
A Standby-Sparing Technique with Low Energy-Overhead
for Fault-Tolerant Hard Real-Time Systems

Alireza Ejlali
Department of Computer

Engineering

Sharif University of Technology
1458889694 Tehran, Iran

ejlali@sharif.edu

Bashir M. Al-Hashimi
School of Electronics and Computer

Science

University of Southampton
SO17 1BJ Southampton, U.K.

bmah@ecs.soton.ac.uk

Petru Eles
Department of Computer and

Information Science

Linköping University
SE–581 83 Linköping, Sweden

petel@ida.liu.se

ABSTRACT

Time redundancy (rollback-recovery) and hardware redundancy
are commonly used in real-time systems to achieve fault tolerance.
From an energy consumption point of view, time redundancy is
generally more preferable than hardware redundancy. However,
hard real-time systems often use hardware redundancy to meet
high reliability requirements of safety-critical applications. In this
paper we propose a hardware-redundancy technique with low
energy-overhead for hard real-time systems. The proposed
technique is based on standby-sparing, where the system is
composed of a primary unit and a spare. Through analytical
models, we have developed an online energy-management method
which uses a slack reclamation scheme to reduce the energy
consumption of both the primary and spare units. In this method,
dynamic voltage scaling (DVS) is used for the primary unit and
dynamic power management (DPM) is used for the spare. We
conducted several experiments to compare the proposed system
with a fault-tolerant real-time system which uses time redundancy
for fault tolerance and DVS with slack reclamation for low energy
consumption. The results show that for relaxed time constraints,
the proposed system provides up to 24% energy saving as
compared to the time-redundancy system. For tight deadlines
when the time-redundancy system can tolerate no faults, the
proposed system preserves its fault-tolerance but with about 32%
more energy consumption.

Categories and Subject Descriptors

B.8.1 [Performance and Reliability]: Reliability, Testing, and

Fault-Tolerance; C.3 [Special-Purpose and Application-Based

Systems]: Real-Time and Embedded Systems

General Terms

Design, Reliability, Performance

Keywords

Hard real-time systems, Energy minimization, Reliability

1. INTRODUCTION
Many fault-tolerant real-time systems use time-redundancy
techniques [1-5] where slack time is exploited to tolerate faults by
performing recovery executions. However, for hard real-time
systems that are used in safety-critical applications, time-
redundancy techniques (e.g., roll-back recovery) have proved to
be of limited utility and cannot achieve the high reliability
requirements of safety-critical applications [17]. Indeed, when
high reliability is the primary concern (e.g., mission- or safety-
critical applications [18]), the use of hardware-redundancy
techniques (also called replication [16] or hardware fault-
tolerance [7]) is necessary [16]. Furthermore, the effectiveness of
time-redundancy techniques is inherently dependent on the
available amount of slack time so that in real-time systems with
tight deadlines, the effectiveness of the time-redundancy
techniques may be very low [6][7]. In this case, the use of
hardware redundancy can decouple the fault tolerance from the
amount of slack time and provide high reliability even when
deadlines are tight. However, as hardware-redundancy techniques
inherently exploit redundant hardware resources, they generally
impose considerable energy overhead [7]. For example, triple
modular redundancy (TMR) and duplication are two well-known
hardware-redundancy techniques that can clearly increase the
energy consumption by 200% and 100% respectively [18].
Therefore, careful considerations must be taken when hardware
redundancy is used in hard real-time systems with limited energy
budget.

In this paper we propose a hardware-redundancy technique for
hard real-time systems to achieve high reliability without
incurring high energy overhead. The proposed technique is based
on one of the conventional hardware redundancy techniques,
called standby sparing [18]. Traditionally, there are two types of
standby sparing: hot and cold [18]. In the hot standby-sparing
technique, the spare operates in parallel with the primary unit and
is prepared to take over at any time. Clearly, the hot standby-
sparing technique imposes considerable energy overhead as the
spare is always operational. In the cold standby-sparing, the spare
is idle until the primary unit fails and is replaced with the spare.
One advantage of cold standby sparing is that the spare does not
consume power until needed to replace the primary unit.
However, as we will see in this paper (Section 2), in a hard real-
time system, sometimes the spare must be activated even before
the primary unit fails; otherwise a failure in the primary unit may
result in missing a deadline. Therefore, the cold standby-sparing
technique cannot be used in hard real-time systems. In the
proposed standby-sparing technique, the spare is neither a cold

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

CODES+ISSS’09, October 11–16, 2009, Grenoble, France.

