
Quasi-Static Scheduling for Real-Time
Systems with Hard and Soft Tasks

Luis Alejandro Cortés, Petru Eles, and Zebo Peng
Embedded Systems Laboratory

Department of Computer and Information Science

Linköping University, S-581 83 Linköping, Sweden

{luico,petel,zebpe}@ida.liu.se

Technical Report
September 2003

Abstract

This report addresses the problem of scheduling for real-time sys-
tems that include both hard and soft tasks. In order to capture the
relative importance of soft tasks and how the quality of results is af-
fected when missing a soft deadline, we use utility functions associated
to soft tasks. Thus the aim is to find the execution order of tasks that
makes the total utility maximum and guarantees hard deadlines. We
consider intervals rather than fixed execution times for tasks. Since
a purely off-line solution is too pessimistic and a purely on-line ap-
proach incurs an unacceptable overhead due to the high complexity
of the problem, we propose a quasi-static approach where a number
of schedules are prepared at design-time and the decision of which
of them to follow is taken at run-time based on the actual execution
times. We propose an exact algorithm as well as different heuristics
for the problem addressed in this report.

1 Introduction

There are real-time systems that require the execution of tasks with distinct
types of timing constraints. Some of these real-time tasks correspond to
activities that must be completed before a given deadline. These tasks are
referred to as hard because missing one such deadline might have severe

1

consequences. Such systems also include tasks that are also time-constrained
but more loosely and hence referred to as soft. A soft-task deadline miss can
be tolerated though the quality of results can be degraded.

Scheduling for real-time systems composed of hard and soft tasks has pre-
viously been addressed, for example in the context of integrating multimedia
into hard real-time systems [10], [1]. Most of the scheduling approaches for
mixed hard/soft real-time systems consider that hard tasks are periodic while
soft tasks are aperiodic. In this frame, both dynamic and fixed priority sys-
tems have been considered. In the former case, the Earliest Deadline First
(EDF) algorithm is used for scheduling hard tasks and the response time
of soft aperiodic tasks is minimized while guaranteeing hard deadlines [3],
[14], [9]. The joint scheduling approaches for fixed priority systems also try
to serve soft tasks the soonest while guaranteeing hard deadlines, but make
use of the Rate Monotonic (RM) algorithm for scheduling the hard periodic
tasks [6], [11], [16].

Scheduling for hard/soft systems permits dealing with tasks with differ-
ent level of criticality and fits better a broader range of applications (as
compared to pure hard real-time techniques), yet providing a certain num-
ber of guarantees. It is usually assumed that the sooner a soft task is served
the better, without distinction among soft tasks. In many contexts, how-
ever, differentiating among soft tasks gives an additional degree of flexibility
as it allows allocating the processing resources more efficiently. This is the
case, for example, in videoconference applications where audio streams are
considered more important than the video ones. In order to capture the rel-
ative significance of soft tasks and how the quality of results is affected when
missing a soft deadline, we use utility functions. Utility functions were first
suggested by Locke [12] to represent importance and criticality of tasks.

Utility-based scheduling has been addressed before [2]. For instance, im-
precise computation techniques [15], [7] are examples of utility-based schedul-
ing. Such techniques consider tasks as composed by a mandatory and an
optional part. The mandatory subtask must be completed by the deadline
of the task. The optional subtask can be left incomplete at the expense of
the quality of results. The problem is thus finding a schedule that maximizes
the total length of the executed portions of optional subtasks. For many ap-
plications, however, it is not possible to identify the mandatory and optional
parts of a task. We consider tasks without optional part and, once they are
started, tasks run until completion. Our utility function is expressed as a
function of the completion time of the task (and not its execution time as in
the case of imprecise computation). Other value-based approaches include
best-effort techniques [12], the QoS-based resource allocation model [13], and
Time-Value-Function scheduling [4]. The latter also uses the completion time

2

as argument of the utility function, but does not consider hard tasks in the
system. It provides an O(n3) on-line heuristic, which might still be imprac-
tical, and assumes fixed task execution times. We, on the contrary, consider
that the execution time is variable within an interval and unknown before-
hand. This is actually the reason why a single static schedule can be too
pessimistic.

We take into consideration the fact that the actual execution time of
a task is rarely its worst case execution time (WCET). We thus use the
expected or mean duration of tasks when evaluating the utility functions
associated to soft tasks. However, we consider the maximum duration of
tasks for ensuring that all hard time constraints are met in every possible
scenario. Earlier work generally uses only the WCET for scheduling which
leads to an excessive degree of pessimism (Abeni and Buttazzo [1] do use
mean values for serving soft tasks and WCET for guaranteeing hard deadlines
though).

In the context of the systems we are addressing in this report, off-line
scheduling refers to finding at design-time one schedule that maximizes the
sum of individual utilities by soft tasks and at the same time guarantees hard
deadlines (we have addressed such a problem in an earlier report [5]). On-line
scheduling refers to computing at run-time, every time a task finishes, a new
schedule for the remaining tasks such that it makes the total utility maximum
and also guarantees no hard deadline miss, but taking into consideration the
actual execution times of tasks already completed. On the one hand, having
one single schedule obtained off-line might be too pessimistic as information
about actual execution times is not exploited. On the other hand, due to the
complexity of the problem, the overhead of computing schedules on-line is
unacceptable. In order to overcome these drawbacks, we propose to analyze
the system and compute a set of schedules at design-time, and let the decision
of which of them is to be followed be taken at run-time. Thus the problem we
address in this report is that of quasi-static scheduling for hard/soft real-time
systems.

The rest of this report is structured as follows. Section 2 introduces
definitions and notations used along the report. We present an example in
Section 3 motivating the addressed in this report. In Section 4 we precisely
formulate the problem we are solving. We present an exact method (Sec-
tion 5) as well as a number of heuristics (Section 6) for solving the problem.
A system corresponding to a real-life application is studied in Section 7.
Finally, some conclusions are drawn in Section 8.

3

2 Preliminaries

We consider that the system is represented by a directed acyclic graph G =
(T,E) where nodes correspond to tasks and data dependencies are captured
by the graph edges. Throughout this paper we assume that all the tasks of
the system are mapped onto a single processor.

The actual execution time of a task t at a certain activation of the system,
denoted |t|, lies in the interval bounded by the minimum duration l(t) and
the maximum duration m(t) of the task, i.e. l(t) ≤ |t| ≤ m(t). The expected
duration e(t) of a task t is the mean value of the possible execution times of
the task. In the simple case that the execution time is uniformly distributed
over the interval [l(t),m(t)], we have e(t) = (l(t) + m(t))/2. For an arbi-
trary continuous execution time probability distribution f(τ), the expected

duration is given by e(t) =
∫ m(t)

l(t)
τf(τ)dτ .

We define a schedule as the execution order for the tasks in the system.
We assume a single-rate semantics, that is, each task is executed exactly
once for every activation of the system. Thus a schedule is a bijection σ :
T → {1, 2, . . . , |T |}. We use the notation σ = t1t2 . . . tn as shorthand for
σ(t1) = 1, σ(t2) = 2, . . . , σ(tn) = |T |. We assume that the system is activated
periodically1.

