
Multiplexed Redundant Execution: A Technique for

Efficient Fault Tolerance in Chip Multiprocessors

Pramod Subramanyan, Virendra Singh
Supercomputer Education and Research Center

Indian Institute of Science

Bangalore, India

{pramod@rishi., viren@}serc.iisc.ernet.in

Kewal K. Saluja
Electrical and Computer Engg. Dept.

University of Wisconsin-Madison

Madison, WI

saluja@engr.wisc.edu

Erik Larsson
Dept. of Computer and Info. Science

Linköping University

Linköping, Sweden

erila@ida.liu.se

Abstract—Continued CMOS scaling is expected to make future mi-

croprocessors susceptible to transient faults, hard faults, manufacturing

defects and process variations causing fault tolerance to become im-

portant even for general purpose processors targeted at the commodity
market.

To mitigate the effect of decreased reliability, a number of fault-tolerant
architectures have been proposed that exploit the natural coarse-grained

redundancy available in chip multiprocessors (CMPs). These architec-

tures execute a single application using two threads, typically as one

leading thread and one trailing thread. Errors are detected by comparing

the outputs produced by these two threads. These architectures schedule

a single application on two cores or two thread contexts of a CMP. As

a result, besides the additional energy consumption and performance

overhead that is required to provide fault tolerance, such schemes also
impose a throughput loss. Consequently a CMP which is capable of

executing 2n threads in non-redundant mode can only execute half as

many (n) threads in fault-tolerant mode.

In this paper we propose multiplexed redundant execution (MRE),

a low-overhead architectural technique that executes multiple trailing

threads on a single processor core. MRE exploits the observation

that it is possible to accelerate the execution of the trailing thread
by providing execution assistance from the leading thread. Execution

assistance combined with coarse-grained multithreading allows MRE to

schedule multiple trailing threads concurrently on a single core with only

a small performance penalty. Our results show that MRE increases the
throughput of fault-tolerant CMP by 16% over an ideal dual modular

redundant (DMR) architecture.

I. INTRODUCTION

Over the last three decades continued scaling of silicon fabrication

technology has permitted exponential increases in the transistor

budgets of microprocessors. In the past higher transistor counts were

used to increase the performance of single processor cores, but the

increasing complexity and power dissipation of these cores forced

architects to turn to chip multiprocessors (CMPs) in order to deliver

increased performance at a manageable levels of power and complex-

ity with each succeeding generation of silicon fabrication technology.

While deep sub-micron technology is enabling the placement of

billions of transistors on a single chip, it also poses unique challenges.

ICs are now increasingly susceptible to soft errors [24], wear-out

related permanent faults and process variations [2, 4].

Traditionally, high availability systems have been restricted to the

domain of mainframe computers or specially designed fault-tolerant

systems [3, 11]. However, the trend towards unreliable components

means that fault tolerance is now important for the commodity market

as well [1]. Fault tolerant solutions for the commodity market have

different requirements and present a different set of design challenges

for architects. The commodity market requires configurable [1] and

low cost fault tolerance. CMPs are appealing in this context as

they inherently provide replicated hardware resources which can be

exploited for error detection and recovery. A number of proposals

[1, 5, 8, 9, 12, 13, 18, 26] have attempted to take advantage of these

aspects of CMPs to provide fault tolerance. Typically, these schemes

use some form of space redundancy [21] where two cores or thread

contexts of a CMP are used to execute a single logical thread. Inputs

to the two cores are replicated and the outputs generated by the two

cores are compared to detect the occurrence of errors.

However, the use of two cores or thread contexts to execute a

single program means that the throughput of the CMP is reduced

by half. Due to this throughput loss, a fault-tolerant system must

have twice as many cores to achieve the same throughput as non-

redundant execution. Not only does this increase the procurement

cost of systems, it also increases the running cost of the system

due to increased cooling costs, energy costs and maintenance costs;

these costs may be greater than the cost of purchasing the system.

Such high costs are undesirable for fault-tolerant general purpose

microprocessors targeted at the commodity market. Therefore, there

is a need for fault-tolerant architectures that can minimize this

throughput loss.

In this paper, we present multiplexed redundant execution (MRE),

a technique that reduces the throughput loss due to fault tolerance.

MRE employs the well known technique of space redundancy [21],

where two copies of a program are executed on different cores of

a CMP with replicated inputs. The outputs of these two streams

of execution are compared to detect faults. MRE is based on the

observation that forwarding branch outcomes and load values from

the leading thread to the trailing thread accelerates the execution

of the trailing thread. Supplying the trailing thread with the branch

outcomes from the leading threads eliminates mispredictions in the

trailing thread. Similarly, forwarding load values eliminates perfor-

mance degradation due to data cache misses in the trailing thread.