Copyright 2009 ACM 978-1-60558-628-1/09/10...$10.00.

spare nor a hot one. In fact, dynamic power management (DPM)
[10] is used to reduce the energy consumption of the spare, i.e., it
is kept as idle as possible, taking into account the limitations of
hard real-time systems. Dynamic voltage scaling (DVS) is used to
reduce the energy consumption of the primary unit; however we
believe DVS is not suitable for the spare unit because: i) unlike
the primary unit, the spare unit is not always operational and
hence the energy consumption of the spare unit is not as
prominent as that of the primary unit, ii) it has been observed that
DVS considerably increases the system vulnerability to external
disturbances [6], therefore we do not use DVS to avoid degrading
the reliability of the spare unit so that it can always serve as a
reliable backup for the primary unit. In the proposed system, when
DVS is used to reduce the energy of the primary unit, it may
increase the operation time of the spare unit (Section 2), therefore
the supply voltage of the primary unit should be determined by
considering the energy consumption of both the primary and spare
units. For the proposed standby-sparing system, we have
developed an online energy-management method which uses a
slack reclamation scheme (i.e., can exploit dynamic slacks) to
reduce the energy consumption of both the primary and spare
units.

Some research works, e.g., [2][3][8], have addressed both fault
tolerance and low energy-consumption in fault-tolerant real-time
systems that are based on time-redundancy. However, these works
have focused on time redundancy and have not considered
hardware redundancy. [15] has proposed a technique to exploit
voltage scaling to reduce the energy overhead of TMR when it is
used for real-time systems. This technique can reduce the energy
overhead of a TMR system to a level comparable to that of a
duplicated system. However, this work has not considered any
slack reclamation scheme. [6] has proposed to use a combination
of information redundancy and time redundancy to address the
resource conflict between time-redundancy techniques and DVS
on slack. However, this work has not considered hardware-
redundancy techniques and does not provide any energy-
management method for fault-tolerant real-time systems.

The main contributions of this paper are:

• We will provide a standby-sparing technique for hard real-
time systems where DVS and DPM are employed to reduce
the energy consumption of the primary and spare units
respectively.

• We will show that when we want to reduce the energy
consumption of the proposed standby-sparing system by
exploiting dynamic slacks, we face with a problem that
involves decisions under stochastic uncertainties. We will
provide an online energy-management method to solve this
problem. This online method determines the supply voltages
of the primary unit at runtime. Furthermore, it decides when
the spare unit should be activated.

• We will use an analytical approach to develop the energy-
management method and to show that the proposed standby-
sparing system and its associated energy-management method
operate effectively.

To evaluate the proposed standby-sparing technique, we have
conducted several experiments using MPARM tool [21][23],
MiBench benchmarks [22], and several synthetic schedules. The
experimental results show that the energy and execution time

overheads of our proposed online energy management method are
negligible (less than 0.15%). We also compared the proposed
system with a fault-tolerant real-time system which uses time
redundancy instead of hardware redundancy. To provide a fair
comparison, it is assumed that the time-redundancy system also
uses DVS with slack reclamation for low energy consumption.
The results show that for relaxed time constraints, the proposed
system consumes less energy than the time-redundancy system.
For tight deadlines when the time-redundancy system is not fault
tolerant, the proposed system still preserves its fault-tolerance.

The rest of the paper is organized as follows. Section 2 describes
the proposed standby-sparing system. In Section 3, we have
developed analytical energy models for the proposed standby-
sparing system. In Section 4, we have shown that the problem of
minimizing the energy consumption of the proposed standby-
sparing system involves decisions under stochastic uncertainties
and provided a solution for this problem. In Section 5 simulation
results are presented and discussed. Finally, Section 6 concludes
the paper.

2. PROPOSED SYSTEM
In this paper, we consider a standby-sparing system which is
composed of two identical processors. One of them is called the
primary unit and operates as the main processor, while the other
one is called the spare unit and replaces the primary unit when it
fails. Clearly, a standby-sparing system requires an error detection
mechanism to determine if a task finishes successfully or not. In
the context of fault-tolerant real-time systems, the error detection
mechanisms is usually assumed to be part of the software
architecture and the error detection overhead is considered as part
of the task execution time [1][5]. Similarly, in this paper, we
assume that an error detection mechanism is part of the software
architecture. It should be noted that the use of fault detection
mechanisms is not limited to standby-sparing and they should also
be used for fault-tolerant real-time systems that use rollback-
recovery (time-redundancy) [8].

To reduce the energy consumption of the standby-sparing system,
DVS [10][11] is used for the primary unit and DPM [10] is used
for the spare. From a reliability point of view, DPM is more
suitable for the spare as compared to DVS, because: 1) DVS
would have a negative impact on the reliability of the spare [6],
while we want the spare to be a reliable backup for the primary
unit, 2) when the spare is idle and does not operate, it is not
susceptible to transient faults [18], hence keeping the spare idle
for longer periods results in more reliability for the spare. For
both the DVS and DPM techniques, we use a slack reclamation
scheme, i.e., dynamically created slacks are exploited to achieve
energy saving. Dynamic slacks result at runtime when tasks
consume less than their worst-case execution time [2]. The use of
dynamic slacks helps to achieve more energy saving as compared
to the techniques that only use static slack time which is the
difference between the deadline and the worst-case execution time
[2][19].

