
Static Scheduling of Monoprocessor Real-Time
Systems composed of Hard and Soft Tasks

Luis Alejandro Cortés, Petru Eles, and Zebo Peng
Embedded Systems Laboratory

Department of Computer and Information Science

Linköping University, S-581 83 Linköping, Sweden

{luico,petel,zebpe}@ida.liu.se

Technical Report
April 2003

Abstract

In this report we address the problem of static scheduling of real-
time systems that include both hard and soft tasks. We consider
systems in which both hard and soft tasks are periodic, and our anal-
ysis take into account the data dependencies among tasks. In order
to capture the relative importance of soft tasks and how the quality
of results is affected when missing a soft deadline, we use utility func-
tions associated to soft tasks. Thus our objective is to find a schedule
that maximizes the total utility and at the same time guarantees hard
deadlines. We use the expected duration of tasks for evaluating utility
functions whereas we use the maximum duration of tasks for ensur-
ing that hard deadlines are always met. We show that the problem
we study in this report is NP-complete and we present an algorithm
that finds the optimal schedule as well as different heuristics that find
near-optimal solutions at reasonable computational cost.

1 Introduction

There exist classes of real-time systems that require the execution of tasks
which have distinct types of timing constraints. Such systems include ac-
tivities whose completion before a given deadline is critical to the overall
behavior of the system. Missing one such deadline has severe or catastrophic

1

consequences, hence these tasks are referred to as hard. At the same time,
these real-time systems include activities that have looser timing constraints
and a deadline miss can be tolerated though the quality of results might
degrade. Such tasks are referred to as soft.

The problem of jointly scheduling hard and soft tasks has been studied,
for example, in the frame of integrating multimedia applications into hard
real-time systems [7], [1].

Most of the approaches consider that hard tasks are periodic whereas
soft tasks are aperiodic. Buttazzo and Sensini [2] use the Earliest Deadline
First (EDF) algorithm for scheduling hard tasks while soft tasks are assigned
a priority (a fictitious deadline) when a request arrives, in such a way that
aperiodic responsiveness is achieved while guaranteeing hard deadlines. This,
as well as most of previous work, assumes that the sooner a soft task is
served the better but makes no distinction among soft tasks, that is, there
is no relative importance of soft tasks. Similarly, Ripoll et al. [10] propose
an algorithm (also based on EDF) that guarantees that deadlines of hard
periodic tasks are met and minimizes the response time of soft aperiodic
tasks, provided they are served in FIFO order. Other approaches under
dynamic priority assignment include [3], [6], and [11].

Approaches to the joint scheduling problem for fixed-priority systems have
also been considered in the literature [4], [8], [12]. These make use of the Rate
Monotonic (RM) algorithm for scheduling the hard periodic tasks and also
try to minimize the response time of soft aperiodic tasks while guaranteeing
hard deadlines.

In this report we address the problem of static scheduling (at design-time)
of real time-systems made up of hard and soft tasks. We consider that both
hard and soft tasks are periodic and, in order to capture the significance
of soft tasks, we make use of utility functions (value or utility functions
were first suggested by Locke [9] to represent importance and criticality of
tasks). As opposed to the approaches cited above where tasks are assumed
independent, we take into account the precedence relation among tasks.

Most of earlier work uses only the worst case execution time (WCET)
for scheduling both hard and soft tasks (Abeni and Buttazzo’s approach [1]
does use WCET for guaranteeing hard deadlines and mean values for serving
soft tasks though). We consider the fact that the actual execution time of a
task is rarely its WCET. Thus we use the expected duration of tasks when
evaluating the utility functions associated to soft tasks (we aim to find the
schedule for which the total utility is maximum) and we use the maximum
duration of tasks for ensuring that all hard deadlines are met in every possible
scenario.

The rest of this report is organized as follows. In Section 2 we intro-

2

duce some definitions and notations used along the report. We use a simple
example in Section 3 in order to motivate and illustrate our approach. In
Section 4 we give a precise formulation of the problem and show that it is
NP-complete. We present an exact algorithm that finds the optimal solution
(Section 5) as well as a number of heuristics that find near-optimal solutions
in reasonable time (Section 6). In Section 7 we present the results of the ex-
perimental evaluation of the proposed algorithms. Finally, some conclusions
are drawn in Section 8.

2 Preliminaries

We consider that the system is represented by a directed acyclic graph G =
(T,E) where its nodes correspond to tasks (T) and their data dependencies
are given by the graph edges. Throughout this report we assume that all the
tasks of the system are mapped into a single processor.

We use ◦t to denote set of the predecessors of task t, that is, ◦t = {t′ ∈
T | 〈t′, t〉 ∈ E}. Similarly, t◦ = {t′ ∈ T | 〈t, t′〉 ∈ E} denotes the set of
successors of task t.

The execution time of every task t ∈ T (denoted |t|) lies in the interval
bounded by the minimum duration l(t) and the maximum duration m(t) of
the task, i.e. l(t) ≤ |t| ≤ m(t). In our analysis we take into consideration
the expected duration e(t) of every task t ∈ T , which is the mean value
of the possible execution times of the task. In the simple case that the
execution time is uniformly distributed over the interval [l(t),m(t)], we have
e(t) = (l(t) +m(t))/2. For an arbitrary continuous probability distribution

f(τ), the expected duration is e(t) =
∫ m(t)

l(t)
τf(τ)dτ .

We define a schedule as the execution order for the tasks in the system.
We assume a single-rate semantics, that is, each task is executed exactly once
for every activation of the system. Thus a schedule is a bijection σ : T →
{1, 2, . . . , |T |}. We use σ = t1t2 . . . tn as shorthand for σ(t1) = 1, σ(t2) =
2, . . . , σ(tn) = |T |. In this context, a schedule does not provide the starting
time for tasks, only their execution sequence. Thus, for the schedule σ =
t1t2 . . . tn, task t1 will start when the system is activated and task ti+1 will
start executing as soon as task ti has finished. In the sequel, the times that
we use are relative to the system activation instant. For example, for the
schedule σ = t1t2 . . . tn, t1 starts executing at time 0. We assume that the
system is activated periodically and its period is

∑
t∈T m(t).