This accelerated execution frees execution bandwidth that can be used

for executing other threads or applications.

Based on this observation, MRE uses coarse-grained multithread-

ing to schedule several trailing threads on a single processor core.

Therefore unlike previous work, where each leading/trailing thread

combination requires two cores for execution, we are able to multiplex

multiple trailing threads on a single trailing core with only small

performance penalty as compared to non-redundant execution. Our

evaluation shows that MRE increases the throughput of a fault-

tolerant CMP by 23% as compared to Reinhardt and Mukher-

jee’s chip level redundant threading (CRT) [18] architecture. When

compared to an ideal dual modular redundant architecture with no

performance overhead for communication and comparison, MRE still

increases throughput by 16%.

II. CONCEPTUAL OVERVIEW

MRE partitions the processors of a CMP into different pools of

cores. One pool is the set of leading cores. These cores execute the

 

 

 

 

 

978-3-9810801-6-2/DATE10 © 2010 EDAA 

 

 



L1 L2 T1

RRQ

bus interconnect

leading core pool trailing core pool

Fig. 1. Conceptual block diagram of MRE.

leading threads of applications that require fault tolerance. A second

pool consists of the set of trailing cores. These cores execute trailing

threads of applications which require fault tolerance. A third pool

of processors executes non-redundant applications. The division of

processor cores into leading, trailing and non-redundant cores is only

a logical distinction. Physically, all cores are identical and unused

structures are appropriately disabled based on the mode of operation.

This partitioning is similar to traditional fault tolerance schemes for

CMPs except that the pool of trailing cores is allowed to be smaller

than the pool of leading cores. In this case, a single trailing core

executes multiple trailing threads. These trailing threads are executed

concurrently using coarse-grained multithreading.

Execution of the application is carried out in chunks. The leading

core executes a chunk of instructions and sends a message to the

trailing core requesting the execution of the corresponding chunk.

Upon the receipt of a request to execute a chunk, the trailing core

pushes this request into a run request queue (RRQ). When the current

chunk executing in the trailing core completes execution, the trailing

core (if necessary) switches contexts and executes the next request

from the head of the RRQ.

To accelerate the execution of the trailing core, the leading core

provides the trailing core with execution assistance in the form of

load values and branch outcomes. The trailing core uses the branch

outcomes from the leading core as branch predictions, and reads the

load values instead of accessing the data cache. These two factors

improve the performance of the trailing core, enabling multiplexing

of multiple trailing threads on a single core.

III. DETAILED DESIGN

Figure 2 shows the block diagram of an MRE-enabled processor

core. In the rest of this section we describe in detail the components

of an MRE processor.

A. Overview

In this subsection, we give an overview of an MRE-enabled

processor core.

Input Replication: A fault-tolerant architecture that relies on redun-

dant execution has to address the issue of input replication. Precise

input replication requires that both the leading and trailing threads

of a redundant application see exactly the same sequence of inputs

(e.g., load values, interrupts etc.). To ensure precise input replication,

MRE uses the load value queue (LVQ) structure introduced by

Reinhardt and Mukherjee [21]. When the leading thread retires a

load instruction, the result of that instruction is transferred over the

interconnect to the trailing core’s load value queue. The trailing

thread’s load instructions access the LVQ instead of the data cache.

Branch outcome forwarding: Upon the retirement of a branch

instruction in the leading thread, the branch’s outcome is forwarded

RRQ

FetchBPred BOQ

Decode

Issue Queue LSQROB

Reg File FUs D-cache LVQ

WB

Retire

Fingerprint To Interconnect

From Interconnect

Fig. 2. Diagram showing processor core augmented with structures required
for redundant execution. Newly added structures are shaded and not used
when redundant execution is not being performed.

to the trailing thread. This outcome is stored in the branch outcome

queue (BOQ) structure [21] in the trailing core. The trailing thread

accesses the BOQ instead of the branch predictor to obtain branch

predictions.

Interconnect: MRE’s interconnection strategy divides the processors

of a CMP into clusters. The processors in a cluster are connected by

a bus interconnect. We model an 8-core CMP with 2 clusters of 4

processors each.