In this context, a schedule does not provide the starting time for tasks,
only their execution sequence. Thus, for the schedule σ = t1t2 . . . tn, task t1
will start when the system is activated and task ti+1, 1 ≤ i < n, will start
executing as soon as task ti has finished. For a given schedule, the completion
time of a task ti is denoted τi. In the sequel, the starting and completion
times that we use are relative to the system activation instant. For example,
according to the schedule σ = t1t2 . . . tn, t1 starts executing at time 0 and its
completion time is τ1 = |t1|, the completion time of t2 is τ2 = τ1 + |t2|, and
so forth.

The tasks that make up a system can be classified as non-real-time, hard,
or soft. Non-real-time tasks are neither hard nor soft, and have no tim-
ing constraints, though they may influence other hard or soft tasks through
precedence constraints as defined by the task graph G = (T,E). Both hard
and soft tasks have deadlines. A hard deadline d(h) is the time by which a
hard task h ∈ T must be completed, otherwise the integrity of the system
is jeopardized. A soft deadline d(s) is the time by which a soft task s ∈ T
should be completed. Lateness of soft tasks is acceptable though it decreases

1Handling tasks with different periods is possible by generating several instances of the
tasks and building a graph that corresponds to a set of tasks as they occur within a time
period that is equal the least common multiple of the periods of the involved tasks. In
this case, the release time of certain tasks must be taken into account.

4

the quality of results. In order to capture the relative importance among soft
tasks and how the quality of results is affected when missing a soft deadline,
we use a non-increasing utility function uj(τj) for each soft task sj . Typical
utility functions are depicted in Figure 1.

u

τd(s)

M

u

τd(s)

M

u

τd(s)

M

Figure 1: Typical utility functions for soft tasks

In the problem of quasi-static scheduling, we aim to find off-line a set
of schedules and the relation among them, that is, the conditions under
which the scheduler decides on-line to switch from one schedule to another.
There might be one or more switching points associated to a schedule, which
define when to switch to another schedule. A switching point is characterized
by a task and a time interval. For example, the switching point 〈ti; (a, b]〉
associated to σ indicates that when the task ti in σ finishes and its completion
time is a < τi ≤ b, another schedule σ′ must be followed as execution order
for the remaining tasks.

3 Motivational Example

Let us consider a system that has five tasks t1, t2, t3, t4, and t5, with data
dependencies as shown in Figure 2. The minimum and maximum duration
of every task are given in Figure 2 in the form [l(t),m(t)]. We assume in
this example that the execution time of every task t is uniformly distributed
over the interval [l(t),m(t)]. The only hard task in the system is t4 and its
deadline is d(t4) = 30. Tasks t2 and t3 are soft, their deadlines are d(t2) = 9
and d(t3) = 18, and their utility functions are given, respectively, by:

u2(τ2) =



3 if τ2 ≤ 9,

9

2
−
τ2

6
if 9 ≤ τ2 ≤ 27,

0 if τ2 ≥ 27.

u3(τ3) =



2 if τ3 ≤ 18,

8−
τ3

3
if 18 ≤ τ3 ≤ 24,

0 if τ3 ≥ 24.
We initially want to find the schedule that, among all schedules that

respect the hard constraints in the worst case, maximizes the total utility
(sum of individual contributions evaluated at each soft task’s completion
time) in the case when tasks last their expected duration. The problem of

5

[2,10]

t[3,9]

[1,7]

[3,5]

[4,8]

304

t1

t3

t5

t2

Figure 2: Motivational example

computing one such optimal schedule has been proved NP-complete [5]. For
the system of Figure 2, such a schedule is σ = t1t3t4t2t5.

Let us now consider the situation in which all tasks but t3 take their
maximum duration, that is |ti| = m(ti) for i = 1, 2, 4, 5, and the duration
of task t3 is |t3| = 3. The schedule that, under these particular conditions,
maximizes the total utility is σ× = t1t2t3t4t5. Such a total utility is U× =
u2(15) + u3(18) = 2 + 2 = 4. Compare with the total utility U = u2(27) +
u3(10) = 0+2 = 2 obtained when using the schedule σ = t1t3t4t2t5. Although
σ× maximizes the total utility when |t1| = 7, |t2| = 8, |t3| = 3, |t4| = 9, and
|t5| = 5, it does not guarantee that hard deadlines are met in all situations. If
t3 took 7 time units instead of 3, the completion time of task t4 would be τ4 =
31 and therefore its hard deadline would be missed. Since we cannot predict
the execution time for t3 (we only know it is bounded in the interval [2, 10]),
selecting σ× = t1t2t3t4t5 as the schedule for our system implies potential hard
deadline misses.

Nonetheless we can do much better than just selecting σ = t1t3t4t2t5 as
the unique schedule for our system. Though σ ensures that hard constraints
are always satisfied, it can still be pessimistic as the actual execution times
might be far off from those used when computing σ. Suppose we initially
choose σ as schedule. Assume that task t1 executes and its duration is
|t1| = 7, and then, following the order in σ, task t3 executes and its duration is
|t3| = 3. At this point we know that the completion time of task t3 is τ3 = 10.
Taking advantage of the fact that τ3 = 10, we can compute the schedule
(that has t1t3 as prefix) which maximizes the total utility (considering the
actual execution times of the tasks t1 and t3—already completed—and the

6

expected duration for t2, t4, and t5—remaining tasks—when evaluating the
utility functions of soft tasks) and guarantees no hard deadline miss. Such a
schedule is σ′ = t1t3t2t4t5. In the situation |t1| = 7, |t2| = 8, |t3| = 3, |t4| = 9,
and |t5| = 5, σ′ yields a total utility U ′ = u2(18) + u3(10) = 1.5 + 2 = 3.5,
which is greater than the one given when using σ = t1t3t4t2t5 (U = 2) and
less than the one given when using σ× = t1t2t3t4t5 (U× = 4). However, as
opposed to σ×, σ′ does guarantee completion of every hard task before or
at its deadline, because the decision to follow σ′ is taken after t3 has been
executed and its completion time is thus known.

Following the idea that we have just described, one could think of starting
off the execution of tasks in the system as given by an initial schedule. Then
every time a task finishes we measure its completion time and compute a new
schedule, i.e. the execution order for the remaining tasks, that optimizes the
total utility for the new conditions while guaranteeing that hard deadlines
are met. This approach would give the best results in terms of total utility.
However, since it requires the on-line computation of an optimal schedule, a
problem which is NP-complete [5], its overhead is unacceptable.

A better approach is to compute off-line a number of schedules and
schedule-switching points. Then one of the precomputed schedules is se-
lected on-line based on the actual execution times. Hence the only overhead
at run-time is the selection of a schedule, which is very cheap because it re-
quires a simple comparison between the time given by a switching point and
the actual completion time. The most relevant question in such a quasi-static
approach is thus how to compute at design-time the schedules and switching
points such that they deliver the highest quality (utility).