The tasks that make up a system can be classified as non-real-time, hard,
or soft. Non-real-time tasks are neither hard nor soft, and have no tim-
ing constraints, though they may influence other hard or soft tasks through

3

precedence constraints as defined by the task graph G = (T,E). Both hard
and soft tasks have deadlines. A hard deadline d(h) is the time by which a
hard task h ∈ T must be completed, otherwise the integrity of the system
is jeopardized. A soft deadline d(s) is the time by which a soft task s ∈ T
should be completed. Lateness of soft tasks is acceptable though it decreases
the quality of results. In order to capture the relative importance among soft
tasks and how the quality of results is affected when missing a soft deadline,
we use a non-increasing utility function ui(τi) for each soft task si (τi denotes
the completion time of si). Typical utility functions are depicted in Figure
1.

u

τd(s)

M

u

τd(s)

M

u

τd(s)

M

Figure 1: Typical utility functions for soft tasks

In this report we address the problem of finding a schedule that maxi-
mizes the sum of individual utilities of soft tasks when considering expected
execution times, yet guaranteeing that hard deadlines are always met. Such
a sum is called total utility and denoted U (U =

∑
si∈S ui(τi), where S is the

set of soft tasks).

3 Motivational Example

Let us consider a system that has five tasks t1, t2, t3, t4, and t5, with data
dependencies as shown in the graph of Figure 2. The expected and maximum
duration of every task are given in Figure 2 in the form ei = e(ti) and
mi = m(ti) respectively. The only hard task in the system is t4 and its
deadline is d(t4) = 30. Tasks t2 and t3 are soft, their deadlines are d(t2) = 9
and d(t3) = 21, and their utility functions are given, respectively, by:

u2(τ2) =



3 if τ2 ≤ 9,

9

2
−

τ2

6
if 9 ≤ τ2 ≤ 27,

0 if τ2 ≥ 27.

u3(τ3) =



2 if τ3 ≤ 21,

16−
2τ3

3
if 21 ≤ τ3 ≤ 24,

0 if τ3 ≥ 24.

4

t1

t5

t3

t2 t 304
=9m4

=6e4

=7m1

=4e1

=7m5

=5e5

=10m3

=6e3

=11m2

=6e2

Figure 2: Motivational example

When we consider the expected duration for every task, that is |t| = e(t)
for each t ∈ T , the schedule σa = t1t2t3t4t5 is the one that maximizes the
total utility: the completion times for tasks t2 and t3 are τ2 = 10 and τ3 = 16,
and the total utility is Ua = u2(10) + u3(16) = 17/6 + 2 ≈ 4.83. However,
σa does not guarantee the satisfaction of hard deadlines (take the possible
scenario where |t1| = 7, |t2| = |t3| = 10, |t4| = 8: in such a case τ4 = 35 and
therefore t4 misses its deadline).

We aim to find the schedule that maximizes the total utility (sum of in-
dividual contributions by soft tasks), while guaranteeing that hard deadlines
are met in all possible scenarios. When we consider only the upper bounds
of execution time for every task, that is |t| = m(t) for each t ∈ T , we obtain
the schedule σb = t1t3t4t2t5 which maximizes the total utility when every
task takes its maximum duration and, at the same time, guarantees no hard
deadline miss.

Although σb ensures that hard deadlines are always satisfied, it gives
the maximum utility in the particular case of WCET for all tasks, a situ-
ation that, though possible, seldom occurs. It is better to find the sched-
ule that yields the maximum utility in the more likely case of expected
duration for all tasks, yet guaranteeing no hard deadline miss. Thus we
must obtain the schedule that guarantees meeting all hard deadlines, when
maximum duration is considered, and maximizes the total utility, when ex-
pected duration is considered. Such a schedule for the example of Figure
2 is σc = t1t2t4t3t5. When every task lasts its expected duration, following
σc, t2 completes at τ2 = 10 and t3 completes at τ3 = 22, and thus the to-
tal utility is Uc = u2(10) + u3(22) = 17/6 + 4/3 ≈ 4.17. Note that in the
same case (expected duration for all tasks) σb = t1t3t4t2t5 yields a utility

5

Ub = u2(22) + u3(10) = 5/6 + 2 ≈ 2.83.

4 Problem Formulation and NP-completeness

We have informally described the problem of scheduling real-time systems
that have both soft and hard tasks. We want to find the schedule (an ex-
ecution sequence for tasks) that, among all schedules that respect the hard
constraints in the worst-case, maximizes the total utility when tasks last their
expected duration. In this section we precisely formulate the problem and
demonstrate that it is NP-complete.

Scheduling with Soft and Hard Tasks to Maximize Utility (SSHMU):
Given
· a set T of tasks,
· a directed acyclic graph G = (T,E) defining precedence constraints for the
tasks,
· a maximum duration m(t) ∈ N for each task t ∈ T ,
· an expected duration e(t) ∈ N for each task t ∈ T (e(t) ≤ m(t)),
· a subset H ⊆ T of hard tasks,
· a deadline d(h) ∈ N for each hard task h ∈ H,
· a subset S ⊆ T of soft tasks (S ∩H = ∅),
· a non-increasing utility function uj(τj) for each soft task sj ∈ S (τj is the
completion time of sj), and
· a positive integer K;
does there exist a one-processor schedule σ (a bijection σ : T → {1, 2, . . . , |T |})
such that
· σ(t) < σ(t′) for all 〈t, t′〉 ∈ E,
· τm

i ≤ d(hi) for all hi ∈ H, where τm
i is the completion time1 of task hi

when every task t ∈ T lasts its maximum duration m(t), and
·

∑
sj∈S uj(τ

e
j) ≥ K, where τ e

j is the completion time2 of task sj when every

1τm
i is given by

τm
i =

{
m(ti) if σ(ti) = 1,
τm
k +m(ti) if σ(ti) = σ(tk) + 1.