It should be noted that the proposed standby-sparing system does
not use its slack time for fault tolerance. The fault tolerance is
achieved by using the spare and the slack time is only used for
reducing the energy consumption. Therefore, unlike time-
redundancy techniques, the proposed system preserves its fault-
tolerance even when the available slack is small.

The proposed standby-sparing system does not need any dedicated
scheduler. Indeed, it is assumed that a static schedule already
exists for a single processor system which has no fault-tolerance
or energy-management mechanism and the proposed standby-
sparing system uses this same schedule to run the given
application. Since such simple static schedules (without any fault-
tolerance or energy-saving mechanism) can be effectively
synthesized using existing techniques [9], this paper does not
address scheduling problems. In this paper, we consider hard real-
time systems, and it is assumed that time constraints are imposed
by specifying global deadlines for groups of consecutive tasks.
For example, Fig. 1a shows an example static schedule where two
global deadlines are specified for two groups of tasks. In this
schedule, the deadline D1 is for the group T1, T2, T3, T4, T5 so
that these tasks should be executed consecutively before the
deadline D1. Also, the deadline D2 is for the group T6, T7, T8
and they should be executed consecutively before the deadline
D2. It can be seen from Fig. 1a that there is no static slack in the
schedule of Fig. 1a. Throughout this section, without loss of
generality, we consider only schedules that do not have any static
slack time. This is because, as we will see in Section 4, our
proposed energy management method exploits dynamically
created slacks to reduce the energy consumption, rather than using
static slacks. Even if a static slack be available in the schedule, it
can be exploited by our proposed technique as if it is a dynamic
slack which is created at runtime (Section 5). It should be noted
that the schedule of Fig. 1a may have been synthesized from
various task graphs. For example Figs. 1b and 1c show two
possible task graphs that the schedule of Fig. 1a may be
synthesized from. However, as mentioned in this section, our
proposed method does not involve scheduling and it is assumed
that a static schedule like what is shown in Fig. 1a is already
available. When the proposed standby-sparing system is executing
such a schedule, it does not change the temporal order of the tasks
to avoid violating dependencies and precedence constraints that
may exist in the original task graph.

T1

T2 T3

T4

T5 D1

T6T7

T8 D2

T1

T2 T3

T4

T5 D1

T6

T7

T8 D2
(b)

(c)

T
6

T
1

T
2

T
3

VMAX

WT
1

WT
2

WT
3

Deadline: D1

T
4

T
5

WT
4

WT
5

T
7

T
8

WT
6

WT
7

WT
8

Deadline: D2

(a)

Figure 1. a) A simple static schedule which may have been

synthesized from either of the task graphs (b) or (c)

In the following, we describe how the proposed standby-sparing
system operates. Suppose that a static schedule like what is shown
in Fig. 1a exists for a single processor system operating at the
maximum possible supply voltage VMAX. Consider a group of n
tasks T0 through Tn-1 with a deadline D. When tasks are executed

at the supply voltage VMAX, each task Ti has a worst-case
execution time WTi, and an actual execution time ATi. Each task
Ti is executed on the primary unit at a supply voltage Vi, which
may be less than the maximum supply voltage VMAX. For each task

Ti, we define the normalized supply voltage ρi as follows:

MAX

i
i

V

V
=ρ (1)

T
1

T
2 T

3

T
3

d
1

Primary

Spare

V MAX

V
1

V
2

V
3

ST 1 ST 2 ST 3

d
2

d
3

AT 1 /ρρρρ 1 AT 2 /ρρρρ 2 AT 3 /ρρρρ 3

T
4

d
4

V4

AT 4 /ρρρρ 4

T
5

V5

AT 5 /ρρρρ 5

T
5

d
5

ST 4 ST 5

AT 1 AT 2 AT 3 AT 4 AT 5

T
1

T
2

T
4

(b)

Deadline =D

Dynamic slack that is obtained from previous groups of tasks.

T
1

T
2

T
3

V MAX

WT
1

WT
2

WT
3

Deadline =D

T
4

T
5

WT
4

WT
5

(a)

 Figure 2. a) A group of tasks in a static schedule, b) the same

tasks running on the proposed standby-sparing system

When a reduced supply voltage is used for a task Ti, the worst-

case execution time is prolonged from WTi to WTi/ρi and the

actual execution time is prolonged from ATi to ATi/ρi. As an
example, Fig. 2 shows how a group of 5 tasks with a global
deadline D (Fig. 2a) is executed on the proposed standby-sparing
system. It should be noted that the slack in Fig. 2a is not a static
slack and it is a dynamic slack, which is created because the
previous group of tasks has finished sooner than its worst-case
execution time. While in the primary unit each task Ti is executed

at a normalized supply voltage ρi, in the spare unit the backup
copy of each task Ti is executed at the maximum supply voltage,
but with a delay di. During the delay time di the spare unit is in
idle mode to conserve energy. Also, whenever a task Ti which is
being executed on the primary unit finishes successfully, the
backup copy of this task, which is being executed on the spare
unit, is dropped as it is no longer required. This implies that an
increase in the delay di results in more energy saving for the
backup copy of the task Ti because as the delay di increases, the
fraction of the backup task Ti which is executed on the spare unit
becomes smaller (Fig. 2b). However, di cannot be increased
arbitrarily as it may result in missing the deadline if a fault occurs
in the primary unit. The proper value for the delay di can be
calculated as follows. Let STi be the time at which the task Ti-1
finishes running on the primary unit and the task Ti starts running
on this unit. We have:

∑
−

=

=
1

1

i

j j

j

i

AT
ST

ρ
 (2)

Suppose that during the execution of the task Ti on the primary
unit, a fault occurs. In this case, the backup copy of the task Ti
which is being executed on the spare will not be dropped and its
execution will be continued. To meet the deadline, there is a need
to have enough time to finish not only the backup task Ti (with the
worst-case execution time WTi), but also all the subsequent tasks
(i.e., the tasks Ti+1 through Tn). If we execute all these tasks (Ti
through Tn) at the maximum supply voltage VMAX, The worst-case
time it takes to execute all these tasks will be:

∑
=

=
n

ij

ji WTWRT (3)

Therefore, the maximum possible value for the delay di that
allows the system to meet the deadline is:

)()(
1

1

∑∑
=

−

=

−−=−−=
n

ij

j

i

j j

j

iii WT
AT

DWRTSTDd
ρ

 (4)

The execution of each backup task Ti on the spare should be
delayed by the time di (given by Eq. 4) to achieve energy saving
for the spare without missing the deadline.

Although di is a parameter which has been defined for the backup
tasks on the spare, it is noteworthy that the di value given by Eq. 4
is also equal to the dynamic slack which is available to the
original task Ti on the primary unit. This is because STi (Eq. 2) is
indeed the time that has been elapsed to execute the tasks T1
through Ti-1 on the primary unit, and WRTi is indeed the worst-
case time which is required to execute the remaining tasks Ti
through Tn at the maximum supply voltage on the primary unit
and hence D-STi-WRTi (i.e., the di value given by Eq. 4) is also
equal to the dynamic slack which is available to the original task
Ti on the primary unit. Hence, we can write:

)()(
1

1

∑∑
=

−

=

−−=−−=
n

ij

j

i

j j

j

iii WT
AT

DWRTSTDDS
ρ

 (5)

where DSi is the dynamic slack which is available to the task Ti.

The problem which is considered in the rest of this paper is how,

for each task Ti, the two parameters ρi and di should be
determined online so that the energy consumption becomes
minimized while guaranteeing that the deadline will not be

missed. It should be noted that although ρi is the normalized
voltage at which the task Ti is executed on the primary unit, we
will see in Section 3 that the energy consumption of the spare also

depends on the parameter ρi.

3. ENERGY CONSUMPTION MODEL
In this section we develop analytical models for the energy
consumption of the standby-sparing system.

Primary Unit: Considering the use of the DVS technique, the
energy consumption of each task Ti on the primary unit is [6][10]:

)()(2

i

i

iieffiPR

AT
fVCTE

ρ
⋅= (6)

where Ceff is the average switched capacitance for the primary
unit, Vi and fi are respectively the supply voltage and the
operational frequency during the execution of the task Ti, and

(ATi /ρi) is the time it takes to execute the task Ti (Section 2). For
the DVS technique, it can be assumed that there is an almost
linear relationship between Vi and fi [11], therefore using Eq. 1 we

can write ρi= Vi/VMAX = fi/fMAX, where fMAX is the operation
frequency associated to the supply voltage VMAX. Therefore, the
energy EPR(Ti) of Eq. 6 can also be written as:

iiMAXMAXeffiPR ATfVCTE
22)(ρ= (7)

Spare Unit: To calculate the energy consumption of the backup
task Ti on the spare, we consider three possible cases based on the
times at which the original and backup copies of a task Ti start and
finish. As observed in Section 2, when a task Ti is executed on the
proposed system (Fig. 2), the original copy of Ti starts running on

the primary unit at the time STi and finishes at the time STi+ATi/ρi.
On the other hand, the backup copy of Ti on the spare starts at the
time STi+di and finishes at the time STi+di+ATi provided that the
task is not dropped.

Case 1: The original copy of Ti finishes before the backup copy of
Ti starts

In this case, since "The finish time of the original copy" ≤ "The
start time of the backup copy", we have:

i

i

i

ii

i

i

i d
AT

dST
AT

ST ≤≡+≤+
ρρ

 (8)

In this case, the backup copy on the spare will be completely
dropped if the original copy finishes successfully. This is because
before the backup copy can even start, the original copy has
finished successfully and hence the backup copy is not required.
Such a scenario has occurred for the task T5 in Fig. 2 where

AT5/ρ5 ≤ d5. For this case, the energy consumption of the spare is:

i

i

i

iSPR d
AT

whenTE ≤=
ρ

0)((9)

Case 2: The original copy of Ti finishes after the backup copy of
Ti starts, however the original copy finishes before the backup
copy finishes and hence the rest of the backup copy is dropped.