B. Coarse-grained multithreading

The trailing core uses coarse-grained multithreading to execute

multiple trailing threads. Execution of an application is carried out

in chunks. Each time the leading core executes a certain number of

instructions, it sends a request to the trailing core to execute the

corresponding chunk. This request is enqueued in the run request

queue (RRQ) in the trailing core. When the trailing core finishes

the execution of a chunk, it executes the next chunk from the head

of the RRQ. If necessary, a context switch is performed. Unless

a fingperprint comparison is to be made (described in §III-C), the

leading core continues execution after signalling the end of a chunk.

Execution in chunks is required for fairness. Since requests are

enqueued in the RRQ in the order in which they are received, this

mechanism ensures forward progress for all threads.

Implementation of coarse-grained multithreading requires that all

architecturally visible state of each of the trailing threads needs to

be stored in the trailing core. This requires storage space for holding

Nthreads×NArchRegs registers. When a context switch is performed

all architectural registers of the previously executing thread need to

be copied to the register storage space. Architectural registers of

the new thread need to be copied from the register storage space

to the physical register file. Storing the state of multiple threads on

a single core has been proposed in previous work in the context of

core salvaging [20].

Sharing of the LVQ and BOQ: The LVQ and BOQ structures

have to be shared among multiple threads in the trailing core. To

ensure greater utilization MRE dynamically allocates sections of

each structure to each thread in an on-demand fashion.

The sharing of the LVQ and BOQ is performed by maintaining a

set of queues for each structure. One queue is shared across all the

threads and is called the free queue. This contains a list of unused

sections. A second set of queues called the allocated queues are

maintained on a per-thread basis. Each time a thread is allocated a

section, that section is removed from the free queue and added to the



tail-end of the thread’s allocated queue. Besides the section number,

the allocated queue also maintains a count of the free entries for that

section.

The head of the allocated queue points to the section where the

next value can be deleted from. An LVQ entry is freed at the time of

instruction retirement by incrementing the free entry count stored in

the allocated queue. For the BOQ, the same operation is performed at

the time of instruction fetch itself. When the number of free entries

reaches the section size, the section is freed by deleting the allocated

queue entry and pushing it to the free queue. The tail of the allocated

queue points to the section where the next value will be inserted. This

entry is consulted when a branch outcome or load value arrives over

the interconnect so that it can be inserted in the appropriate location.

Insertion of a value decreases the free entry count for that section.

When the free entry count reaches zero, a new section is allocated.

For the LVQ a third pointer into the queue is maintained, which is

updated at the time of instruction dispatch. This points to the section

from which the next load instruction to be dispatched will read its

value.

In our implementation, each queue consists of a maximum of 32

entries storing five bits for each entry in the free queue and 11 bits

for each entry in the allocated queue. Hence, the hardware overhead

due to the sharing mechanism is very small.

C. Fault Tolerance Mechanisms

Any fault-tolerant system needs to address four important issues:

fault detection, fault isolation, fault recovery and fault coverage. The

following subsections discuss these topics in the context of MRE.

Fault Detection: The occurrence of faults is detected by MRE in

two ways. The cores executing a logical thread periodically exchange

fingerprints which summarize the execution history of the two cores.

A mismatch in the fingerprints generated by the cores indicates the

occurrence of an error. Another way in which MRE detects errors

is when a branch misprediction occurs in the trailing thread. Since

resolved branch outcomes are forwarded from the leading to the

trailing thread as predictions, when the trailing thread mispredicts,

it must be due to an error.

Fault Isolation: When a fault occurs in an MRE processor, it may be

detected only when the next fingerprint comparison occurs. Between

the time that the fault occurs and the time it is detected, fault isolation

requires that the fault must not propagate outside the processor or to

other processes. There are two ways in which this can happen.

Firstly, a corrupt cache block may be replaced and written back to

a lower level of the memory hierarchy, from where it can propagate

to main memory or other processes. MRE prevents this by using

a speculative versioning L1 data cache [10]. Such a cache stores a

speculative bit along with every cache line. Any write to cache line

sets the speculative bit. If the speculative bit is set, a cache line

is deemed to be locked and is not allowed to be written back to a

lower level of the memory hierarchy. When fingerprints are compared

and found to match, the speculative bits of all lines in the cache are

cleared. When a write to a non-speculative line is performed, the line

must be written back to the L2 cache to ensure that a verified copy of

the line is always available for recovery. If fingerprints do not match,

then memory state is recovered by invalidating all speculative lines in

the L1 data cache. Since lower levels of the memory hierarchy always

contain verified data, all memory updates since the last checkpoint

are “undone” by the invalidation.

