictly belong to the
interior of each cone, which is needed for the general system from
equation (4.17).

With the point ~p determined, we can build our norm | · |p whose
unit ball is illustrated in Figure 5.6. As we can observe, the unit ball is
a polytope whose edges are parallel with the axis of the standard sys-
tem of coordinates. Since the kernels of all of our matrices are spaces
generated by combinations of the eigenvectors of the standard ba-
sis (along some of these axis), projections on any image space (along
any kernel space) cannot increase the norm the state. Figure 5.7
shows how the norm of the state reduces with each successive projec-
tion.

Finally, let us discuss the effects of non-homogeneities, inputs and
perturbations upon the system. Non-homogeneities change the sta-
tionary point of the system from 0n to ~b0 = (β1, β2)T , as shown in
Figure 5.8 while the stable or unstable behavior remains unaffected.
What this figure illustrates is the worst-case behavior of the system,
as obtained after the approximation done via inequality (4.16). The
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02 x1

x2

Ker(A1)

Im(A1)

Ker(A2)

Im(A2)

~x[k]

(~u[k] − 1n)(t[k+1] − t[k])

(~w[k+1] − ~w[k])

Figure 5.9: The evolution of a non-autonomous stable system

real worst-case behavior of the system will lie in between 0n and ~b0 as
the coefficients β, obtained out of inequality (4.16) are only an upper
bound to the real behavior, which is variable.

In Figure 5.9 we present the effects of the perturbations and inputs
into the system. Perturbations will move the current state to a loca-
tion in its vicinity, before it gets projected onto one of the matrices.
This movement may lead to increases in the norm of the state, how-
ever, as shown in the proof of Theorem 2, these increases are bounded
and do not affect stability. The inputs of the system, if chosen from
the set Γ? such that ~u[k] ≺ 1n, will have the effect of bringing the
state closer to 0n, before projection, and thus, improve the rate at
which the system converges.

5.4.3 Geometric Interpretation of the Stability Condi-
tion

We present the meaning of the stability condition (Theorem 3) with
the help of Figure 5.10 where we illustrate a qualitative representation
of the bounds Ω and Ψ, together with the decisions taken by the
resource manager and the trajectory of the state. When the state of
the system approaches 0n the evolution becomes more unpredictable,
due to the large effect that perturbations have onto the system. The
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�x[0]

Ψ

Ω
0n

�x[k]

�ρ ∈ Γ�

�ρ ∈ P

�ρ ∈ Γ�

Figure 5.10: Qualitative illustration of the behavior of a stable system
and, the meaning of the Ω and Ψ bounds.

bound Ω has to be large enough to cover all these effects. Of course,
the system rarely exhibits its worst-case behavior, therefore, when the
state is sufficiently small (below Ω) the resource manager is free to
choose any rates (�ρ ∈ P) it deems necessary to achieve its goals. The
system’s state above Ω is, however, an indication that its behavior
nears worst-case behavior and strong action (�ρ ∈ Γ�) is need to keep
the system stable. Because the growth of accumulation of execution
time is finite for any finite intervals of time, even if the system starts
exhibiting worst-case behavior when its state is just below Ω, the
effect will still be a jump within Ψ.

At start time, the system state may be, theoretically, extremely
large and outside Ψ, however, a stable system (that satisfies our the-
orems) is ultimately bounded by the bound Ψ, meaning that the state
eventually becomes trapped in the ball of size Ψ around the state
0n. However, this bound is not reached uniformly meaning that it
might take an infinite amount of time before the state of the system
reduces below Ψ. For the adaptive distributed real-time systems that
we model in this work, this is not a problem, as computer systems
start with empty queues and, thus, �x[0] = 0n. However, for systems
that require uniformity, this can simply be obtained by restricting the
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choice of task chain rates when �x[k] ≥ Ω to any subset of Γ� that does
not allow for worst-case input load of 1 to any of the system’s re-
sources (any subset of Γ� that does not include the boundary marked
in black from Figure 5.3).



6
Discussion

In this chapter we further explain some implications of our results,
how to apply them, and their limitations. We show how our system

model can be extended in several different aspects and we end the
chapter by determining the link between our stability results and
more classical real-time results obtained via timing analysis.

6.1 Interpretation of the Results

In this work we have given a mathematical model (equation (4.5))
for the evolution in time of a system composed of a number of re-
sources and a number of task chains distributed across them. These
task chains release jobs at variable rates, decided by a resource man-
ager (equation (4.6)). Because we only consider minimal assump-
tions regarding the behavior of the schedulers (see Chapter 3) on
all resources, we model the evolution of the queues in an aggregated
fashion (we describe how the task queues of tasks running on each
resource evolve collectively).

87
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With the model that we have developed, our goal is to describe
its worst-case behavior and determine if the modeled system is sta-
ble in that case. Stability implies bounded task queues which means
bounded real-time properties such as worst-case response times for
tasks and end-to-end delays for task chains. In order to describe the
worst-case behavior of the system, we bring forth notations such as
the accumulation of execution times on each resource and we pro-
ceed to rewrite and build several upper-bound approximations of our
model (inequations (4.7), (4.12), and (4.13)) until we find a worst-case
behavior model that we can work with (inequation (4.17)).

With the worst-case behavior model we proceed to determine sta-
bility properties and we present three results: necessary conditions
for stability (Theorem 1), sufficient conditions for stability (Theo-
rem 2), and, finally, conditions on the resource manager controlling
the system (Theorem 3).

The necessary conditions observe the individual behavior of each
resource and determine if there exist rate vectors that can indepen-
dently keep the accumulation of execution times on each resource
bounded. The outcome is the set Γ� of all these rate vectors. These
conditions, however, are not sufficient because they do not take into
account the interaction between the resources (interaction determined
by the mapping of task chains to resources).

The sufficient conditions look at the interaction between the re-
sources and determine if choosing actuation rates from the set Γ�

indeed guarantees the non-increase of the state of the system.

The necessary and the sufficient conditions in Theorems 1 and 2
respectively, refer to the properties of the system (resources and tasks)
and indicate if it can be guaranteed that there exists any resource
manager that keeps the system stable. If those conditions are sat-
isfied, Theorem 3 formulates a condition which, if satisfied by the
resource manager, guarantees that the system will remain stable.

To determine if a particular real-time system can be controlled in
a stable way, we have to perform the checks from Theorems 1 and 2.



6.2. EXTENSIONS OF THE SYSTEM MODEL 89

All of these checks are performed off-line.
There are n necessary conditions to check (one for each resource in

the system) and each is linear in the number of tasks running on that
particular resource (see equation (5.1)). This makes the complexity
of checking the necessary conditions to be linear in the number of
tasks in the system, and thus easy to perform computationally.

The sufficient conditions require the determination of the coeffi-
cients p1, . . . , pn+1 and μ. The conditions are composed of n equa-
tions (see equation (5.12)) linear in pi, 1 ≤ i ≤ n, therefore, for some
fixed pn+1 and μ, they can be checked using a simplex algorithm. The
coefficient pn+1 may be chosen arbitrarily (1 would be a convenient
value) and the coefficient μ may be determined using a binary search
on top of the simplex algorithm.

Theorem 3 can be used in different ways:

1. To determine if an existing resource manager is stable. This is
done by determining if a certain threshold Ω, on the norm of
the state, exists.

2. To help build custom, ad-hoc resource managers which are sta-
ble. This is done by designing the resource manager around a
preselected threshold Ω.

3. To modify an existing resource manager to become stable.

We shall give several simple examples of resource managers in
Section 7.

6.2 Extensions of the System Model

Here we will extend the system model presented so far by describing
and addressing a number of its limitations. These limitations are:

1. The software applications in the system are composed of task
chains. We will here describe how our modeling and analysis
can be extended to more general task graphs.
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2. The resource manager’s actuation method is by changing task
chain (or task graph) rates. We will extend our model to in-
clude more general methods of actuation, such as changing the
resources’ speed or job dropping/admission.

3. The resource manager’s period is fixed. We will extend the
model to consider varying period.

4. There is a gap between the necessary and the sufficient con-
ditions a system must satisfy for stability. We shall present a
discussion of where this gap comes from and we shall describe
how to build algorithms that determine how to modify the sys-
tem’s parameters in order to determine stability for systems
which do not satisfy the sufficient conditions.

