
A

Quantifying Notions of Extensibility in FlexRay Schedule Synthesis1

REINHARD SCHNEIDER, TU Munich, Germany
DIP GOSWAMI, Eindhoven University of Technology, Netherlands
SAMARJIT CHAKRABORTY, TU Munich, Germany
UNMESH BORDOLOI, Linkoepings Universitet, Sweden
PETRU ELES, Linkoepings Universitet, Sweden
ZEBO PENG, Linkoepings Universitet, Sweden

FlexRay has now become a well-established in-vehicle communication bus at most original equipment man-
ufacturers (OEMs) such as BMW, Audi, and GM. Given the increasing cost of verification, and the high
degree of crosslinking between components in automotive architectures, an incremental design process is
commonly followed. In order to incorporate FlexRay-based designs in such a process, the resulting schedules
must be extensible, i.e, (i) when messages are added in later iterations, they must preserve deadline guar-
antees of already scheduled messages, and (ii), they must accommodate as many new messages as possible
without changes to existing schedules. Apart from extensible scheduling having not received much atten-
tion so far, traditional metrics used for quantifying them can not be trivially adapted to FlexRay schedules.
This is because they do not exploit specific properties of the FlexRay protocol. In this paper we, for the first
time, introduce new notions of extensibility for FlexRay that capture all the protocol-specific properties.
In particular, we focus on the dynamic segment of FlexRay, and we present a number of metrics to quan-
tify extensible schedules. Based on the introduced metrics, we propose strategies to synthesize extensible
schedules and compare the results of different scheduling algorithms. We demonstrate the applicability of
the results with industrial-size case studies and also show that the proposed metrics may also be visually
represented, thereby allowing for easy interpretation.

Categories and Subject Descriptors: C.3 [SPECIAL-PURPOSE AND APPLICATION-BASED SYS-
TEMS]: Real-time systems

General Terms: Design, Algorithms, Performance

Additional Key Words and Phrases: FlexRay, Extensibility, Schedule Synthesis, Automotive

1. INTRODUCTION
FlexRay has taken a veritable lead as the next generation automotive in-vehicle com-
munication network. The FlexRay protocol has been developed by a consortium of more
than 100 leading companies in the automotive industry between the years 2000 and
2010, which recently has completed its work with the finalization of the protocol spec-
ifications [FlexRay 2013]. Due to its high bandwidth, deterministic temporal behav-
ior and fault-tolerant mechanisms, the FlexRay bus has become an inherent part of
in-vehicle networks in today’s premium class automobiles such as the Audi A8 and

1This paper extends an earlier version that appeared at the 48th Design Automation Conference (DAC),
2011, entitled ”On the Quantification of Sustainability and Extensibility of FlexRay Schedules”.

Author’s addresses: R. Schneider, and S. Chakraborty, Electrical Engineering Department, TU Munich, Ger-
many; D. Goswami, Electrical Engineering Department, Eindhoven University of Technology, Netherlands;
U. Bordoloi, P. Eles, and Z. Peng, Computer Science Department, Linkoepings Universitet, Sweden.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© YYYY ACM 1084-4309/YYYY/01-ARTA $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:2 R. Schneider et al.

the BMW 7 series [Fuchs 2010]. The design process for FlexRay follows the iterative
design paradigm widely followed in the automotive industry, where new components
and functionalities are added and tested at each iteration incrementally. Thus, new
messages are added and scheduled on the FlexRay bus at each design cycle. At the
initial design cycle, the system designer decides on the physical layer configuration,
e.g., the configuration of the bus topology and other global parameters, such as bus
speed and bus period. Once these parameters are validated and fixed they should not
be changed in later iterations in order to avoid a complete re-design and re-evaluation
of the system from scratch. Moreover, time-triggered systems such as FlexRay exhibit
tight dependencies of local task schedules and global bus schedules, and hence the
overall timing behavior of the system is very sensitive to changes in these schedules.
In particular, changes to bus schedules may result in

— re-configuration of the FlexRay controllers of all ECUs affected by the change, i.e.,
all ECUs that transmit or receive the message whose schedule has been changed

— changes in task schedules which need to be synchronized with the new bus schedules
to meet the timing constraints

— re-evaluation of the overall timing behavior of the system which is affected by the
change and all other applications that might be affected by the change, e.g., a new
schedule for message m1 might result in interference with an existing message m2

and increase its response time
— test and validation procedures which are extremely costly in terms of time and

money.

Especially, the test and validation process is of crucial importance and aims at several
important goals such as verification of functional properties, e.g., stability of control
applications, conformance tests to verify compliance with different standards such
as AUTOSAR [AUTOSAR 2013], robustness and stress tests as well as performance
tests [Armengaud et al. 2008]. To this end, test concepts strive for maximum test
coverage to test all important protocol and application features in all possible modes
of operation. As a result, test procedures are very time consuming and expensive,
involving (i) several hardware setups such as prototyping hardware and measurement
equipment, electronic control units (ECUs), Hardware-in-the-Loop (HiL) systems
and fully equipped vehicles, (ii) software and tools for test management, monitoring,
debugging, test and validation, and (iii) domain experts from different departments
and suppliers.
Hence, it is extremely important that in an iterative design process, the existing
design and schedules are unaffected by the addition of new applications or features.
To address these challenges, it is important that new messages can be added in
future iterations without disturbing and changing the schedules of the existing
messages while guaranteeing their real-time constraints. In other words, schedules
generated at each iteration should be sustainable, i.e., forward compatible. More
precisely, new messages being added in future iterations (future versions) should not
cause any deadline violations of existing messages (current version of the design).
Second, new messages should be able to be accommodated without re-scheduling
existing messages while satisfying all the timing constraints. As a result, extensi-
bility [Sangiovanni-Vincentelli et al. 2009; Sangiovanni-Vincentelli and Di Natale
2007] is a highly desirable attribute in the design of automotive embedded systems to
realize cost-efficient development and to reduce time-to-market.

Related work and our contributions: Along the lines of the research we present in
this paper, two major directions of related work have become apparent which can be
classified into work on (i) extensible scheduling for real-time systems, and (ii) schedul-

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

Quantifying Notions of Extensibility in FlexRay Schedule Synthesis A:3

ing and timing analysis for FlexRay. While there has been some recent effort to capture
extensibility in real-time systems, there is still ambiguity regarding the interpreta-
tion of these notions. In this context, sustainability has been discussed in the context
of uniprocessor and multiprocessor scheduling [Baruah and Burns 2006; Burns and
Baruah 2008; Baker and Baruah 2009]. Accordingly, a scheduling policy is referred to
as sustainable with respect to a system parameter, if a system that was determined
to be schedulable remains so even after the parameter is changed for the better, i.e.,
either increased or decreased. A similar definition for sustainability has also been pre-
sented in [Anand and Lee 2008; Poon and Mok 2010]. There are three major reasons
why the existing notions of sustainability are not suitable for FlexRay schedules.

— First, they do not consider the automotive product-line design approach where sched-
ules are generated incrementally at different design iterations [Zheng et al. 2005].
In an incremental design approach, schedules must be generated at each iteration
before the full range of functionalities and messages to support is known. For this
reason, a novel notion of sustainability is required which also captures the spirit of
incremental scheduling.

— Second, the analysis techniques presented along the above lines of research are
restricted to processor scheduling and do not consider FlexRay-specific protocol
and scheduling properties. As a result, the presented notions cannot be applied to
FlexRay schedules, and hence FlexRay-specific design methodologies are required.

— Finally, in the incremental design process that arises in the automotive scenario, it
is hardly likely that parameters like periods of already scheduled messages will be
changed once they have been determined. Rather, it is natural that new messages
are added to the system. For this reason, existing notions of sustainability which
are defined with respect to changes in a system parameter are not applicable in this
scenario. Rather, we are concerned with the question - whether an existing design
or version is sustainable with respect to its temporal behavior, i.e., whether previ-
ously scheduled messages are feasible (do not violate their deadlines) even when
new messages are added in future iterations. To accurately reflect this property and
to distinguish between the originally introduced notion of sustainability in real-time
systems by Baruah et al., in this paper, a notion of forward compatibility for FlexRay
schedules is introduced. For ease of exposition, we simply refer to compatibility in
what follows.

Various papers focused on extensibility of distributed real-time systems in which
the notions of extensibility differ in their interpretations. The work in [Zheng et al.
2005] proposes an extensibility metric for messages on a Time Division Multiple Ac-
cess (TMDA) bus. Here, extensibility is defined as the maximum message worst-case
transmission time extension a schedule can accommodate by rescheduling the finish
time of the message between the source ECU and the destination ECU. Extensibility
has been discussed in the context of incremental scheduling for distributed real-time
embedded systems [Pop et al. 2004]. The work addresses the problem of adding new
functionalities such that the timing requirements are fulfilled while the already run-
ning applications are disturbed as little as possible and new functionality can easily
be added to the existing system. Further, extensibility has been defined as the cost one
has to pay when a new functionality, e.g., a task or a message, is added on an existing
system [Scheler and Schroeder-Preikschat 2006]. Furthermore, uncertainty in frame
payloads has been studied to quantify extensibility for FlexRay messages [Ghosal et al.
2010].

— Among the above lines of work there exist many different interpretations of ex-
tensibility. In this work, we are interested in a notion of extensibility for FlexRay

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:4 R. Schneider et al.

schedules in an incremental design scenario. In contrast to the existing notions, we
quantify the capacity to accommodate additional (future) messages on FlexRay as a
measure of extensibility.

Apart from existing work on extensibility, of late, there has also been tremendous re-
search interest towards building tools and algorithms for scheduling and timing analy-
sis of messages on automotive networks [Schliecker et al. 2009]. Especially, the synthe-
sis of schedules for FlexRay has drawn the attention of several researchers [Schmidt
and Schmidt 2009; 2010; Tanasa et al. 2010; Zeng et al. 2010; Zeng et al. 2009; Schnei-
der et al. 2010]. In particular, an efficient approach to schedule messages on the static
(time-triggered) segment of FlexRay has been presented [Lukasiewycz et al. 2009].
Timing analysis methods for the dynamic (event-triggered) segment of FlexRay have
been presented [Pop et al. 2006; Hagiescu et al. 2007], and recent research efforts im-
proved earlier results and incorporated details of the FlexRay protocol [Tanasa et al.
2012; Neukirchner et al. 2012]. The work in [Ghosal et al. 2010] addresses incremen-
tal FlexRay scheduling and incorporates uncertainty of design parameters. However,
metrics to quantify extensibility for FlexRay schedules were not presented. Moreover,
the simplifying assumptions in the proposed scheduling techniques do not exploit all
the special characteristics of FlexRay, e.g., slot multiplexing, or they were restricted to
the static segment.

In contrast, our schedule synthesis approach is designed to systematically optimize
the schedules towards extensibility. In this paper, we, for the first time, propose:

— notions for extensibility from the perspective of FlexRay in an incremental design
scenario. In this context, we also show that traditional notions of extensibility cannot
be trivially adapted to FlexRay schedules.

— metrics to quantify the quality of FlexRay schedules with respect to extensibility. To-
wards this, metrics proposed in this work are applicable to both static and dynamic
segments. Apart from having a mathematical basis, our metrics also allow easy visu-
alization and thus, they may be easily interpreted by automotive engineers and help
to identify resource bottlenecks in early design phases.

— scheduling algorithms which incorporate the proposed metrics and analysis tech-
niques to synthesize extensible FlexRay schedule parameters.

As already described above there exist several works on timing analysis for the
FlexRay dynamic segment which (i) capture different levels of protocol details, (ii) pro-
vide different accuracy in the message delay estimates, and (iii) use different models
of computation resulting in different computational complexity [Bordoloi et al. 2012],
and it is also foreseeable that other delay models will come up in the near future. As
a consequence, new concepts presented in this paper which are, to some extent, based
on a specific delay model require an understanding of the underlying analysis tech-
niques and may require specific adaptations to the delay model under consideration.
As the focus of this work lies in the definition, quantification and synthesis of extensi-
ble FlexRay schedules, for simplicity of exposition, we use a simpler delay model which
computes more pessimistic message delays but is intuitive and suitable to demonstrate
our proposed metrics and techniques. However, we emphasize that our results are gen-
eral, and hence are independent from the specific delay model under consideration. In
fact, we give insights on how the proposed concepts may be easily integrated into other
delay models.

2. THE FLEXRAY PROTOCOL
In the following we introduce the basics of the FlexRay protocol [FlexRay 2013].
The FlexRay communication protocol is organized as a periodic sequence of cycles,

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

Quantifying Notions of Extensibility in FlexRay Schedule Synthesis A:5

where each cycle is of fixed length Tbus as depicted in Fig. 1a). Each cycle is further
subdivided into two major segments, a static (ST) and a dynamic (DYN) segment. In
the following we discuss the ST and the DYN segments, followed by specific properties
of FlexRay schedules.

Static segment: The ST segment of FlexRay follows a TDMA-based communication
paradigm. It is partitioned into a number of equal-length time windows, called static
slots, of duration ∆. The slots are labeled with a slot counter in ascending order
starting with 1 and ending with N , the set of static slots is denoted by SST = {1, ..., N},
e.g., N = 4 in Fig. 1a). Each message mi to be transmitted in the ST segment is
assigned a slot number Si ∈ SST . If mi is not ready at the beginning of the slot,
the slot remains empty. For example, in Fig. 1b) the static segment is defined as
SST = {1, ..., 4}. Message m1 is transmitted in its assigned static slot S1 = 3. Slot
number 4 is not assigned to any message and hence a full static slot of length ∆
elapsed without any message transmission.

Dynamic segment: The DYN segment comprises of M equal-length minislots
of much smaller size δ that is δ << ∆. The set of dynamic slots is given by
SDYN = {N + 1, ..., N + M}. For example, in Fig. 1a) the DYN segment consists of
M = 8 minislots and the set of available dynamic slots is denoted by SDYN = {5, ..., 12}.
A dynamic slot is a logical entity, which rather specifies the priority of a message
in the DYN segment. Thus, each message mi is assigned a slot number Si ∈ SDYN ,
which specifies that mi may be transmitted at the beginning of slot Si. Messages
mj having a higher priority than mi are assigned lower slot numbers Sj < Si so
that they have access to the bus first. In case a message mi is transmitted in a
slot Si, then this slot consumes a certain number of minislots ci depending on the
message size, and hence dynamic slots are of variable length. However, if no message
is transmitted in a certain slot, then only one minislot of length δ is consumed. For
example in Fig. 1b), message m2 starts its transmission at the beginning of minislot
2 in slot 6, and occupies three successive minislots as c2 = 3. Consequently, slot 6
is of length 3δ. Thus, after transmission of m2 the minislot counter value is equal
to 5 while the slot counter changes from 6 to 7 as illustrated in the figure. In slots
7 and 8 no message is transmitted, and hence, only one minislot is consumed at
each of these slots. Finally, message m3 is assigned slot 9, i.e., S3 = 9, and consumes
two minislots. Note that in contrast to Fig. 1a) the set of available dynamic slots
is SDYN = {5, ..., 9}, i.e., the slot numbers 10, 11, 12 are not available due to the
transmission of the messages m2 and m3. Further, a message is transmitted only if
the current minislot counter does not exceed the value of pLatestTx, which denotes
the highest minislot number a message transmission is allowed to begin for a cer-
tain ECU. The value of pLatestTx is statically configured during design time and
depends on the maximum dynamic payload size that is allowed to be transmitted by
a certain ECU (more details can be found in the FlexRay specification [FlexRay 2013]).