For correct execution of multithreaded workloads, the speculative

bit must be transmitted along with the data when one cache supplies

data to another cache. If a line needs to be replaced and all the lines

in its set are locked, then a fingerprint comparison is initiated. When

the fingerprint comparison is complete, the lines will be unlocked

and the memory access can be completed.

The second method by which a fault may propagate outside the

processor is through I/O operations. MRE forces a checkpoint to

be taken and fingerprints compared before each I/O operation. This

ensures that I/O is done only with verified data.

Checkpointing and recovery: Periodically, the two cores exchange

fingerprints to detect errors. If the fingerprints are found to match

in both cores, the leading core stores all architecture registers in the

checkpoint store. It then clears the speculative bits of all cache lines.

If the fingerprints do not match in at least one core, then recovery

is performed in three steps. Firstly, the register states of the two

processors are restored from the checkpoint store. Secondly, all

speculative lines in the L1 data cache are invalidated. Finally, the

leading processor restarts execution from the next instruction after

the last checkpoint.

Fault Coverage: MRE detects faults that occur in processor logic

with the exception of those that occur in certain parts of the memory

access circuitry. Since only one core accesses the memory hierarchy,

faults that affect the memory access circuitry (e.g., the store-to-

load forwarding logic) may not be detected. Circuit level techniques

[7] may be used to detect these errors. A similar problem exists

with cache controller logic and memory controller logic. Although

ECC can protect the data and possibly the tag bits in a cache, it

cannot protect against errors in the controller logic. Depending on

the reliability target, this logic may have to be protected by circuit

level techniques such as radiation hardening. This loss in coverage is

not unique to MRE, but is common to SRT [21] and all its derivatives

such as SRTR [28], CRT [18] and CRTR [13] and. Even architectures

like Reunion [9], which independently access the L1 cache instead of

replicating load values, share the lower levels of memory hierarchy.

As a result, they provide only slightly higher fault coverage than

MRE for the memory subsystem. For example, an error occurring in

the L2 cache controller circuitry cannot be detected by Reunion even

if the L2 cache data is protected using ECC.

Since MRE only compares fingerprints, there is some loss in fault

coverage due to fingerprint aliasing. However as shown in [8], for

reasonable error rates and fingerprint widths, the probability of an

undetected error due to fingerprint aliasing is minuscule.

D. Comparison with SMT

Like coarse-grained multithreading, Simultaneous Multithreading

(SMT) also allows the execution of multiple threads on a single core.

However SMT requires major modifications of the processor core as

compared to coarse-grained multithreading. In an SMT processor,

fetch circuitry is modified to implement a fetch policy like I-count.

The processor has to decode and issue from multiple threads in a

single cycle. Per-thread structures like register map tables have to

be replicated. SMT also suffers from the problem of interference

between threads. This interference necessitates increasing the size of

structures like the physical register file, the data cache and reorder

buffer as well as increasing the width of the superscalar processor to

provide performance and power characteristics that are commensurate

with the hardware overheads of SMT [16, 17].

In comparison, the implementation of coarse-grained multithread-

ing is relatively straightforward. Our results show that coarse-grained

multithreading is a viable mechanism to increase fault-tolerant CMP

throughput, without the overheads of SMT.



IV. EVALUATION

In this section we evaluate MRE’s performance and energy char-

acteristics for single-threaded and multithreaded workloads. To put

our results in context we also compare MRE with the Chip-level

Redundantly Threaded (CRT) processors proposed by Mukherjee et

al. [18]. We wish to study both MRE’s single-thread performance, as

well as quantify the increase in throughput due to multiplexing.

A. Simulation Methodology

We used an appropriately modified version of the execution-driven

simulator SESC [14]. Unlike previous work [13, 18] we modeled

an interconnect with finite bandwidth, assuming that the width of

the interconnect is scaled linearly with the number of processors

connected to it. Our simulator carefully modeled the interconnect,

the associated arbitration and contention delays and the send and

receive queues connecting the processor to the interconnect.

Our power model is based on Wattch [6]. We used CACTI [27]

to generate power models for the LVQ and BOQ structures and

incorporated these in our simulator.

Our workload consisted of nine benchmarks from the SPEC CPU

2000 suite. To reduce simulation times, we used the MinneSPEC [15]

reduced input sets. For the single threaded results, we simulated the

program until completion, while the multithreaded results were sim-

ulated for a total of 109 instructions. For multithreaded benchmarks

which completed before the execution of 109 instructions, we used

the ref inputs instead of the MinneSPEC inputs. When using the ref

inputs we skipped the initialization part of the program and simulated

109 instructions.