In this case, since "The start time of the backup copy" < "The
finish time of the original copy", we have:

i

i

i

i

i

iii

AT
d

AT
STdST

ρρ
<≡+<+ (10)

Also, since "The finish time of the original copy" < "The finish
time of the backup copy", we have:

ii

i

i

iii

i

i

i dAT
AT

ATdST
AT

ST <−≡++<+
ρρ

 (11)

Inequalities 10 and 11 can be written together as:

i

i

ii

i

i AT
dAT

AT

ρρ
<<− (12)

In this case, unlike Case 1, as the backup copy starts before the
original copy finishes, a part from the beginning of the backup
copy is executed (the shaded areas in Fig. 2b). However, as the
original copy finishes before the backup copy finishes, the backup
copy is not executed completely and is dropped once the original
copy finishes so that the backup copy is executed only for a

duration ATi/ρi-di. Such a scenario has occurred for the tasks T1,

T2, and T4 in Fig. 2 where AT1/ρ1-AT1<d1<AT1/ρ1,

AT2/ρ2-AT2<d2<AT2/ρ2, and AT4/ρ4-AT4<d4<AT4/ρ4. For this case,
the energy consumption of the spare is:

i

i

ii

i

i

i

i

i

MAXMAXeffiSPR

AT
dAT

AT
when

d
AT

fVCTE

ρρ

ρ

<≤−

−=)()(2

 (13)

Case 3: Both the original and backup copies of Ti finish at the
same time.

In this case, since "The finish time of the original copy" = "The
finish time of the backup copy", we have:

ii

i

i

iii

i

i

i dAT
AT

ATdST
AT

ST =−≡++=+
ρρ

 (14)

In this case, since the original copy does not finish before the
backup copy finishes, the backup copy is not dropped and is
executed completely. Such a scenario has occurred for the task T3

in Fig. 2 where AT3/ρ3-AT3=d3. For this case, the energy
consumption of the spare is:

ii

i

i

iMAXMAXeffiSPR dAT
AT

whenATfVCTE =−=
ρ

2)((15)

It can be seen from the above discussion that in Cases 1, 2, and 3
we have considered the di values that are respectively in the

ranges ATi/ρi≤di, ATi/ρi-ATi<di<ATi/ρi, and ATi/ρi-ATi≤di.
Therefore, in the above three cases, we have in fact considered the

di values in the range ATi/ρi-ATi≤di. On the other hand, we have
proved in Theorem 2 in Appendix A that di is not less than

ATi/ρi-ATi, therefore all the possible values of di have been
considered in the above three cases. Considering all the three
possible cases, the energy consumption of each backup task Ti on
the spare is:













<≤−−

≤

=

i

i

ii

i

i

i

i

i

MAXMAXeff

i

i

i

iSPR

AT
dAT

AT
d

AT
fVC

d
AT

TE

ρρρ

ρ

)(

0

)(

2

 (16)

Total Energy Consumption and Normalized Energy: The energy
which is consumed by the whole system (both the primary and
spare units) to execute a task Ti is:

)()()(iSPRiPRi TETETE += (17)

where EPR(Ti) is given by Eq. 7 and ESPR(Ti) is given by Eq. 16.
Therefore, the total energy which is consumed by the system to

execute all the tasks Ti, 1≤i≤n, is:

∑
=

=
n

i

iTOT TEE
1

)((18)

It can be seen from Eqs. 7 and 16 that the energies of Eqs. 7, 16,

17, and 18 have a constant factor
MAXMAXeff fVC

2 . For the sake of

simplicity, we remove this constant factor from the energies of
Eqs. 7, 16, 17, and 18 and call the reset 'normalized energy'. The

normalized energies are defined by the following equations (Eqs.
19 through 22):

ii

MAXMAXeff

iPR
iPR AT

fVC

TE
TNE

2

2

)(
)(ρ==

∆
 (19)










<≤−−

≤

==
∆

i

i

ii

i

i

i

i

i

i

i

i

MAXMAXeff

iSPR

iSPR

AT
dAT

AT
d

AT

d
AT

fVC

TE
TNE

ρρρ

ρ

)(

0

)(
)(

2

 (20)

)()(
)(

)(
2 iSECiPR

MAXMAXeff

i

i TNETNE
fVC

TE
TNE +==

∆ (21)

∑
=

∆

==
n

i

i

MAXMAXeff

TOT

TOT TNE
fVC

E
NE

1
2

)((22)

where NEPR(Ti) is the normalized energy consumption of the
primary unit for the execution of the task Ti, NESPR(Ti) is the
normalized energy consumption of the spare for the execution of
the task Ti, NE(Ti) is the normalized energy consumption of the
whole system (both the primary and spare units) for the execution
of the task Ti, and NETOT is the normalized energy consumption of

the whole system for the execution of all the tasks Ti , 1≤i≤n. In
the rest of this paper, we focus on how to minimize the
normalized energy NETOT given by Eq. 22, which is consumed by
the proposed standby-sparing system to execute all the tasks.