2τe
j is given by

τe
j =

{
e(tj) if σ(tj) = 1,
τe
k + e(tj) if σ(tj) = σ(tk) + 1.

6

task t ∈ T lasts its expected duration e(t)?

In the following we prove that the problem of scheduling with soft and
hard tasks to maximize utility is NP-complete, first by showing that it is
in NP (NP is the class of all languages that are decided by a polynomially
bounded nondeterministic Turing machine), and second by showing that it
is NP-hard (a problem Π is NP-hard iff any NP problem is polynomially
reducible to Π).

Theorem 1. Scheduling with Soft and Hard Tasks to Maximize

Utility is in NP.
Proof : We provide a polynomial-time verifier for SSHMU. Given an in-
stance {T,G(T,E),m : T → N, e : T → N, H ⊆ T, d : H → N, S ⊆
T, {u1(τ1), u2(τ2), . . . , u|S|(τ|S|)}, K} of SSHMU and a schedule σ, we first
check that the precedence constraints are satisfied, in other words, σ(t) <
σ(t′) for each edge 〈t, t′〉 ∈ E; this can clearly be accomplished in polynomial
time.

Second, we check that all hard deadlines are met when all tasks last their
maximum duration: for each task tk ∈ T we compute τm

k (as given above1),
and then for each hi ∈ H we check that τm

i ≤ d(hi); computing τm
k as well

as the check can be done in polynomial time.
Third, we check that the total utility (sum of utilities given by each

function uj(τj) of soft tasks sj), when all tasks last their expected duration,
is at least K: we compute τ e

j (as given above2), calculate the individual
values uj(τ

e
j) for each sj ∈ S, sum them, and check that the total utility is

at least K; this can also be accomplished in polynomial time.
If any check fails then reject; else accept. �

Before proving that SSHMU is NP-hard, for the sake of clarity, we first
show that the following problem (called Scheduling to Maximize Util-

ity) is NP-complete.

Scheduling to Maximize Utility (SMU): Given a set T of tasks, a
directed acyclic graph G = (T,E), a duration e(t) ∈ N for each task t ∈ T ,
a non-increasing utility function uj(τj) for each task tj ∈ T , and a pos-
itive integer K; does there exist a one-processor schedule σ (a bijection
σ : T → {1, 2, . . . , |T |}) respecting the precedence constraints such that∑
tj∈T

uj(τj) ≥ K, where τj is the completion time2 of task tj?

7

In order to prove the NP-completeness of SMU, we transform a known
NP-complete problem to an instance of SMU. We have selected Schedul-

ing to Minimize Weighted Completion Time (SMWCT) [5] for this
purpose. The formulation of SMWCT is shown below.

Scheduling to Minimize Weighted Completion Time (SMWCT):
Given a set T of tasks, a partial order � on T , a duration e(t) ∈ N and a
weight w(t) ∈ N for each task t ∈ T , and a positive integer K; does there
exist a one-processor schedule σ (a bijection σ : T → {1, 2, . . . , |T |}) respect-
ing the precedence constraints imposed by � such that

∑
tj∈T w(tj)τj ≤ K,

where τj is the completion time2 of task tj?

Theorem 2. Scheduling to Maximize Utility is NP-complete.
Proof : SMU is in NP: The proof is very similar to the one presented above
showing that SSHMU is in NP and, therefore, omitted for brevity.

SMU isNP-hard: We transform Scheduling to Minimize Weighted

Completion Time (known to be NP-complete) to Scheduling to Max-

imize Utility. Let Π = {T,�, e : T → N, w : T → N, K} be an arbitrary
instance of SMWCT. We construct an instance Π′ = {T ′, G(T ′, E′), e′ :
T ′ → N, {u′

1(τ
′
1), u

′
2(τ

′
2), . . . , u

′
|T ′|(τ

′
|T ′|)}, K ′} of SMU as follows:

· T ′ = T ,
· 〈ti, tj〉 ∈ E′ iff ti � tj ,
· e′(t) = e(t) for each t ∈ T ,
· the utility function u′

j(τ
′
j) for each tj ∈ T is defined as u′

j(τ
′
j) = w(tj)(C−τ ′j),

where C =
∑

t∈T e(t),
· K ′ = (C

∑
t∈T w(t))−K.

To see that this transformation can be performed in polynomial time, it
suffices to observe that T ′, e′ : T ′ → N, and K ′ can be obtained in O(|T |)
time, G(T ′, E′) can be constructed in O(|T |+ |�|) time, and all the utility
functions u′

j(τ
′
j) can be obtained in O(|T |) time. What remains to be shown

in order to prove the NP-hardness of SMU is that Π has a schedule for
which

∑
tj∈T w(tj)τj is K or less if and only if Π′ has a schedule for which∑

t′j∈T ′ u′
j(τ

′
j) is K

′ or greater.