B. Normalized Throughput Per Core

To quantify the reduction in throughput loss we introduce the

metric normalized throughput per core (NTPC). The normalized

throughput of a single thread is defined as the IPC of that thread when

when running in redundant mode divided by the IPC of that thread

when running in non-redundant mode. The normalized throughput

per core of a workload is defined as the sum of the normalized

throughputs of the threads comprising the workload divided by the

total number of cores the workload is running on. For an ideal dual

modular redundant system which suffers no performance overhead,

the normalized throughput would be 0.5. A real DMR system will

always have some overheads due to communication and comparison,

reducing the NTPC to less than 0.5.

NTPC =
1

Ncores

N∑

i=1

IPCredundant(i)

IPCnon−redundant(i)

NTPC is the same as Snavely and Tullsen’s [25] weighted speedup

metric scaled by the number of cores being used.

C. Results: One Logical Thread Without Multiplexing

In this section we show results for a single threaded workload on

MRE and compare these with Mukherjee and Reinhardt’s chip level

redundant threading (CRT) [18] scheme.

Figure 3(a) shows the CPI of each application, normalized with

respect to the CPI of non-redundant execution. MRE’s performance

overhead is minimal, restricted to a few percent in every case while

CRT’s performance overhead is significant for a number of bench-

marks. There are two reasons for this. Firstly, the comparison of stores

between the leading and trailing threads increases interconnect traffic.

This is part of the reason for the slowdown of bzip2, crafty and

sixtrack. Secondly, since leading thread stores cannot be retired

from the store buffer until they are compared with trailing thread

stores, the occupancy of the store buffer is increased. This additional

pressure on the store buffer plays a major role in the slowdown of

mgrid, bzip2 and crafty.

MRE’s mean performance degradation is just 2%, whereas CRT’s

mean performance degradation is about 18%.

Figure 3(b) shows the energy consumption of MRE and CRT

normalized with respect to that of non fault-tolerant execution. MRE’s

energy consumption is slightly less than that of CRT. On an average

CRT consumes 1.86 times the energy of non fault-tolerant execution,

while MRE consumes 1.81 times the energy of non fault-tolerant

execution.

The results in this section indicate that without multiplexing, our

proposal suffers from almost no performance loss. Multiplexing

is dynamically configurable at runtime by the operating system.

Therefore if any workload suffers excessive performance degradation

due to multiplexing, then multiplexing can be turned off to execute

the program with almost no loss in performance.

D. Results: Multiplexing With Two Logical Threads

We constructed several 2-program workloads using benchmarks

from SPEC CPU 2000 suite. For MRE, we multiplexed the trailing

threads of both benchmarks on a single core, using only 3 cores

to redundantly execute 2 logical threads without any loss in fault

coverage. For CRT, we executed the 2 logical threads using 4

cores. Figure 4(a) shows the normalized throughput per core for the

workloads. Since MRE multiplexes two logical applications on three

threads, the maximum NTPC that can be obtained is 2/3 = 0.67. A

couple of benchmarks are able to approach this limit. Ammp_bzip2

has NTPC 0.65, while ammp_swim and mcf_parser have NTPC

0.64. In all the benchmarks the MRE’s NTPC is greater than that of

CRT. The mean NTPC achieved by MRE is 0.58, while the mean

NTPC of CRT of 0.47, indicating that MRE increases the throughput

of a fault-tolerant CMP by 23% over CRT and 16% over an ideal

DMR system (i.e. a system with NTPC 0.5).

Figure 4(b) shows the weighted speedup metric introduced by

Snavelly and Tullsen [25] for the 2-program workloads. The weighted

speedup of a workload is defined as the average of normalized IPCs

of the threads in the workload. Here, the normalization is performed

with respect to the IPC of non-redundant execution. This metric

measures the performance of the fault-tolerant system relative the

non-redundant system.

In all cases, MRE’s performance with 3 cores is similar to CRT’s

performance with 4 cores. In fact, for the benchmarks ammp_bzip2

and crafty_swim, MRE executing on only 3 cores is faster than

CRT executing on 4 cores.

V. RELATED WORK

Current high availability systems like the HP Nonstop Advanced

Architecture [3] and the IBM zSeries [11] are high cost systems

that spare no expense to meet reliability targets. Although they

provide excellent fault coverage, they impose a high cost of 100%

hardware duplication and 100% additional energy consumption, and

50% throughput loss. For high availability systems targeted at the

commodity market, these high costs are unacceptable.