All the extensions that we will present in this section can be ap-
plied simultaneously.

6.2.1 Extensions to Task Graphs

We address here the limitation of our model being restricted to ap-
plications composed of task chains (Figure 6.1a: where every task in
the chain has at most one direct predecessor and one direct successor)
rather than the more general acyclic task graphs. We have presented
our theoretical results considering this model, for simplicity. How-
ever, what we have used, in fact, is only the knowledge that each task
has a single direct predecessor, useful to us in computing the quan-
tities ζmax

i (see equation (4.10)). Thus, all results trivially extend to
task trees (Figure 6.1b: each task has at most one direct predecessor
but may have many direct successors) as well. Let us observe that
in both cases, the task chain or task tree has only on task without
predecessors, which is the entry task for newly released jobs in the
system1. For any task in a task chain or task tree, there exists one
and only one path of previous tasks that links it to the entry task.

1In this thesis we sometimes say that a job, when being released into the system,

moves from task to task, from the beginning to the end of the task chain. In reality,
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(a) task chain (b) task tree

(c) task graph

Figure 6.1: Examples of software application structures.

Extending the model to general task graphs (Figure 6.1c: where
each task may have several predecessors, as well) is more complex.
In this case there exist several entry tasks to the task graph and
multiple paths from a given task τj in the graph to several of these
entry tasks. The total number of jobs accumulated on all these paths

jobs do not move from task to task. At release time, jobs of all tasks in the task

chain are released simultaneously, but they are not ready for execution until their

dependencies are satisfied. In a task chain, only one task would have its kth job

ready for execution. All the predecessor tasks in the chain have already executed

their kth job and all the successor task don’t yet have their corresponding kth job

ready for execution, therefore the impression that the kth job moves from task to

task.
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τj

Figure 6.2: The completion of the kth job of τj sends a signal to
all successors in the task graph to mark their kth job as ready for
execution.

is the same and it corresponds to the number of jobs released, but
not ready for execution of τj . Since jobs move faster on some paths
than on others, we need to introduce the concept of link queues. Once
the kth job of a task τj is executed (τjk), a signal is sent to all its
successor tasks so that the corresponding kth jobs on the successor
tasks can become ready for execution (see Figure 6.2). In the case of
task chains and task trees that signal automatically sets the kth jobs
of the successors as ready for execution, thus the jobs are marked in
the task queues of their respective tasks. This happens because tasks
have only one direct predecessor. In the case of general task graphs,
however, a task τj may have multiple direct predecessors and the kth
job has to be executed by each of these predecessors before it can
become ready for execution for τj . If the kth job has been executed
by one of the predecessors, the corresponding signal will wait in the
link queue between it and τj until all other predecessors execute their
kth job. Then τjk becomes ready to execute. In Figure 6.3 we show
an example where task τj has three predecessors: τj′ , τj′′ , and τj′′′ .
The link queues between τj′ and τj , and τj′′ and τj have some signals
inside them. No jobs can become ready for execution for τj because
the queue between τj′′′ and τj is empty. As soon as a job of task



6.2. EXTENSIONS OF THE SYSTEM MODEL 93

τj

τj′ τj′′ τj′′′

Figure 6.3: τj has three predecessors but the number of jobs that
become ready for execution depends on τj′′′ as the link queue between
it and τj is empty (this situation is valid as long as no other link queue
becomes empty).

τj′′′ finishes, the signal of its completion is sent via the link into the
link queue. At this moment the first element of each link queue is
popped and a new job of τj becomes ready for execution. Thus, at
each moment in time at least one of these link queues is empty.

Let us introduce the notation lq
j′

j to denote the link queue size
associated with the dependency link from task τj′ to task τj . Also,
due to the fact that in task graphs tasks can have multiple direct
predecessors we define the mapping:

• p′ : IΘ → P(IΘ), p′(j) pmm’ is the set of indexes of the direct
predecessors of τj . p′(j) = ∅ if τj does not have predecessors.

We shall now rewrite the basic model of the system (equations (4.2),
(4.3), and (4.4)) for the case of task graphs. The task queues for
tasks in task graphs evolve in the same way as for task chains (see
Section 4.2):
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∑
j∈INi

cj[k]qj[k+1] =

max
{

0,
∑

j∈INi

cj[k]qj[k] +
∑

j∈INi

cj[k]sj[k+1]−

(t[k+1] − t[k])
}

(6.1)

We now model the behavior of link queues. The jobs existing
in the link queue lq

j′
j[k+1] evolve depending on the number of jobs

executed by τj′ during [t[k], t[k+1]]: �qj′[k]� + sj′[k+1] − �qj′[k+1]�; the
number of jobs that become ready for execution for τj during the
same interval: si[k+1]; and the number of jobs already existing in lq

j′
j

at t[k]: lq
j′
j[k].

lq
j′
j[k+1] = lq

j′
j[k] + �qj′[k]� + sj′[k+1] − �qj′[k+1]� − sj[k+1] (6.2)

If a task has at least one predecessor, the number of jobs that
become ready for execution during [t[k], t[k+1]] is given by the smallest
number of jobs arriving on its incoming links. Otherwise, the number
of jobs ready for execution depends on the rate of the task graph and
is computed as for the task chain case:

sj[k+1] =

⎧⎨
⎩

min
j′∈p′(j)

{lq
j′
j[k]�qj′[k]� + sj′[k+1] − �qj′[k+1]�}, if p′(j) �= ∅⌈

ργ(j)[k] max{0, (t[k+1] − t[k]) − φγ(j)[k]}
⌉
, otherwise

(6.3)
The offsets of the system evolve in the same way as for task

chains (see Section 4.2):

φp[k+1] = φp[k]+
1

ρp[k]

⌈
ρp[k] max{0, (t[k+1]−t[k])−φp[k]}

⌉
−(t[k+1]−t[k])

(6.4)
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τj

(a) Possible paths for
task τj

(b) Critical paths in the
task graph.

(c) The series of task
trees.

Figure 6.4: A task graph example and its behavior as a series of task
trees.

The system model, in the case of applications formed of task
graphs, is more complex than for systems with task chains as we
have to model the link queues as well.

For the following discussion we define as path switch (PS) inter-
val the time interval delimited by two events in which a link queue
becomes empty. The system model can be reduced to that for task
trees by observing that, for any given PS interval of time, for each
task there exists (at least) one path from the task to an entry, such
that along that path all link queues are empty. We call this path the
critical path corresponding to the tasks2. The number of jobs that
become ready for execution depends on the behavior of the tasks on
the critical path. As long as the critical paths (for all tasks in the
task graph) remain unchanged, we can model our task graph as a set
of task trees, by removing the non-critical links (the links with non-
empty link queues). In Figure 6.4 we show an example task graph
where we can observe that for task τj we have multiple paths from τj
to the entries (Figure 6.4a). For a given PS interval of time only one

2If there are several paths, for a given task, along which the queue links are

empty, then the critical path can be chosen as being any of them, since they all

behave in the same way.
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of these paths is the critical path. In Figure 6.4b we show, during one
PS interval, the critical paths for all tasks with multiple predecessors.
This task graph, then behaves as if it was the series of task trees from
Figure 6.4c. In this task graph example we have two tasks with 2
predecessors each, and one task with 3 predecessors. For any interval
of time, therefore, the task graph will behave as one of 2 · 2 · 3 = 12
different sets of task trees. Expanding our view to all task graphs in
the system and considering the systems formed of all combinations
of all sets of task trees possible, we can say that, at any moment
of time, our system behaves as one of these systems of task trees.
As time evolves, it switches between these systems in an unknown
way. The number of systems of task trees depends on the number of
predecessors that each task in the system has and is:

no of systems =
∏

j∈IΘ

p′(j) �=∅

size(p′(j)),

where size(S) is the cardinality of a set S. For each system of task
trees, we can build the coefficients α and β and the set of matrices A

and vectors �b. The worst-case behavior model of our system of task
graphs becomes a linear switching system, where sets the matrices
A and of vectors �b are the union of the corresponding sets of all the
systems of task trees.