We show that the schedule that minimizes
∑

tj∈T w(tj)τj for Π is exactly

the one that maximizes
∑

t′j∈T ′ u′
j(τ

′
j) for Π′. Note that, due to the trans-

formation we described above, the set of tasks is the same for Π and Π′,
and the precedence constraints for tasks is precisely the same in both cases.
Assume that σ is a schedule respecting the precedence constraints in Π that
minimizes

∑
tj∈T w(tj)τj and that K is such a minimum. Observe that σ

also respects the precedence constraints in Π′. Moreover, since e′(t) = e(t)

8

for each t ∈ T , the completion time τ ′j of every task tj , when we use σ as
schedule in Π′, is the very same as τj and thus:∑

t′j∈T ′

u′
j(τ

′
j) =

∑
tj∈T

u′
j(τj)

=
∑
tj∈T

w(tj)(C − τj)

= C
∑
tj∈T

w(tj)−
∑
tj∈T

w(tj)τj

Since C
∑

t∈T w(t) is a constant value that does not depend on σ and∑
tj∈T w(tj)τj = K is the minimum for Π, we conclude that (C

∑
t∈T w(t))−

K = K ′ is the maximum for Π′, in other words, σ maximizes
∑

t′j∈T ′ u′
j(τ

′
j).

Hence SMU is NP-hard.
Finally, SMU is NP-complete because it is in NP and it is NP-hard. �

Once we have proved that Scheduling to Maximize Utility is NP-
complete, it is simple to show that Scheduling with Soft and Hard

Tasks to Maximize Utility is NP-hard.

Theorem 3. Scheduling with Soft and Hard Tasks to Maximize

Utility is NP-hard.
Proof : We prove by restriction that SSHMU is NP-hard. A problem Π′ is
proved NP-hard by restriction by showing that Π′ contains a known NP-
complete problem Π as a special case [5]. Thus Scheduling with Soft

and Hard Tasks to Maximize Utility (Π′ = {T,G(T,E),m : T →
N, e : T → N, H ⊆ T, d : H → N, S ⊆ T, {u1(τ1), u2(τ2), . . . , u|S|(τ|S|)}, K} is
shown to be NP-hard by restricting its instances to cases in which S = T ,
H = ∅, and m(t) = e(t) for each t ∈ T , thereby obtaining a problem iden-
tical to Scheduling to Maximize Utility (Π′ = {T,G(T,E), e : T →
N, {u1(τ1), u2(τ2), . . . , u|T |(τ|T |)}, K}). �

Theorem 4. Scheduling with Soft and Hard Tasks to Maximize

Utility is NP-complete.
Proof : SSHMU is in NP and is NP-hard, therefore it is NP-complete. �

5 Exact Algorithm

We have proved that Scheduling with Soft and Hard Tasks to Max-

imize Utility is an NP-complete problem. Therefore, unless NP = P,

9

there is no algorithm that solves every instance of the problem in polyno-
mial time. This section presents an exact algorithm for SSHMU whose time
complexity is O(|T |3|H||S|!).

The algorithm presented in Figure 3 computes the schedule that maxi-
mizes the total utility when tasks last their expected duration, while guaran-
teeing that all hard deadlines are met even when all tasks last their maximum
duration. Initially we check, by using the algorithm IsSchedulable as pre-
sented in Figure 6 and explained later in this section, whether there exists
at all a schedule that satisfies the hard time constraints. Note that if the
system is not schedulable, the algorithm OptimalSchedule returns ε. For
each one of the possible permutations Sk of soft tasks, the algorithm first
checks whether Sk is valid (that is, the order given by Sk does not violate
data dependencies) and, if it is so, the algorithm computes the best schedule
σk (the one that yields the highest total utility) for the particular order for
soft tasks as expressed by Sk. The schedule σ that, among all σk, provides
the highest total utility when considering the expected duration for all tasks
is the optimal one.

Algorithm OptimalSchedule()
output: The optimal schedule σ

begin
σ := ε
util := −∞
if IsSchedulable(ε) then
for k ← 1, 2, . . . , |S|! do
if IsValidPerm(Sk) then
σk := BestSchedule(Sk)
utilk :=

∑
sj∈S uj(τ

e
j)

if utilk > util then
σ := σk

util := utilk
end if

end if
end for

end if
end

Figure 3: Algorithm OptimalSchedule

In order to examine whether a permutation S of soft tasks defines a fea-
sible schedule, as shown in the algorithm of Figure 4, we check if there exists

10

a path from the soft task S[j] to the soft task S[i], j > i: if so, S is not
valid. In Figure 4, P denotes the path relation (P = {(t, t′) ∈ T × T |
there is a path leading from t to t′}). P corresponds to the reflexive transi-
tive closure of the relation E (set of edges in the task graph) and is computed
only once for a given system.

Algorithm IsValidPerm(S)
input: A vector S containing a permutation of soft tasks
output: A boolean valid indicating whether it is possible to obtain a sched-
ule where the soft tasks obey the order given by the permutation S

begin
valid := true
for i← 1, 2, . . . , |S| − 1 do
for j ← i+ 1, i+ 2, . . . , |S| do
if (S[j], S[i]) ∈ P then
valid := false

end if
end for

end for
end

Figure 4: Algorithm IsValidPerm

The algorithm that computes the best schedule, for a given permutation
of soft tasks S, is presented in Figure 5. The rationale is that the maximum
total utility for the particular permutation S is obtained when the soft tasks
are set in the schedule as early as possible respecting the order given by
S. Let us consider again the example given in Figure 2. There are two
permutations of soft tasks S1 = [t2, t3] and S2 = [t3, t2]. The schedules
that obey the order for soft tasks given by the permutation S1 (and also
the precedence constraints imposed by the task graph) are σ1 = t1t2t4t3t5,
σ′

1 = t1t4t2t3t5, and σ′′
1 = t1t2t3t4t5. Note, first of all, that σ

′′
1 implies potential

hard deadlines misses and therefore cannot be considered. Both σ1 and
σ′

1 guarantee that hard deadlines are always met but σ1 is better from the
perspective of higher total utility. σ1 = t1t2t4t3t5 is the schedule that sets
soft tasks as early as possible (guaranteeing hard deadlines) respecting the
order given by S1 = [t2, t3].