FlexRay schedules: In the above we described the ST and the DYN segments of a
FlexRay communication cycle. Further, a set of 64 cycles is repeated in a periodic se-
quence which we refer to as the FlexRay-matrix. As illustrated in Fig. 1c), each cycle
is indexed by a cycle counter which is incremented from 0 to 63 and reset to 0 again.
Apart from the slot number Si two further parameters specify the actual transmission
cycles of a message mi within the 64 cycles: (i) the base cycle Bi indicating the offset
within 64 communication cycles, and (ii) the cycle repetition rate Ri, which denotes
the number of cycles that must elapse between two consecutive allowable transmis-
sions. Thus, any FlexRay message mi is assigned Si, Bi, and Ri to uniquely specify

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:6 R. Schneider et al.

1 2 3 4 5

cycle

counter

slot

0

2

3

4

5

62

63

.

.

.
.

.

.

6 …

B1 = 1

R1 = 2

m1

m1

m1 m2

reset

cycle

counter

c)

Tbus

2Tbus

3Tbus

64Tbus

.

.

.

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8 9

m1 m2

c2 = 3

b)

1

a)

2 3 4 5 6 7 8

1 2 3 4 5 6 7 8 9 10 11 12

slot counter

minislots (DYN) static slots (ST)

Tbus

m3

c3 = 2

m1

8 m4

8 m4

8 m4

8 m4

8 m3

8 m3

8 m3

8 m3

cycle multiplexing

of m2 and m4 in slot 6

m3 is delayed depending

on the transmission of m2

2 3 4 7 8

Fig. 1. Figure a) illustrates a single FlexRay cycle of length Tbus with N = 4 static slots in the ST segment,
and M = 8 minislots in the DYN segment. Figure b) depicts the transmission of messages m1,m2,m3 in
their assigned slots S1 = 3, S2 = 6, and S3 = 9. Figure c) shows the FlexRay-matrix and the transmission
of the messages m1,m2,m3 and m4 according to the schedules Θ1 = {3, 1, 2},Θ2 = {6, 1, 2},Θ3 = {7, 1, 2}
and Θ4 = {6, 0, 2}.

admissible transmission points within 64 cycles which we refer to as the schedule
Θi = {Si, Bi, Ri} of mi. For instance in Fig. 1c), the schedule for m1 in the ST segment
is specified as Θ1 = {3, 1, 2}, i.e., every odd cycle in slot 3 is available for transmis-
sion of message m1. This is because the first cycle is indicated by base cycle B1 = 1,
and repetition rate R1 = 2 specifies that two cycles must elapse between allowable
transmission points. Similarly, the schedule for m2 in the DYN segment is specified
as Θ2 = {6, 1, 2}. However, an instance of m2 is only transmitted in cycle 1 of slot
6 consuming three minislots. As a result, the next slot number 7 which is assigned
to m3 according to Θ3 = {7, 1, 2} is delayed by 2 minislots in cycle 1 whereas in the
other cycles no instance of m2 is transmitted, and hence, m3 is transmitted earlier.
Consequently, the delay of a message in the DYN segment may vary in every cycle
depending on the transmission of messages with a higher priority, a lower slot number
respectively. Note that, every even cycle in slot 6, i.e., cycle 0, 2, 4, ..., 62, is assigned to
message m4 with Θ4 = {6, 0, 2}. Such scheduling leads to slot-multiplexing, i.e., the
same slot is being used by multiple messages in different cycles. Since any message
will be scheduled within the 64 cycles, the base cycle can be assigned a value within
0 and 63, i.e., Bi ∈ {0, ..., 63}. According to the specification of the AUTOSAR FlexRay
interface [AUTOSAR 2013], and the FlexRay protocol [FlexRay 2013], the following
relations hold:

— Repetition rate Ri = {2r | r ∈ N0, r ≤ 6}.
— Base cycle Bi < Ri.
— The set of feasible cycles related to Θi is defined as

Γi := {γ | γ = (Bi + n ·Ri), n ∈ N0, n ≤ (64
Ri
− 1)}.

— (Si = Sj)→ (Γi ∩ Γj = ∅), where Si, Sj ∈ S, and S = SST ∪ SDYN .

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

Quantifying Notions of Extensibility in FlexRay Schedule Synthesis A:7

1 2 3 4 5 6 slot

0

1

2

3

4

5

62

63

.

.

.

1 2 3 4 5 6

cycle

counter

slot

0

1

2

3

4

5

62

63

.

.

.

a) Deadine of m3 is still

met in presence of m5

c) Future messages mf

having high priorities

can be accomodated

m1

m1

m1

m1

m2

m2

m2

m2

m3

m3

m3

m3

m1

m2

m3

m5

m5

m1

m1

m1

m1

m2

m2

m2

m2

m3

m3

m3

m3

d) Slot 3 reserved for

special functionalities
m4

m4

m4

b) Not sufficient minislots available

to accomodate message m6

a) b)

cycle

counter

Iteration 1 Iteration 2

m6

Fig. 2. Figure a) shows design iteration 1 where three new messages m1,m2,m3 are schedules on the
FlexRay bus. Figure b) illustrates the subsequent design iteration 2 where two new messages m4 and m5

have been scheduled on top of the already schedules messages m1,m2,m3.

The last relation defines the slot-multiplexing condition where several messages as-
signed to the same slot may not interfere in any cycle according to their schedules.

3. MOTIVATION AND CHALLENGES
In this section, we illustrate the challenges involved in quantifying extensibility
from the perspective of the FlexRay protocol that was discussed in the previous
section. Towards this, we show that conventional metrics do not apply to FlexRay and
motivate the need for new techniques that quantify extensible schedules considering
platform-specific properties. Let us consider the examples in Fig. 2 that illustrate
several schedules in two consecutive design iterations; I = 1 in Fig. 2a), and I = 2 in
Fig. 2b). Fig. 2a) shows three messages m1, m2, and m3 that have been scheduled at
design iteration 1 on the DYN segment. Messages m4, m5, and m6 are to be scheduled
on ST and DYN segment, respectively, at iteration 2. Note that messages in the
ST segment do not experience interference from messages in future iterations as
static slots are of fixed and equal length, and hence, guarantee temporal isolation.
Consequently, a schedule Θi in the ST segment is compatible if the message mi is
assigned to a slot that appears frequently enough to meet the deadline di. Thus, it is a
straightforward check, and hence, compatibility in this case follows from the schedule
synthesis itself.

Example (a): Assume message m5 has been assigned slot 5 (which has the highest
priority in the DYN segment) at iteration 2 as illustrated in Fig. 2b). Note that at
iteration 1 in Fig. 2a), m3 was already assigned slot 8 in cycle 4. Hence, the schedule
of m3 must be synthesized such that its deadline d3 is met even in the presence
of the new message m5, i.e., the schedule of m3 must be compatible. Towards this,
two pieces of information are crucial during schedule synthesis at design iteration
1, (i) the number of future messages having higher priorities than m3 and (ii) the
worst-case workload generated by the future messages. Clearly, designers can not
precisely predict such information. However, based on the product line, current design
stage, and class of applications expected in future, it is reasonable to assume some
knowledge about the range of typical message sizes. Given such a range, we will show

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:8 R. Schneider et al.

in Section 4 how protocol properties allow to predict the worst-case workload in future
with reasonable accuracy. Moreover, given a schedule Θi, we may bound the number of
higher priority messages that may be assigned according to the slot number Si ∈ Θi.
Based on such observations, we will specify a notion of compatibility and present a
compatibility test in Section 4.

Example (b): Note that m3 is only allowed to be transmitted in the DYN segment if
there are sufficient minislots available, i.e., m3 can only be transmitted if the minislot
count does not exceed pLatestTx (see Section 2). Let message m6 from an iteration
2 consume two minislots and pLatestTx = 7. Then, as depicted in Fig. 2b), m6 will
not be allowed to allocate cycle 4 of slot 6 as there will not be sufficiently many
minislots available for a transmission of m3 before pLatestTx. Hence, schedules such
as Θ6 = {6, 0, 2}, Θ6 = {6, 0, 4}, Θ6 = {6, 4, 8}, etc., should not be assigned to m6. Our
metric for defining compatibility must be able to capture such details as well.

Example (c): In this example we show that conventional metrics like counting the
total number of empty slots do not accurately quantify extensibility for the FlexRay
protocol. For example, slot 6 is assigned to message m1 in every odd cycle at iteration
1 in Fig. 2a). Conventional metrics that count the total number of empty or occupied
slots would declare slot 6 as occupied. However, this does not reflect the true nature of
the schedule properties as discussed in Section II. That is because slot 6 can still be
assigned in the even cycles to a message mf in a future iteration, e.g., m6 in iteration
2, using slot-multiplexing. Hence, the schedules Θf = {Sf , Bf , Rf} where Sf = 6,
Rf ∈ {2, 4, 8, 16, 32, 64}, and Bf = 2n < Rf , n ∈ N0, are available for mf . In order to
quantify such available schedules accurately, we require novel metrics of extensibility
which we will present in Section 5.

Example (d): System designers often reserve certain slots that are provided for
specific protocols, e.g., XCP [AUTOSARXCP 2013] which is a measurement and
calibration protocol, or protocols for diagnosis and transport layer. Such slots may not
be assigned to application messages even if they are empty. For instance, in Fig. 2a),
slot 3 is reserved for such special functionalities. Hence, future application messages
that must be scheduled in the ST segment may not be assigned to any cycles of slot
3, e.g., m4 has been scheduled in the first (and not the third) slot at iteration 2 (see
Fig. 2b)). Consequently, we do not quantify the extensibility of such reserved slots in
order to avoid distortion of the extensibility metric (see Section 5).

Running example: For the sake of demonstration we now introduce a large-scale
running example to provide meaningful results and to show visual interpretation of
our proposed metrics. We consider a FlexRay bus configurations with Tbus = 5ms,
SST = {1, ..., 17}, SDYN = {18, ..., 258}, and δ = 0.015ms. The value of pLatestTx is
set to 238 for each ECU. The FlexRay network parameters have been generated to be
compliant with the specification using SIMTOOLS [SIMTOOLS 2013] configuration
software. The message parameters have been selected as commonly found in automo-
tive applications with payload sizes in the range ni = [2bytes, 40bytes] [Lim et al. 2011],
and periods pi between 10ms and 500mswith deadlines di ≤ pi [Grenier et al. 2008]. All
schedules Θi = {Si, Bi, Ri} have been generated in compliance with the FlexRay speci-
fication as described in Section 2. For ease of exposition, we consider an iterative design
scenario with only two consecutive design iterations, I ∈ {1, 2}, where 100 messages2

are scheduled in the DYN segment at each iteration. For the generated schedules, we

2The details of all message and schedule parameters are depicted in the Appendix in Tables VII and VIII

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

Quantifying Notions of Extensibility in FlexRay Schedule Synthesis A:9

evaluate extensibility according to the introduced metrics for each design iteration. In
particular, we study how extensibility properties evolve during several design itera-
tions.

4. COMPATIBILITY ANALYSIS
In this section we define a notion of (forward) compatibility for FlexRay schedules. The
basic idea of compatibility for FlexRay schedules in an incremental design scenario is:
Given a version of a FlexRay design with already scheduled, so-called existing mes-
sages, forward compatibility describes if the existing messages will also meet their
deadlines in future versions of the design where new messages might be added in any
design iterations. In particular, a schedule Θi is referred to as compatible if the follow-
ing conditions are met:

— COMP1: the deadline di is guaranteed even in the presence of messages from future
iterations that may interfere with mi and increase its response time

— COMP2: the workload due to messages from future iterations, that interfere with
mi, is bounded

— COMP3: existing schedules are not changed at any time.

We present a compatibility analysis and introduce a compatibility index which serves
as a performance measure to quantify the compatibility capabilities of scheduling al-
gorithms. Towards this, we first show that compatibility in the ST segment is rather
trivial, and hence, we focus our analysis on the DYN segment. The ST segment of
FlexRay provides temporal isolation between the slots Si ∈ SST as all slots are of
fixed and equal length. Hence, messages transmitted in the static slots do not inter-
fere with each other and have no impact on the message delay. Consequently, COMP1
is fulfilled if the deadline di is guaranteed for a certain static segment schedule Θi.
Similarly, COMP2 does not impose any constraints on the compatibility analysis as
there is no interference between messages in the ST segment. The worst-case delay in
the static segment depends on (i) the static slot length ∆ and (ii) the bus blocking time
Ri · Tbus. The bus blocking time considers the case that mi just missed its static slot Si
and it has to wait for Ri cycles until the next available slot. This gives us the following
expression for the worst-case delay Di of a message mi in the ST segment

Di = Ri · Tbus + ∆, (1)

and the condition for compatibility in the ST segment yields

Di ≤ di. (2)

Note that (1) considers the case where the application tasks are not synchronized with
the FlexRay bus schedules. Further, (1) does not depend on the slot number Si and
the base cycle Bi as these parameters are already captured by the worst-case scenario
which considers that the slot has just been missed. If the worst-case delay Di satisfies
the deadline di then the schedule Θi is referred to as compatible independent of the
number and properties of future messages that will be scheduled in the ST segment.

4.1. Compatibility in the dynamic segment
As mentioned in Section 2, the quantification of compatibility for DYN segment sched-
ules with Si ∈ SDYN is more complex due to the dynamic nature of the priority-based
communication paradigm. In the following, we first present (i) a delay model and a
schedulability test to verify message deadlines, and (ii) a workload estimation model to
account for interference due to future messages. In general, the number and workload
of future messages is unpredictable. However, we exploit certain FlexRay-specific
properties to bound the number of higher priority messages and make reasonable

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:10 R. Schneider et al.

1 2 3 4 5

cycle

counter

slot

0

1

2

3

4

5

62

63

.

.

.

m5

m1

m1

m1

m1

m2

m2

m2

m3

m4

m4

.

.

.

m2 and m3 missed their slots

Max. interference

from m2 and m5

Bus

blocking

time

Fig. 3. Worst-case delay scenario for message m3.

assumptions on the expected workload. Finally, we present a compatibility test to
check if any schedule Θi satisfies real-time constraints in the presence of messages
from future iterations interfering with mi.