The analysis results for systems of task graphs remains the same
as for task trees and task chains. But the complexity related to the
satisfaction of Theorem 2 increases, as the number of matrices A

and vectors �b increases exponentially. Satisfying Theorem 2 implies
satisfying equations (5.12), for a given μ and [pi]n+1, for all systems
of task trees generated from the original system of task graphs. All
these systems of task trees have different values for the coefficients α

and β.
Looking at equations (5.12) we can observe that if they are satis-

fied for the system with the maximal values of the coefficients α and
β, they are implicitly satisfied for all other systems as well. The max-
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N1 N2 N3

α21

α23

α12

α32

N1 N2 N3

α21 = 0

α23

α12

α32

N1 N2 N3

α21

α23 = 0

α12

α32α13

α31

α13

α31 = 0

α13 = 0

α31

task tree set (a) task tree set (b)Application

System

α coefficients

α12 α21

α23

Figure 6.5: An example system containing a task graph, which be-
haves as one of two possible systems of task trees. None of the two
systems have all α coefficients at their maximal value.

imal values of α and β can be obtained by simply not removing any
of the links in the system (see equations (4.14) and (4.15)). Solving
the system of equations (5.12) for the coefficients α and β computed
without removing any of the links from the task graphs can tell us
whether the system can be stabilized.

This condition is, however, pessimistic since it might happen that
not all coefficients can have the maximal value at the same time. This
is exemplified in Figure 6.5 where the system can behave like on of
two possible systems of task trees: (a) and (b). This is because the
system system has 6 tasks, one of the tasks has 2 dependencies, the
rest having one or no dependency. All maximal values of the coeffi-
cients α, as calculated for the original system, are non-zero because
the accumulation of execution times of all three resources are linked
among themselves due to the data dependencies in the task graph.
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However, we can observe that in the system (a), there is no link from
resource N1 to the other resources, thus the coefficient α21 and α31,
in this system, are null. On the other hand, in the system (b) there
is no link from resource N3 to the other two resources and, thus, the
coefficients α23 and α13, in this system, are null. Thus, while the sys-
tem of task graphs has all coefficients non-zero, during its functioning
it always behaves as if some of the coefficients are zero and, therefore,
determining stability assuming all coefficients non-zero is pessimistic.

6.2.2 Extensions of the Resource Manager’s Actuation
Method

Let us now move on to the second type of limitations. In this paper
we have used task chain rate changes as the method for adaptation
of the system to various loads. This is useful e.g. for systems where
the task chains represent controllers for external plants which may
run with different control rates and higher rates improve the control
quality. We shall discuss here extending the model for two other types
of adaptations:

• adaptations by changing the resources’ speed (using e.g. dy-
namic voltage and frequency scaling techniques) useful in low
power systems and

• adaptations by job dropping/admission (useful e.g. in web and
multimedia applications [Abd03]).

When dealing with adaptations by changing the resources’ speed,
let us assume constant task chain rates ρp, p ∈ IA. We consider the
worst-case execution times of tasks computed at the slowest speed
of each resource and we will model the act of increasing the speed
of a resource as an increase in the load it can hold (as opposed to a
decrease in the execution times of tasks running on that resource),
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e.g. doubling the speed of Ni means that Ni will handle a load of:∑
j∈INi

cj[k]ργ(j)[k] ≤ 2

We then have, for each resource, a set of loads Li associated with the
speeds it can run at and the system model from (4.17) becomes:

�x[k+1] ≤ Al[k]
(�x[k] +(�w[k+1]− �w[k])+(�u[k]− [Li[k]]n)(t[k+1]− t[k]))+�bl[k]

(6.5)
The vector [Li[k]]n is the input of this system, while �u[k] becomes a
constant. In this setting, the necessary conditions (Theorem 1) de-
scribe the set of vectors [Li[k]]n (the set of resource speeds) that can
handle the worst-case load in the system (Γspeed

� ). The sufficient con-
ditions (Theorem 2) and the conditions on the resource manager (The-
orem 3) retain their meaning and their proofs after the obvious mod-
ifications due to the different method of actuation. In the proof of
the sufficient conditions, use the fact that �u[k] − [Li[k]]n ≤ 0n when
choosing [Li[k]]n from Γspeed

� instead of �u[k] ≤ 1n when choosing rates
from Γ�.

When dealing with job dropping/admission we consider again con-
stant rates. The inputs in the system are the number of jobs dropped
from each task3 and represent the amount of load that is dropped
from each resource di[k]. The necessary conditions then become

∑
j∈INi

cmax
j ρν(j) − 1 ≤ di

and describe all combinations of dropped jobs that must occur in order
to keep the system stable, in the worst-case scenario. In between two
moments in time, t[k] and t[k+1], the quantity di(t[k+1]− t[k]) describes
the accumulation of execution times that must be dropped on resource
Ni. Of course, this dropped accumulation may come as jobs of only

3when a job of a task τj is dropped, also the corresponding jobs from all the

tasks that succeed τj in the task graph, are dropped.
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one task and the system must allow for that. With our new inputs di

the worst-case behavior of the system becomes:

�x[k+1] ≤ Al[k]
(�x[k]+(�w[k+1]−�w[k])+(�u[k]−[di[k]]n−1n)(t[k+1]−t[k]))+�bl[k]

(6.6)
As before, the sufficient conditions and the conditions on the resource
manager retain their meanings and proofs.

Indeed, all three actuation methods, that we have described so far,
could be used simultaneously, without affecting the basic structure of
the model and of the results.

6.2.3 Lifting the Restriction Regarding the Resource
Manager’s Period

In this thesis we have described and developed a theory for adaptive
systems where the resource manager has a fixed actuation period
h. We have done so for convenience, in order to reduce the number
of definitions of parameters. For modeling and analysis purposes,
however, we have not used this period at all, as we have described
the evolution of our system at certain time instances which are not
equally spaced and which are not linked with the resource manager
period at all. We, therefore, can extend our model to include systems
with resource managers that have a time varying actuation period.

From our assumptions, the actuation period must be larger than
the time needed for the resource manager algorithm to finish h[k] ≥ Δ,
∀k. Also, actuation needs to happen in order to control the state of the
system, therefore h[k] ≤ hmax < ∞, ∀k. For our system, therefore, any
bounded variation in actuation period is allowable without modifying
the underlying modeling and stability analysis presented so far. A
minor modification appears in equation (5.15) though, where we must
use hmax instead of h. In the following chapter we will give examples
of how to compute several bounds on the response times of tasks in
the system where we will make use of the period of the controller.
Those bounds also need the same modification as above for the case
of varying resource manager period.
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6.2.4 Bridging the Gap between the Necessary and the
Sufficient Conditions

In this section we address the limitations of the sufficient conditions.
The sufficient conditions for stability (Theorem 2) determined in Sec-
tion 5.2 test if a given system can be kept stable when applying task
rate vectors from the set Γ�, determined in Section 5.1. If these con-
ditions fail, the system may still be stable when rate vectors from
only a subset of Γ� are applied.

We shall introduce this idea with the help of two examples sys-
tems. Both examples have the topology of the system in Figure 4.5,
both have the same minimum and maximum rate for their task chain,
and the worst-case execution times for their tasks, and their sets Γ�

are given in Table 6.1.
For their given Γ� (Γ1

� for Example 1 and Γ2
� for Example 2), both

example satisfy condition (5.1) in Theorem 1. Because the worst-case
execution times of Example 1 are larger or equal with the correspond-
ing ones of Example 2, we have that Γ1

� ⊂ Γ2
�.

Regarding the sufficient conditions, the system in Example 1 has:

α1
12 = max

{4.95
4.95

,
4.95
4.95

}
= 1 α2

21 = max
{4.95

5
,
4.95
5

}
= 0.99

thus α1
12α

1
21 < 1, satisfying condition (5.13). The system in Exam-

ple 2, however, has:

α2
12 = max

{4.95
2

,
4.95
4.95

}
= 2.475 α2

21 = max
{4.95

2
,
2
2

}
= 2.475

and it does not satisfy the sufficient conditions (5.13). It follows that
the Example 1 presents a system that can be stabilized when selecting
rates from Γ1

�, while Example 2 shows a system where selecting rates
from Γ2

� does not guarantee stability.
For the two example systems, as observed above, the worst-case

execution times in Example 2 are smaller than the corresponding
worst-case execution times in Example 1. Since Example 1 can be
stabilized – even during its worst-case behavior, when the execution
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Table 6.1: The parameters of the systems in Examples 1 and 2.