4. ENERGY MANAGEMENT METHOD
In this section we aim at providing a method to determine the

parameters ρi and di to reduce the normalized energy NETOT given
by Eq 22. As mentioned in Sections 1 and 2, in the proposed
energy management method, we want to exploit dynamic slacks to
save energy. Therefore, since dynamic slacks result at runtime, the
energy-management method should be online and applied at
runtime. One way to reduce the energy NETOT is to reduce the
energy which is consumed by each individual task, i.e., NE(Ti),

1≤i≤n, separately. However, the energy consumptions of different
tasks (NE(Ti) for different i values) are not independent from each
other and there is a tradeoff between them. For example, if the
task Ti does not exploit all the available dynamic slack to reduce
the energy NE(Ti), the remaining slack will be available to the
task Ti+1 to reduce the energy NE(Ti+1). To deal with this issue, in
the proposed method, we adopt a greedy strategy where for each

task Ti, the parameters ρi and di are determined at the start of the
task Ti with the aim of reducing the energy NE(Ti), without
considering the energy consumption of the remaining tasks Ti+1
through Tn. One important advantage of this greedy strategy is
that it helps to distribute the available slack time evenly among
the tasks of a schedule. It has been shown that the even
distribution of the available slack time among the tasks results in
more energy saving as compared to an uneven distribution [10].
In fact, the available dynamic slack is liable to be distributed

unevenly among the tasks. This is because the dynamic slack
which is available to a task Ti is obtained only from its previous
tasks (i.e., the tasks T1 through Ti-1) when they consume less than
their worst-case execution time. A task Ti can never exploit the
dynamic slack which is obtained from its subsequent tasks (i.e.,
the tasks Ti+1 through Tn). Therefore, those tasks that come later in
a schedule have more chance to gain larger dynamic slacks as
compared to the tasks that come earlier in the schedule. In the
greedy strategy, for each task Ti, we exploit the available slack
without any attempt to leave some slack for the subsequent tasks
Ti+1 through Tn. Therefore, considering that the tasks Ti+1 through
Tn have inherently more chance to gain larger dynamic slacks as
compared to the task Ti, the greedy strategy helps to distribute the
available slack time evenly. Due to the greedy strategy, for each
task Ti, we only focus on reducing the energy NE(Ti) without
considering the energy consumption of the other tasks. The energy
NE(Ti) has already been given by Eq. 21, but to make it easy to
follow the discussion, we have expanded it as follows:

444444 3444444 21

321

 UnitSpare ofEnergy

itPrimary Un ofEnergy

2

)(

0

)()()(










<≤−−

≤

+

=+=

i

i
ii

i

i
i

i

i

i

i

i

ii

iSPRiPRi

AT
dAT

AT
d

AT

d
AT

AT

TNETNETNE

ρρρ

ρ
ρ

 (23)

As it can be seen from Eq. 23, the energy consumption of the
primary unit does not depend on the parameter di (i.e., the time by
which the backup task Ti is delayed) and only the energy
consumption of the spare unit depends on this parameter.
Therefore, when we want to determine the parameter di, we only
need to focus on the energy consumption of the spare. As
mentioned in Section 2, the proper value for the delay di to
achieve maximum energy saving for the spare is equal to the
available dynamic slack DSi. Therefore, in the proposed online
energy management method, at the start of each task Ti, the
parameter di should be simply set to the available dynamic slack
(Eqs. 4 and 5):

iiii STWRTDDSd −−==)((24)

It should be noted that (D-WRTi) is not needed to be calculated
online and can be easily calculated offline for each task and stored
to be used at runtime because both D and WRTi, which is given by
Eq. 3, are known at design time. Also, STi is the start time of the
task Ti and hence is the current time that the internal clock of the
system shows at the time the task Ti starts running on the primary
unit. While the parameter di can be simply determined at runtime

using Eq. 24, the online estimation of the parameter ρi is not

trivial. To investigate how the parameter ρi should be estimated,
we rewrite Eq. 23 as follows:

444444 3444444 21

321

 UnitSpare ofEnergy

itPrimary Un ofEnergy

2

)(

0

)(










<≤
+

−

≤

+

=

i

i

i

ii

i

i

i

i

i

i

i

ii

i

d

AT

ATd

AT
d

AT

d

AT

AT

TNE

ρ
ρ

ρ

ρ
 (25)

It should be noted that Eq. 25 is the same as Eq. 23, and the only
difference is that the condition of each piece in the piecewise
function has been rephrased to make the equation more proper for

investigating the parameter ρi. We have proved in Theorem 1 in

Appendix A that ρi should not be less than WTi/(di+WTi) to avoid
missing deadlines. Furthermore, it can easily be shown that