Delay model and schedulability test: The transmission time of a message mi con-
suming ci minislots is given by ei = ci · δ where δ is the duration of a minislot. Further,
we denote the effective transmission time by ei = (ci−1)·δ. This captures the additional
transmission time in case a messagemi of size ci is actually transmitted in its assigned
slot Si ∈ SDYN . Since one minislot is consumed even if no message is transmitted on
the bus, the effective workload that is generated by mi is ci = ci − 1. This is also illus-
trated in Fig. 4 where message m1, transmitted in slot 6, consumes c1 = 4 minislots
which results in an effective workload of c1 = 3 minislots. Let Gk be the sets of message
indices j ∈ Gk such that Γj ∩ γ 6= ∅ and Sj < Si, ∀j,∀γ ∈ Γi, and k ∈ {1, ... 64

Ri
}, k being

an integer. Hence, mj are messages having a priority higher than mi, i.e., they share
at least one cycle with mi and have a lower slot number such that their transmissions
might affect the delay of mi.
Provided that a sufficiently large number of minislots is available to transmit mi in
any cycle, the worst-case delay due to messages with higher priorities than mi’s may
be computed as

Di = Ri · Tbus + max
k∈{1,..., 64Ri

}

∑
j∈Gk

ej + ei. (3)

The first term in the above equation accounts for the bus blocking time Ri · Tbus in
case mi just missed its slot Si and has to wait for Ri cycles until the next available

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

Quantifying Notions of Extensibility in FlexRay Schedule Synthesis A:11

1 2 3 4 5 6 8

1 2 3 4 5 7 8 9 slot

m1 7

Dynamic - Slot - Idle - Phase

AP

2 3 4

AP AP

5 1

DTS

c1 = c1‘ = 4

Idle Detection Time

n1

6

6

DTS n1
‘

case 1)

case 2)

minislots

c1 = 3

Fig. 4. Transmission scheme in the DYN segment. In case 1, message m1 has a payload of n1, in case 2,
the payload size for m1 is n′

1 < n1. In both cases, the actual minislot consumption in the DYN segment is
c1 = c′1 = 4.

slot. The second component max
k∈{1,..., 64Ri

}

∑
j∈Gk ej captures the worst-case interference

due to messages mj having a higher priority than mi and ei denotes the transmis-
sion time of mi. Let us look at the example illustrated in Fig. 3 where five messages
are scheduled in the DYN segment with schedules Θ1 = {6, 1, 2},Θ2 = {7, 0, 2},Θ3 =
{8, 0, 4},Θ4 = {9, 2, 4}, and Θ5 = {5, 4, 8}. Let us compute the worst-case delay for
message m3 with Θ3 = {8, 0, 4}. The corresponding set of available cycles is defined
as (see Section 2) Γ3 = {0, 4, 8, 12, 16, ..., 60}, i.e., γ1 = 0, γ2 = 4, γ3 = 8, ..., γ16 = 60.
Further, we can see from the figure that the two messages m2 and m5 have a
smaller slot number (higher priority) and interfere with m3 in certain cycles, e.g.,
in cycle 4 the corresponding sets of feasible cycles of m2 and m5 are defined as
Γ2 = {0, 2, 4, 6, ..., 62} and Γ5 = {4, 12, 20, 28, 36, 44, 52, 60}. Hence, the set of message
indices Gk which indicate the messages interfering with m3 are defined as G1 = {2},
i.e., m2, G2 = {2, 5}, i.e., m2,m5, G3 = {2}, G4 = {2, 5}, ..., G16 = {2, 5}. Let Tbus = 5ms
and δ = 0.015ms, then the worst-case delay for message m3 can be computed as
D3 = 4 · 5ms+ (1 + 2) · 0.015ms+ 2 · 0.015ms = 20.075ms with c2 = 2, c3 = 2, and c5 = 3
minislots. Note that (3) assumes that the delay is safely bounded and no message ex-
ceeds the value of pLatestTx, i.e., is displaced to the next admissible cycle. To account
for this we also compute the actual minislot counter and check if µi < pLatestTx. The
number of empty slots with higher priorities than Si according to Gk is bounded by

xk = (Si − 1)−N − |Gk| (4)

where |X | denotes the cardinality of set X . In our example we get x1 = 2, because
S3 = 8 (Θ3 = {8, 0, 4}), and N = 4, further G1 = {2}, and hence |G1| = 1. Similarly, for
the remaining cycles we get x2 = 1, x3 = 2, x4 = 1, ..., x16 = 1. Finally, we formulate
the schedulability test as

(Di ≤ di) ∧ (µi < pLatestTx) (5)

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:12 R. Schneider et al.

where the minislot counter is defined as

µi = max
k∈{1,..., 64Ri

}

(∑
j∈Gk

cj + xk

)
(6)

and the delay Di must respect the deadline di.

Workload estimation model: As discussed above xk denotes the number of empty
slots corresponding to a certain group Gk. These slots can be assigned to messages
mf in future iterations. However, to evaluate the compatibility test, the transmission
times of the future messages need to be estimated which will be discussed in what
follows. Let N be the set of feasible payload sizes n ∈ {0, 2, 4, ..., 254} in bytes3 in ac-
cordance with the FlexRay protocol. Let C be the set of message sizes c in terms of
minislots, including protocol header and physical layer properties. Then, according
to [FlexRay 2013; Rausch 2008] there exists a mapping function f : N → C where f(n)
is a function of the message payload size n. In other words, there exists a quantiza-
tion in the number of minislots such that messages with different payload sizes may
consume the same number of minislots in the DYN segment.

Every message transmission in the DYN segments starts and ends at a predefined
point within a minislot, called Action Point Offset (AP). The number of bits to be trans-
mitted includes the actual payload data n, and the fixed FlexRay protocol header and
trailer segments per message, indicated by the hatched boxes before and after the pay-
load segment in Fig. 4. The figure shows an illustrative example for transmission of a
message m1 in slot 6 in the DYN segment. The figure shows two different cases:

— case 1: m1 has a payload of size n1. This results in an actual minislot consumption
on the bus of c1 = 4 minislots on the bus.

— case 2: m1 has a payload of size n′1 < n1 Here, even if the message would have a
slightly smaller payload segment, the number of minislots required to transmit m1

on the bus is c1 = c′1 = 4.

As the payload segment of different messages may differ (compare case 1 and 2),
whereas the Action Point Offset and the length of a minislot are predefined and fixed
in the protocol configuration, a message might complete its transmission somewhere
within a minislot, e.g., in both cases of Fig. 4 the transmission ends at different points
in minislot 3. For this reason, each message transmission is extended until the next
Action Point Offset by adding a so-called Dynamic Trailing Sequence (DTS). Hence,
the transmission time on the bus is always exactly an integer multiple of a minislot.
In addition, there is a configurable Idle Detection Time and a Dynamic Slot Idle Phase
during which no other ECU is allowed to transmit any messages, and hence this
time also counts to the message being currently transmitted. As we can see from the
figure, messages might have different payload sizes but they might still consume the
same number of minislots on the bus, e.g., c1 = 4 minislots for payload n1 and n′1.
Formally, there exist subsets Ni ⊆ N with Ni := {n | ∀n ∈ Ni : f(n) = ci}. In other
words, for several sets of payload sizes Ni the corresponding resource consumption
ci in terms of minislots is constant. Table I shows how the minislot consumption is
related to the payload sizes for the FlexRay configuration of our running example. As
a result, future messages that might be scheduled with priorities higher than mi’s can
be considered by an estimated workload of cf minislots. Hence, we account for their
effective transmission time using ef = (cf − 1) · δ. Note that the choice of cf bounds
the effective transmission time ef for future messages that may have payload sizes

3We assume that every message mi has a fixed payload size of ni which is statically decided.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

Quantifying Notions of Extensibility in FlexRay Schedule Synthesis A:13

Table I. Example: Number of minislots c per payload size n

Subset of payload sizes Ni payload n in bytes f(n) minislots
N1 {2, 4, 6} 2
N2 {8, 10,, 20} 3
N3 {22, 24,, 36} 4
...

...
...

N18 {246, 248,, 254} 19

up to n ∈ Ni for which f(n) = cf . This allows for an expressive workload estimation
as the system designer now does not need to know the exact payload sizes of future
messages. In fact, it is sufficient to specify a range of expected payload sizes which
can be bounded by a unique value of cf , and hence allows for an approximate payload
estimation based on the designer’s experience.

Compatibility test: In the following we present the schedulability condition for a
compatible schedule. Using (3) and (4) the future worst-case delay D̄i is computed as

Di = Ri · Tbus + max
k∈{1,..., 64Ri

}

(∑
j∈Gk

ej + xk · ef
)

+ ei ≤ di. (7)

Equation (7) captures the interference due to already scheduled messages in the DYN
segment as defined in (3). In addition, (7) considers the worst-case workload due to
messages which might be scheduled in future iterations that consume up to cf min-
islots, have an effective transmission time of ēf respectively. Note that the maximum
interference from messages having a higher priority than mi’s is obtained by comput-
ing the maximum interference due to the existing messages and messages from future
iterations among all cycles that might interfere with mi’s schedule. In other words, if a
schedule Θi violates the deadline di while considering the possible messages in future
as well, then this schedule is not compatible. Let us look at the example illustrated in
Fig. 5 and evaluate (7) for message m3 with Θ3 = {8, 0, 4}. Further, let us consider mes-
sages from future iterations mf with cf = 2 minislots as depicted in the figure. Recall
that the value of cf considers messages with several payload sizes. From Θ2,Θ3, and
Θ5 we again compute xk for each Gk using (4). It can be seen that number of messages
with a higher priority than mi’s can be different in every cycle, e.g., in cycle 0, x1 = 2,
whereas in cycle 4, x2 = 1. Even though, in cycle 4 only one mf can be assigned in
the future, the resulting workload is more critical than in cycle 0, where two messages
might be added. This is because the availability of minislots might expire in cycle 4
such that m3 can get displaced in a future iteration. As a consequence, we also must
consider the availability of minislots in future iterations. Hence, we require that the
maximum minislot counter value µi (considering the workload cf of messages from
future iterations) must not exceed the value of pLatestTx:

µi = max
k∈{1,..., 64Ri

}

(∑
j∈Gk

cj + xk · cf
)
< pLatestTx. (8)

If both (7) and (8) are fulfilled by any schedule Θi, such a schedule is referred to as
compatible. Using (7) and (8) we formulate the compatibility test for the DYN segment:

(Di ≤ di) ∧ (µi < pLatestTx). (9)
Running example: Let us evaluate the compatibility test defined in (9) for design
iteration I = 1 of our example. Towards this, we consider future messages with a
workload of cf = 4 minislots. Consider for example message m10 which has been as-
signed the schedule Θ10 = {101, 1, 2} and a deadline d10 = 22ms. Currently, m10 easily

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:14 R. Schneider et al.

1 2 3 4 5

cycle

counter

slot

0

1

2

3

4

5

62

63

.

.

.

m5

m1

m1

m1

m1

m2

m2

m2

m2

m3

m3 mf mf

mf

.

.

.
m3 might get displaced

in a future iteration

Fig. 5. Delay model and compatibility analysis

meets its deadline constraints as the worst-case delay according to (3) is computed as
D10 = 11.305ms < d10, and the present minislot counter µ10 = 167 < pLatestTx. Hence,
(i) there is a sufficiently large slack of 10.695ms, and (ii) enough minislots are available
to transmit m10 in its assigned cycles. Even though m10 meets its deadline, considering
messages from future iterations with cf = 4 minislots resource consumption the com-
patibility test in (9) fails because the worst-case minislot counter evaluates µ10 = 317
which exceeds pLatestTx = 238. Consequently, Θ10 is not compatible although it meets
its timing constraints at the current design iteration I = 1.

Similarly, message m94 with Θ94 = {68, 3, 4} also meets its deadline constraint at
I = 1 because D94 = 21.56ms, and hence D94 < d94 = 22ms. Further, the maximum
minislot counter µ94 = 152 < pLatestTx. However, the compatibility test in (9) fails
because the delay due to future messages is computed as D94 = 22.76ms which clearly
may result in deadline violations at future design iterations I > 1. Thus, m10 and m94

will be declared to be not compatible by our compatibility test. Recall that this test is
based on the presented workload estimation methods and the compatibility test, and
it did not explicitly account for the actual messages in design iteration I = 2. Now,
let us explicitly consider the messages from design iteration I = 2 and schedule 100
additional messages. We observe that Θ94 and Θ10 which were marked incompatible in
the previous iteration, in fact violate their real-time requirements, due to the presence
of interfering messages from iteration I = 2. In particular, Θ94 now violates its dead-
line constraints, i.e., D94 > d94. For Θ10, the current maximum minislot counter µ10 is
computed as µ10 = 241 > pLatestTx, i.e., m10 cannot be guaranteed to be transmitted
in its assigned cycles.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

Quantifying Notions of Extensibility in FlexRay Schedule Synthesis A:15

4.2. Compatibility index
Finally, we denote the number of schedules that pass the compatibility test as the
compatibility index according to

ξ =
|Q|
|M|

(10)

where M denotes the set of all messages to be scheduled and Q ⊆ M denotes the
subset of messages which have been assigned compatible schedules which is defined
as Q := {mi | ∀mi ∈ Q : (Di ≤ di) ∧ (µi < pLatestTx)}. We will use ξ as a performance
index in Section 7.1 to compare the compatibility capabilities of different scheduling
algorithms.

4.3. Extensions to other delay models
The defined notion of compatibility and the corresponding analysis introduced in this
section are based on the delay model presented in Section 4.1. As already mentioned
in Section 1, there exists several work on timing analysis for the FlexRay DYN seg-
ment which captures different levels of protocol details, provides different accuracy
in the message delay estimates, and uses different models of computation. It is also
foreseeable that new delay models will come up in the future that may further im-
prove existing approaches. Hence, a natural question that may arise in this context is:
how general is the presented compatibility analysis and how may it be integrated into
other delay models? For this purpose, we want to consider recent works that compute
upper bounds on the displacement of messages over multiple cycles in the DYN seg-
ment (e.g., [Tanasa et al. 2012; Neukirchner et al. 2012]), and hence allow computation
of less pessimistic worst-case delays compared to the delay model we use in this work.

Recall the definition of COMP1 which refers to a schedule as compatible iff the
deadline di is guaranteed even in the presence of future messages. Essentially, we
must check whether the following condition is satisfied.

Di ≤ di (11)
where Di denotes the future worst-case delay. For the sake of simplicity, in this work
we computed Di by extending the delay model of (3). However, this meant that we
should be able to predict the workload of the future messages and hence, we proposed
the workload estimation model.