Example cmax
1 cmax

2 cmax
3 cmax

4 Γ�

1 5 4.95 4.95 4.95 Γ1
� = [ρmin, 1/9.95] �= ∅

2 2 4.95 2 4.95 Γ2
� = [ρmin, 1/6.95] �= ∅

times are maximal – using rates from Γ1
�, it can also be stabilized using

rates from the same set for better behaviors and, in particular, for the
case when the execution times of jobs mimic the worst-case execution
times from Example 2. This clearly suggests that, while Example 2
cannot be stabilized when selecting rates from Γ2

�, it nevertheless can
be stabilized when selecting rates from Γ1

� ⊂ Γ2
�.

In these examples, we assumed that ρmin is a small enough value
such that both sets, Γ1

� and Γ2
�, are not empty. If we were to set

ρmin > 1/9.95 we would find that there is no rate set that can stabilize
the system in Example 2.

Returning to a general discussion, the question remains how to
find a subset of Γ� (of a given system) that keeps the system sta-
ble (if such a subset exists). Our sufficient conditions are related to
the coefficients of the matrices Bl which are, as shown in Section 4.3.3,
just ratios between the worst case execution times of various tasks in
the system. We can alter the above coefficients by artificially con-
sidering in the analysis larger worst-case execution times for some of
the tasks in the system. As long as the necessary conditions are still
satisfied we obtain a new set Γ′

� ⊂ Γ�. If the system with the altered
coefficients satisfies the sufficient conditions, than the system is stable
if Γ′

� is used instead of Γ�.

It is beyond the scope of this thesis to provide specific algorithms
to manipulate systems in this way, in order to determine if a system
is stable still can be kept stable, even if, for the initial Γ�, Theorem 2
is not satisfied.
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6.3 Link with Timing Analysis

As mentioned previously, an upper bound on the norm of the state
of the system determines upper bounds on the queue sizes of each
task and maximum queue sizes determine worst-case response times
of each task. We can, thus, see our work as a form of timing analysis
for adaptive distributed real-time systems.

To determine upper bounds on the worst-case response times for
the tasks in our system one may proceed as follows: it is common
for computer systems to start with task queues of size 0, thus mak-
ing the ultimate bound Ψ (equation (5.15)) a bound on the largest
norm of the state of the system. Remembering the definition of our
norm (equation (5.7)) and the definitions of the state and accumula-
tion of execution time (Section 4.2), we may bound each task queue
size in the system to qj ≤

⌈
Ψpν(j)

cmax
j

⌉
, ∀j ∈ IΘ, and assuming that all

the jobs in the queue were released at their slowest rate, we see that
the worst-case response time of task τj is

wcrt(τj) =
1

ρmin
γ(j)

⌈
Ψ

pν(j)

cmax
j

⌉
+ max

j′∈π(j)
{wcrt(τj′)}

In the above formula we use the knowledge that once the state of
the system reaches its maximum |�x[k]|p, jobs must exit the system at
the rate at which new jobs enter it, because the state may not grow
anymore. Considering that the largest state is simply formed of jobs
sitting in the queue of task τj , the slowest rate at which jobs – that
will eventually reach τj – are released into the system and the size of
the queue, give us the largest time that a job can take to clear the
queue and move on. Knowing the worst-case response time of the
previous task in the task chain, allows us to determine the worst-case
response time of task τj , for any j ∈ IΘ. The analysis produced here
is very general and, thus, potentially pessimistic. In Section 7.2.3 we
present a different approach, for the particular case of uniprocessor
systems and EDF scheduling.
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7
Applications

In this chapter we will show how to apply our stability criterion for
several resource managers. In section 7.1 we discuss several exam-

ples of distributed systems, employing simple resource managers, and
we show how to apply the three theorems described in this work. In
section 7.2 we focus on uniprocessor systems and we discuss the stabil-
ity of resource managers, performance aspects of different managers
and how to compute real-time metrics such as worst-case response
times for adaptive stable systems.

The framework for stability that we have presented so far is quite
simple to apply. The steps needed to prove stability of an adaptive
distributed real-time system are the following:

1. Start by having knowledge of th worst-case execution times of
all tasks (cmax

j , ∀j ∈ IΘ).

2. Verify conditions (5.1) (Theorem 1), and build the set Γ� (equa-
tion (5.2)).

3. Compute the coefficients α and β (equations (4.14) and (4.15)).

105
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4. Solve the system of equations (5.12) (Theorem 2) and determine
the coefficient μ and vector [p]n, if they exist.

5. If [p]n does not exist, try the ideas presented in Section 6.2.4,
otherwise, move to the next step.

6. Verify condition (5.14) (Theorem 3) by doing the following:

(a) Determine if the resource manager can select rate vec-
tors (or, for the general case, input vectors) from Γ�.

(b) Compute Ω by determining the largest state of the system,
before the resource manager will select inputs from Γ�.

As we can see from the above 6 steps, determining stability mainly
requires the verification of some simple linear constraints. We do not
need to build exponentially many Al and �bl matrices and vectors,
and we do not need to understand the theories behind stability of
switching systems.

7.1 Stability of Distributed Systems

In this section we present several example systems in order to further
illustrate the meaning of our theorems and how to apply them in prac-
tice. We shall present simulation results for 7 example systems, all of
which have the topology of the example presented in Section 4.4 (see
Figure 7.1, which is identical to Figure 4.5) but with different sys-
tem parameters (execution times, and rates) and different resource
managers.

The first 4 examples employ a resource manager which always
keeps the rates at their minimum. This allows us to explore different
behaviors associated with satisfying or not satisfying the necessary
and the sufficient conditions for stability. For these examples, at sim-
ulation, we only consider their worst case behavior (when all jobs
execute with their worst-case execution times) and we plot the evo-
lution in time of the task queue sizes.
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τ1 τ2

τ3τ4

N1 N2

Figure 7.1: Example of a system with two resources and one task
chain.

The last 3 examples present the case of a systems which satisfies
both Theorems 1 and 2, running with different resource managers.
We analyze for stability the resource managers in these examples and
we plot the evolution in time of the queue sizes of each task and the
utilization on the resources.

The parameters of interest for the first 4 examples (the worst-case
execution times of tasks and the minimum rate of the task chain) are
presented in Table 7.1.

Example 1 presents a system that cannot be stabilized because it
does not satisfy the necessary conditions. We can observe that by
performing the tests in Theorem 1: ρmin(cmax

1 + cmax
4 ) = 1.2 > 1 for

N1 and ρmin(cmax
2 + cmax

3 ) = 1.2 > 1. The behavior of this system is
depicted in Figure 7.2a where we observe the unbounded growth of
q1, thus showing that the system is unstable.

Example 2 presents a system which satisfies the necessary con-
ditions from Theorem 1 but not the sufficient ones in Theorem 2.
This is the example presented on page 65. Here we can see that
α21 = max{ cmax

2
cmax
1

,
cmax
3

cmax
1

} = 3 and α21 = max{ cmax
4

cmax
2

,
cmax
4

cmax
3

} = 3 so that
α12α21 = 9 > 1, thus not satisfying the sufficient conditions from
Theorem 2. The behavior of this system is presented in Figure 7.2b
and we can observe the queue sizes increasing and decreasing in an
oscillatory fashion. However, each successive increase is larger than
the previous one, thus showing that the system spirals out of control.



108 CHAPTER 7. APPLICATIONS

Table 7.1: The parameters of the systems in Examples 1 to 4

Example cmax
1 cmax

2 cmax
3 cmax

4 ρmin

1 6 6 6 6 1/10
2 2 6 2 6 1/10
3 5 4 4 3 1/10
4 2 4.95 2 4.95 1/10

Example 3 presents a system that satisfies both the necessary and
the sufficient conditions. This system can be stabilized by, for in-
stance, always choosing the minimum rate. Its evolution is presented
in Figure 7.2c and we can observe that the queue sizes are bounded
for all queues in the system.