WTi/(di+WTi) ≥ ATi/(di+ATi). Therefore, Eq. 25 can also be written
as:

444444 3444444 21

321

 UnitSpare ofEnergy

itPrimary Un ofEnergy

2

)(

0

)(










<≤
+

−

≤

+

=

i

i

i

ii

i

i

i

i

i

i

i

ii

i

d

AT

WTd

WT
d

AT

d

AT

AT

TNE

ρ
ρ

ρ

ρ
 (26)

We have proved in Theorem 3 in Appendix A that the optimum

value of ρi which minimizes the energy NE(Ti) depends on the
parameter ATi, however ATi is random and not known at the start
of the task Ti. Therefore, the problem of minimizing the energy

NE(Ti) by adjusting the parameter ρi is in fact an optimization
problem under stochastic uncertainties. One effective way to
minimize such a function is to minimize the expected value of the
function rather than the function itself [12]. Assuming that ATi is

Inputs:

- xi[j],yi[j],wi[j], and zi[j], where 1≤j≤K and
K is the number of possible supply voltages.

- WTi, (D-WRTi), STi

Outputs:

- ρi and di

//ρ[j] (1≤j≤K) is the array which holds the
//possible supply voltages in ascending order.
//E is the expected value of normalized energy

//xi[j],yi[j],wi[j], and zi[j] have been

//calculated offline for 1≤j≤K, using Eq. 28.
//(D-WRTi) has been also calculated offline.

//STi is the current time and is received from

//the system internal clock.

1: di:=(D-WRTi)-STi; //Eq. 24

2: di2:= di*di;

3: ρmin:=WTi/(WTi+di);
4: m:=1;

5: while(ρ[m]<ρmin) m:=m+1;

6: ρi:=ρ[m];
7: if(wi[m]<=di) E:=xi[m]

else E:=yi[m]+zi[m]*di2; //Eq. 29
8: for j:=m+1 to K
9: {

10: if(wi[j]<=di) TMP:=xi[j];

 else TMP:=yi[j]+zi[j]*di2; //Eq. 29

11: if(TMP<E) {E:=TMP; ρi:=ρ[j];}
12: }

Figure 3. The pseudo code of the proposed online energy

management method

uniformly distributed, it can be shown that the expected value of
NE(Ti) is:













<++

≤

=

i

i

ii

i

i

i

i

i

i

i

i

i

i
WT

d
dWT

d
WTWT

TNEE

ρ
ρ

ρ
ρ

ρ
ρ

2
)

1
(

2

2
)]([2

2
2

2
2

 (27)

In DVS-enabled processors the supply voltage can only take a
value from a finite set of possible voltage values [20]. In our
proposed online energy management method, at the start of each

task, Eq. 27 is calculated for all the possible values of ρi, and then

the parameter ρi is set to the voltage value which gives the least
value for E[NE(Ti)]. It should be noted that most of the
calculations required by Eq. 27 can be performed offline for each
task and stored to be used at runtime. For this purpose, let xi, yi,
wi, and zi be defined as follows:

2
,

),
1

(
2

,
2

2
2

2
2

i

i

i

i

i

i

i

i

ii

i

i

z
WT

w

WT
y

WT
x

ρ

ρ

ρ
ρρ

∆∆

∆∆

==

+==
 (28)

The parameters xi, yi, wi, and zi can be calculated offline for each

task as the parameter WTi and the possible values of ρi are known
at design time. Using these four parameters (xi, yi, wi, and zi),
Eq. 27 can be rewritten as:





<+

≤
=

iiiii

iii

i
wddzy

dwx
TNEE 2)]([(29)

Clearly, the online calculation of Eq. 29 imposes less overhead as
compared to Eq. 27. Fig. 3 shows the pseudo code of the
proposed online energy management method. This code is
executed at the start of each task Ti, and determines the

parameters di and ρi. In this code, we first determine the parameter
di (line 1) using Eq. 24. Then we start from the minimum possible

value of ρi (calculated in line 3) and for each possible supply
voltage we use Eq. 29 to calculate the expected normalized energy

(lines 7 and 10). Finally, we set the parameter ρi to the voltage
which gives the least value for the expected normalized energy
(line 11). It should be noted that although Eq. 27 is derived with
the assumption that ATi is uniformly distributed, we will show in
Section 5, through simulation experiments, that this method is
quite effective to reduce the energy consumption of the proposed
standby-sparing system even when ATi has other distributions
(e.g., normal and exponential distributions).