We want to emphasize that our workload estimation model can also be utilized by re-
cently developed models (e.g., [Tanasa et al. 2012; Neukirchner et al. 2012]) to compute
Di. Both, [Tanasa et al. 2012] and [Neukirchner et al. 2012] transformed the problem
of computing the worst-case delays of messages on the DYN segment of FlexRay into
a bin covering problem and then proposed different heuristics to solve the equivalent
problem. As an input, they require the set of messages to be transmitted on the DYN
segment as well as certain characteristics of these messages. These characteristics in-
clude the payload ni of the messages and their schedule Θi. We have already discussed
how to conservatively predict all these characteristics and the same techniques may
be also used to find the input required by [Tanasa et al. 2012] and [Neukirchner
et al. 2012]. First, the set of messages to be considered in future consists of the ex-
isting messages as well as messages that may be accommodated in the empty higher
priority minislots in existing iteration. For the models proposed in [Tanasa et al. 2012]
and [Neukirchner et al. 2012], we propose to introduce one message for every empty
minislot (this defines their priority) and for every cycle (this defines their base cycle
Bi). These messages are assigned a repetition rate of Ri = 64. This repetition rate is
chosen because as we have introduced one new message for every empty slot in the

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:16 R. Schneider et al.

64-cycle matrix, any repetition rate Ri that is less that 64 will add to duplicate mes-
sages and result in unnecessary pessimism. The payload size for these messages can
be predicted exactly in the same fashion that we discussed in our proposed workload
estimation model.

Also note that COMP2 and COMP3 retain their validity by definition. With this
discussion, we want to convey that our metric on compatibility as well as our proposed
workload estimation model can be used in a seamless plug-and-play fashion with other
delay models that have been proposed in the literature. For simplicity of exposition,
however, in this paper we have used a relative straightforward delay model.

5. EXTENSIBILITY ANALYSIS
The compatibility analysis discussed so far does not quantify the availability of sched-
ules that may be assigned to messages added in future iterations. To account for this,
we specify the notion of extensibility in what follows. The basic idea of extensibility for
FlexRay schedules in an incremental design scenario is: given a FlexRay network with
existing messages, extensibility is a property that quantifies the quality and number
of schedules that is available to accommodate messages in future iterations. Provided
existing schedules are not changed at any time, we introduce the following concepts:

— EXT1: The grade of extensibility indicates the number of available schedules that
may be assigned to any messages in a particular slot S, i.e., the availability of sched-
ules Θf for future messages.

— EXT2: The quality rating of a slot S quantifies the real-time capabilities for future
messages (e.g., slots with high priorities have higher quality rating).

— EXT3: The extensibility index combines quality rating and grade of extensibility into
a joint metric. This metric is used as an optimization objective in the scheduling
framework we present in Section 6 to synthesize extensible schedules.

We will first explain the above mentioned concepts in detail, and then introduce the
effective network extensibility which is used as a performance measure to compare the
extensibility capabilities of scheduling algorithms (see Section 7.1).

5.1. Grade of extensibility
Let us consider the number of available schedules for a message mi that is to be
scheduled in slot Si. Within Si, mi can be assigned any of the admissible repeti-
tion rates Ri ∈ {1, 2, 4, 8, 16, 32, 64}. For each of these repetition rates, there are Ri
base cycle values Bi available where Bi < Ri. For example, if Ri = 2, mi might
be assigned a base cycle Bi ∈ {0, 1}, if Ri = 4, then Bi ∈ {0, 1, 2, 3}, and so on.
Thus, the total number of available choices to schedule mi in slot Si is computed as
C(Si) =

∑
Ri
f(Ri), ∀Ri ∈ {1, 2, 4, 8, 16, 32, 64}, where f(Ri) denotes a function re-

turning the number of available base cycles Bi for repetition rate Ri. As discussed
above, f(Ri) = Ri if there is no other message scheduled in slot Si. On the other
hand, let us consider that existing schedules from previous iterations already utilize
some cycles of slot Si, and a message mi is to be scheduled in the same slot. In this
case, the number of available repetition rates Ri and base cycles Bi is less because
of the presence of the existing schedules. For instance, let us consider the message
m4 with Θ4 = {9, 0, 2}, and study the influence of its schedule on the possible sched-
ules for any mi which is to be scheduled in the same slot. Here, Ri = 1, Bi = 0 is
not available as the schedule Θi = {9, 0, 1} interferes with m4’s schedule in every
even cycle as Γ4 ∩ Γi = {0, 2, 4, ..., 62} 6= ∅, and hence violates the slot-multiplexing
condition. Consequently, f(1) = 0. Concerning the other repetition rates, only half of
the possible choices are available for mi, i.e., f(Ri) = Ri

2 for Ri ∈ {2, 4, 8, 16, 32, 64},

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

Quantifying Notions of Extensibility in FlexRay Schedule Synthesis A:17

1 50 100 150 200 258
0

0.5

1

Slot number S

G
ra

de
 o

f E
xt

en
si

bi
lit

y
P

1(S
)

Fig. 6. Grade of extensibility for I=1.

as every even base cycle Bi is unavailable due to the presence of m4’s schedule and
C(Si) = 0 + 1 + 2 + 4 + 8 + 16 + 32 = 63. As the total number of available schedules
in any empty slot Ŝ is computed as C(Ŝ) =

∑6
r=0 2r = 127 we compute the grade of

extensibility P1(Si) of a slot S as

P1(S) =
C(S)

C(Ŝ)
. (12)

Let us look at another example. Consider the schedules Θ1 = {6, 1, 2}, Θ2 = {6, 0, 4},
Θ3 = {7, 0, 1} and Θ4 = {9, 0, 2}. In slot 6, Θ1 and Θ2 are already assigned, and cycles
available to mi in slot 6 are denoted by (2+n ·4), n ∈ {0, 1, ..., 15}. Using (12), we obtain
P1(6) = 0+0+1+2+4+8+16

127 = 0.2441, i.e., 24.41% of all schedules are available to schedule
any mi in slot 6. Further, even though every fourth cycle is available, P1(6) 6= 0.25
as schedules Θi where Ri = {1, 2} are not available. In every cycle slot 7 is already
assigned m3 (see Θ3), hence P1(7) = 0, and in every second cycle, slot 9 is assigned
m4 (see Θ4), thus P1(9) = 0.4961. This measure can be applied to the ST and DYN
segment in the same manner. In fact, this metric allows us to quantify the grade of
extensibility to accommodate messages in any slot S ∈ S.

Running example: The grade of extensibility is illustrated in Fig. 6. The figure shows
P1(S) for 100 schedules which have been generated for design iteration I = 1. Note,
that points in the figure where P1(S) = 0 indicate slots where all cycles are allocated
by schedules, e.g., Θ1 = {S1, 0, 1}, or several slot-multiplexed schedules such as Θ1 =
{S1, 0, 2} and Θ2 = {S2, 1, 2}, with S1 = S2. This implies that no schedules are available
for any further messages in that slot. In contrast, points where P1(S) = 1 denote empty
slots where all feasible schedules are available for future messages, i.e., the grade of
extensibility is maximum. P1(S) = 1 is especially prominent in the ST segment, i.e.,
S ∈ {1, ..., 17}, as no messages have been scheduled in static slots at any iteration I.
Points in the range 0 < P1(S) < 1, indicate slots where one or more slot-multiplexed
schedules partially allocate cycles in S and therefore constrain the number of available
schedules for messages in future iterations.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:18 R. Schneider et al.

17 50 100 150 200 258
0

0.5

1

Slot number S

Q
ua

lit
y

ra
tin

g
P

2(S
)

k = 1

k = ∞

Fig. 7. Quality rating of slots.

5.2. Quality rating of extensibility
In order to cope with a quantification of the quality rating of slots we introduce a
quality rating function P2(S) which specifies a weight for every communication slot
S ∈ S. Effectively, P2(S) maps a weight to every slot according to its ability to provide
real-time guarantees for future messages, e.g., according to slot priorities. We define a
quality rating function P2(S) as follows:

P2(S) =


0, ∀S ∈ R
1, ∀S ∈ SST \ R

1− e−k
(
|S−(N+M)|
S−(N+1)

)
, ∀S ∈ SDYN \ R

(13)

Equation (13) specifies different quality ratings for (i) reserved slots, (ii) static slots
and (iii) dynamic slots and is discussed in detail in what follows.

(i) Reserved slots: The first term in (13) accounts for reserved communication slots
S ∈ R which are supposed to be used for system functions or specific protocols (see
Section 2). For these slots the schedule assignment is often pre-defined according to
specific rules or standards, and hence we do not quantify their extensibility, i.e., P2(S)
evaluates zero. In our running example (see Fig. 7), we used R = {1, ..., 7}, i.e., the
first 7 slots in the ST segment are reserved and cannot be assigned to application
messages. Note that slots can also be reserved in the DYN segment.

(ii) Static slots: The second term in (13) specifies the quality rating of static slots
which are provided for scheduling application messages. All slots in the ST seg-
ment are of fixed, equal length and indicate equal priorities, i.e, messages cannot
experience interference from any other messages transmitted in the ST segment.
Consequently, we weight the static slots with a constant maximum rating factor
P2(S) = 1, ∀S ∈ SST \ R, where SST = {1, ..., N}. This is also reflected in Fig. 7 where
P2(S) = 1, ∀S ∈ {8, ..., 17}.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

Quantifying Notions of Extensibility in FlexRay Schedule Synthesis A:19

(iii) Dynamic slots: The third term in (13) accounts for slots in the DYN segment
that are not reserved, i.e., for S ∈ SDYN \ R, where SDYN = {N + 1, ..., N + M}. The
event-triggered communication paradigm in the DYN segment implies that the qual-
ity rating function must change weights according to the slot priorities. However, the
rate of change is not constant because (i) real-time guarantees can only be provided
for messages assigned to low slot numbers (high priorities) where delays are bounded
(see (5)), (ii) real-time guarantees cannot be provided for messages assigned to high
slot numbers (low priorities) as messages can only be transmitted in a certain cycle
if sufficiently many minislots are available according to pLatestTx. Therefore, for the
DYN segment, we propose a quality rating function according to (13). The exponential
drop-off in (13) is based on the results presented in [Zeng et al. 2010; Neukirchner et al.
2012] which show that the message response times in the DYN segment exponentially
increase with the slot number S. Thus, an exponential drop-off in P2(S),∀S ∈ SDYN
is a reasonable design choice to measure the quality rating of slots. Here, high prior-
ity slots are quantified with a high quality rating, i.e., P2(S) evaluates towards 1 for
S → (N + 1). Similarly, P2(S) evaluates towards zero for S → (N +M). Intuitively, this
indicates that messages assigned to high slot numbers are more likely to miss their
deadlines due to the interference with messages having higher priorities, which may
result in displacements and large delays, respectively. On the contrary, the messages
assigned to low slot numbers (at the beginning of the DYN segment) hardly experi-
ence interference with other messages, and hence their timing behavior is not much
disturbed. Consequently, using a quality rating function the system designer (i) may
determine for which slots extensibility is considered to be very important (slots have a
high quality), and for which slots extensibility is considered to be of weak importance
(slots have low quality), and (ii) direct the scheduling synthesis accordingly. Note that
the characteristics of P2(S) may also be dynamically adapted in every iteration I based
on the actual workload w of the already scheduled messages. This may be realized by
formulating k(1

w) in (13), as a function of the workload. In the extreme case at I = 0
where none of the minislots is allocated to any messages we have w = 0 which yields
kI(

1
w) = ∞, and hence, P2(S) = 1,∀S ∈ SDYN as depicted in Fig. 7. That is, if no

message is assigned any slot, the quality rating of all slots is maximum. Further, with
every design iteration, we may increase kI(1

w) based on the actual workload w in the
DYN segment which results in a decrease of P2(S) as indicated in Fig. 7 for different
values of k for SDYN = {18, ..., 258}. For ease of exposition, in the rest of this paper we
assume k = 1.

5.3. Extensibility index
In order to avoid the cumbersome process of interpreting multiple metrics, we intro-
duce an extensibility index E(S), a holistic quantification of extensibility that not only
depends on the grade of extensibility but also on the quality rating

E(S) = P1(S) · P2(S), ∀S ∈ S. (14)

Since P2(S) indicates a measure for the real-time guarantees of S such that
1 ≤ P2(S) ≤ 0, the extensibility index E(S) denotes the grade of extensibility P1(S) of
slot S weighted according its quality rating. In other words, E(S) represents a joint
metric that indicates the extensibility of a certain slot S with respect to the number
of schedules it provides for future messages in conjunction with the slots’ real-time
guarantees.

Running example: Fig. 8 depicts the extensibility index E(S), ∀S ∈ S for design
iteration I = 1. As the extensibility index represents the grade of extensibility P1(S)
weighted by the quality rating P2(S) for every S ∈ S, points along P2(S) indicate empty

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:20 R. Schneider et al.

1 68 101 150 200 258
0

0.72

1

Slot number S

E
xt

en
si

bi
lit

y
In

de
x

E
(S

)

E(S)
P

2
(S)

Fig. 8. Extensibility index for I=1.

slots, i.e., full availability of schedules. As illustrated in the figure, E(S) dramatically
decreases for high slot numbers S → 258 even if all schedules are available in a slot S.
This accounts for the low-priority slots where future messages might experience high
interference from other messages and hence, will less likely satisfy real-time guaran-
tees. Thus, extensibility in those slots is weighted less according to the quality rating
P2(S). On the other hand, Fig. 8 reflects a high grade of extensibility for low slot num-
bers indicating that these slots might easily accommodate high priority messages. Note
that E(S) = 0,∀S ∈ R = {1, ..., 7}, because we do not consider reserved slots in our ex-
tensibility analysis according to P2(S). Further, E(S) = 1,∀S ∈ S \ R as no messages
have been scheduled in the ST segment and hence E(S) = P1(S) = 1. In essence, a
visual reading of the extensibility index graph in Fig. 8 reveals the following:

—E(Si) = 0: Slots that are not extensible at all are denoted by points on the x-axis. This
follows from the definition of the quality rating function where slots that cannot be
assigned any schedule evaluate to P1(S) = 0, and hence according to (14), E(S) = 0.

—E(S) = P2(S): Slots that provide maximum extensibility, i.e., slots that are not as-
signed any schedules, are denoted by the points located at the top of the graph which
coincide with P2(S) (see continuous line in the figure). Here, the grade of extensi-
bility P1(S) = 1 is maximum as all schedules are available at each of the slots, and
hence E(S) = P2(S). Note that extensible slots with high priorities are located close
to E(S) = 1 according to the quality rating function.

— 0 < E(S) < P2(S): Slots that are already utilized by schedules but are not assigned
the slot in every cycle are denoted by points between 0 < E(S) < P2(S). Depending on
the number of available schedules the points are either located (i) close to P2(S), i.e,
many schedules are available as for example in slot S = 68, where E(68) = 0.72, or (ii)
in the lower half of the graph which indicates the availability of only few schedules.

Fig. 9 shows the updated extensibility index for iteration I = 2 where 100 additional
messages have been scheduled in the DYN segment. Note that the overall extensibility
decreased as many points have dropped from the reference curve P2(S) compared
to I = 1 (see Fig. 8). Observe that many high priority slots, that were not assigned
previously, have now been assigned to the new messages, e.g., in Fig. 9 at points

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

Quantifying Notions of Extensibility in FlexRay Schedule Synthesis A:21

1 68 101 150 200 258
0

0.48

1

Slot number S

E
xt

en
si

bi
lit

y
In

de
x

E
(S

)

E(S)
P

2
(S)

Fig. 9. Updated extensibility index for I=2.