For the system shown in Figure 2, for instance, we can define a switching
point 〈t3; [3, 13]〉 associated to σ = t1t3t4t2t5, that together with the schedule
σ′ = t1t3t2t4t5, works as follows: the system starts executing according to the
schedule σ, i.e. task t1 runs followed by t3; when t3 finishes, the completion
time τ3 is compared to that of the switching point and if 3 ≤ τ3 ≤ 13 the
remaining tasks execute following the schedule σ′, else the execution order
continues according to σ.

The set of schedules {σ, σ′} as explained above outperforms the solution
of a single schedule σ: while the scheme {σ, σ′} guarantees satisfaction of all
hard deadlines, it yields a total utility which is greater than the one given by
σ in 83.3% of the cases (this figure can be obtained analytically by considering
the execution time probability distributions).

7

4 Problem Formulation

A system is defined by: a set T of tasks; a directed acyclic graph G = (T,E)
defining precedence constraints for the tasks; a minimum duration l(t) for
each task t ∈ T ; a maximum duration m(t) for each task t ∈ T ; an expected
duration2 e(t) for each task t ∈ T (l(t) ≤ e(t) ≤ m(t)); a subset H ⊆ T of
hard tasks; a deadline d(h) for each hard task h ∈ H; a subset S ⊆ T of soft
tasks (S ∩H = ∅); a non-increasing utility function uj(τj) for each soft task
sj ∈ S (τj is the completion time of sj).

On-Line Scheduler: The following is the problem that the on-line sched-
uler would solve before the activation of the system and every time a task
completes, in order to give the best results in terms of total utility (in the
sequel, this problem will be referred to as the one-schedule problem):

Find a schedule σ (a bijection σ : T → {1, 2, . . . , |T |}) that maximizes
U =

∑
sj∈S uj(τ

e
j), where τ

e
j is the expected completion time3 of task

sj , subject to: τm
i ≤ d(hi) for all hi ∈ H, where τm

i is the maximum
completion time4 of task hi; σ(t) < σ(t

′) for all 〈t, t′〉 ∈ E; σ has σx as
prefix, where σx is the order of the already executed tasks.

Considering an ideal case, in which the on-line scheduler executes in zero
time, for any possible set of execution times |t1|, |t2|, . . . , |tn| (which are not
known beforehand), the utility U{|ti|} produced by the on-line scheduler is
maximal and will be denoted Umax

{|ti|}.

Due to the complexity of the problem that the on-line scheduler solves
after completing every task, such a solution is infeasible in practice. We
therefore propose to compute a number of schedules and switching points at
design-time aiming to match the total utility produced by the ideal on-line
scheduler. This leaves for run-time only the decision of selecting one of the
precomputed schedules, which is done by the so-called quasi-static scheduler.
The problem we concentrate on in the rest of this report is formulated as
follows:

2Mean value of the possible execution times.
3τe

j is given by

τe
j =

{
ej if σ(tj) = 1,
τe
k + ej if σ(tj) = σ(tk) + 1.

where ej = |tj | if tj has already been executed, else ej = e(tj).
4τm

i is given by

τm
i =

{
mi if σ(ti) = 1,
τm
k +mi if σ(ti) = σ(tk) + 1.

where mi = |ti| if ti has already been executed, else mi = m(ti).

8

Multiple-Schedules Problem: Find a set of schedules and switching
points such that, for any combination of execution times |t1|, |t2|, . . . , |tn|,
the quasi-static scheduler yields a total utility U{|ti|} that is equal to the
one produced by the ideal on-line scheduler Umax

{|ti|} and, at the same time,
guarantees satisfaction of hard deadlines.

5 Optimal Set of Schedules and Switching

Points

In this section we propose a systematic method for finding the optimal set of
schedules and switching points as required by the multiple-schedules problem.

We start by taking the basis schedule σ, i.e. the one that maximizes∑
sj∈S uj(τ

e
j) considering that no task has yet been executed. Let us assume

that σ(t1) = 1, i.e. t1 is the first task of σ. For each one of the schedules
σi that start with t1 and satisfy the precedence constraints, we express the
total utility Ui(τ1) as a function of the completion time τ1 of task t1 for
l(t1) ≤ τ1 ≤ m(t1). When computing Ui we consider |t| = e(t) for all t ∈
T \{t1} (expected duration for the remaining tasks). Then, for each possible
σi, we analyze the schedulability of the system, that is, which values of the
completion time τ1 imply potential hard deadline misses when σi is followed.
For this analysis we consider |t| = m(t) for all t ∈ T \{t1} (maximum duration
for the remaining tasks). We introduce the auxiliary function Ûi such that
Ûi(τ1) = −∞ if following σi, after t1 has completed at τ1, does not guarantee
the hard deadlines, else Ûi(τ1) = Ui(τ1).

Once we have computed all the functions Ûi(τ1), we may determine which
σi yields the maximum total utility at which instants in the interval [l(t1),m(t1)].
We get thus the interval [l(t1),m(t1)] partitioned into subintervals and, for
each one of these, the schedule that maximizes the total utility and guaran-
tees satisfaction of hard deadlines. In this way we obtain the schedules to be
followed after finishing t1 depending on the completion time τ1.

For each one of the obtained schedules, we repeat the process, this time
computing Ûj ’s as a function of the completion time of the second task in
the schedule and for the interval in which this second task may finish. Then
the process is similarly repeated for the third element of the new schedules,
and then for the fourth, and so on. In this manner we obtain the best tree
of schedules and switching points.

Let us consider the example discussed in Section 3 and shown in Fig-
ure 2. The basis schedule is in this case σ = t1t3t4t2t5. Due to the data
dependencies, there are three possible schedules that start with t1, namely

9

σa = t1t2t3t4t5, σb = t1t3t2t4t5, and σc = t1t3t4t2t5. We want to compute
the corresponding functions Ua(τ1), Ub(τ1), and Uc(τ1), 1 ≤ τ1 ≤ 7, consid-
ering the expected duration for t2, t3, t4, and t5. For example, Ub(τ1) =
u2(τ1 + e(t3) + e(t2)) + u3(τ1 + e(t3)) = u2(τ1 + 12) + u3(τ1 + 6). We get the
following functions:

Ua(τ1) =




5 if 1 ≤ τ1 ≤ 3,

11

2
−
τ1

6
if 3 ≤ τ1 ≤ 6,

15

2
−
τ1

2
if 6 ≤ τ1 ≤ 7.

Ub(τ1) =
9

2
−
τ1

6
if 1 ≤ τ1 ≤ 7.

Uc(τ1) =
7

2
−
τ1

6
if 1 ≤ τ1 ≤ 7.