Transient fault detection using simultaneous multithreading was

introduced by Rotenberg in AR-SMT [22] and Reinhardt and

Mukherjee [21] in Simultaneously and Redundantly Threaded (SRT)

processors. An SRT processor augments SMT processors with ad-

ditional architectural structures like the branch outcome queue and

load value queue for transient fault detection. The branch outcome



TABLE I
CMP CONFIGURATION

Number of cores 8 Fetch/issue/retire width 6/3/3 ROB size 128
Int/FP window 64 Load/store queue 32 Mem/Int/FP units 2/6/4
Branch predictor hybrid/16k/16k/16k BTB 2k/2-way RAS 32 entries
I-cache 32k/64B/4-way/2 cycles D-cache 64k/64B/4-way/2 cycles L2 (private) 1MB/64B/8-way/14 cycles
Memory 450 cycles LVQ 2k/2 cycles/2R1W port BOQ 2k/2 cycles/1R1W port
RRQ 64 entries LVQ sections 64 entries BOQ sections 64 entries
Interconnect 8 cycles (obtained Interconnect n × WordSize Context switch 30 cycles
latency using [19]) width (n = # of processors) latency

a

m

m

p

a

p

p

l

u

b

z

i

p

2

.

p

r

o

g

r

a

m

b

z

i

p

2

.

s

o

u

r

c

e

c

r

a

f

t

y

g

z

i

p

.

l

o

g

g

z

i

p

.

r

a

n

d

o

m

g

z

i

p

.

s

o

u

r

c

e

m

g

r

i

d

s

i

x

t

r

a

c

k

v

p

r

m

e

a

n

0.0

0.2

0.4

0.6

0.8

1.0

N
o
r
m
a
l
i
z
e
d
 
I
P
C

MRE

CRT

(a) Normalized CPI

a

m

m

p

a

p

p

l

u

b

z

i

p

2

.

p

r

o

g

r

a

m

b

z

i

p

2

.

s

o

u

r

c

e

c

r

a

f

t

y

g

z

i

p

.

l

o

g

g

z

i

p

.

r

a

n

d

o

m

g

z

i

p

.

s

o

u

r

c

e

m

g

r

i

d

s

i

x

t

r

a

c

k

v

p

r

m

e

a

n

1.0

1.2

1.4

1.6

1.8

2.0

2.2

N
o
r
m
a
l
i
z
e
d
 
E
n
e
r
g
y

MRE

CRT

(b) Normalized energy

Fig. 3. Comparison of MRE with CRT for a single program workload. Results are normalized with respect to non-redundant execution.

queue enhances the performance of the redundant thread, while the

load value queue provides input replication. Since an SRT processor

provides an unpredictable combination of space and time redundancy,

it cannot guarantee the detection of all permanent faults. Muhkerjee et

al. also introduced chip level redundant threading (CRT) [18], which

extends SRT to simultaneously multithreaded chip multiprocessors.

Gomaa et al. studied Chip Level Redundant Threading with Recovery

(CRTR) [13], which uses the state of the trailing thread to recover

from an error. In [26] we proposed a modification to CRT that when

combined with per-core DVFS reduced the energy consumption of the

trailing core. Although this improves energy efficiency of redundant

execution, it does not affect the throughput loss.

SRT and SRTR execute the leading and trailing threads on the same

core. Hence, they can only provide transient fault coverage. CRT

can provide both transient and permanent fault coverage. However

our evaluation shows that MRE is superior to CRT in terms of both

performance and energy characteristics even without multiplexing.

With multiplexing, MRE increases throughput of a CMP significantly

over CRT, and provides similar performance for individual programs.

Furthermore, MRE can detect and recover from faults, while CRT can

only detect faults. CRTR adds fault recovery to CRT by comparing

outputs of all instructions at the end of dependence chains. CRTR

has a higher performance overhead than CRT. As noted previously,

MRE is faster than CRT, and hence CRTR.

SRT, CRT, SRTR, CRTR, Reunion etc. all use some form of re-

dundant execution to detect errors. An alternate circuit level approach

was introduced by Ernst et al. in [7]. Their approach, called Razor,

is based on circuit level augmentation of a processor design to detect

transient and wear-out related faults. Razor replicates critical pipeline

registers and detect errors by comparing the values stored in them.

The base assumption of a Razor-based design is that augmenting

only a small number of time-critical paths of a circuit is sufficient to

detect wear-out related errors. Recent work by Sartori et al. [23] has

called into question the assumption that high-performance processor

circuits contain only a small number of time-critical paths. They find

that even for circuits which have only a small number of timing-

critical paths, Razor may be ineffective if there are some short paths,

leading to false positive error detections.