Example 4 presents a more interesting system, which shows an
oscillatory but stable behavior, although while satisfying Theorem 1,
it does not satisfy Theorem 2. This shows the sufficient, but not
necessary nature of Theorem 2.

For the next three examples we present several simple resource
managers and we show how to analyze them. All these resource man-
agers control a system as the one in Figure 7.1 with the following pa-
rameters: c1 ∈ [0.5, 5], c2 ∈ [0.4, 4], c3 ∈ [0.4, 4], c4 ∈ [0.3, 3], and ρ ∈
[0.1, 1]. The resource managers actuate with a period h = 100 time
units. This system satisfies Theorem 1, with Γ� = {ρ|ρ ∈ [0.1, 0.125]},
and Theorem 2, with μ = 0.882 and (p1, p2, p3)T = (100, 100, 1).
Thus, it is possible to design resource managers that keep this system
stable. In these examples we assume that high utilization on resources
and low values for the queue sizes of the system are a desirable feature
for our system. We shall first present the system in a setting where
the task chain rates remain constant at a reference value ρref and
then we shall improve its performance by presenting the same system
but featuring the two resource managers presented in Algorithms 1
and 2.

The resource manger presented in Algorithm 1 is a simple pro-
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(a) Example 1.
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(b) Example 2.
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(c) Example 3.
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(d) Example 4.

Figure 7.2: Evolution of queue sizes for the systems in Examples 1
to 4.
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Algorithm 1 Utilization Proportional Resource Manager
1: function P controller
2: /* measure Ui[k],∀i ∈ IR */
3: err[k] ← Uref − maxi{Ui[k]}
4: �ρ[k] ← �ρref + Kperr[k]1n

5: return �ρ[k]

6: end function

Algorithm 2 Utilization Proportional Resource Manager with
Guarding
1: function Guarded P controller
2: /* measure Ui[k],∀i ∈ IR */
3: /* measure |�x[k]|p */
4: if |�x[k]|p < Ω then
5: return P Controller() /* see Algorithm 1 */
6: else
7: return �ρmin

8: end if
9: end function

portional controller that reacts to the maximum utilization on the
resources. This resource manager chooses rates that deviate from
ρref depending on the error measured between the maximum utiliza-
tion and U ref . The resource manager presented in Algorithm 2 is a
straight forward modification of Algorithm 1 by monitoring the norm
of the state of the system and allowing the system to behave as in
Algorithm 1 when the norm is below a bound, while selecting ρmin

otherwise.

Let us assume that the most desirable task chain rate in the system
is ρref = 0.21. Figure 7.3a presents the behavior of the system (queue
sizes and processor utilization) when execution times of jobs vary
randomly in their intervals and the rate of the task chain it fixed at
ρref . Since ρref /∈ Γ�, however, the system is unstable in the worst-
case as we can see in Figure 7.3b. For the worst-case simulation we
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(a) Average-case behavior.
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(b) Worst-case behavior.

Figure 7.3: Behavior of the system when ρ[k] = ρref .
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considered that execution times are constantly maximal.
Example 5 considers a system which employs the resource manager

presented in Algorithm 1 where the proportional coefficient is Kp =
0.2. Figure 7.4 presents the system’s behavior. In the average-case,
the behavior of the system is slightly better than when choosing a
fixed rate at ρref (queue sizes are slightly smaller while keeping the
same utilization in the system). However, this system surprises us
by being unstable in the worst-case. This happens because of the
limitations of the resource utilization as a good measure of the state
of the system. Since utilization saturates at 1, the measured error
saturates at U ref − 1 = −0.1. The smallest rate this controller can
choose is ρref − 0.2 ∗ (−0.1) = 0.19 /∈ Γ� thus it doesn’t satisfy our
stability conditions from Theorem 3.

Example 6 attempts to correct the above behavior by choosing a
better Kp coefficient. Since we need that ρref + Kp ∗ (−0.1) ≤ 0.125
we obtain that Kp ≥ 0.85. For this example we choose Kp = 0.9
and we present its behavior in Figures 7.5. From Figure 7.5b we can
observe that the system remains stable in the worst-case. However,
from Figure 7.5a we observe that the average-case performance of
the system drops (queue sizes reach larger values than before). This
happens because a large Kp coefficient implies too strong reactions to
measured error in the system.

Example 7 presents a way to meet both requirements for average-
case performance and worst-case stability, by employing the resource
manager from Algorithm 2. For this system we select Kp = 0.2
as in Example 5, and we design the manager to stabilize with Ω =
2 |omax|p

1−μ = 1.35 (omax = (8, 8, 0)T for this system). The average-case
and worst-case behaviors of this system are presented in Figures 7.6a
and 7.6b respectively, and we can observe the desired behavior that
we were after.
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(b) Worst-case behavior.

Figure 7.4: Behavior of the system from Example 5.
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(b) Worst-case behavior.

Figure 7.5: Behavior of the system from Example 6.
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(b) Worst-case behavior.

Figure 7.6: Behavior of the system from Example 7.
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7.2 Stability of Uniprocessor Systems

In this section we will show how to apply our stability criterion for
several resource managers. First we develop two simple ad-hoc re-
source managers and we show how they trivially satisfy our stability
criterion and then we show how our stability criterion can be applied
to three resource managers (QRAM [Raj97], corner-case [Raf10], and
QoS derivative [Raf10]). All these resource managers were built for
uniprocessor systems that run independent tasks (task chains formed
of one single task). In this particular context the necessary conditions
become sufficient as well, thus, we only need to satisfy Theorems 1
and 3.

7.2.1 Stability of Ad-Hoc Resource Managers

Let us assume that we have a system working as described in Sec-
tion 3.2 for which the designer has knowledge about the expected
execution times (noted ce

j , j ∈ IΘ) of each task in the system. This
system produces its desired runtime performance when tasks are run-
ning at certain known rates, noted �ρe, and these rates do not lead
to increasing task queues, if execution times for jobs of tasks are the
expected ones. Furthermore, worst-case execution times for all tasks
are known, and there exists a set of rates �ρmin which satisfies Theo-
rem 1. For this system, one may imagine a resource manager which
measures task queue sizes at certain moments in time and computes
the norm. If the norm is larger than a predefined bound, the task
chain rates are switched to �ρmin, otherwise, they are kept to �ρe. We
can trivially show that this resource manager leads to a stable system
according to Theorem 3. The algorithm for this resource manager
is given in Algorithm 3. The qualitative transfer function for this
resource manager is given in Figure 7.7a.

For the above described resource manager, it might happen, in
practice, that its norm always remains around the bound, and there
is a lot of switching between the two sets of task rates. To mitigate
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Figure 7.7: Qualitative transfer functions (�ρ[k+1] = f(�x[k])) of the
resource managers presented in Algorithms 3 and 4.

Algorithm 3 Switching Resource Manager
1: function Switching Controller
2: /* measure qj[k],∀j ∈ IΘ */
3: /* compute |�x[k]|p */
4: if |�x[k]|p ≥ UD

t then
5: return �ρmin

6: else
7: return �ρe

8: end if
9: end function

Algorithm 4 Switching Resource Manager with Hysteresis
1: function Hysteresis Switching Controller
2: /* measure qj[k],∀j ∈ IΘ */
3: /* compute |�x[k]|p */
4: if |�x[k]|p ≥ UD

t1 and �ρ[k−1] = �ρe then
5: �ρ[k] ← �ρmin

6: else
7: if |�x[k]|p ≤ UD

t2 and �ρ[k−1] = �ρmin then
8: �ρ[k] ← �ρe

9: else
10: /* do nothing */
11: end if
12: end if
13: return �ρ[k]

14: end function
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this problem the algorithm can be modified as in Algorithm 4 where
UD

t2 < UD
t1 . The qualitative transfer function of this resource manager

is given in Figure 7.7b and we can observe that it exhibits hysteresis.
This is an even harder problem to analyze using established methods.
However, it is still trivial to check, using our stability criterion, that
this resource manager leads to a stable system according to Theo-
rem 3.