S ∈ {18, ..., 50}, where E(S) < P2(S) compared to Fig. 8 where E(S) = P2(S). Com-
pared to Fig. 8, many more points superimpose the x-axis implying that many slots are
now completely allocated. Similarly, slots that have been partially allocated have now
accumulated along a second curve segment around at 0.5 ·E(S) as illustrated in Fig. 9.
Further, the extensibility index E(68) decreased from 0.72 to 0.48 between the two
iterations, i.e., a new message has been scheduled for I = 2 using slot-multiplexing,
and hence E(68) decreased.

5.4. Effective network extensibility
Our motivation for introducing a single metric to encapsulate the extensibility of all
slots instead of slot by slot metric is the following. If one metric can capture the behav-
ior of FlexRay network in a holistic fashion, it can be used by optimization frameworks
that synthesize schedules subject to extensibility. In the next section, we will propose
one such scheme. In contrast, a quantified value per slot would lend to ease of visual
interpretation (as shown previously in this section) and can be easily adapted by sys-
tem designers in the industry for human-intervened schedule design as well. Towards
introducing a single holistic metric, we first separately consider the ST and the DYN
segment extensibility and condense them into one metric. The total extensibility of the
ST and DYN segment may be computed as

EST =
1

N

N∑
S=1

E(S), EDYN =
1

M

N+M∑
S=(N+1)

E(S) (15)

where N is the number of static slots and M is the number of minislots in the DYN
segment. The extensibility of the entire FlexRay network is computed as

EFR =
1

N +M

N+M∑
S=1

E(S). (16)

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:22 R. Schneider et al.

The above formula essentially denotes the summation of the extensibility index E(S)
over all slots in the FlexRay network ranging from the first slot S = 1 to the last slot
S = N + M in the DYN segment normalized by the total number of slots N + M .
While the above metric quantifies the extensibility of FlexRay schedules, it does not
consider the actual schedulability of messages for any synthesis algorithm. However,
the schedulability has a significant impact on the extensibility. To account for this,
we introduce the concept of effective network extensibility which we explain in what
follows.

Let us assume we want to schedule five new messages M ∈ {m1,m2,m3,m4,m5}
on top of an existing network using two different schedulers algorithm 1 and algo-
rithm 2. We are interested in studying which scheduling algorithm generates more
extensible schedules. Let us assume that algorithm 1 assigns a feasible schedule to all
five messages which results in a certain network extensibility according to (16), e.g.,
Ealg1FR = 0.48. Further assume that algorithm 2 is only able to schedule three out of
the five messages which results in a higher network extensibility of Ealg2FR = 0.49 than
in the case of algorithm 1, and hence indicates a better extensibility. This is expected,
as we only accommodated three new messages whereas in the case of algorithm 1 we
scheduled all five messages which obviously requires more resources as we accom-
modated two more messages. Thus, to consider the schedulability in the extensibility
analysis, we introduce the effective network extensibility Eeff which is defined as fol-
lows:

Eeff = max(EFR −
κ(|M| − |L|)

(N +M)
, 0) (17)

where EFR denotes the network extensibility as defined in (16),M denotes the set of
all messages to be scheduled and L ⊆ M is the subset of all messages that actually
have been assigned a feasible schedule. The term (|M| − |L|) represents the number
of messages that could not be assigned feasible schedules, and hence, these messages
should not contribute to increase the overall network extensibility EFR but rather
deteriorate the extensibility. To account for this, we introduce a penalty, denoted by κ,
which represents the worst-case decrease in extensibility for any message mi /∈ L. The
worst-case extensibility decrease κ is derived by the maximum possible extensibility
index in the ST or DYN segment, i.e., κ = maxS(E(S)) with S ∈ {1, ..., N} for the ST
segment, and S ∈ {N + 1, ..., N + M} for the DYN segment. In the example above, we
have (|M| − |L|) = 2 for algorithm 2 as two out of five messages could not have been
scheduled because |M| = 5 and |L| = 3. Further, assume that the maximum possible
extensibility index is κ = maxS(E(S)), e.g., κ = 1. Consequently, for algorithm 2 and
100 slots, we get Ealg2eff = max(0.49 − 1·2

100 , 0) = 0.47 which is smaller than Ealg2FR = 0.49.
For algorithm 1 we get Ealg1eff = Ealg1FR = 0.48 as (|M|−|L|) = 0, and hence Ealg1eff > Ealg2eff .
Note that in case all messages are schedulable with any algorithm the term (|M|−|L|)
in (16) evaluates to zero which finally yields Eeff = EFR.

Section 7.1 illustrates how the effective network extensibility is used to compare the
extensibility performance of different algorithms.

5.5. Extensions to other delay models
The presented concepts of extensibility introduced in Sections 5.1, 5.2, and 5.3 are
generic in nature as they solely depend on the FlexRay-specific schedule parameters
Ri, Bi, and Si. Hence, the extensibility analysis and the associated notions EXT1
(grade of extensibility), EXT2 (quality rating), and EXT3 (extensibility index), do not
depend on the underlying delay model which we will be discussed in what follows.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

Quantifying Notions of Extensibility in FlexRay Schedule Synthesis A:23

First, recall that EXT1 indicates the number of available schedules that may be
assigned to any messages in a particular slot S. This corresponds to the availability
of schedules Θf for future messages according to (12) which is computed based on
the number of available base cycles per repetition rates in a particular slot. Hence,
the output of (12) does not consider any timing properties of the messages but the
availability of FlexRay schedules.

Second, EXT2 quantifies the real-time capabilities of a slot Si for future messages.
That is, slots with high priorities (small slot numbers) have higher quality rating
compared to slots with low priorities (high slot numbers). The quality rating function
in (13) only depends on the parameters N and M , the number of static slots, number
of minislots, respectively, and k which is a user-defined constant. Therefore, there is no
direct relation between the actual message delays Di and the quality rating function,
and hence, (13) does not depend on the delay model under consideration.

Further, the extensibility index EXT3 is also independent of the delay model as it is
defined as the product of EXT1 and EXT2 according to (14).

Finally, the concept of effective network extensibility presented in Section 5.4 re-
quires as an input, the set of messages L that have been assigned feasible schedules,
in order to evaluate equation (17). Naturally, the schedulability of a message depends
on its delay Di and its associated deadline di. Consequently, the number of messages
|L| that have been assigned feasible schedules depends on the worst-case delay es-
timates which are computed using a dedicated delay model. Although the feasibility
check for any schedule depends on the message delay, the proposed concept of effec-
tive network extensibility in (17) is not affected. This is because (17) just requires the
number of messages that have been assigned feasible schedules. Note that, it is not
necessary to modify the above notion of effective network extensibility when using a
different delay model, however, the derived results for network extensibility may be
affected. For instance, results derived with the delay model of (3) may be more con-
servative (resulting in a lower value of Eeff) compared to the value of Eeff using one
of the models which allow for computing tighter worst-case delays (e.g., [Tanasa et al.
2012; Neukirchner et al. 2012]).

6. SCHEDULE SYNTHESIS
In this section, we are interested in synthesizing extensible schedules according to the
proposed metrics. For n messages, the possible set of schedules is exponential in the
order of Cn in the worst case with C being a constant. Hence, any approach based on
enumerating all possible schedules does not scale and therefore we propose heuristics
to synthesize schedules following the metrics introduced earlier. We show that the
introduced heuristics have reasonable run times (in the order of 10 - 15 sec) for real-
life industry-strength problems.

6.1. Real-time constraints
Two key parameters for a FlexRay schedule that affect message delays are the repeti-
tion rate Ri and the slot number Si where Ri determines the number of communication
cycles a message is blocked in case it missed its slot in a cycle. Hence, the choice of both
parameters is crucial to guarantee real-time constraints of messages. Given a repeti-
tion rate Ri, the FlexRay bus potentially provides the assigned slot Si to transmit a
message mi every Ri cycles, i.e., within a time interval of Ri · Tbus. We define, the sam-
pling period of the FlexRay bus for any message mi as the interval length Ri · Tbus.
Note that the value of Ri · Tbus must (i) satisfy the minimum inter-arrival distance pi
of two consecutive data items processed by the sender task, and (ii) be upper bounded
by the message deadline di. In such a scenario, pi = Ri · Tbus is a sufficient condition
to guarantee the transmission of every instance of mi. Hence, we upper bound the rep-

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:24 R. Schneider et al.

1 2 3 1 2 3 1 2 3 1 2 3

cycle 0 cycle 1 cycle 2 cycle 3

1 2 3 1 2 3 1 2 3 1 2 3

cycle 0 cycle 1 cycle 2 cycle 3

a)

b)

t0

m5 missed its slot

t1
p5 = 2Tbus

second instance of m5

overwrites first instance

and is transmitted

m5

t0

m5 missed its slot

m5

m5 is transmitted
t1

m5 missed its slot

m5

m5 is transmitted

Fig. 10. Scenarios for message transmissions with different repetition rates. In scenario a), m5 is assigned
repetition rate R5 = 2. In scenario b) m5 is assigned repetition rate R5 = 1.

etition rate by Ri ≤ min(pi,di)
Tbus

. As the repetition rate is only defined by a power of two
and is limited to 64 (see Section 2), the maximum repetition rate Rmax,i is computed
according to [Schneider et al. 2010] as

Rmax,i = min(2

⌊
log2

(
min(pi,di)

Tbus

)⌋
, 64). (18)

In contrast to the ST segment, the location of the communication slots in the DYN
segment may vary from cycle to cycle as it depends on the actual transmission of mes-
sages that are assigned higher priorities, i.e., smaller slot numbers (see Section 2).
Thus, in the DYN segment, the precise time at which a message is ready for transmis-
sion can be before or after the corresponding dynamic communication slot was ready.
Consequently, a bus sampling rate equal to the maximum message rate does not pro-
vide safe transmission points. In the worst case, data can not be transmitted on the bus
before a new value is produced by the application. This is demonstrated in the example
depicted in Fig. 10a). We consider message m5 with p5 = 2Tbus and di = pi. Using (18)
yields R5 = 2. Then, in the worst case, m5 just missed its slot S5 in cycle 0 at t0, and at
t1 = t0 +p5 the next slot S5 is not yet ready as messages having higher priority than m5

are transmitted first (see figure). Thus, the first instance of m5 is overwritten by the
second instance of m5 which finally gets transmitted on the bus in cycle 2. To reflect
the sampling constraints in the DYN segment, we require that the FlexRay sampling

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

Quantifying Notions of Extensibility in FlexRay Schedule Synthesis A:25

rate has to be at least twice the message activation rate. Consequently, (18) yields

Rmax,i = min(2

⌊
log2

(
min(pi,di)

2Tbus

)⌋
, 64). (19)

withBmax,i < Rmax,i for the maximum base cycleBmax,i. Using (19), we now getR5 = 1
which is illustrated in Fig. 10b). Since m5 is now assigned a slot in every cycle it can be
safely transmitted on the bus before the next instance ofm5 is computed and written to
the transmit buffer of the FlexRay controller. Consequently, (19) provides a safe bound
on Rmax,i considering the interference of messages with higher priorities in the DYN
segment.

6.2. Schedule synthesis scheme
We present three heuristics for schedule synthesis: (i) Max-slack, (ii) First-hit, and (iii)
Max-E. The latter, implements the presented metrics for schedule synthesis whereas
Max-slack and First-hit rather use intuitive approaches to generate extensible sched-
ules. In Section 7.1 we compare the performance of the heuristics, and show that
extensibility is best achieved using the Max-E approach.

Max-slack heuristic. First, we introduce a heuristic which only optimizes schedules
for slack, defined as si = di−Di (difference between deadline and message delay). This
means a small slack for mi may lead to deadline violations if interfering messages
having a higher priority are scheduled in future iterations. Note, that the slack not
only depends on the slot number Si but also on the interference due to higher priority
messages in every cycle γ ∈ Γi of Si and the bus blocking time Ri · Tbus. Maximizing
slack is an intuitive approach to realize compatibility without actually implementing
the compatibility test (see (9)). The Max-slack heuristic involves the following steps:

— Sorting of the messages mi to be scheduled according to deadlines in ascending order,
i.e., messages with small deadlines are scheduled first (denoting a high priority).

— For each mi iterate over all feasible schedules Θi = {Si, Ri, Bi} in the DYN segment,
i.e., schedules that do not interfere with existing messages, with (i) slots (N + 1) ≤
Si ≤ (N +M), (ii) repetition rates Ri ∈ {1, 2, 4, 8, 16, 32, 64}, and base cycles Bi < Ri.

— Check for schedulability (see (5)); in case the schedulability test evaluates to True,
then Θi = {Si, Bi, Ri} is a valid schedule, and we compute the slack si, otherwise dis-
card Θi. If there exists no feasible Θi for a particular message mi, then the message
is referred unschedulable and no schedule is assigned mi.

— Finally, return schedule Θi with maximum slack.

First-hit heuristic. As discussed in Section 5, the higher the repetition rates Ri of the
existing messages, the more cycles are available for future messages to be scheduled in
the same slot, and hence the higher the grade of extensibility P1(S). Further, according
to the proposed quality rating function P2(S), the priority of a slot is maximum and
constant in the ST segment and decreases with increasing slot numbers in the DYN
segment. Hence, our goal is to assign the maximum possible repetition rate Rmax,i
and the highest feasible slot number Si, i.e., the slot with lowest priority, where Θi is
compatible. The First-hit schedule fulfills both the constraints. Note that compared to
the Max-slack heuristic the First-hit heuristic actually implements the compatibility
test defined in (9) to synthesize the schedules. This involves:

— Computation of Rmax,i for every mi according to (19), and sorting of the messages mi

to be scheduled in ascending order according to Rmax,i. The smaller Rmax,i, the more
resources (cycles) are necessary to schedulemi, and the less resources are available to
schedule future messages. Hence, we start the scheduling engine with the messages

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:26 R. Schneider et al.

Algorithm 1 Max-E heuristic.
Require: FlexRay configuration, set of messagesM

1: Rmax,i = ComputeRmax();
2: I = SortByRmax(); //in ascending order
3: for all i ∈ I do
4: for all (N + 1) ≤ Si ≤ (N +M) do
5: sus = False;
6: Ei(Si) = ComputeExtensibility(Si);
7: for all Ri ≤ Rmax,i do
8: for all Bi < Ri do
9: if ((CompatibilityTest() ∧ ProtocolCheck()) == True) then

10: sus = True;
11: Θi := (Si, Bi, Ri);
12: Ei,new(Si) = ComputeExtensibility(Si,Θi);
13: Ei,∆(Si) = Ei(Si)− Ei,new(Si);
14: else
15: //discard schedule
16: end if
17: end for
18: end for
19: if ((sus == False) ∧ (SlotIsEmpty(Si) == True) then
20: break;
21: else
22: //go to line 4 and increment slot number Si
23: end if
24: end for
25: Θi = MaxExtensibility(Ei,∆);
26: return Θi;
27: end for

having the tightest resource requirements, i.e, the smallest Rmax,i, and hence we
assign Ri = Rmax,i.