The functions Ua(τ1), Ub(τ1), and Uc(τ1), as given above, are shown in
Figure 3(a). Now, for each one of the schedules σa, σb, and σc, we determine
the latest completion time τ1 that guarantees meeting hard deadlines when
that schedule is followed. For example, if the execution order given by σa =
t1t2t3t4t5 is followed and the remaining tasks take their maximum duration,
the hard deadline d(t4) is met only when τ1 ≤ 3. This is because τ4 =
τ1 +m(t2) + m(t3) + m(t4) = τ1 + 27 in the worst case and therefore τ4 ≤
d(t4) = 30 iff τ1 ≤ 3. A similar analysis shows that σb guarantees meeting
the hard deadline only when τ1 ≤ 3 while σc guarantees the hard deadline
for any completion time τ1 in the interval [1, 7]. Thus we get the auxiliary
functions as given below and depicted in Figure 3(b):

Ûa(τ1) =

{
5 if 1 ≤ τ1 ≤ 3,

−∞ if 3 < τ1 ≤ 7.
Ûb(τ1) =




9

2
−
τ1

6
if 1 ≤ τ1 ≤ 3,

−∞ if 3 < τ1 ≤ 7.

Ûc(τ1) =
7

2
−
τ1

6
if 1 ≤ τ1 ≤ 7.

From the graphic of Figure 3(b) we conclude that σa = t1t2t3t4t5 yields
the highest total utility when t1 completes in the subinterval [1, 3] still guar-
anteeing the hard deadline, and that σc = t1t3t4t2t5 yields the highest total
utility when t1 completes in the subinterval (3, 7] also guaranteeing the hard
deadline in this case.

A similar procedure is followed, first for σa and then for σc, considering
the completion time of the second task in these schedules. Let us take σa =
t1t2t3t4t5. We must analyze the legal schedules that start with t1t2. However,
since there is only one such schedule, there is no need to continue along the
branch originated from σa.

Let us take σc = t1t3t4t2t5. We make an analysis of the possible schedules
σj that start with t1t3 (σd = t1t3t2t4t5 and σe = t1t3t4t2t5) and for each

10

1 8

3

4

5

2

2

1

3 4 5 6 7

U

τ1

U

a

U
U

b

c

(a) Ui(τ1)

1 8

3

4

5

2

2

1

3 4 5 6 7

U

τ1

U

a

U
U

b

c

^

^

^

^

(b) Ûi(τ1)

Figure 3: Ui(τ1) and Ûi(τ1), 1 ≤ τ1 ≤ 7, for the example of Figure 2

of these we obtain Uj(τ3), 5 < τ3 ≤ 17 (recall that: σc is followed when
3 < τ1 ≤ 7; 2 ≤ |t3| ≤ 10). The corresponding functions, when considering
expected duration for t2, t4, and t5, are:

Ud(τ3) =
7

2
−
τ3

6
if 5 < τ3 ≤ 17. Ue(τ3) =




5

2
−
τ3

6
if 5 < τ3 ≤ 15,

0 if 15 ≤ τ3 ≤ 17.

The above Ud(τ3) and Ue(τ3) are shown in Figure 4(a). Note that these
utility functions do not include the contribution by the soft task t3 because
this contribution u3(τ3) is the same for both σd and σe and therefore it is
not relevant when differentiating between Ûd(τ3) and Ûe(τ3). After the hard
deadlines analysis, the auxiliary utility functions under consideration become:

Ûd(τ3) =



7

2
−
τ3

6
if 5 < τ3 ≤ 13,

−∞ if 13 < τ3 ≤ 17.
Ûe(τ3) =




5

2
−
τ3

6
if 5 < τ3 ≤ 15,

0 if 15 ≤ τ3 ≤ 17.

From the Figure 4(b) we conclude that if task t3 completes in the interval
(5, 13], the schedule σd = t1t3t2t4t5 should be followed while if t3 completes
in the interval (13, 17], σe = t1t3t4t2t5 should be followed. The process ter-
minates at this point since there is no other scheduling alternative after
completing the third task of either σd or σe.

11

108

3

2

11

1

9 125 6 7

U

d

U
U

e

τ31716151413

(a) Uj(τ3)

108

3

2

11

1

9 125 6 7

U

d

U
U

e

τ31716151413

^

^

^

(b) Ûj(τ3)

Figure 4: Uj(τ3) and Ûj(τ3), 5 < τ3 ≤ 17, for the example of Figure 2

At the end, renaming σa and σd, we get the set of schedules {σ =
t1t3t4t2t5, σ

′ = t1t2t3t4t5, σ
′′ = t1t3t2t4t5} that works as follows (see Figure 5):

once the system is activated, it starts following the schedule σ; when t1 is
finished, its completion time τ1 is read, and if τ1 ≤ 3 the schedule is switched
to σ′ for the remaining tasks, else the execution order continues according
to σ; when t3 finishes, while σ is the followed schedule, its completion time
τ3 is compared with the time point 13: if τ3 ≤ 13 the remaining tasks are
executed according to σ′′, else the schedule σ is followed.

t1t3t2t4t5 t1t3t4t2t5

t1t3t4t2t5t1t2t3t4t5

t1t3t4t2t5

�
�
�

@
@
@

�
�
�

@
@
@

5
<

τ 3
≤13

13
<

τ
3 ≤

17

1
≤τ 1

≤3 3
<

τ
1 ≤

7

Figure 5: Optimal tree of schedules and switching points

It is not difficult to show that the procedure we have described finds a
set of schedules and switching points that produces the same utility as the
on-line scheduler defined in Section 4. Both the on-line scheduler and the set
computed by the above method start off the system following the same sched-
ule (the basis schedule). Upon completion of every task, the on-line scheduler

12

computes a new schedule that maximizes the total utility when taking into
account the actual execution times for the already completed tasks and the
expected durations for the tasks yet to be executed. Our procedure analyzes
off-line, beginning with the first task in the basis schedule, the sum of utili-
ties by soft tasks as a function of the completion time of such first task, for
each one of the possible schedules starting with that task. For computing the
utility as a function of the completion time, our procedure considers expected
duration for the remaining tasks. In this way, the procedure determines the
schedule that maximizes the total utility at every possible completion time.
The process is likewise repeated for the second element of the new schedules,
and then the third, and so forth. Thus our procedure solves symbolically the
optimization problem for a set of completion times, one of which corresponds
to the particular instance solved by the on-line scheduler. Thus, having the
tree of schedules and switching points computed in this way, the schedule se-
lected at run-time by the quasi-static scheduler produces a total utility that
is equal to that of the ideal on-line scheduler, for any set of execution times.

In the previous discussion about the method for finding the optimal set
of schedules and switching points, for instance when t1 is the first task in the
basis schedule, we mentioned that we considered each one of the potentially
|T \ {t1}|! schedules σi that start with t1 in order to obtain the utilities Ui

as a function of the completion time τ1. This can actually be done more
efficiently by considering |H ∪ S \ {t1}|! schedules σi instead of |T \ {t1}|!,
that is, by considering the permutations of hard and soft tasks instead of the
permutations of all tasks. The rationale is that the best schedule, for a given
permutation HS of hard and soft tasks, is obtained when the hard and soft
tasks are set in the schedule as early as possible respecting the order given
by HS.