A simple proof of the fact that by setting soft tasks as early as possible
according to the order given by S we get the maximum total utility for S is
as follows: let σ be the schedule that respects the order of soft tasks given by
S (that is, 1 ≤ i < j ≤ |S| ⇒ σ(S[i]) < σ(S[j])) and such that soft tasks are

11

set as early as possible (that is, for every schedule σ′, different from σ, that
obeys the order of soft tasks given by S and respects all hard deadlines in the
worst-case, σ′(S[i]) > σ(S[i]) for some 1 ≤ i ≤ |S|). Take one such σ′. For at
least one soft task sj ∈ S it holds σ′(sj) > σ(sj), therefore τ

′e
j > τ e

j (τ ′ej is the
completion time of sj when we use σ′ as schedule while τ e

j is the completion
time of sj when σ is used as schedule, considering in both cases expected
duration for all tasks). Thus uj(τ

′e
j) ≤ uj(τ

e
j) because utility functions for

soft tasks are non-increasing. Consequently U ′ ≤ U , where U ′ and U are
the total utility when using, respectively, σ′ and σ as schedules. Hence we
conclude that no schedule σ′, which respects the order for soft tasks given by
S, will yield a total utility greater than the one by σ.

Algorithm BestSchedule(S)
input: A vector S containing a permutation of soft tasks
output: The best schedule σ for which soft tasks obey the order given by
the permutation S

begin
Ready := {t ∈ T | ◦t = ∅}
σ := ε
cnt := 1
while Ready �= ∅ do
A := {t ∈ Ready | IsSchedulable(σt)}
B := {t ∈ Ready | (t, S[cnt]) ∈ P}
if A ∩B = ∅ then
select t̄ ∈ A

else
select t̄ ∈ A ∩B

end if
if t̄ = S[cnt] then
cnt := cnt+ 1

end if
σ := σt̄
Ready := Ready \ {t̄} ∪ {t ∈ t̄◦ | all q ∈ ◦t are in σ}

end while
end

Figure 5: Algorithm BestSchedule

The algorithm BestSchedule(S) first tries to schedule the soft task S[1]

as early as possible. In order to do so, it will set in first place all tasks from
which there exists a path leading to S[1], taking care of not incurring potential

12

deadlines misses by the hard tasks. Then, a similar procedure is followed for
S[2], S[3], . . . , S[|S|].

The algorithm BestSchedule(S) keeps a list Ready of tasks that are
available at every step and constructs the schedule by progressively concate-
nating tasks to the string σ (initially σ = ε). In Figure 5, A is the set of
available tasks that, at that step, can be added to σ without posing the risk
of hard deadline misses. In other words, if we added a task t ∈ Ready \A to
σ we could no longer guarantee that all hard constraints are met. B is the set
of available tasks that have a path to the next soft task S[cnt] to be scheduled.
Once an available task t̄ is selected, it is concatenated to σ (σ := σt̄), t̄ is
removed from Ready, and all its successors that become available are added
to Ready.

At every iteration of thewhile loop of the algorithm given in Figure 5, we
must construct the set A by checking, for every t ∈ Ready, whether concate-
nating t to the schedule prefix σ would imply a possible violation of a hard
deadline. For this purpose we use the algorithm IsSchedulable(ς) shown
in Figure 6. This algorithm, in turn, makes use of Slack(ς) (Figure 7).
The algorithm Slack(ς) returns the slack time (deadline minus completion
time) of hard tasks, when using a schedule that agrees with the prefix ς and
for which hard tasks are set as early as possible, and considering maximum
duration for all tasks. This means that if some of the |H| elements of the
vector HS = Slack(ς) is negative, there is no schedule having ς as prefix
that guarantees hard deadline satisfaction. For the algorithm of Figure 7,
we have assumed that the hard tasks in H are ordered according to their
deadline, that is, d(hi) ≤ d(hj) for 1 ≤ i < j ≤ |H|.

Algorithm IsSchedulable(ς)
input: A schedule prefix ς
output: A boolean schedulable indicating whether there exists a a schedule
that agrees with the prefix ς and such that all hard deadlines are met

begin
schedulable := true
HS := Slack(ς)
for i← 1, 2, . . . , |H| do
if HS[i] < 0 then
schedulable := false

end if
end for

end

Figure 6: Algorithm IsSchedulable

13

Algorithm Slack(ς)
input: A schedule prefix ς
output: A vector HS with the slack time for every hard task

begin
A := {t ∈ T | t is in the schedule prefix ς}
B := ∅
for i← 1, 2, . . . , |H| do
if hi ∈ A then

HS[i] := d(hi)− τm
i

else
for j ← 1, 2, . . . , |T | do
if (tj, hi) ∈ P and tj �∈ A then
B := B ∪ {tj}

end if
end for
HS[i] := d(hi)−

∑
t∈A∪B m(t)

end if
end for

end

Figure 7: Algorithm Slack

6 Heuristics

In this section we present several heuristic procedures for finding a near-
optimal solution to the problem of scheduling with soft and hard tasks to
maximize utility as formulated in Section 4.

The algorithms progressively construct the schedule σ by concatenating
tasks to the string σ that at the end will contain the final schedule. All
the heuristics that we propose in this section make use of the list Ready
of available tasks at every step. The heuristics differ in how the next task,
among those in Ready, is selected as the one to be concatenated to σ. Note
that the algorithms presented in this section are applicable only if the system
is schedulable in first place (there exists a schedule that satisfies the hard
time constraints).