— Iteration over all slots in the dynamic segment in descending order starting with
the highest available slot number Si = N + M until we reach the first dynamic slot
Si = N + 1. Note that we need not iterate over all repetition rates as in the case of
the Max-slack heuristic. Instead we directly compute Rmax,i, and select Bi < Rmax,i,
and hence reduce the design space.

— Check for compatibility (see (9)); in case the compatibility test evaluates to True,
then return Θi = {Si, Bi, Ri} and repeat procedure with the next message. In case no
compatible schedule can be found or the protocol constraints are violated, we discard
Θi. Note that this heuristic does not explicitly make use of the extensibility index
E(Si) but intuitively realizes an extensibility objective by assigning slots as late as
possible and repetition rates as high as possible.

Max-E heuristic. Finally, we present an algorithm which implements both the con-
cepts, the compatibility test and the extensibility index, to synthesize the schedules
(see Alg. 1). We first compute the maximum available repetition rates Rmax,i and sort
the message indices i ∈ I in ascending order according to Rmax,i (line 1 and 2). Next
we evaluate the slots in ascending order starting with the first dynamic slot Si = N+1
(line 4) and compute the actual extensibility index E(Si) of slot Si before assigning the
message mi to the slot (line 6). Next, we check if the available repetition rates bounded

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

Quantifying Notions of Extensibility in FlexRay Schedule Synthesis A:27

Table II. Overview of scheduling algorithms.

heuristic Max-slack First-hit Max-E
schedulability test x x x
compatibility test - x x
extensibility index - - x

by Ri < Rmax,i and base cycles constraint by Bi < Ri pass the compatibility test and
satisfy the protocol constraints (lines 7,8,9). In case the test evaluates to True (line 9),
we assign the schedule Θi and compute the new extensibility index Ei,new(Si) consid-
ering that mi is assigned the slot Si according to Θi. Subsequently, we compute and
store the difference Ei,∆(Si) = Ei(Si) − Ei,new(Si), i.e., we compute how the extensi-
bility index decreased for slot Si after scheduling mi using Θi. In case the test in line
9 evaluates to False the schedule Θi is discarded (line (15)). We repeat this procedure
until we reach an empty slot Ŝ, i.e., any slot where no cycle is assigned to any mes-
sage, where no compatible schedule can be found (lines 19,20). This implies, that no
compatible schedule can be found for any schedule Θi with Si > Ŝ because the future
delay D̄i naturally increases with increasing slot numbers and all further schedules
will violate the compatibility test as well. For this reason there is no need to evaluate
the remaining slots Ŝ < Si ≤M +N . Finally, we return the schedule Θi with the mini-
mum Ei,∆(Si), i.e., the schedule which realizes the minimum decrease in extensibility
(lines 25, 26).

Overview of scheduling algorithms: Table. II gives an overview of the presented
heuristics depicting the implemented mechanisms for schedule synthesis. The Max-
slack heuristic neither implements the compatibility test nor does it make use of any
extensibility metric. Schedules are generated subject to deadline satisfaction and slack
maximization. Both, the First-hit heuristic and the Max-E heuristic implement the pro-
posed compatibility test for schedule synthesis. Note that the compatibility test com-
putes a tighter bound on the worst-case delay considering the impact of messages from
future iterations. This means a successful compatibility test also implies a successful
schedulability test. The First-hit heuristic uses a simple approach to provide extensi-
bility by assigning the repetition rate Rmax however, it does not use the concept of the
extensibility index. In contrast, the Max-E heuristic evaluates the extensibility index
to synthesize the schedules. In the next section we will study and compare the perfor-
mance of the proposed scheduling algorithms with respect to run times, schedulability
and extensibility.

7. EXPERIMENTAL RESULTS
In this section, we present a case study motivated by the automotive design paradigm
to demonstrate the applicability of our scheme. Further, we present a parametrized
competitive analysis to compare the performance of our proposed scheduling algo-
rithms.

7.1. Case Study: Iterative Development Cycle
For the purpose of experiments we present a case study where we consider a vehicle
development cycle that consists of an existing legacy implementation and five design
iterations. In general, evolution in an automotive electric/electronic architecture
occurs when new features and functions are added and refined. For instance, plugging
new ECUs involve new functions and existing functions are enhanced by step-wise
refinement during several design iterations. Towards this, new applications like
driver assistance systems such as Adaptive Cruise Control (ACC) or lane keeping

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:28 R. Schneider et al.

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

Slot number S

E
xt

en
si

bi
lit

y
In

de
x

E
(S

)

Fig. 11. Extensibility Index for legacy schedules, EFR = 51.7.

Table III. FlexRay bus configuration parameters.

Parameter Configuaration
bus speed [Mbit/s] 10

cycle length Tbus[ms] 5
#static slots N 17, i.e., SST = {1, ..., 17}

static slot length ∆[ms] 0.060
#minislots M 241, i.e., SDY N = {18, ..., 258}

minislot length δ[ms] 0.015
pLatestTx 238

are highly distributed over the network. As a consequence, such applications impose
communication requirements that need to be satisfied by the bus schedules.

System description: Motivated by the above, we consider five design iterations
I = {1, ..., 5} where in each iteration I, |MI | new messages are added and should
be scheduled. Typically, at first, the legacy network is refined and adapted according
to the new product line requirements. Subsequently, major functions are added in the
earlier design stages whereas in the later iterations only minor refinements and bug
fixes are performed which is reflected in a lower number of messages being added. The
design iterations are characterized as follows:

— legacy: Considers a base architecture where |Mlegacy| = 50. The schedules for the
legacy design are available and should be maintained throughout incremental addi-
tions and refinements.

— I=1: Refinement of legacy features: |M1| = 10.
— I=2: New major functions and ECUs: |M2| = 40.
— I=3: New functions and features: |M3| = 30.
— I=4: Refinements and bug fixes: |M4| = 15.
— I=5: Minor refinements and bug fixes: |M5| = 10.

Each message mi ∈ MI is defined by the tuple (pi, di, ni). The parameters selected
for this case study are based on real automotive configurations.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

Quantifying Notions of Extensibility in FlexRay Schedule Synthesis A:29

— We selected message periods pi in the range of typical chassis domain applica-
tions [Grenier et al. 2008] between 10ms and 500ms with deadlines di ≤ pi.

— As payloads, we considered sizes in the range ni = [2bytes, 40bytes] which is based on
the FlexRay payload sizes of a BMW car reported in [Lim et al. 2011]4.

— We considered a FlexRay configuration as depicted in Table III and a quality rating
function as defined in (13) with k = 1. We assume a cycle length Tbus = 5ms which is
in line with the design choice made by BMW [Schedl 2007].

We selected all FlexRay parameters to be compliant with the specification using SIM-
TOOLS [SIMTOOLS 2013] configuration software. As mentioned in Section 1 we
mainly focus on the DYN segment. Therefore, for the sake of illustration, we have
configured a bus cycle Tbus where most of the slots are assigned to the DYN segment
(see N = 17 slots in the ST segment, and 241 slots in the DYN segment in Table III).

Fig. 11 illustrates the extensibility index E(S) of the legacy network for all slots
S ∈ S. The figure shows that most of the slots are fully available as most of the points
coincide with the quality rating function and only few points are located at the x-axis
where E(S) = 0. Figures 12, 13, and 14 illustrate the extensibility index E(S) for
design iteration I = 2 for the Max-slack, First-hit, and Max-E heuristics. Tables IV, V,
VI show the results for the three approaches as follows:

— |MI |: the total number of messages to be scheduled for design iteration I (see above).
— τ [in sec]: the runtime of the scheduling algorithm for design iteration I. All experi-

ments have been carried out on a dual core 1.8. GHz processor with 3 GB RAM.
— ξI [in %]: the compatibility index ξI = |QI |

|MI | , with QI ⊆ MI denoting the number of
messages which have been assigned compatible schedules (see (10)).

—EFR,I : the network extensibility for design iteration I.
—Eeff,I : the effective network extensibility according to (17). Recall that Eeff,I consid-

ers all the messages mi /∈ LI that could not have been scheduled, and hence, do not
contribute to the extensibility index EFR,I . To account for this, Eeff,I introduces a
penalty for all the messages mi /∈ L assuming the worst-case extensibility.

Observations and discussions: The Max-slack heuristic synthesizes compatible
schedules for the first two design iterations as ξ1 = ξ2 = 100%, whereas the First-
hit scheduler only achieves ξ2 = 65% in the second iteration (see Table V). Here, it is
interesting to observe how compatibility is related to extensibility over several design
iterations. Although, the Max-slack heuristic synthesized compatible schedules for de-
sign iterations I = {1, 2} the compatibility performance of the algorithm decreases
dramatically in the next iterations where ξ3 = 33%, and ξ4 = ξ5 = 0%, i.e., no com-
patible schedule could be found. This is because the purely slack optimized algorithm
assigns schedules with low repetition rates and low slot numbers to achieve minimum
delays, i.e., maximum slack. In other words, slack not only depends on the slot number
Si but also on the bus blocking time Ri · Tbus as the worst-case delay experienced by
any message mi increases with Ri (see (1) and (3)). Hence, for Ri = 1, the blocking
time is minimal and the optimal schedules Θi are generated such that Si and Ri are
minimized. The Max-slack heuristic has two major drawbacks. First, the purely slack
optimized schedules result in a high reservation of bandwidth because a slot is as-
signed in as many cycles as possible for every new message mi regardless of the actual
message requirements such as periods and deadlines. Second, slots with high priori-
ties (small slot numbers) are assigned first. This is also illustrated in Fig. 12 which
shows the extensibility index for I = 2. From the figure it is very clear that mostly

4The details of all message and schedule parameters that we used for the experiments can be found in the
Appendix

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:30 R. Schneider et al.

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

Slot number S

E
xt

en
si

bi
lit

y
In

de
x

E
(S

)

Fig. 12. Max-slack for I=2: ξ = 100%, EFR = 0.325, Eeff = 0.325.

Table IV. Max-slack heuristic.

Iteration I |MI | τ [in sec] ξI [in %] EFR,I Eeff,I

legacy 50 - - 0.517 0.517
1 10 32 100 0.478 0.478
2 40 59 100 0.325 0.325
3 30 39 33 0.312 0.234
4 15 21 0 0.312 0.176
5 10 15 0 0.312 0.137

small slot numbers with repetition rates R = 1 have been assigned to the messages
as most of the points between 18 ≤ S ≤ 80 have dropped to the x-axis (compared
to Fig. 11) where E(S) = 0. Consequently, there are no more schedules available for
messages to be schedules in successive design iterations I ∈ {3, 4, 5} that guarantee
the deadlines. Therefore, the Max-slack heuristic realizes compatibility at the cost of
extensibility which results in a significant deterioration of extensibility and schedula-
bility in later design iterations I = {3, 4, 5} due to the dissipative resource assignments
of slots and cycles. This is also reflected in the network extensibility EFR,I and the ef-
fective network extensibility Eeff,I which dramatically decreases with I as illustrated
in Table IV. If we compare EFR,I for design iteration I = 1 for the three heuristics, we
have EMax−slack

FR,1 < EFirst−hitFR,1 = EMax−E
FR,1 where EMax−slack

FR,1 = 0.478 clearly realizes the
worst extensibility.

The First-hit approach achieves compatible schedules for design iterations
I = {1, 4, 5} where ξI = 100%. However, for I = {2, 3}, ξ2 = 65% and ξ3 = 73%
which means that only 65% of the 40 messages in I = 2, and 73% of the 30 messages
in I = 3 have been assigned schedules which passed the compatibility test. Con-
sequently, the effective network extensibility Eeff,I significantly deviates from the
network extensibility EFR,I . This is depicted in Table V where EFR,2 = 0.479, whereas
Eeff,2 = 0.424. Similarly, for I = 3, EFR,3 > Eeff,3 with 0.435 > 0.349. This is because
the First-hit heuristic statically assigns the highest possible repetition rate R = Rmax,i
which satisfies the real-time constraints according to (19). Although this approach
is beneficial with respect to extensibility the assignment of Rmax,i always results in

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

Quantifying Notions of Extensibility in FlexRay Schedule Synthesis A:31

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

Slot number S

E
xt

en
si

bi
lit

y
In

de
x

E
(S

)

Fig. 13. First-hit for I=2: ξ = 65%, EFR = 0.479, Eeff = 0.424.

Table V. First-hit heuristic.

Iteration I |MI | τ [in sec] ξI [in %] EFR,I Eeff,I

legacy 50 - - 0.517 0.517
1 10 7 100 0.514 0.514
2 40 11 65 0.479 0.424
3 30 8 73 0.435 0.349
4 15 6 100 0.401 0.315
5 10 5 100 0.379 0.293

a high worst-case delay as the maximum bus blocking time Tbus · Rmax,i increases
with Ri. For this reason, some of the schedules might not pass the compatibility
test. This shows that meeting the compatibility constraint may require a decrease in
extensibility, i.e., a repetition rate Ri < Rmax,i to synthesize compatible schedules.

The Max-E heuristic implements both, the compatibility test and the extensibility
index for schedule synthesis, and is the only algorithm which generates compatible
schedules for all the 105 messages as ξI = 100% for I ∈ {1, 2, 3, 4, 5}, and hence,EFR,I =
Eeff,I ,∀I (see Table VI). Further, if we compare the effective network extensibility of
all three algorithms it turns out that EMax−E

eff,I = EFirst−hiteff,I > EMax−slack
eff,I for I = 1 and

EMax−E
eff,I > EFirst−hiteff,I > EMax−slack

eff,I for I = {2, 3, 4, 5} as depicted in the last column of
Tables IV, V, VI.

Finally, we compare the run times of the three heuristics. We can see from the tables
that the synthesis times τI per iteration for the Max-slack heuristic is approximately
five times higher compared to the First-hit and Max-E heuristics. This is because the
First-hit and Max-E heuristics do not need to evaluate the full search space, and hence
allow ruling out a wide range of schedules. In contrast, the Max-slack heuristic iterates
over all possible schedules and returns Θi where si is maximum.

7.2. Parametrized Competitive Analysis
In the previous section, the evolution of extensibility in an incremental automotive de-
sign scenario has been studied. In particular, a comparison of the proposed heuristics

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:32 R. Schneider et al.

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

Slot number S

E
xt

en
si

bi
lit

y
In

de
x

E
(S

)

Fig. 14. Max-E for I=2: ξ = 100%, EFR = 0.462, Eeff = 0.462.

Table VI. Max-E heuristic.