7.2.2 Stability of the QRAM, corner-case, and QoS
derivative Resource Managers

In this section, we take three resource management policies and de-
termine if they lead to stable real-time systems. We describe the
QRAM, the corner-case, and QoS derivative algorithms which have
similarities in their functioning. They all:

• predict the expected future average execution times for jobs of
tasks: ce

j[k], j ∈ IΘ,

• select task rates ρ[k] such that the expected resource demand:

U e
[k] =

∑
j∈IΘ

ce
j[k]

qj[k] + �ρj[k] max{0, h − φj[k]}�
h

(7.1)

equals the resource capacity: U e
[k] = 1,

• use quality-of-service (QoS) functions of the form: qualj : Pj →
R+ which map the chosen rate to a quality value (qualj(ρj)),
and

• choose rates such that the total quality value
∑

j∈IΘ

qualj(ρj) is

maximized.

The QRAM algorithm [Raj97] assumes concave, piecewise linear
QoS curves and works by first selecting minimum rates for all tasks.
As long as the expected resource demand falls below 1, it proceeds on
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choosing the task with the steepest quality to resource demand value
and increases its rate until U e

[k] = 1 or until it reaches a vertex where
the slope of the curve changes. It then repeats the process with the
next steepest slope.

The QoS derivative algorithm [Raf10] has the same assumptions
and goal as the QRAM algorithm, however, it obtains lower com-
plexity by assuming continuous concave QoS curves instead, and
performs an optimization method similar to the steepest gradient
method [Noc06].

The corner-case algorithms [Raf10] assumes continuous convex
quality curves. It starts by computing the expected resource demand
assuming minimal rates. It, then, determines what is the maximum
rate from each task, that it can use in order to increase U e to 1. It
chooses to change the rate of the task that provides the biggest utility.
If that is the maximum rate and the resource demand is still less than
the capacity (U e < 1) then the process is repeated for the remaining
tasks in the system.

To prove that resource managers implementing the QRAM and
corner-case algorithms satisfy the condition in Theorem 3 we simply
observe that both algorithms start by choosing �ρmin first, and than
increase the rates while U e < 1. Since �ce

[k] ≥ �cmin, these algorithms
will always choose �ρmin ∈ Γ� if:

1
h

∑
j∈IΘ

cmin
j · qj[k] ≥ 1 (7.2)

thus, we can determine that there exists a finite Ω:

Ω ≤ max∑
j∈IΘ

cmin
j qj=h

{ ∑
j∈IΘ

cmax
j qj

}

and, thus, the proof is complete.
The QoS derivative algorithm works in a different way. At the

beginning it determines the estimated resource demand in the system,
assuming current rates (�ρ[k] = �ρ[k−1] in (7.1)). Then, the manager
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solves a convex optimization problem, whose goal is to select new
task rates such that some quality-of-service function is maximized,
with the constraint that the expected resource demand with the new
rates is equal with the amount of available resources equals 1. If
a feasible solution (a solution that satisfies the constraint U e

[k] = 1)
exists, then we can prove stability, since it mimics the behavior of
QRAM. However, if the constraint cannot be satisfied by any �ρ ∈ P, it
cannot be demonstrated that the selected rates will satisfy Theorem 3.
A straight forward approach would be to test the solution of the
optimization to determine if it is feasible, and if not, to select �ρ ∈
Γ�. However, for the convex optimization to find a feasible solution,
it is required that the starting point (�ρ∗) satisfies the constraint1,
otherwise no feasible solution will be found [Boy08].

Algorithm 5 Modified QoS derivative Algorithm

1: function Modified QoS Derivative(�c[k], �q[k], �ρ[k], h )
2: /* compute Ue

[k] assuming that �ρ[k] = �ρ[k−1] */
3: while j ≤ n and 1 − Ue �= 0 do

4: ρj∗ ← max
{

ρmin
j , min

{
ρmax

j , 1−Ue

ce
j[k]

+ ρj[k]

}}
5: Ue ← Ue − cj[k] · ρj[k] + cj[k] · ρj∗
6: j ← j + 1
7: end while
8: �ρ[k] ← QoS derivative(�ρ∗)
9: return �ρ[k]

10: end function

Our solution is to modify the QoS derivative algorithm to start
from a feasible point �ρ∗ as presented in Algorithm 5. The new initial
rate vector �ρ∗ is computed line 3 − 7. The original manager is then
called (line 8 in the algorithm) with this rate vector, as a starting
point. If there are �ρ ∈ P for which the constraint is satisfied, then

1In addition to this the Karush-Kuhn-Tucker matrix must be non-singular at

the starting point, but it can be shown that this condition holds for any �ρ ∈ P.

See [Boy08] Sec. 10.2 for an in depth treatment of these conditions.
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the algorithm has a feasible solution, otherwise, the algorithm will set
�ρ[k] = �ρmax when the system is underloading and �ρ[k] = �ρmin when the
system is overloading (condition (7.2)). From this behavior we can
observe that the QoS derivative resource manager, with the above
modification, is also stable.

7.2.3 Worst Case Response Time Bound

For any controller that satisfies the stability condition in Theorem 3
there exists a finite response time for each task. The actual value of
the response time depends on the concrete scheduling policy and the
controller (fc(·)) used in the system. In this section we will develop
bounds on the worst case response time for tasks considering an EDF
scheduler [Liu73] and two classes of controllers. The bounds devel-
oped here are different from the well known worst case response times
derived in literature for EDF, since our system allows overload situ-
ations. The EDF scheduler considers as a working deadline for each
job τij , the sum of its release time and 1/ρij , where ρij is the current
job’s rate. The bounds developed in this section are obtained assum-
ing an uniprocessor system and are tighter than the simple bounds
presented in Section 6.3.

For the following analysis, we will consider that the system always
starts from a state where the queues are empty.

A =
{
�x[0] ∈ X

∣∣q = 0
}

(7.3)

In this case |�x[0]|p = 0, ∀�x ∈ A holds. According to equation (5.15),
Ψ is the highest state norm ever achieved in the system. This result
is important, since it allows us to bound the overload in the system.
For the case of uniprocessors we have that ζmax

[k] = 0, ∀k and – since
we only have one resource – �x[k] = |�x[k]|p = σmax

[k] .
At a certain moment in time t[k�], a new job of a task τj′ is released

and we wish to compute its response time. We will denote this job
with τj′[k�]. In the system, at t[k�] there already exists a certain
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Figure 7.8: Accumulation of execution times

number of un-executed jobs and their total accumulation of execution
times is:

σ[k�] =
∑

j∈IΘ

ci[k�] · qi[k�]

where qi[k�], ∀i ∈ IΘ are the queue sizes of each task and ci[k�] are
the average execution time for the jobs in the queues (these averages
are unknown, but �c[k�] ∈ C). Figure 7.8 illustrates this situation for
a system of n tasks. All the jobs depicted in the figure are not yet
executed at the moment t[k�], when τj[k�] is released. The dark shaded
jobs represent the last released jobs of the tasks, just before t[k�]. The
light shaded jobs have been released before the dark shaded ones, and
their deadlines are guaranteed to be prior to t[k�]. Finally, all jobs
with deadlines before the deadline of τj′[k�] (even the not yet released
jobs such as τ1[k�+1]) must be executed before τj′[k�].

Since in overload situations EDF executes jobs non-preemptively,
in the order of their working deadline, all light colored jobs in the fig-
ure will be executed before τj[k�], since their deadlines are before t[k�].
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The execution times of these jobs represent
∑

j∈IΘ

ci[k�] · (qi[k�] − 1) out

of σ[k�]. From the rest of the jobs considered in σ[k�] (the dark col-
ored ones), the ones with deadlines smaller than that of τj[k�] will be
executed before it (τ1[k�] and τ2[k�] in the figure), and the rest will
be executed after τj[k�] (τn[k�] in the figure). Also there may exist
other, not yet released jobs, that will have their deadlines prior to
the deadline of τj[k�] (e.g. τ1[k�+1] in Figure 7.8) which also need to
be considered. Taking all of this into account, and considering that
ρi[k�], ∀i ∈ IΘ are the release rates of all jobs, the response time of
τj[k�] is:

rj′[k�] =
∑

j∈IΘ

cj[k�] · (qj[k�] − 1) +
∑

j∈IΘ

cj[k�]

⌊ 1
ρj′[k�]

+ 1
ρj[k�]

− φj[k�]

1
ρj[k�]

⌋

(7.4)
In the above formula, the quantities (qj[k�] − 1), j ∈ IΘ \ {j′} provide
the number of non executed jobs of τj that have deadlines earlier than

t[k�] while the quantities

⌊
1

ρj′[k�]
+ 1

ρj[k�]
−φj[k�]

1
ρj[k�]

⌋
, j ∈ IΘ \{j′} represent

the number of released jobs of τj which have their deadlines between
t[k�] and t[k�] + 1

ρj′[k�]
(the deadline of τj′[k�]).