The algorithms make use of a list scheduling heuristic. The basic algo-
rithm is shown in Figure 8. Initially, σ = ε (the empty string) and the list
Ready contains those tasks that have no predecessor. The set A contains the
tasks that are in σ (initially A := ∅). The while loop is executed exactly
|T | times. At every iteration we compute the set B of ready tasks that do

14

not pose risk of hard deadline misses by being concatenated to the schedule
prefix σ. If all soft tasks have already been set in σ we select any t̄ ∈ B, else
we compute a priority for soft tasks (SP := Priority(σ)). The way such
priorities are calculated is what differentiates the heuristics proposed in this
report. Among those soft tasks that are not in σ, we select sk as the one
with the highest priority. Then, we compute the set C of tasks that cause no
hard deadline miss and that have a path leading to sk. We select any t̄ ∈ C
if C �= ∅, else we choose any t̄ ∈ B. Once an available task t̄ is selected as
described above, it is concatenated to σ, t̄ is added to A, t̄ is removed from
the list Ready, and those successors of t̄ that become available are added to
Ready.

Algorithm BasicHeuristic()
output: A near-optimal schedule σ

begin
Ready := {t ∈ T | ◦t = ∅}
σ := ε
A := ∅
while Ready �= ∅ do
B := {t ∈ Ready | IsSchedulable(σt)}
if S\A = ∅ then
select t̄ ∈ B

else
SP := Priority(σ)
select sk ∈ S\A such that SP[k] ≥ SP[i] for all si ∈ S\A
C := {t ∈ B | (t, sk) ∈ P}
if C �= ∅ then
select t̄ ∈ C

else
select t̄ ∈ B

end if
end if
σ := σt̄
A := A ∪ {t̄}
Ready := Ready \ {t̄} ∪ {t ∈ t̄◦ | all q ∈ ◦t are in σ}

end while
end

Figure 8: Basic heuristic

The first of the proposed heuristics makes use of the basic algorithm
presented in Figure 8 and the algorithm given in Figure 9 for computing the

15

priorities of soft tasks. The procedure PriorityMaxUtility(ς) assigns a
priority to soft tasks, for a given schedule prefix ς, as follows: if si is in ς, its
priority is SP[i] := −∞; if si is not in ς, we compute the earliest completion
time τ e′

i when considering expected duration for all tasks. Then we make
use of the maximum utility Mi (see Figure 1) for si in order to calculate
SP[i] := Mi/τ

e′
i .

Algorithm PriorityMaxUtility(ς)
input: A schedule prefix ς
output: A vector SP containing the priority for soft tasks

begin
A := {t ∈ T | t is in ς}
for i← 1, 2, . . . , |S| do
if si ∈ A then

SP[i] := −∞
else
B := {t ∈ T\A | (t, si) ∈ P}
τ e′
i :=

∑
t∈A∪B e(t)

SP[i] := Mi/τ
e′
i

end if
end for

end

Figure 9: Algorithm PriorityMaxUtility

The algorithm PriorityMaxUtility makes use of Mi = ui(0) for ev-
ery soft task si ∈ S but does not exploit the transition functions ui(τi)
themselves. Our second heuristic procedure relies on the algorithm Priori-

tySingleUtility(ς) (Figure 10) for computing the priorities of soft tasks.
If si is in ς, SP[i] := −∞, else we compute τ e′

i (it corresponds to the com-
pletion time, considering expected durations, of si in a schedule that agrees
with the prefix ς and for which si is set the earliest). Then we assign the
priority SP[i] as the single utility of si evaluated at τ e′

i .
The algorithm PriorityTotalUtility(ς) shown in Figure 11 also ex-

ploits the information of utility functions but, as opposed to PrioritySin-
gleUtility, it considers the utility contributions of other soft tasks when
computing the priority SP[i] of the soft task si. If the soft task si is not in
ς its priority is computed as follows. First, we obtain the completion time
τ e′
i when si is earliest set in a schedule that agrees with the prefix ς, using
expected durations. Second, for each soft task sj different from si that is not
in ς, we compute τ e′

j and τ e′′
j . The former corresponds to the completion time

16

Algorithm PrioritySingleUtility(ς)
input: A schedule prefix ς
output: A vector SP containing the priority for soft tasks

begin
A := {t ∈ T | t is in ς}
for i← 1, 2, . . . , |S| do
if si ∈ A then

SP[i] := −∞
else
B := {t ∈ T\A | (t, si) ∈ P}
τ e′
i :=

∑
t∈A∪B e(t)

SP[i] := ui(τ
e′
i)

end if
end for

end

Figure 10: Algorithm PrioritySingleUtility

when si is earliest set in a schedule that agrees with the prefix ς. The latter
corresponds to the completion time when si is latest set in a schedule that
agrees with ς. In both cases, expected duration of tasks are considered. The
average of τ e′

j and τ e′′
j is used as argument for the utility function uj. Thus

the priority of si is given by SP[i] := ui(τ
e′
i)+

∑
sj∈S\(A∪{si})uj((τ

e′
j + τ e′′

j)/2).
To sum up this section, we have presented three heuristics aimed to find

near-optimal solutions to the problem of scheduling with soft and hard tasks
to maximize utility. Such heuristics are based on the algorithm of Figure 8
and their difference lies in how the priorities for soft tasks are calculated.
The first heuristic uses PriorityMaxUtility (Figure 9), the second uses
PrioritySingleUtility (Figure 10), and the third one uses Priority-
TotalUtility (Figure 11).

We have named the heuristics after the algorithms they use for computing
priorities: MaxUtility (MU), SingleUtility (SU), and TotalUtility

(TU), respectively. The first two have a time complexity O(|T |3(|H|+ |S|))
whereas the third one has a time complexity O(|T |3(|H|+ |S|2)).