Iteration I |MI | τ [in sec] ξI [in %] EFR,I Eeff,I

legacy 50 - - 0.517 0.517
1 10 12 100 0.514 0.514
2 40 13 100 0.462 0.462
3 30 6 100 0.405 0.405
4 15 4 100 0.370 0.370
5 10 4 100 0.348 0.348

has been performed based on five design iterations and a typical automotive network
specification. While the above performance evaluation has been performed based on
a dedicated case study, in this section, we pursue a more general and standardized
approach to performance analysis. In this regard, the incremental scheduling prob-
lem that we tackle in this work corresponds to an online scheduling problem in such
a way that the scheduling algorithm at each iteration does not know the messages to
be scheduled in future iterations. Given an online scheduling algorithm ALG and a
request sequence σ, specifying the set of messages to be scheduled at each iteration,
the algorithm has to serve each request online. A standard technique to evaluate the
performance of an online algorithm is competitive analysis [Sleator and Tarjan 1985].
Let CALG(σ) denote the cost of an online algorithm ALG on an input sequence σ, and
COPT (σ) denote the cost of an optimal offline algorithm OPT on σ. Then, ALG is re-
ferred to as c-competitive with respect to all finite input sequences σ if

CALG(σ) ≤ c · COPT (σ), (20)

with σ being any sequence σ = σ1, ..., σi, ..., σn that must be serviced in the order of
occurrence 1 ≤ i ≤ n. That is, when serving the request σi, the algorithm does not
know any request σj with j > i.

In our setting, an online algorithm ALG ∈ {Max-slack,First-hit,Max-E} has to
serve an input sequence σ that consists of a set of n messages with n =

∑
∀I |MI |

denoting the total number of messages added in all iterations. In particular, ALG
makes scheduling decisions, i.e., which schedules Θi to assign the messages mi ∈ MI ,
without having the knowledge of the messages that will be added in future iterations

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

Quantifying Notions of Extensibility in FlexRay Schedule Synthesis A:33

I ′ > I. The cost of serving σ for ALG is denoted by the network extensibility as defined
in (16), i.e., CALG(σ) = EFR. As shown in (20) this must be compared against the cost
of an optimal offline algorithm that we discuss below.

Optimal offline algorithm: The optimal offline algorithm OPT knows the entire
message specification in advance which includes the total number of messages to
be scheduled at each iteration, and the corresponding message characteristics, i.e.,
sizes, periods and deadlines. Thus, OPT may exploit the knowledge about the actual
workloads of the future messages, i.e., cf = cI ,∀I ∈ {1, ..., n}, and hence, makes a
workload estimation model obsolete (see Section 4.1) that is necessary for an online
algorithm ALG ∈ {First-hit,Max-E}. Similarly, since the entire input is known, there
is no need for a compatibility test and a conventional schedulability test as presented
in (5) is sufficient to guarantee that messages meet their corresponding deadlines.
Essentially, OPT is a clairvoyant scheduling algorithm that schedules the entire set
of n messages according to DM while maximizing the overall network extensibility
Eeff as defined in (16).

Adversary request sequence: Since for a competitive algorithm we require (20) to
hold for any input sequence σ, we may assume that σ is generated by a malicious
adversary which selects a sequence that results in a worst-case scenario for the online
algorithm. In particular, we consider an oblivious adversary [Ben-David et al. 1990]
which knows the strategy of the online algorithmALG, and generates and presents the
complete input sequence σ to the algorithm such that the ratio CALG(σ)

COPT (σ) is minimized.
For this purpose, we generate σ as follows:

— Each iteration I contains only one message such that |MI | = 1,∀I ∈ {1, ..., n}. This
corresponds to a request sequence σ = σ1, ..., σI , ..., σn with 1 ≤ I ≤ n, and σI := mI .
As a result, the information provided to the online algorithm at each iteration is
minimum resulting in a maximum uncertainty of the number and types of the future
messages.

— The actual number of minislots consumed by any message is minimum. That is, for
all mI , cI = cmin with cmin = f(nmin) and nmin = 2bytes denoting the minimum
payload size defined by the FlexRay protocol. On the contrary, the expected num-
ber of minislots consumed by any message is maximum. That is, cf = cmax with
cmax = f(nmax) and nmax = 254bytes denoting the maximum payload size defined by
the FlexRay protocol. Note that cf is used to estimate the future workload for the
compatibility test described in Section 4.1. Hence, assuming cI = cmin and cf = cmax
results in a maximum misprediction of future message sizes which in turn leads to
a low range of available, i.e., compatible slots, reducing the network extensibility
accordingly.

Results: We performed a parametrized competitive analysis for which we com-
puted the competitive ratios c(n) according to (20) for different problem sizes n =
{10, 20, 30, 40, 50, 60, 70, 80, 90, 100} and message periods pI = {2Tbus, 10Tbus, 20Tbus}
with dI = pI . The results are depicted in Fig. 15. The first important observation
is that the competitive ratio c(n) of all algorithms heavily depends on the problem
size n. In particular, c(n) decreases with n, i.e., the performance of the algorithms
deteriorates with increasing number of messages being scheduled. This is expected
and can be explained as follows. First, the definition of extensibility, and thus, the
cost from which the ratio c(n) is computed, depends on both, the number of existing
messages and the number of future messages to be added. Hence, the performance of
scheduling algorithms that optimize for extensibility depend on the total number of

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:34 R. Schneider et al.

0 50 100
0.4

0.5

0.6

0.7

0.8

0.9

1

n

c(
n)

0 50 100

0.4

0.5

0.6

0.7

0.8

0.9

1

n

c(
n)

0 50 100

0.4

0.5

0.6

0.7

0.8

0.9

1

n

c(
n)

Max−slack
First−hit
Max−E

Fig. 15. Competitive ratio c(n) for a) pI = 2Tbus (left), b) pI = 10Tbus (middle), and c) pI = 20Tbus (right).

messages n to be scheduled. Second, the extensibility achieved with the online algo-
rithms ALG ∈ {First-hit,Max-E} depends on the workload estimation of the future
messages. The more messages are being added in the future, the higher the impact of
the workload estimation on the overall extensibility. Since the adversary request se-
quence generates the inputs such that the misprediction of the future message sizes is
maximum, the extensibility performance deteriorates with every new message that is
being scheduled. The performance of Max-slack intrinsically depends on the number
of messages as maximizing the slack generally comes with assigning low repetition
rates (see Section 7.1) which results in a severe decrease in extensibility for every new
message being scheduled. The different plots of Fig. 15 are described in more detail in
what follows:

— Case a: The generated input sequence models the worst-case behavior of all three
online algorithms ALG ∈ {Max-slack,First-hit,Max-E}. The competitive ratios c(n)

are nearly linearly decreasing with ∆c(n)
∆n = 0.0063 which is the worst decrease among

all cases. This is because we consider the minimum feasible message periods pI =
2Tbus which results in the bound Rmax = 1 (see (19)) for all the messages. Since
RI = 1, a complete slot is assigned to any message mI , and hence, the grade of
extensibility P1(SI) = 0 for all the slots SI , I ∈ {1, ..., n}. Thus, the extensibility index
is dominated by the choice of the slot numbers SI which is reflected in P2. Since in
the worst-case scenario, the choice of SI does not significantly differ for the three
algorithms, the competitive ratios c(n) of all three algorithms show similar results.

— Case b: In this case, we generated the input sequence such that pI = 10Tbus. It can
be observed that for ALG = {First-hit,Max-E}, c(n) significantly improved compared
to case a) which is reflected in a higher competitive ratio for all n. This is because
as pI = 10Tbus, the maximum repetition rate is computed as Rmax = 4. According
to (12), for any slot SI we have P1(SI) = 0 with RI = 1 and P1(SI) = 0.2441 with
RI = 4. Hence, the corresponding increase in P1(SI) is 24.41% compared to case a)
and the extensibility now depends on both the choice of the slot and repetition rate.
This is also visible in the gradient as ∆c(n)

∆n = 0.0015 < 0.0063. Since Max-slack solely

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

Quantifying Notions of Extensibility in FlexRay Schedule Synthesis A:35

optimizes for slack, we again have RI = 1 for all mI which results in a similar com-
petitive ratio c(n) as in case a).

— Case c: Similarly to case b), the competitive ratios improve for ALG =
{First-hit,Max-E} because for pI = 20Tbus we have Rmax = 8 whereas Max-slack
does not improve as we again have RI = 1 for all mI .

In summary, we can observe that the competitive ratios for ALG ∈ {First-hit,Max-E}
are very close to each other with Max-E showing a slight improvement over First-hit
(but not visible in the graphs). This is because, First-hit realizes extensibility by as-
signing slots as late as possible and repetition rates as high as possible. However, it
does not make use of the extensibility index which is implemented in Max-E. Fur-
ther, c(n) increases with pI , and hence, with Rmax. This is because the contribution of
P1(S) to the overall extensibility prevails over the impact of P2(S) which depends on
the choice of slots, on the workload prediction respectively. Note that the competitive
ratio is a worst-case performance measure. Even if First-hit and Max-E have very sim-
ilar competitive ratios, on average, as shown in the experiments of Section 7.1, Max-
E results in significantly better extensibility compared to First-hit as it exploits the
extensibility index in the optimization procedure. Max-slack clearly shows the worst
competitive ratio which is mainly due to the slack optimization policy leading to very
low repetition rates, and hence, poor extensibility.

8. OUTLOOK AND CONCLUDING REMARKS
The metrics and design methodologies presented in this paper aim to efficiently strike
a balance between the naturally conflicting objectives of (i) saving bandwidth (exten-
sibility), and (ii) guaranteeing timing constraints (compatibility). In this discussion,
we would like to give an outlook on how the proposed concepts can be efficiently ap-
plied and integrated in a modular fashion into the development process to further con-
sider the characteristics of the automotive design process. As already described in the
case study, the major functionalities, and hence, most of the new messages are usually
added in the earlier design stages whereas refinements and bug fixes are performed in
the later iterations which is reflected in a lower number of messages being added. In
this light, the extensibility metrics being used to evaluate the communication design
may be applied in a step-wise manner, too. That is, the metrics may be adapted in
different phases, corresponding to the maturity of the development process. Towards
this, we propose three phases which are described as follows:

— Base design evaluation: In practice, the base (legacy) implementation may be eval-
uated using a simple measure for extensibility which is solely based on the grade of
extensibility P1(S). As a result, the network extensibility of (16) for the legacy im-
plementation evaluates to ElegacyFR = 1

N+M

∑N+M
S=1 P1(S). As the grade of extensibility

quantifies the pure schedule extensibility, ElegacyFR may be used to identify a suitable,
i.e., extensible, base design that may be used for a new product line. In other words,
applying ElegacyFR may help to answer the question: Which base design is the best suit-
able to accommodate the expected communication requirements of a new product line?

— Foresightful schedule design: At the early design phases, the implementation
of functionalities must be flexible to meet requirements of several vehicle projects
in the product line. During this phase, most of the functionalities are added which
typically involves a lot of changes in communication, i.e., many messages are added,
removed or changed with respect to their timing constraints.
Hence, in addition to extensibility, assuring timing guarantees with respect to ex-
pected enhancements in later iterations (i.e., compatibility) becomes especially im-
portant in the first few iterations. As a result, the full extensibility index considering

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:36 R. Schneider et al.

both quality rating and grade of extensibility may be applied to foresightfully sched-
ule messages with respect to extensibility.

— Design assurance: In the later iterations, close to the completion of the develop-
ment cycle for a specific product in the product line, minor refinements and bug fixes
are usually performed. Given that only few messages are expected to be added in this
phase, it is more important to assure the timing guarantees of the existing schedules
(compatibility) than to provide extensible schedules for the few messages yet to be
expected. As a consequence, the schedules may be designed focusing on only com-
patibility with the goal to guarantee the timing properties of the existing schedules
until completion of the development cycle. To account for this, the extensibility index
may be reduced to the quality rating, i.e., E(S) = P2(S), which will be reflected in the
schedule synthesis accordingly.

In summary, the central question that we try to answer in this paper is: what is
an appropriate notion of extensibility for FlexRay? Concomitantly, we also defined a
notion of compatibility for FlexRay schedules and we show that compatibility is nec-
essary to achieve extensibility. We would also like to mention that there are many
possible ways to define and apply notions of extensibility. In this work, our goal was
to define a notion of network extensibility that (i) reflects the iterative design process
of the automotive industry, (ii) allows for visualization, and hence easy interpretation
by engineers, and (iii) captures all the protocol-specific details of FlexRay such as cycle
multiplexing. Along these lines, we developed analysis techniques to identify extensi-
ble schedules, and we also presented a scheduling framework to automatically synthe-
size extensible FlexRay schedules based on the presented notions. In particular, our
analysis has been devoted to the dynamic segment of FlexRay where the evaluation
of extensibility is especially challenging due to the dynamic nature of the protocol.
Further, we performed comprehensive experiments with industrial-size case studies
and compared the results of different schedule synthesis algorithms implementing dif-
ferent stages of the defined metrics to automatically synthesize schedules. We also
discussed the compatibility of the presented concepts with other FlexRay delay models
and gave insights on how the analysis might be extended to integrate other timing
analysis techniques. For future work we envisage to extend the concept of extensibility
to other domains such as the packing of signals and messages to slots or extensibility
for ECU schedules.

REFERENCES
M. Anand and I. Lee. 2008. Robust and sustainable schedulability analysis of embedded software. In LCTES.
E. Armengaud, A. Steininger, and M. Horauer. 2008. Towards a Systematic Test for Embedded Automotive

Communication Systems. Industrial Informatics 4, 3 (2008), 146 –155.
AUTOSAR 2013. AUTomotive Open System ARchitecture. www.autosar.org. (2013).
AUTOSARXCP 2013. AUTOSAR. Specification of Module XCP. www.autosar.org. (2013).
T. P. Baker and S. K. Baruah. 2009. Sustainable Multiprocessor Scheduling of Sporadic Task Systems. In

ECRTS.
S. K. Baruah and A. Burns. 2006. Sustainable Scheduling Analysis. In RTSS.
S. Ben-David, A. Borodin, R. Karp, G. Tardos, and A. Wigderson. 1990. On the Power of Randomization in

Online Algorithms. In Algorithmica.
U. D. Bordoloi, B. Tanasa, P. Eles, and Z. Peng. 2012. On the timing analysis of the dynamic segment of

FlexRay. In SIES.
A. Burns and S. K. Baruah. 2008. Sustainability in Real-time Scheduling. In JCSE.
FlexRay 2013. The FlexRay Communications System Specifications. www.flexray.com. (2013).
E. Fuchs. 2010. FlexRay-Beyond the Consortium Phase. In FlexRay 2010, Special Edition Hanser automo-

tive.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

Quantifying Notions of Extensibility in FlexRay Schedule Synthesis A:37

A. Ghosal, H. Zeng, M. D. Natale, and Y. Ben-Haim. 2010. Computing Robustness of FlexRay Schedules to
Uncertainties in Design Parameters. In DATE.