The following lemma gives an upper bound on the response time
of the tasks in the system.

Lemma 1:
An upper bound on the worst-case response time of task τj in the
system can be computed using the following equation:

rmax
j =

1
ρmin

j′
+ Ψ +

∑
j∈IΘ

cmax
j

⌊
ρmax

j

ρmin
j′

⌋
(7.5)

�

Proof The proof follows from equation (7.5) by observing that:

1. σ[k�] ≤ σ[k�] ≤ Ψ, and
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2. the last released job of τj′ was released with at most 1/ρmin
j

before t[k�]. �

Up to this point, we have concerned ourselves with the scheduler
used, and we have determined a formula for the worst-case response
time for EDF assuming knowledge of the largest accumulation of ex-
ecution times in the system (Ψ). One should note that Ψ typically
depends on the scheduler and the controller (fc) used in the system.
The value computed in equation (5.15) is an upper bound on the
largest state norm, since it is independent on these parameters. By
adding extra constraints on the scheduler or the controller one may be
able to tighten this bound. We will now consider two classes of con-
trollers for which we will determine Ψ. The two classes of controllers
are:

C1 =

{
fc : X → P

∣∣∣∣ρ[k] ∈

⎧⎨
⎩{�ρ

min}, if Γα
[k] = ∅

P, otherwise

}
(7.6)

C2 =

{
fc : X → P

∣∣∣∣ρ[k] ∈

⎧⎨
⎩{�ρ

min}, if Γα
[k] = ∅

Γα
[k], otherwise

}
(7.7)

where Γα
[k] is

Γα
[k] =

{
�ρ ∈ P

∣∣∣U e
[k] =

∑
j∈IΘ

ce
j[k]

qj[k] + �ρj max{0, h − φj[k]}�
h

= α

}
(7.8)

and α > 1 is an arbitrary constant. Γα
[k] is the set of all rate vectors

which will lead to σ[k′] = h(α− 1) (see equations (7.1)), where t[k′] =
t[k] + h.

The intuition behind the two classes of controllers is the following:
C2 always tries to take decisions such that σ is kept very aggressively
around h(α − 1). When σ[k] �= h(α − 1), the accumulation will be
brought back to h(α − 1) as soon as possible (σ[k′] = h(α − 1) if the
prediction is correct). C1 is a class of more general controllers, which
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includes C2 as a particular case. We first show that both classes of
controllers lead to stable systems.

Lemma 2:
Any system for which fc ∈ C1 is stable and C2 ⊂ C1. �

Proof Since Γα
[k] ⊂ P and {�ρmin} ⊂ Γ�, C2 ⊂ C1 follows directly.

We will now show that for any system having fc ∈ C1, fc also
satisfies condition (5.14) for a certain Ω. We want to show that there
exists a finite Ω such that, σmax

[k] ≥ Ω, implies that Γα
[k] = ∅. We can

then say that Ω is larger than the largest value of σmax
[k] for which

Γα
[k] �= ∅. We shall determine Ω by solving the following optimization

problem:

maximize σmax =
∑

j∈IΘ

cmax
j qj subject to:

U e =
∑

j∈IΘ

ce
j

qj + �ρj max{0, h − φj}�
h

= α

where �ce ∈ C, �ρ ∈ P, and [0]n � �φ � [1/ρmin
j ]n. The solution is to

maximize queue sizes, which happens when �ce = �cmin, �ρ = �ρmin, and
�φ = [1/ρmin

j ]n and our optimization problem transforms itself into:

maximize σmax =
∑

j∈IΘ

cmax
j qj subject to:

∑
j∈IΘ

cmin
j qj = h(α −

∑
j∈IΘ

cmin
j ρmin

j ) +
∑

j∈IΘ

cmin

From the above we obtain that

Ω = max
j∈IΘ

{cmax
j

cmin
j

}(
h(α −

∑
j∈IΘ

cmin
j ρmin

j ) +
∑

j∈IΘ

cmin
j

)
(7.9)

and the proof follows. �



126 CHAPTER 7. APPLICATIONS

Lemma 3:
For any system {T ,X ,A,S,U} with fc ∈ C1 and A defined as in
equation (7.3), the largest possible value of Ψ is given by

Ψ = Ω +
∑

j∈IΘ

cmax
j + h

∑
j∈IΘ

cmax
j ρmax

j (7.10)

where Ω is given by equation (7.9). �

Proof Proof follows directly from equation (5.15). �

Lemma 4:
For any {T ,X ,A,S,U} with fc ∈ C2 and A defined as in equa-
tion (7.3), the largest possible value of Ψ is given by

Ψ = max

{
max
j∈IΘ

{cmax
j

cmin
j

}
h(α− 1), h

∑
j∈IΘ

cmax
j · ρmax

j +
∑

j∈IΘ

cmax
j − h

}

(7.11)
�

Proof We have two cases to analyze. When Γα
[k−1] �= ∅ then we have

from equations (7.8), (7.7), and (4.5):∑
j∈IΘ

ce
i[k−1]qj[k] = h(α − 1)

The maximum accumulation in the system then becomes:

σmax
[k] =

∑
j∈IΘ

cmax
j qj[k] =

∑
j∈IΘ

cmax
j

ce
j[k−1]

ce
j[k−1]qj[k]

≤ max
j∈IΘ

{cmax
j

cmin
j

}
h(α − 1) (7.12)

On the other hand, when Γα
[k−1] = ∅, there must exist a previous

time instance t[k−p] ≤ t[k−1] with Γα
[k−p+r] = ∅, ∀r = 0, p − 1. In this

case there are two possibilities: either t[k−p] = 1 when

σmax
[1] = h

∑
j∈IΘ

cmax
j ρmax

j +
∑

j∈IΘ

cmax
j − h



7.2. STABILITY OF UNIPROCESSOR SYSTEMS 127

or there exists Γα
[k−p−1] �= ∅ when inequality (7.12) applies and this

concludes the proof. �

The bound on the worst case response time (for an EDF scheduler)
can be calculated using the equation (7.5) where Ψ is computed ac-
cording with equation (7.10) for controllers in C1, and equation (7.11)
for controllers in C2. Similar computations can be conducted for
other classes of controllers as well.

The three resource managers described in the previous section (QRAM,
corner-case, and QoS derivative) all belong to the C2 class of con-
trollers since they all predict future execution times and set rates such
that the resource capacity is fully used under those conditions.
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8
Conclusions and Future

Work

In this chapter we conclude the thesis and discuss possible direc-
tions of future work.

8.1 Conclusions

In many real-time systems where variations in execution times are
present and adaptation to these variations, in order to improve per-
formance, is required, we face the issue of determining whether the
adaptation mechanism is stable with respect to the timing properties
of the system. Stability means that the state of the system remains
bounded, implying bounded real-time properties such as worst-case
response times and end-to-end delays.

In Chapter 4 of this thesis we have developed a detailed model
describing the evolution in time of adaptive distributed real-time sys-
tems. We have then used this model to derive the worst-case behavior
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model of such systems. We ended the chapter with a discussion re-
garding the meaning and intuition of the parameters in the models.

In Chapter 5 we have used the worst-case behavior model of adap-
tive distributed real-time systems to derive stability conditions. We
have developed necessary, and sufficient conditions (Theorems 1 and 2
respectively) for a system to have the possibility of being stable in
the worst-case, and we have developed conditions that its resource
manager must satisfy in order to stabilize the system (Theorem 3).
Finally, we ended the chapter with an in-depth discussion about the
geometric interpretation of these results.