VI. CONCLUSION AND FUTURE WORK

Decreasing feature sizes, lower design tolerances and higher oper-

ating temperatures have resulted in the emergence of wear-out related

permanent faults, transient faults and process variations as significant

concerns in modern microprocessors. Consequently, fault tolerance

is expected to become important even for processors targeted at the

commodity market.

A large number of existing proposals have attempted to take advan-

tage of the natural coarse-grained multithreading offered by CMPs

to provide fault tolerance. However these proposals typically use

two cores or thread contexts to execute a single logical application,

reducing the throughput of the system by half as compared to non-

redundant execution. In this paper we introduced multiplexed redun-

dant execution (MRE), an architecture that mitigates the throughput

loss due to redundant execution. Our evaluation showed that in single-

threaded workloads, MRE is able to provide transient and permanent

fault detection and recovery with a performance overhead of only

2% and energy consumption that is similar to existing proposals for

fault tolerance in CMPs. We also showed that for multiprogrammed

workloads MRE increases the throughput of a CMP by a maximum of

30%, and a mean value of 16% as compared to an ideal DMR system.



a

m

m

p

_

b

z

i

p

2

a

m

m

p

_

s

w

i

m

m

c

f

_

s

w

i

m

p

a

r

s

e

r

_

s

w

i

m

c

r

a

f

t

y

_

s

w

i

m

b

z

i

p

2

_

a

p

p

l

u

p

a

r

s

e

r

_

a

m

m

p

m

e

a

n

0.3

0.4

0.5

0.6

0.7

0.8

N
o
r
m
a
l
i
z
e
d
 
T
h
r
o
u
g
h
p
u
t
 
P
e
r
 
C
o
r
e

MRE

CRT

(a) Normalized Throughput Per Core

a

m

m

p

_

b

z

i

p

2

a

m

m

p

_

s

w

i

m

m

c

f

_

s

w

i

m

p

a

r

s

e

r

_

s

w

i

m

c

r

a

f

t

y

_

s

w

i

m

b

z

i

p

2

_

a

p

p

l

u

p

a

r

s

e

r

_

a

m

m

p

m

e

a

n

0.0

0.2

0.4

0.6

0.8

1.0

W
e
i
g
h
t
e
d
 
S
p
e
e
d
u
p

MRE

CRT

(b) Weighted Speedup

Fig. 4. Comparison of MRE with CRT for a 2-program workload. MRE uses only 3 cores for the execution of two logical threads while CRT uses 4 cores.

In comparison to Mukherjee and Reinhardt’s Chip level Redundant

Threading (CRT) processors, MRE improves CMP throughput by

23%.

The results presented in this work provide an initial evaluation

of the benefits of multiplexed execution using a static multiplexing

scheme. A number of optimizations to MRE are possible. Two

examples are: (1) adaptively migrating trailing threads across cores

to reduce the performance losses due to multiplexing, and (2)

dynamically turning off multiplexing for program phases where the

trailing thread does not benefit from execution assistance. In future

work, we intend to explore these ideas.

REFERENCES

[1] Nidhi Aggarwal, Parthasarathy Ranganathan, Norman P. Jouppi, and
James E. Smith. Configurable isolation: building high availability
systems with commodity multi-core processors. ISCA ’07: Proc. of the

34th ISCA, 2007.

[2] Todd Austin, V. Bertacco, S. Mahlke, and Yu Cao. Reliable Systems on
Unreliable Fabrics. IEEE Des. Test, 25(4), 2008.

[3] D. Bernick, B. Bruckert, P. D. Vigna, D. Garcia, R. Jardine, J. Klecka,
and J. Smullen. Nonstop R©advanced architecture. In DSN ’05: Proc. of

DSN, 2005.

[4] S. Y. Borkar. Designing Reliable Systems from Unreliable Components:
The Challenges of Transistor Variability and Degradation. IEEE Micro,
25(6), 2005.

[5] C. LaFrieda et al. Utilizing Dynamically Coupled Cores to Form a
Resilient Chip Multiprocessor. In Proceedings of the 37th DSN, Jun.

2007.

[6] D. Brooks et al. Wattch: a framework for architectural-level power
analysis and optimizations. Proc. of the 27th ISCA, 2000.

[7] D. Ernst et al. Razor: A low-power pipeline based on circuit-level timing
speculation. In MICRO 36: Proc. of the 36th MICRO, 2003.