M. Grenier, L. Havet, and N. Navet. 2008. Pushing the Limits of CAN - Scheduling Frames with Offsets
Provides a Major Performance Boost. In ERTS.

A. Hagiescu, U. D. Bordoloi, S. Chakraborty, P. Sampath, P. V. V. Ganesan, and S. Ramesh. 2007. Perfor-
mance Analysis of FlexRay-based ECU Networks. In DAC.

H-T. Lim, K. Weckemann, and D. Herrscher. 2011. Performance Study of an In-Car Switched Ethernet
Network Without Prioritization. In ICCT.

M. Lukasiewycz, M. Glaß, P. Milbredt, and J. Teich. 2009. FlexRay Schedule Optimization of the Static
Segment. In CODES+ISSS.

M. Neukirchner, M. Negrean, R. Ernst, and T. Bone. 2012. Response-Time Analysis of the FlexRay Dynamic
Segment under Consideration of Slot-Multiplexing. In SIES.

W.-C. Poon and A.K Mok. 2010. Necessary and Sufficient Conditions for Non-preemptive Robustness. In
RTCSA.

P. Pop, P. Eles, Z. Peng, and T. Pop. 2004. Scheduling and mapping in an incremental design methodology
for distributed real-time embedded systems. Very Large Scale Integration (VLSI) Systems 12, 8 (2004),
793 –811.

T. Pop, P. Pop, P. Eles, Z. Peng, and A. Andrei. 2006. Timing Analysis of the FlexRay Communication Proto-
col. In ECRTS.

M. Rausch. 2008. FlexRay: Grundlagen, Funktionsweise, Anwendung. In Carl Hanser Verlag GmbH & CO.
KG.

A. Sangiovanni-Vincentelli, L. Alberto, and M. Di. Natale. 2009. Challenges and Solutions in the Develop-
ment of Automotive Systems. Computer-Aided Design of Integrated Circuits and Systems 28, 7 (2009),
937 –940.

A. Sangiovanni-Vincentelli and M. Di Natale. 2007. Embedded System Design for Automotive Applications.
Computer 40, 10 (2007), 42 –51.

A. Schedl. 2007. Goals and Architecture of FlexRay at BMW. In slides presented at the Vector FlexRay Sym-
posium.

F. Scheler and W. Schroeder-Preikschat. 2006. Time-Triggered vs. Event-Triggered: A Matter of Configura-
tion?. In GI/ITG workshop on non-functional properties of embedded systems.

S. Schliecker, J. Rox, M. Negrean, K. Richter, M. Jersak, and R. Ernst. 2009. System Level Performance
Analysis for Real-Time Automotive Multicore and Network Architectures. Computer-Aided Design of
Integrated Circuits and Systems 28, 7 (2009), 979 –992.

E. G. Schmidt and K. Schmidt. 2009. Message Scheduling for the FlexRay Protocol: The Dynamic Segment.
Vehicular Technology 58, 5 (2009), 2160 –2169.

K. Schmidt and E. G. Schmidt. 2010. Schedulability Analysis and Message Schedule Computation for the
Dynamic Segment of FlexRay. In VTC.

R. Schneider, U. Bordoloi, D. Goswami, and S. Chakraborty. 2010. Optimized Schedule Synthesis under
Real-Time Constraints for the Dynamic Segment of FlexRay. In EUC.

SIMTOOLS 2013. SIMTOOLS. www.simtools.at. (2013).
D. Sleator and R. Tarjan. 1985. Amortized Efficiency of List Update and Paging Rules. In Communications

of the ACM.
B. Tanasa, U. Bordoloi, P. Eles, and Z. Peng. 2010. Scheduling for Fault-Tolerant Communication on the

Static Segment of FlexRay. In RTSS.
B. Tanasa, U. D. Bordoloi, S. Kosuch, P. Eles, and Z.Peng. 2012. Schedulability Analysis for the Dynamic

Segment of FlexRay: A Generalization to Slot Multiplexing. In RTAS.
H. Zeng, A. Ghosal, and M. Di Natale. 2010. Timing Analysis and Optimization of FlexRay Dynamic Seg-

ment. In CIT.
H. Zeng, W. Zheng, M. Di Natale, A. Ghosal, P. Giusto, and A. Sangiovanni-Vincentelli. 2009. Scheduling

the FlexRay Bus Using Optimization Techniques. In DAC.
W. Zheng, J. Chong, C. Pinello, S. Kanajan, and A. Sangiovanni-Vincentelli. 2005. Extensible and Scalable

Time Triggered Scheduling. In ACSD.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

Online Appendix to:
Quantifying Notions of Extensibility in FlexRay Schedule Synthesis5

REINHARD SCHNEIDER, TU Munich, Germany
DIP GOSWAMI, Eindhoven University of Technology, Netherlands
SAMARJIT CHAKRABORTY, TU Munich, Germany
UNMESH BORDOLOI, Linkoepings Universitet, Sweden
PETRU ELES, Linkoepings Universitet, Sweden
ZEBO PENG, Linkoepings Universitet, Sweden

c© YYYY ACM 1084-4309/YYYY/01-ARTA $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

App–2 R. Schneider et al.

Table VII. 100 existing schedules, iteration 1.
i slot Si base cycle Bi repetition rate Ri #minislots ci deadline di[ms]
1 131 0 2 4 30
2 121 0 2 5 30
3 21 2 4 3 20
4 162 0 1 4 30
5 124 0 2 5 30
6 191 0 1 3 20
7 29 7 8 4 30
8 85 0 2 5 30
9 234 0 1 3 20

10 101 1 2 4 22
11 79 0 1 5 30
12 75 0 1 3 20
13 147 0 1 4 30
14 135 0 1 5 25
15 90 1 2 3 20
16 202 1 2 4 30
17 26 0 1 5 30
18 30 0 8 3 20
19 248 0 1 4 30
20 160 3 4 5 30
21 222 1 4 3 20
22 213 0 1 4 30
23 158 0 2 5 30
24 159 0 1 3 20
25 256 0 1 4 30
26 27 0 1 5 30
27 63 1 2 3 20
28 70 0 1 4 22
29 247 0 2 5 30
30 23 1 4 3 20
31 40 0 1 4 30
32 57 3 16 5 30
33 30 1 2 3 20
34 257 0 1 4 30
35 29 0 1 5 30
36 100 0 1 3 22
37 182 0 1 4 30
38 67 0 2 5 30
39 240 0 1 3 20
40 183 0 1 4 30
41 216 1 2 5 30
42 118 0 1 3 20
43 146 0 4 4 30
44 65 0 2 5 25
45 57 0 2 3 20
46 179 0 2 4 30
47 152 1 4 5 30
48 156 1 2 3 20
49 205 0 2 5 30
50 141 0 8 3 20
51 73 0 4 5 30
52 94 1 2 3 20
53 138 0 1 3 20
54 23 0 2 4 25
55 217 0 1 5 30
56 225 0 1 3 20
57 140 0 2 4 30
58 233 5 8 5 30
59 20 3 4 3 20
60 142 0 2 4 30
61 85 1 2 5 25
62 173 1 2 3 15
63 115 1 4 4 30
64 148 0 1 5 30
65 204 1 4 3 20
66 28 0 2 4 30
67 49 0 1 5 30
68 130 0 1 3 20
69 36 0 1 5 30
70 98 0 1 3 20
71 254 0 1 4 30
72 74 4 8 5 30
73 99 0 1 3 20
74 45 0 1 4 30
75 204 0 1 5 28
76 50 1 2 3 20
77 113 0 4 4 30
78 220 0 1 5 30
79 223 1 4 3 20
80 132 0 2 4 22
81 222 0 2 5 30
82 236 1 2 3 20
83 18 0 1 4 30
84 200 1 2 5 23
85 227 2 4 3 20
86 58 0 1 4 30
87 48 0 1 5 30
88 121 7 8 3 20
89 32 0 1 4 30
90 150 0 1 5 30
91 199 0 2 3 20
92 134 1 2 4 30
93 155 3 4 5 30
94 68 3 4 3 22
95 166 0 2 4 30
96 22 0 1 5 22
97 203 0 1 3 20
98 66 0 2 4 30
99 218 0 1 5 30

100 209 1 2 3 20

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

Quantifying Notions of Extensibility in FlexRay Schedule Synthesis App–3

Table VIII. 100 schedules, iteration 2.
i slot Si base cycle Bi repetition rate Ri payload ni [bytes]
1 59 0 1 24
2 136 0 4 40
3 201 3 4 12
4 252 0 1 24
5 97 1 2 40
6 134 0 4 12
7 102 2 4 24
8 31 0 1 40
9 26 6 8 12

10 233 0 1 24
11 101 1 2 40
12 197 0 1 12
13 122 0 2 24
14 206 0 1 40
15 215 0 2 12
16 84 0 1 24
17 110 1 2 40
18 164 21 32 12
19 216 0 1 24
20 123 1 4 40
21 247 0 2 12
22 27 0 1 24
23 93 0 2 40
24 235 0 2 12
25 60 0 1 24
26 67 0 2 40
27 73 0 2 12
28 18 0 2 24
29 228 0 1 40
30 218 0 1 12
31 62 0 1 24
32 257 0 1 40
33 247 1 2 12
34 182 1 2 24
35 254 0 1 40
36 165 0 1 12
37 184 0 2 24
38 167 0 2 40
39 155 1 4 12
40 106 0 1 24
41 250 1 2 40
42 38 0 1 12
43 225 0 1 24
44 121 1 2 40
45 56 0 1 12
46 200 0 1 24
47 204 3 4 40
48 87 0 2 12
49 43 0 2 40
50 157 5 16 12
51 104 1 2 40
52 192 0 2 12
53 143 0 4 12
54 90 1 2 24
55 176 0 2 40
56 55 1 4 12
57 95 0 1 24
58 78 1 16 40
59 199 2 4 12
60 117 0 2 24
61 170 0 2 40
62 219 0 1 12
63 249 0 2 24
64 135 0 1 40
65 52 0 2 12
66 46 0 2 24
67 141 0 1 40
68 50 3 4 12
69 198 0 2 40
70 244 5 8 12
71 213 0 1 24
72 154 1 2 40
73 94 0 1 12
74 168 0 1 24
75 23 1 2 40
76 111 2 4 12
77 177 0 1 24
78 76 0 1 40
79 133 3 16 12
80 125 0 2 24
81 178 1 2 40
82 210 0 1 12
83 91 0 2 24
84 137 0 1 40
85 253 0 1 12
86 180 0 1 24
87 19 0 1 40
88 125 3 4 12
89 144 0 1 24
90 64 2 4 40
91 20 0 1 12
92 129 1 2 24
93 98 1 4 40
94 83 3 4 12
95 223 0 2 24
96 114 1 2 40
97 80 1 2 12
98 258 0 1 24
99 196 0 1 40
100 99 0 2 12

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

App–4 R. Schneider et al.

Table IX. 50 existing legay schedules.

i slot Si base cycle Bi repetition rate Ri #minislots ci
1 131 0 2 4
2 121 0 2 5
3 21 2 4 3
4 162 0 1 4
5 124 0 2 5
6 191 0 1 3
7 29 1 4 4
8 85 0 2 5
9 234 0 1 3

10 101 1 2 4
11 79 0 1 5
12 75 0 1 3
13 147 0 1 4
14 135 0 1 5
15 90 1 2 3
16 202 1 2 4
17 26 0 1 5
18 30 0 8 3
19 248 0 1 4
20 160 3 4 5
21 67 1 2 3
22 213 0 1 4
23 158 0 2 5
24 159 0 1 3
25 256 0 1 4
26 27 0 1 5
27 63 1 2 3
28 70 0 1 4
29 247 0 1 4
30 23 1 4 3
31 157 0 2 3
32 40 0 1 4
33 57 3 16 5
34 30 1 2 3
35 257 0 1 4
36 29 3 4 5
37 100 0 1 3
38 182 0 1 4
39 67 0 2 5
40 240 0 1 3
41 183 0 1 4
42 216 1 2 5
43 118 0 1 3
44 146 0 4 4
45 65 0 2 5
46 57 0 2 3
47 179 0 2 4
48 157 1 4 5
49 156 1 2 3
50 205 0 2 5

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

Quantifying Notions of Extensibility in FlexRay Schedule Synthesis App–5

Table X. Iteration 1: 10 new messages.

i period pi [ms] payload ni [bytes] deadline di [ms]
1 300 8 300
2 500 8 100
3 200 8 500
4 300 8 300
5 500 8 500
6 200 12 500
7 300 8 100
8 100 8 100
9 500 12 200
10 200 24 200

Table XI. Iteration 2: 40 new messages.

i period pi [ms] payload ni [bytes] deadline di [ms]
1 300 24 300
2 50 40 100
3 20 12 50
4 300 24 300
5 30 40 22
6 20 12 50
7 30 24 100
8 10 40 10
9 50 12 200
10 22 24 20
11 30 24 30
12 50 40 100
13 20 12 50
14 30 24 30
15 30 40 22
16 20 12 50
17 30 24 100
18 100 40 100
19 50 12 200
20 22 24 20
21 30 24 130
22 50 40 100
23 20 12 50
24 30 24 30
25 30 40 22
26 20 12 50
27 30 24 100
28 100 40 100
29 50 12 200
30 22 24 20
31 30 24 130
32 50 40 100
33 200 12 500
34 30 24 30
35 30 40 22
36 200 12 500
37 30 24 100
38 100 40 100
39 50 12 200
40 22 24 20

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

App–6 R. Schneider et al.

Table XII. Iteration 3: 30 new messages.

i period pi [ms] payload ni [bytes] deadline di [ms]
1 30 24 30
2 50 40 100
3 20 12 50
4 30 24 30
5 30 40 22
6 20 12 50
7 30 24 100
8 10 40 10
9 50 12 200

10 22 24 20
11 30 24 30
12 50 40 100
13 20 12 50
14 30 24 30
15 30 40 22
16 20 12 50
17 30 24 100
18 10 40 10
19 50 12 200
20 22 24 20
21 30 24 130
22 50 40 100
23 20 12 50
24 30 24 30
25 30 40 22
26 20 12 50
27 30 24 100
28 10 40 10
29 50 12 200
30 22 24 20

Table XIII. Iteration 4: 15 new messages.

i period pi [ms] payload ni [bytes] deadline di [ms]
1 30 24 30
2 100 40 100
3 50 12 50
4 30 24 30
5 30 40 30
6 20 12 50
7 100 24 100
8 10 40 10
9 50 12 200

10 50 24 50
11 30 24 30
12 50 40 100
13 20 12 50
14 30 24 30
15 30 40 22

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

Quantifying Notions of Extensibility in FlexRay Schedule Synthesis App–7

Table XIV. Iteration 5: 10 new messages.

i period pi [ms] payload ni [bytes] deadline di [ms]
1 300 8 300
2 500 8 100
3 200 8 500
4 300 8 300
5 500 8 500
6 200 12 500
7 300 8 100
8 100 8 100
9 500 12 200
10 200 24 200

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