7 Experimental Results

In this section we experimentally evaluate the heuristics proposed in Section
6. We are initially interested in the quality of the schedules obtained by the
heuristics MaxUtility (MU), SingleUtility (SU), and TotalUtility

17

Algorithm PriorityTotalUtility(ς)
input: A schedule prefix ς
output: A vector SP containing the priority for soft tasks

begin
A := {t ∈ T | t is in ς}
for i← 1, 2, . . . , |S| do
if si ∈ A then

SP[i] := −∞
else
B := {t ∈ T\A | (t, si) ∈ P}
τ e′
i :=

∑
t∈A∪B e(t)

total := ui(τ
e′
i)

for j ← 1, 2, . . . , |S| do
if sj �= si and sj �∈ A then
C := {t ∈ T\A | (t, sj) ∈ P}
D := {t ∈ T\{sj} | (sj, t) ∈ P}
τ e′
j :=

∑
t∈A∪C e(t)

τ e′′
j :=

∑
t∈T\De(t)

total := total + uj((τ
e′
j + τ e′′

j)/2)
end if

end for
SP[i] := total

end if
end for

end

Figure 11: Algorithm PriorityTotalUtility

(TU) with respect to the optimal schedule as given by the exact algorithm
OptimalSchedule. We use as criterion the deviation dev given by:

dev =
Uopt − Uheur

Uopt

where Uopt is the total utility corresponding to the optimal schedule and Uheur

is the total utility corresponding to the schedule obtained with a heuristic.
We have randomly generated a large number of tasks graphs in our ex-

periments. We initially considered graphs with 100, 200, 300, 400, 500, and
600 tasks. For these, we considered systems with 2, 3, 4, 5, 6, 7, and 8 soft
tasks. For the case |T |=200 tasks, we considered systems with 25, 50, 75,
100, and 125 hard tasks. We generated 500 graphs for each graph dimension.
Expected and maximum durations of tasks were also assigned randomly. For

18

every task graph, hard tasks and their deadlines were selected randomly as
well as soft tasks and their utility functions. All the experiments were run
on a Sun Ultra 10 workstation.

We have plotted the average deviation as a function of the number of tasks
in Figures 12, 13, and 14. These correspond to systems with 3, 5, and 8 soft
tasks respectively. All the systems considered in Figures 12, 13, and 14 have
50 hard tasks. These plots consistently show that heuristic TotalUtility
(TU) gives the best results for the considered cases.

 0

 1

 2

 3

 100 200 300 400 500 600

A
ve

ra
ge

 D
ev

ia
ti

on
 [%

]

Number of Tasks

MU
SU
TU

Figure 12: Evaluation of the heuristics (50 hard tasks, 3 soft tasks)

 0

 1

 2

 3

 4

 5

 100 200 300 400 500 600

A
ve

ra
ge

 D
ev

ia
ti

on
 [%

]

Number of Tasks

MU
SU
TU

Figure 13: Evaluation of the heuristics (50 hard tasks, 5 soft tasks)

The plot in Figure 15 depicts the average deviation as a function of the
number of hard tasks. In this case, we have considered systems with 200
tasks, out of which 5 are soft. In this graph we observe that the number

19

 0

 1

 2

 3

 4

 5

 6

 7

 8

 100 200 300 400 500 600

A
ve

ra
ge

 D
ev

ia
ti

on
 [%

]

Number of Tasks

MU
SU
TU

Figure 14: Evaluation of the heuristics (50 hard tasks, 8 soft tasks)

of hard tasks does not affect significantly the quality the schedules obtained
with the proposed heuristics.

 0

 1

 2

 3

 4

 25 50 75 100 125

A
ve

ra
ge

 D
ev

ia
ti

on
 [%

]

Number of Hard Tasks

MU
SU
TU

Figure 15: Evaluation of the heuristics (200 tasks, 5 soft tasks)

We have also studied the average deviation as a function of the number
of soft tasks and the results are plotted in Figure 16. The considered systems
have 100 tasks, 50 of them being hard. We again see that the heuristic TU
consistently provides the best results. We can also note that there is a trend
showing an increasing average deviation as the number of soft tasks grows,
especially for the heuristics MU and SU.

In Section 6 we pointed out that the worst-case time complexity of the
algorithms MaxUtility and SingleUtility is O(|T |3(|H|+ |S|)) and that
one of TotalUtility is O(|T |3(|H|+ |S|2)). In order to give a quantitative
idea of the execution times of these heuristics and the exact algorithm we

20

 0

 1

 2

 3

 4

 5

 6

 2 3 4 5 6 7 8

A
ve

ra
ge

 D
ev

ia
ti

on
 [%

]

Number of Soft Tasks

MU
SU
TU

Figure 16: Evaluation of the heuristics (100 tasks, 50 hard tasks)

used throughout this section, in Table 1 we present the average running time
for these algorithms in the case of systems containing 100 tasks out of which
50 are hard.

Num. Soft Average Execution Time [s]
Tasks Exact MU SU TU
2 0.085 0.051 0.051 0.052
3 0.237 0.053 0.052 0.053
4 0.879 0.053 0.053 0.055
5 3.623 0.055 0.055 0.058
6 20.78 0.056 0.056 0.059
7 115.36 0.057 0.058 0.061
8 896.36 0.059 0.059 0.063

Table 1: Average execution times (100 tasks, 50 hard tasks)

Note that, in the experiments we have presented so far, the number of
soft tasks is small. Recall that the time complexity of the exact algorithm
is O(|T |3|H||S|!) and therefore any comparison that requires computing the
optimal schedule is infeasible for a large number of soft tasks.

In a second set of experiments, we have compared the heuristics among
themselves considering systems with larger numbers of soft and hard tasks.
We normalize the utility obtained the heuristics with respect to the utility
given by the algorithm TotalUtility (TU):

‖Uheur‖ =
Uheur

UTU
We generated, for these experiments, graphs with 500 tasks and consid-

21

ered cases with 50, 100, 150, 200, and 250 hard tasks and 50, 100, 150, 200,
and 250 soft tasks. The results are shown in Figures 17 and 18. We can note
that for systems with many soft tasks, the algorithm SingleUtility gives
results very close to those of the algorithm TotalUtility. In the particular
case T=500, H=150, S=200, SU slightly outperforms TU (‖USU‖ = 1.0014,
‖UTU‖ = 1).