[8] J. C. Smolens et al. Fingerprinting: Bounding soft error detection latency
and bandwidth. Proceedings of the 12th ASPLOS, Oct. 2004, 2004.

[9] J. C. Smolens et al. Reunion: Complexity-Effective Multicore Redun-
dancy. Proceedings of the 39th MICRO, Dec. 2006, 2006.

[10] Meyrem Kyrman et al. Cherry-MP: Correctly Integrating Checkpointed
Early Resource Recycling in Chip Multiprocessors. In MICRO 38: Proc.

of the 38th MICRO, pages 245–256, 2005.

[11] M.L. Fair, C.R. Conklin, S. B. Swaney, P. J. Meaney, W. J. Clarke, L. C.
Alves, I. N. Modi, F. Freier, W. Fischer, and N. E. Weber. Reliability,
Availability, and Serviceability (RAS) of the IBM eServer z990. IBM

Journal of Research and Development, 2004.

[12] A. Golander, S. Weiss, and R. Ronen. DDMR: Dynamic and Scalable
Dual Modular Redundancy with Short Validation Intervals. IEEE

Computer Architecture Letters, Jul-Dec. 2008, 7(2).

[13] M. Gomma, C. Scarbrough, T. N. Vijaykumar, and I. Pomeranz.
Transient-Fault Recovery for Chip Multiprocessors. Proceedings of the

30th ISCA, June 2003.

[14] J. Renau et al. SESC Simulator. http://sesc.sourceforge.net/, 2005.

[15] A. J. KleinOsowski and D. J. Lilja. MinneSPEC: A New SPEC Bench-
mark Workload for Simulation-Based Computer Architecture Research.
IEEE Computer Architecture Letters, Jan. 2002.

[16] B. Lee and B. Brooks. Effects of Pipeline Complexity on SMT/CMP
Power-Performance Efficiency. Workshop on Complexity Effective De-

sign in conjunction with 32nd ISCA, Jun. 2005.

[17] H. M. Mathis, A. E. Mericas, J. D. McCalpin, R. J. Eickemeyer, and
S. R. Kunkel. Characterization of simultaneous multithreading (SMT)
efficiency in POWER5. IBM Journal of R&D, July/Sept. 2005.

[18] S. S. Mukherjee, M. Kontz, and S. K. Reinhardt. Detailed Design and
Evaluation of Redundant Multithreading Alternatives. Proceedings of

the 29th ISCA, May 2002.

[19] Rahul Nagpal, Arvind Madan, Amrutur Bhardwaj, and Y. N. Srikant.
INTACTE: An Interconnect Area, Delay, and Energy Estimation Tool
For Microarchitectural Explorations. In Proceedings of the International

Conference on Compilers, Architecture, and Synthesis for Embedded

Systems, 2007.

[20] Michael D. Powell, Arijit Biswas, Shantanu Gupta, and Shubhendu S.
Mukherjee. Architectural core salvaging in a multi-core processor for
hard-error tolerance. In ISCA ’09: Proc. of the 36th ISCA, 2009.

[21] S. K. Reinhardt and S. S. Mukherjee. Transient Fault Detection via
Simultaneous Multithreading. Proceedings of the 27th ISCA, Jun. 2000.

[22] E. Rotenberg. AR-SMT: A Microarchitectural Approach to Fault
Tolerance in a Microprocessor. Proceedings of FTCS, 1999.

[23] J. Sartori and Rakesh Kumar. Characterizing the Voltage Scaling
Limitations of Razor-based Designs. Workshop on Energy Effective

Design, 2009.

[24] P. Shivakumar, M. Kistler, S. Keckler, D. Burger, and L. Alvisi.
Modeling the Effect of Technology Trends on the Soft Error Rate of
Combinational Logic. Proceedings of the 32nd DSN, Jun. 2002.

[25] Allan Snavely and Dean M. Tullsen. Symbiotic jobscheduling for a
simultaneous multithreaded processor. In Proc. of 8th ASPLOS, 2000.

[26] P. Subramanyan, V. Singh, K. K. Saluja, and E. Larsson. Power-efficient
redundant execution for chip multiprocessors. Proc. of 3rd WDSN, 2009.

[27] S. Thoziyoor, N. Muralimanohar, Jung Ho Ahn, and Norman P. Jouppi.
CACTI 5.1 . Technical Report HPL-2008-20, HP Labs .

[28] T. N. Vijaykumar, Irith Pomeranz, and Karl Cheng. Transient-fault
recovery using simultaneous multithreading. SIGARCH Comput. Archit.

News, 30(2), 2002.