In Chapter 6 we have addressed the limitations of our model and
theory, and we have shown how our results can be extended to more
general systems and actuation mechanisms. We have ended the chap-
ter with a discussion linking our stability results with timing analysis.

Finally, in Chapter 7 we have shown, on several examples, how
to apply the results developed in this thesis. We have shown how to
prove stability for several resource managers. We have also shown
how to modify a resource manager in order to achieve stability, and
how to build stable resource managers. For the case of uniprocessor
systems, we have also developed several results regarding their timing
properties.

Although beyond the scope of this thesis, the framework presented
here can also be used in an exploratory fashion in the design of dis-
tributed real-time systems. For example, we can:

• determine the necessary amount of adaptation (for example the
needed minimum task graph rates) for stability, by using The-
orem 1 to guide us,

• optimize the mapping of tasks to resources (where we could
change the α coefficients, guided by Theorem 2), in such a way
as to avoid unstable behaviors, and

• determine system requirements for stability (e.g. queue size),
by determining the largest state of the system, with the help of
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Theorem 3).

8.2 Future Work

The theory developed in this thesis forms a basis that has a large
potential for improvement and extension.

Some specific problems which can be addressed are:

• Improving the approximations done when building the worst-
case behavior of the system (inequality (4.16)). This problem
is important as it directly affects the tightness of the obtained
bounds. We have explained this issue in Sections 4.3, 4.3.3,
and 4.5.

• Improving the gap between the necessary and the sufficient con-
ditions for existence of resource managers that render the sys-
tem stable. This problem directly affects the number of systems
that can be guaranteed to be stabilized and, thus, needs address-
ing. We have provided ideas regarding the origins of this gap
and how to approach it in Section 6.2.4.

• Improving the bounds on the state of the system. The bound
on the state of the system (Ψ) emerges from the worst-case
evolution of the system model that we use. Since we describe
the behavior of a very large class of schedulers in our model,
the worst-case behavior that we determine is pessimistic com-
pared to the real behavior of the given system. We can improve
the obtained bounds by modeling smaller classes of scheduling
policies (see e.g. [Br96a, Br96b, But97, Bra01]).

• Diversifying the stability conditions (Theorem 3) with new re-
sults. The result presented in this thesis describes a switch-
ing controller. We have chosen this type of conditions as they
are simple to test and because we believe that the effect of a
piece of software code (the resource manager) can more easily
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be modeled as a switching mechanism than by other equations.
Ideas about new kinds of stability conditions can be derived
from the vast control theory literature currently existing (see
e.g. [Ast97, Gla00, Oga70, Rug96, Sko96, Zho96]).

• Extensions to idling schedulers. This is a very important issue
to address as, idling schedulers are extensively used in networks
and buses, due to their deterministic nature and ease of imple-
mentation [Alm04]. Examples of very widely used idling bus
protocols include TDMA [Bur10], FlexRay [Fle05], and FTT-
ethernet [Ped02]. Ideas for these extensions can be obtain by
looking at the timing analysis of the respective protocols.

• Integration of this theory with adaptive scheduling policies.
Adaptive scheduling policies, such as resource reservation [Pa09b]
techniques, are typically idling scheduling policies. However,
these policies are based on mathematical modeling, thus, al-
lowing for a tighter integration into the theoretical framework
proposed here.
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Feedback-Feedforward Scheduling of Control Tasks. Real-
Time Systems, vol. 23, pp. 25-53, 2002.

[Ce03a] A. Cervin and J. Eker. The Control Server: A Compu-
tational Model for Real-Time Control Tasks. Proceedings
of the 15th Euromicro Conference on Real-Time Systems,
2003.

[Ce03b] A. Cervin, D. Henriksson, B. Lincoln, J. Eker, K. E.
Arzén. How Does Control Timing Affect Performance?
Analysis and Simulation of Timing using Jitterbug and
TrueTime. Control Systems, vol. 23, issue 3, pp. 16-30,
2003.

[Cer05] A. Cervin, J. Eker. Control-Scheduling Codesign of Real-
Time Systems: The Control Server Approach. Journal of
Embedded Computing, vol. 1, issue 2, pp. 209-224, 2005.

[Cha09] T. Chantem, X. S. Hu, and M.D. Lemmon. Generalized
Elastic Scheduling for Real-Time Tasks. IEEE Trans. on
Computers, vol. 58, no. 4, pp. 480–495, 2009.

[Chi06] O. Chipara, Z. He, G. Xing, Q. Chen, X. Wang, C.
Lu, J.Stankovic, and T. Abdelzaher. Real-time power-
aware routing in sensor networks. IEEE 14th International
Workshop on Quality of Service, (IWQoS), pp. 83-92,
2006.



BIBLIOGRAPHY 137

[Cof72] E. G. Coffman, R. L. Graham. Optimal Scheduling for
Two-Processor Systems. Acta Informatica, vol. 1, pp. 200-
213, 1972.

[Co05a] J. Combaz, J. C. Fernandez, T. Lepley, J. Sifakis. Fine
Grade QoS Control for Multimedia Application Software.
In Proceedings of the Design, Automation and Test in
Europe, pp. 1038-1043, 2005.

[Co05b] J. Combaz, J. C. Fernandez, T. Lepley, J. Sifakis. Con-
trol for Optimality and Safety. In Proceedings of the 5th
Conference on Embedded Software, 2005.

[Com08] J. Combaz, J. C. Fernandez, J. Sifakis, and L. Strus. Sym-
bolic Quality Control for Multimedia Applications. Real-
Time Systems, vol. 40, pp. 1-43, 2008.

[Cuc10] T. Cucinotta and L. Palopoli. QoS Control for Pipelines
of Tasks Using Multiple Resources. IEEE Transactions on
Computers, vol. 59, pp. 416-430, 2010.

[Dai96] J. G. Dai, G. Weiss. Stability and Instability of Fluid Mod-
els for Re-entrant Lines. Mathematics of Operational Re-
search, vol. 21, pp. 115–134, 1996.

[Dai13] X. Dai. Some Criteria for Spectral Finiteness of a Finite
Subset of the Real Matrix Space. Linear Algebra and its
Applications, vol. 438, issue 6, pp. 2717-2727, 2013.

[Dau92] I. Daubechies, J. C. Lagarias. Sets of Matrices All Infi-
nite Products of Which Converge. Linear Algebra and its
Applications, vol. 161, pp. 227-26, 1992.

[Dau01] I. Daubechies, J. C. Lagarias. Corrigendum/addendum to:
Sets of matrices all infinite products of which converge.
Linear Algebra and its Applications, vol. 327, issues 1–3,
pp. 69-83, 2001.



138 BIBLIOGRAPHY

[Den97] Z. Deng, J. W. S. Liu, and J. Sun. A Scheme for Schedul-
ing Hard Real-Time Applications in Open System Envi-
ronment. In Euromicro Workshop on Real-Time Systems,
1997.

[Eke09] J. Eker. Multicore Scheduling Issues in Ericsson Mobile
Platforms. International Conference on Parallel Process-
ing Workshops, 2009.

[Fle05] FlexRay Consortium. FlexRay Communications System
Protocol Specification Ver- sion 2.1. 2005.

[Fon11] D. Fontanelli, L. Palopoli, L. Greco. Deterministic and
Stochastic QoS Provision for Real-Time Control Systems.
Real-Time and Embedded Technology and Applications
Symposium (RTAS), pp.103-112, 2011.

[Fon10] D. Fontanelli, L. Greco, L. Palopoli. Adaptive reservations
for feedback control. IEEE Conference on Decision and
Control (CDC), pp.4236-4243, 2010.

[Gho03] S. Ghosh, R. Rajkumar, J. Hansen, J. Lehoczky. Scalable
Resource Allocation for Multi-Processor QoS Optimiza-
tion. International Conference on Distributed Computing
Systems, pp. 174, 2003.

[Gho04] S. Ghosh, J. Hansen, R. Rajkumar, J. Lehoczky. Inte-
grated Resource Management and Scheduling with Multi-
Resource Constraints. In Proceedings of the IEEE Inter-
national Real-Time Systems Symposium, pp. 12-22, 2004.

[Gla00] T. Glad, L. Ljung. Control theory. CRC press, 2000.
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