A simple proof of the fact that by setting hard and soft tasks as early
as possible according to the order given by HS we get the best schedule for
HS is as follows: let σ be the schedule that respects the order of hard and
soft tasks given by HS (that is, 1 ≤ i < j ≤ |HS| ⇒ σ(HS[i]) < σ(HS[j]))

5

and such that hard and soft tasks are set as early as possible (that is, for
every schedule σ′, different from σ, that obeys the order of hard and soft
tasks given by HS, σ′(HS[i]) > σ(HS[i]) for some 1 ≤ i ≤ |HS|). Take one
such σ′. For at least one task hsj ∈ H ∪ S it holds σ′(hsj) > σ(hsj). We
study two situations: a) hsj ∈ S: in this case τ ′ej > τ

e
j (τ ′ej is the completion

time of hsj when we use σ′ as schedule while τ e
j is the completion time of

hsj when σ is used as schedule, considering in both cases expected duration
for the remaining tasks). Thus uj(τ

′e
j) ≤ uj(τ

e
j) because utility functions for

5HS[i] denotes the i-th task in the array representing the permutation HS.

13

soft tasks are non-increasing. Consequently Û ′(τ) ≤ Û(τ) for every possible
completion time τ , where Û ′(τ) and Û(τ) correspond, respectively, to σ′ and
σ. b) hsj ∈ H: in this case τ ′mj > τ

m
j (τ ′mj is the completion time of hsj

when we use σ′ as schedule while τm
j is the completion time of hsj when

σ is used as schedule, considering in both cases maximum duration for the
remaining tasks). Thus there exists some τ× for which σ guarantees meeting
hard deadlines whereas σ′ does not. Recall that we include the information
about potential hard deadline misses in the form Û ′(τ) = −∞ if following
σ′, after completing the current task at τ , implies potential hard deadline
violations. Accordingly Û ′(τ) ≤ Û(τ) for every possible completion time τ .
Hence we conclude that every schedule σ′, which respects the order for hard
and soft tasks given by HS, yields a function Û ′(τ) such that Û ′(τ) ≤ Û(τ)
for every τ , and therefore σ is the best schedule for the given permutation
HS.

The pseudocode of the algorithm for finding the optimal set of schedules
and switching points is presented in Figures 6 and 7. First of all, if there
is no basis schedule that guarantees satisfaction of all hard deadlines, the
system is not schedulable and therefore the multiple-schedules problem has
no solution. IsValidPerm(HS) is used in order to examine if a permutation
HS defines a feasible schedule: if there exists a path from the task HS[j] to the
task HS[i], j > i, HS is not valid. The procedure BestSchedule(HS, σ, n)
returns the schedule that agrees with σ up to the n-th position and for which
the remaining hard and soft tasks are set as early as possible obeying the
order given by HS. The method AddSubtree(Ψk, σ, n, Ikn) adds Ψk to Ψ,
i.e. the root σk of Ψk is a child of σ, in such a way that upon completing
the n-th task of σ in the time interval Ikn, the schedule σk is followed for
the remaining tasks. Observe that the tree of schedules obtained using the
algorithm OptimalTree might contain nodes σ with a single child σk (when
the whole interval In is covered by a single schedule σk). In these cases, since
σ = σk, the node σ can be removed, so that σk becomes a child of the parent
of σ, without changing the behavior.

Algorithm OptimalTree()
output: The best tree Ψ of schedules and switching points

begin
σ := basis schedule
Ψ := OptimalTree(σ, 1)

end

Figure 6: Algorithm OptimalTree()

14

Algorithm OptimalTree(σ, n)
input: A schedule σ and a positive integer n
output: The best tree Ψ of schedules to follow after completing
the n-th task in σ
begin
set σ as root of Ψ
A := {t ∈ T | σ(t) ≤ n}
if |H ∪ S \A| > 1 then
for i← 1, 2, . . . , |H ∪ S \A|! do
if IsValidPerm(HSi) then
σi := BestSchedule(HSi, σ, n)
compute Ûi(τn)

end if
end for
partition the interval In of possible τn into subintervals
In1 , I

n
2 , . . . , I

n
M s.t. σk makes Ûk(τn) maximal in Ink

for k ← 1, 2, . . . ,M do
Ψk := OptimalTree(σk, n+ 1)
AddSubtree(Ψk, σ, n, I

n
k)

end for
end if

end

Figure 7: Algorithm OptimalTree(σ, n)

In the procedure for finding the optimal set of schedules and switch-
ing points, we partition the interval of possible completion times τi for a
task ti into subintervals which define the switching points and schedules
to follow after executing ti. The interval-partitioning step can be done in
O((|H| + |S|)!) time. Though a time complexity O((|H| + |S|)!) in this
step is a great improvement with respect to O(|T |!), the multiple-schedules
problem is intractable. Moreover, the inherent nature of the problem (find-
ing a tree of schedules) makes it such that it requires exponential-time and
exponential-memory solutions, even when using a polynomial-time heuristic
in the interval-partitioning step. An additional problem is that, even if we
can afford the time and memory budget for computing the optimal tree of
schedules (as this is done off-line), the memory constraints of the target sys-
tem still impose a limit on the size of the tree, therefore a suboptimal set
of schedules must be chosen to fit in the system memory. These issues are
addressed in Section 6.

Nonetheless, despite its complexity, the procedure to compute the optimal

15

set of schedules and switching points as outlined above has also theoretical
relevance: it shows that an infinite space of execution times (the execution
time of task t can be any value in the interval [l(t),m(t)]) might be covered
optimally by a finite number of schedules, albeit it may be a very large
number. This is so because, when partitioning an interval In of possible τn,
the number of subintervals Ink is finite.

The set of schedules is stored in memory as an ordered tree. Upon com-
pleting a task, the cost of selecting at run-time the schedule for the remaining
tasks is at most O(logN) where N is the maximum number of children that
a node has in the tree of schedules. Such cost can be included by augmenting
accordingly the maximum duration of tasks.

6 Heuristic Methods and Experimental Eval-

uation

In this section we propose several heuristics that address different com-
plexity dimensions of the multiple-schedules problem, namely the interval-
partitioning step and the exponential growth of the tree size.

6.1 Interval Partitioning

In this section we discuss methods to avoid the computation, in the interval-
partitioning step, of Ûi(τn) for all permutations of the remaining tasks that
define possible schedules (loop for i← 1, 2, . . . , |H ∪S \A|! do in Figure 7).

The first heuristic starts similar to the algorithm of Figure 6, but instead
of OptimalTree(σ, 1), it calls LimTree(σ, 1) as presented in Figure 8.
We obtain solutions σL and σU to the one-schedule problem (see Section 4),
respectively, for the lower and upper limits τL and τU of the interval In of
possible completion times τn. OptSchedule(σ, n, τ) returns the schedule
that agrees with σ up to the n-th position and maximizes the total utility,
considering that the n-th task completes precisely at τ . Then we compute
ÛL(τn) and ÛU(τn) and partition In considering only these two (avoiding
thus computing Ûi(τn) corresponding to the possible schedules σi defined by
permutations of the remaining tasks). For the example discussed in Sections 3
and 5, when partitioning the interval I1=[1, 7] of possible completion times
of the first task in the basis schedule, LimTree solves the one-schedule
problem for τL = 1 and τU = 7, whose solutions are σL = t1t2t3t4t5 and σU =
t1t3t4t2t5 respectively. Then ÛL(τ1) and ÛU(τ1) are computed as described in
Section 5 and only these two are used for partitioning the interval. Referring
to Figure 3(b), ÛL = Ûa and ÛU = Ûc, and in this case LimTree gives the

16

same result as the optimal algorithm. The rest of the procedure is repeated
in a similar way as explained in Section 5.