 0.9

 0.95

 1

 1.05

 0 50 100 150 200 250 300

A
ve

ra
ge

 U
ti

li
ty

 (N
or

m
al

iz
ed

)

Number of Soft Tasks

MU
SU
TU

Figure 17: Comparison among the heuristics (500 tasks, 150 hard tasks)

 0.9

 0.95

 1

 1.05

 0 50 100 150 200 250 300

A
ve

ra
ge

 U
ti

li
ty

 (N
or

m
al

iz
ed

)

Number of Hard Tasks

MU
SU
TU

Figure 18: Comparison among the heuristics (500 tasks, 200 soft tasks)

From the extensive set of experiments that we have performed and its re-
sults (Figures 12 through 18) we conclude, that if one of the proposed heuris-
tics is to be chosen, TotalUtility is the procedure that should be used
for solving the problem of scheduling with soft and hard tasks to maximize
utility as formulated in Section 4. This does not mean that TotalUtility
gives the best results in every case, but in average it performs better. Since

22

the proposed heuristics are computationally cheap, we could run all three
and choose, among their results, the schedule that yields the highest total
utility.

8 Conclusions

We have presented an approach to the problem of static scheduling of real-
time systems that have hard and soft tasks. Our approach considers that
hard, soft, and non-real-time tasks are periodic and they all are mapped into
a single processor.

We made use of non-increasing utility functions to represent the relevance
of soft tasks and how the quality of results is diminished when missing a soft
deadline. The problem we have addressed is thus that one of finding the
execution order of tasks in such a way that the sum of individual utilities
of soft tasks is maximum and, at the same time, there is guarantee that
no hard deadline will be missed. We used maximum duration of tasks for
guaranteeing hard deadlines and expected duration of tasks for calculating
the total utility.

We have showed that the problem of scheduling with soft and hard tasks
to maximize utility is NP-complete. We proposed an exact algorithm that
gives the optimal schedule in O(|T |3|H||S|!) time. We also presented three
heuristic procedures that find near-optimal solutions in short time.

We have randomly generated 17500 task graphs for experimental eval-
uation. The experiments showed that the heuristic TotalUtility is the
one that gives the best results in average. Its time complexity (O(|T |3(|H|+
|S|2))) is however larger than the one of the other two heuristics (O(|T |3(|H|+
|S|))). In the cases where it was feasible to compute the optimal schedule
(up to 8 soft tasks), we obtained an average deviation smaller than 2% when
using the heuristic TotalUtility.

As part of our future work, we are currently studying the issue of quasi-
static scheduling of real-time systems with soft and hard tasks. The idea
is to compute off-line a number of schedules and schedule-switching time
points, considering the duration intervals for tasks in order to exploit infor-
mation about the actual duration of tasks already executed and thus adapt
the schedule for the remaining tasks. Then one of the precomputed schedules
is selected on-line based on the actual execution times and given switching
points. Thus the only overhead at run-time is the selection of schedule, which
is computationally cheap because it requires a simple comparison between a
given time point and the actual completion time.

23

References

[1] L. Abeni and G. Buttazzo. Integrating Multimedia Applications in Hard
Real-Time Systems. In Proc. Real-Time Systems Symposium, pages 4–
13, 1998.

[2] G. Buttazzo and F. Sensini. Optimal Deadline Assignment for Schedul-
ing Soft Aperiodic Tasks in Hard Real-Time Environments. IEEE.
Trans. on Computers, 48(10):1035–1052, Oct. 1999.

[3] H. Chetto and M. Chetto. Some Results of the Earliest Dead-
line Scheduling Algorithm. IEEE. Trans. on Software Engineering,
15(10):1261–1269, Oct. 1989.

[4] R. I. Davis, K. W. Tindell, and A. Burns. Scheduling Slack Time in
Fixed Priority Pre-emptive Systems. In Proc. Real-Time Systems Sym-
posium, pages 222–231, 1993.

[5] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W.H. Freeman, San Francisco, CA,
1979.

[6] N. Homayoun and P. Ramanathan. Dynamic Priority Scheduling of
Periodic and Aperiodic Tasks in Hard Real-Time Systems. Real-Time
Systems, 6(2):207–232, Mar. 1994.

[7] H. Kaneko, J. A. Stankovic, S. Sen, and K. Ramamritham. Integrated
Scheduling of Multimedia and Hard Real-Time Tasks. In Proc. Real-
Time Systems Symposium, pages 206–217, 1996.

[8] J. P. Lehoczky and S. Ramos-Thuel. An Optimal Algorithm for Schedul-
ing Soft-Aperiodic Tasks in Fixed-Priority Preemptive Systems. In Proc.
Real-Time Systems Symposium, pages 110–123, 1992.

[9] C. D. Locke. Best-Effort Decision Making for Real-Time Scheduling.
PhD thesis, Department of Computer Science, Carnegie-Mellon Univer-
sity, May 1986.

[10] I. Ripoll, A. Crespo, and A. Garćia-Fornes. An Optimal Algorithm
for Scheduling Soft Aperiodic Tasks in Dynamic-Priority Preemptive
Systems. IEEE. Trans. on Software Engineering, 23(6):388–400, Oct.
1997.

24

[11] M. Spuri, G. Buttazzo, and F. Sensini. Robust Aperiodic Scheduling un-
der Dynamic Priority Systems. In Proc. Real-Time Systems Symposium,
pages 210–219, 1995.

[12] J. K. Strosnider, J. P. Lehoczky, and L. Sha. The Deferrable Server
Algorithm for Enhanced Aperiodic Responsiveness in Hard Real-Time
Environments. IEEE. Trans. on Computers, 44(1):73–91, Jan. 1995.

25