Algorithm LimTree(σ, n)
input: A schedule σ and a positive integer n
output: The tree Ψ of schedules to follow after completing the
n-th task in σ
begin
set σ as root of Ψ
A := {t ∈ T | σ(t) ≤ n}
if |H ∪ S \A| > 1 then
τL := lower limit of the interval In of possible τn
σL := OptSchedule(σ, n, τL)
compute ÛL(τn)
τU := upper limit of the interval In of possible τn
σU := OptSchedule(σ, n, τU)
compute ÛU(τn)
partition In into subintervals In1 , I

n
2 , . . . , I

n
M s.t. σk makes

Ûk(τn) maximal in Ink
for k ← 1, 2, . . . ,M do
Ψk := LimTree(σk, n+ 1)
AddSubtree(Ψk, σ, n, I

n
k)

end for
end if

end

Figure 8: Algorithm LimTree(σ, n)

The second of the proposed heuristics, named LimCmpTree (Figure 9),
is based on the same ideas as LimTree, that is, computing only ÛL(τn) and
ÛU(τn) that correspond to schedules σL and σU which are in turn solutions
to the one-schedule problem for τL and τU, respectively. The difference lies
in that, while constructing the tree of schedules to follow after completing
the n-th task in σ, if the n+1-th task of the schedule σk (the one that yields
the highest utility in the subinterval Ink) is the same as the n+1-th task of
the current schedule σ (if σ−1

k (n+1) = σ−1(n+1) in Figure 9), the schedule
σ continues being followed instead of adding σk to the tree. This leads to a
tree with fewer nodes.

In both LimTree and LimCmpTree we must solve the one-schedule
problem through OptSchedule(σ, n, τ). The one-schedule problem is NP-
complete and we have proposed an optimal algorithm as well as different
heuristics for it [5]. In the experimental evaluation of the heuristics proposed

17

Algorithm LimCmpTree(σ, n)
input: A schedule σ and a positive integer n
output: The tree Ψ of schedules to follow after completing the
n-th task in σ
begin
set σ as root of Ψ
A := {t ∈ T | σ(t) ≤ n}
if |H ∪ S \A| > 1 then
τL := lower limit of the interval In of possible τn
σL := OptSchedule(σ, n, τL)
compute ÛL(τn)
τU := upper limit of the interval In of possible τn
σU := OptSchedule(σ, n, τU)
compute ÛU(τn)
partition In into subintervals In1 , I

n
2 , . . . , I

n
M s.t. σk makes

Ûk(τn) maximal in Ink
for k ← 1, 2, . . . ,M do
if σ−1

k (n+ 1) = σ−1(n+ 1) then
Ψk := LimCmpTree(σ, n+ 1)

else
Ψk := LimCmpTree(σk, n+ 1)

end if
AddSubtree(Ψk, σ, n, I

n
k)

end for
end if

end

Figure 9: Algorithm LimCmpTree(σ, n)

here, we use both the optimal algorithm as well as a heuristic when solving the
one-schedule problem. Thus we get four different heuristics for the multiple-
schedules problem, namely LimTreeA, LimTreeB, LimCmpTreeA, and
LimCmpTreeB. The first and third make use of an exact algorithm when
solving the one-schedule problem while the other two make use of a heuristic
presented in [5].

In order to evaluate the heuristics discussed above, we have generated a
large number of synthetic examples. We considered systems with 50 tasks
among which from 3 up to 25 hard and soft tasks. We generated 100 graphs
for each graph dimension. All the experiments were run on a Sun Ultra 10
workstation.

Figure 10 shows the average size of the tree of schedules as a function of

18

the number of hard and soft tasks, for the optimal algorithm as well as for
the heuristics. Note the exponential growth even in the heuristic cases which
is inherent to the problem of computing a tree of schedules.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 5 10 15 20 25

A
ve

ra
ge

 N
um

be
r

of
 T

re
e

N
od

es

Number of Hard and Soft Tasks

OPTIMAL
LIMA

LIMB

LIMCMPA

LIMCMPB

Figure 10: Average size of the tree of schedules

The average execution time of the algorithms is shown in Figure 11. The
rapid growth rate of execution time for the optimal algorithm makes it feasi-
ble to obtain the optimal tree only in the case of small numbers of hard and
soft tasks. Observe also that LimTreeA takes much longer than LimTreeB,
even though they yield trees with a similar number of nodes. A similar sit-
uation is noted for LimCmpTreeA and LimCmpTreeB. This is due to the
long execution time of the optimal algorithm for the one-schedule problem
as compared to the heuristic.

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 5 10 15 20 25

A
ve

ra
ge

 E
xe

cu
ti

on
 T

im
e

[s
]

Number of Hard and Soft Tasks

OPTIMAL
LIMA

LIMB

LIMCMPA

LIMCMPB

Figure 11: Average execution time when finding the tree of schedules

We have evaluated the quality of the trees of schedules as given by the

19

different algorithms with respect to the optimal tree. For each one of the
randomly generated examples, we profiled the system for a large number of
cases. We generated execution times for each task according to its proba-
bility distribution and, for each particular set of execution times, computed
the total utility as given by a certain tree of schedules. For each case, we
obtained the total utility yielded by a given tree and normalized with respect
to the one produced by the optimal tree:

‖Ualg‖ = Ualg/Uopt

The results are plotted in Figure 12. We have included in this plot the case
of a purely off-line solution where only one schedule is used regardless of
the actual execution times (SingleSch). This plot shows LimTreeA and
LimCmpTreeA as the best of the heuristics discussed above, in terms of
the total utility yielded by the trees they produce. LimTreeB and Lim-

CmpTreeB produce still good results, not very far from the optimal, at a
significantly lower computational cost. Observe that having one single static
schedule leads to a significant quality loss.

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 2 4 6 8 10 12

A
ve

ra
ge

 T
ot

al
 U

ti
li

ty
 (N

or
m

al
iz

ed
)

Number of Hard and Soft Tasks

OPTIMAL
LIMA

LIMB

LIMCMPA

LIMCMPB

SINGLESCH

Figure 12: Average normalized total utility

6.2 Limiting the Tree Size

Even if we could afford to compute the optimal tree of schedules, the tree
might be too large to fit in the available target memory. Hence we must drop
some nodes of the tree at the expense of the solution quality (recall that we
use the total utility as quality criterion). The heuristics presented in Sec-
tion 6.1 reduce considerably both the time and memory needed to construct
a tree as compared to the optimal algorithm, but still require exponential
memory and time. In this section, on top of the above heuristics, we pro-
pose methods that construct a tree considering its size limit (imposed by the

20

memory constraints of the target system) in such a way that we can handle
both the time and memory complexity.

Given a memory limit, only a certain number of schedules can be stored,
so that the maximum tree size is M . Thus the question is how to generate a
tree of at mostM nodes which still delivers a good quality. We explore several
strategies which fall under the umbrella of a generic framework with the
following characteristics: (a) the algorithm goes on until no more nodes may
be generated, due to the size limit M ; (b) the tree is generated in a depth-
first fashion; (c) in order to guarantee that hard deadlines are still satisfied
when constructing a tree, either all children σk of a node σ (schedules σk to
be followed after completing a task in σ) or none are added to the tree. The
pseudocode for the generic algorithm is presented in Figure 13. The schedules
to follow after σ correspond to those obtained in the interval-partitioning step
as described in Sections 5 and 6.1. The difference among the approaches
discussed in this section lies in the order in which the available memory
budget is assigned to trees derived from the nodes σi (Sort(σ1, σ2, . . . , σc)
in Figure 13).

Algorithm ConstructTree(σ,max)
input: A schedule σ and a positive integer max
output: A tree Ψ limited to max nodes whose root is σ

begin
set σ as root of Ψ
m := max− 1
c := number of schedules to follow after σ
if 1 < c ≤ m then
add σ1, σ2, . . . , σc as children of σ
m := m− c
Sort(σ1, σ2, . . . , σc)
for i← 1, 2, . . . , c do

Ψi :=ConstructTree(σi,m+ 1)
ni := size of Ψi

m := m− ni + 1
end for

end if
end

Figure 13: Algorithm ConstructTree(σ,max)

For illustrative purposes, we will make use of the example in Figure 14.
It represents a tree of schedules and we assume that it is the optimal tree

21

for a certain system. The intervals in the figure are the time intervals corre-
sponding to switching points.

(4,7] (7,9]

(3,5]

[1,2]

(6,8] (9,12]
(8,9]

(5,8]

(2,4]

σ8

σ1

σ12σ10

σ3

σ13

σ7

σ11σ9

[2,3] (4,6]
(3,4]

σ2

σ5 σ6σ4

Figure 14: A complete tree of schedules

Initially we have studied two simple heuristics for constructing a tree,
given a maximum size M . The first one, called Early, gives priority to
subtrees derived from early-completion-time nodes (e.g. left-most subtrees
in Figure 14). If, for instance, we are constructing a tree with a size limit
M = 10 for the system whose optimal tree is the one given in Figure 14, we
find out that σ2 and σ3 are the schedules to follow after σ1 and we add them
to the tree. Then, when using Early, the size budget is assigned first to
the subtrees derived from σ2 and the process continues until we obtain the
tree shown in Figure 15. The second approach, Late, gives priority to nodes
that correspond to late completion times. The tree obtained when using
Late and having a size limit M = 10 is shown in Figure 16. Experimental
data (see Figure 17) shows that in average Late outperforms significantly
Early. A simple explanation is that the system is more stressed in the case
of late completion times and therefore the decisions (changes of schedule)
taken under these conditions have a greater impact.

(4,7] (7,9]

(3,5]

[1,2]

(5,8]

(2,4]

σ8

σ1

σ10

σ3

σ7

σ9

[2,3] (4,6]
(3,4]

σ2

σ5 σ6σ4

Figure 15: Tree constructed using Early

22

(4,7] (7,9]

(3,5]

[1,2]

(6,8] (9,12]
(8,9]

(5,8]

(2,4]

σ8

σ1

σ12σ10

σ3

σ13

σ7

σ11σ9

σ2

Figure 16: Tree constructed using Late

A third, more elaborate, approach brings into the the picture the prob-
ability that a certain branch of the tree of schedules is selected during run-
time. Knowing the execution time probability distribution of each individual
task, we can get the probability distribution of a sequence of tasks as the
convolution of the individual distributions. Thus, for a particular execution
order, we may determine the probability that a certain task completes in
a given interval, in particular the intervals defined by the switching points.
In this way we can compute the probability for each branch of the tree and
exploit this information when constructing the tree of schedules. The proce-
dure Prob fits in the general framework of the algorithm of Figure 13, but
instead of prioritizing early- or late-completion-time subtrees, it gives higher
precedence to those subtrees derived from nodes that actually have higher
probability of being followed at run-time.

In order to evaluate the approaches so far presented, we randomly gener-
ated 100 systems with a fix number of hard and soft tasks and for each one
of them we computed the complete tree of schedules. Then we constructed
the trees for the same systems using the algorithms presented in this section,
for different size limits. For each of the examples we profiled the system for a
large number of execution times, and for each of these we obtained the total
utility yielded by a limited tree and normalized it with respect to the utility
given by the complete tree (non-limited):

‖Ulim‖ = Ulim/Unon−lim

The plot in Figure 17 shows that Prob is the algorithm that gives the best
results in average.

We have further investigated the combination of Prob and Late through
a weighted function that assigns values to the tree nodes. Such values corre-
spond to the priority given to nodes while constructing the tree. Each chil-
dren of a certain node in the tree is assigned a value given by w1p+(1−w1)b,
where p is the probability of that node (schedule) being selected among its

23

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 1000 2000 3000 4000 5000 6000 7000 8000

A
ve

ra
ge

 T
ot

al
 U

ti
li

ty
 (N

or
m

al
iz

ed
)

Max. Tree Size [nodes]

PROB

LATE

EARLY

Figure 17: Evaluation of the construction algorithms

siblings and b is a quantity that captures how early/late are the completion
times of that node relative to its siblings. More precisely, if there are n chil-
dren, the earliest-completion-time child has b1 = 1/B, the second earliest-
completion-time child has b2 = 2/B, etc., and the latest-completion-time
child has bn = n/B, where B =

∑n
i=1 i. Note that the particular cases

w1 = 1 and w1 = 0 correspond to Prob and Late respectively. The re-
sults of the weighted approach for different values of w1 are illustrated in
Figure 18. It is interesting to note that we can get even better results than
Prob for certain weights, with w1 = 0.9 being the one that performs the
best.

 0.8

 0.9

 1

 1000 2000 3000 4000

A
ve

ra
ge

 T
ot

al
 U

ti
li

ty
 (N

or
m

al
iz

ed
)

Max. Tree Size [nodes]

w1=0 (LATE)
w1=0.5
w1=0.7
w1=0.9
w1=1 (PROB)

Figure 18: Construction algorithms using a weighted approach

24

7 Cruise Control with Collision Avoidance

Modern vehicles are equipped with sophisticated electronic aids aimed to
assist the driver, increase the efficiency, and enhance the on-board comfort.
One such system is the Cruise Control with Collision Avoidance (CCCA)
[8] which assists the driver especially on highways in maintaining the speed
and keeping safe distances to other vehicles. The CCCA allows the driver
to set a particular speed. The system maintains that speed until the driver
changes the reference speed, presses the break pedal, switches the system off,
or the vehicle gets too close to an obstacle. The vehicle may travel faster
than the set speed by overriding the control using the accelerator, but once
it is released the cruise control will stabilize the speed to the set level. When
another vehicle is detected in the same in front of the car, the CCCA will
adjust the speed by applying limited braking to maintain a driver-selected
distance to the vehicle ahead.

The CCCA is composed of four main subsystems, namely Braking Control
(BC), Engine Control (EC), Collision Avoidance (CA), and Display Control
(DC), each one of them having its own average period: TBC = 100 ms,
TEC = 200 ms, TCA = 125 ms, TDC = 500 ms. We have modeled each
subsystem as a task graph. Each subsystem has one hard deadline that
equals its average period. We identified a number of soft tasks in the EC
and DC subsystems. The soft tasks in the engine control part are related
to the adjustment of the throttle valve for improving the fuel consumption
efficiency. Thus their utility functions capture how such efficiency varies as a
function of the completion time of the activities that calculate the best fuel
injection rate for the actual conditions and accordingly control the throttle.
For the display control part, the utility of soft tasks is a measure of the
time-accuracy of the displayed data, that is, how soon the information on
the dashboard is updated.

We generated several instances of the task graphs of the four subsystems
mentioned above in order to construct a graph with a period T = 1000 ms
(least common multiple of the average periods of the involved tasks). The
resulting graph contains 172 tasks, out of which 13 are soft and 25 are hard.

Since the CCCA is to be mapped on a vehicle ECU (Electronic Control
Unit) which typically has 256 kB of memory, and assuming that we may use
40% of it for storing the tree of schedules and that one such schedule takes
100 B, we have an upper limit of 1000 nodes in the tree. We have constructed
the tree of schedules using the weighted approach discussed in Section 6.2
combined with one of the heuristics presented in Section 6.1 (LimB). This
construction takes 1591 s on a Sun Ultra 10 workstation.

Since it is infeasible to construct the optimal tree of schedules, we have

25

instead compared the tree with the static, off-line solution of a single schedule.
We profiled the model of the CCCA and obtained an average total utility of
38.32 when using the tree of schedules, while the average total utility when
using a single schedule was 29.05, that is, our approach gives in this case an
average gain of 31.9%.

8 Conclusions

We have presented an approach to the problem of scheduling for real-time
systems with periodic hard and soft tasks. We made use of non-increasing
utility functions to capture the relevance of soft tasks and how the quality of
results is diminished when missing a soft deadline. The problem we addressed
is that of finding the execution order of tasks such that the total utility is
maximum and hard deadlines are guaranteed.

Due to the pessimism of a purely off-line solution and the high overhead
of a purely on-line approach, we proposed a quasi-static approach, where a
tree of schedules and switching points is computed at design-time and the
selection of schedule is done at run-time based on the actual execution times.

We have proposed an exact procedure that finds the optimal tree of sched-
ules, in the sense that an ideal on-line scheduler is matched by a quasi-static
scheduler using this tree. Also we have presented a number of heuristics for
solving the problem efficiently.

References

[1] L. Abeni and G. Buttazzo. Integrating Multimedia Applications in Hard
Real-Time Systems. In Proc. Real-Time Systems Symposium, pages 4–
13, 1998.

[2] A. Burns, D. Prasad, A. Bondavalli, F. Di Giandomenico, K. Ramam-
ritham, J. A. Stankovic, and L. Strigini. The Meaning and Role of
Value in Scheduling Flexible Real-Time Systems. Journal of Systems
Architecture, 46(4):305–325, Jan. 2000.

[3] G. Buttazzo and F. Sensini. Optimal Deadline Assignment for Schedul-
ing Soft Aperiodic Tasks in Hard Real-Time Environments. IEEE.
Trans. on Computers, 48(10):1035–1052, Oct. 1999.

[4] K. Chen and P. Muhlethaler. A Scheduling Algorithm for Tasks de-
scribed by Time Value Function. Real-Time Systems, 10(3):293–312,
May 1996.

26

[5] L. A. Cortés, P. Eles, and Z. Peng. Static Scheduling of Monoprocessor
Real-Time Systems composed of Hard and Soft Tasks. Technical report,
Embedded Systems Lab, Dept. of Computer and Information Science,
Linköping University, Linköping, Sweden, Apr. 2003.

[6] R. I. Davis, K. W. Tindell, and A. Burns. Scheduling Slack Time in
Fixed Priority Pre-emptive Systems. In Proc. Real-Time Systems Sym-
posium, pages 222–231, 1993.

[7] W.-C. Feng. Applications and Extensions of the Imprecise-Computation
Model. PhD thesis, Department of Computer Science, University of
Illinois, Urbana-Champaign, Dec. 1996.

[8] A. R. Girard, J. Borges de Sousa, J. A. Misener, and J. K. Hedrick.
A Control Architecture for Integrated Cooperative Cruise Control with
Collision Warning Systems. In Proc. Conference on Decision and Con-
trol, volume 2, pages 1491–1496, 2001.

[9] N. Homayoun and P. Ramanathan. Dynamic Priority Scheduling of
Periodic and Aperiodic Tasks in Hard Real-Time Systems. Real-Time
Systems, 6(2):207–232, Mar. 1994.

[10] H. Kaneko, J. A. Stankovic, S. Sen, and K. Ramamritham. Integrated
Scheduling of Multimedia and Hard Real-Time Tasks. In Proc. Real-
Time Systems Symposium, pages 206–217, 1996.

[11] J. P. Lehoczky and S. Ramos-Thuel. An Optimal Algorithm for Schedul-
ing Soft-Aperiodic Tasks in Fixed-Priority Preemptive Systems. In Proc.
Real-Time Systems Symposium, pages 110–123, 1992.

[12] C. D. Locke. Best-Effort Decision Making for Real-Time Scheduling.
PhD thesis, Department of Computer Science, Carnegie-Mellon Univer-
sity, Pittsburgh, May 1986.

[13] R. Rajkumar, C. Lee, J. Lehoczky, and D. Siewiorek. A Resource Allo-
cation Model for QoS Management. In Proc. Real-Time Systems Sym-
posium, pages 298–307, 1997.

[14] I. Ripoll, A. Crespo, and A. Garćıa-Fornes. An Optimal Algorithm
for Scheduling Soft Aperiodic Tasks in Dynamic-Priority Preemptive
Systems. IEEE. Trans. on Software Engineering, 23(6):388–400, Oct.
1997.

27

[15] W.-K. Shih, J. W. S. Liu, and J.-Y. Chung. Fast Algorithms for Schedul-
ing Imprecise Computations. In Proc. Real-Time Systems Symposium,
pages 12–19, 1989.

[16] J. K. Strosnider, J. P. Lehoczky, and L. Sha. The Deferrable Server
Algorithm for Enhanced Aperiodic Responsiveness in Hard Real-Time
Environments. IEEE. Trans. on Computers, 44(1):73–91, Jan. 1995.

28