5. SIMULATION RESULTS
To evaluate the proposed method, we have conducted several
experiments using MiBench benchmarks (Auto./Industrial set)
[22], and numerous synthetic schedules. MPARM [21] (cycle-

Table 1. The energy consumption and execution time of

the benchmark tasks

Benchmark Voltage,
Frequency

Execution
time (ms)

Energy
Consumption

(µJ)

qsort 1V,200MHz 453.93 14065.11

0.58V,100MHz 881.56 11037.71

basicmath 1V,200MHz 707.61 20852.51

0.58V,100MHz 1310.29 16379.83

bitcount 1V,200MHz 497.21 15883.70

0.58V,100MHz 1009.17 12665.62

susan
(smoothing)

1V,200MHz 258.68 8047.77

0.58V,100MHz 503.35 6252.58

susan
(edges)

1V,200MHz 18.89 588.03

0.58V,100MHz 37.32 456.85

susan
(corners)

1V,200MHz 10.96 337.56

0.58V,100MHz 21.70 265.72

Energy
manager
task (Fig. 3)

1V,200MHz 0.0137 0.4190

0.58V,100MHz 0.0267 0.3270

Table 2. The energy consumption of the standby-sparing and

time-redundancy systems∗∗∗∗

Relaxed time constraints: Static Slack= the biggest WT (worst case
execution time) in the schedule

Distribution
of the actual

execution
time

of tasks
in the

schedule

Energy of
Time-

Redundancy
system (J)

Energy of
Standby-
Sparing

system (J)

Energy

RatioΨ

Uniform
from 0 to
WT

5 36.32 46.23 1.27

10 60.94 59.21 0.97

15 105.90 66.81 0.63

Exponential

λ=3/WT

5 18.05 10.39 0.58

10 38.72 28.17 0.73

15 69.64 38.19 0.55

Normal

µ=WT/2

σ=WT/4

5 38.28 34.73 0.91

10 69.27 45.23 0.65

15 105.31 59.17 0.56

Tight time constraints: Static Slack= 0

Distribution
of the actual

execution
time

of tasks
in the

schedule

Energy of
Time-

Redundancy
system (J)

Energy of
Standby-
Sparing

system (J)

Energy

RatioΨ

Uniform
from 0 to
WT

5 36.32 74.88 2.06

10 60.94 93.34 1.53

15 105.90 131.52 1.24

Exponential

λ=3/WT

5 18.05 20.87 1.16

10 38.72 43.65 1.13

15 69.64 56.31 0.81

Normal

µ=WT/2

σ=WT/4

5 38.28 67.02 1.75

10 69.27 82.63 1.19

15 105.31 110.20 1.05
* For all the three distributions, it was assumed that the task worst-case
execution times (i.e., WT) are uniformly distributed from 20ms to 1500ms.

Ψ Energy Ratio = Energy of the proposed system / Energy of the time-
redundancy system

accurate simulator for ARM7TDMI processor proposed in [23])
were used to obtain the power consumption and execution times
reported in the paper. The first set of experiments was conducted
in order to investigate the energy and execution time overhead of
the proposed online energy management method. In the
experiments, the processor could have five different supply
voltages: 1V(200MHz), 0.86V(167MHz), 0.76V(143MHz),
0.69V(125MHz), 0.58V(100MHz). To execute the benchmarks,
we used the RTEMS embedded operating system [24]. Table 1
shows the energy consumption and execution time of the
benchmark tasks when executed at the supply voltages 1V, and
0.58V (the maximum and minimum values of the supply voltage).
It can be seen from Table 1 that, as compared to the MiBench
benchmarks, the energy and execution time overhead of the
proposed online energy management method is always less than
0.15%, which is quite negligible.

To evaluate the effectiveness of the proposed method, we
conducted another sets of experiments where we compared our
proposed standby-sparing system with a time-redundancy system
which use rollback-recovery (re-execution) to tolerate faults. It
was assumed that the time-redundancy system exploits dynamic
slack through DVS to reduce the energy consumption. It was also
assumed that the time-redundancy system does not use its
dynamic slacks to tolerate faults and only uses its static slack for
fault tolerance (re-execution). This assumption is reasonable,
because unlike the static slack, the available amount of dynamic
slack is not known at design time and hence dynamic slacks
cannot be used in a fault-tolerant static schedule. To compare the
two systems, 99 static schedules similar to the schedule of Fig. 1a
were generated randomly and used in the experiments. Out of
these 99 random schedules, one third were generated with 5 tasks
and one deadline, one third with 10 tasks and 2 deadlines, and one
third with 15 tasks and three deadlines. To generate random
schedules, the worst-case execution times of the tasks were
generated randomly using uniform distribution. It was assumed
that the worst-case execution times of the tasks could be any value
from 20ms to 1500ms. For example, when we wanted to generate
a static schedule with 4 tasks, we obtained the random numbers:
WT1=299ms, WT2=50ms, WT3=328ms, and WT4=142ms. These
numbers form the static schedule which is shown in Fig. 4.

Deadline

T4

14.2ms

T3T2

32.8ms

5.0ms

T1

29.9ms

Figure 4. An example static schedule which has been

generated randomly

With respect to the static slack time we considered two cases: 1)
relaxed time constraints: when the static slack is equal to (or
bigger than) the biggest worst case execution time in the schedule,
in this case the time-redundancy system will have enough time to
re-execute any of the tasks in the schedule if a fault occurs, 2)
tight time constraints: when the static slack is so small that the
time-redundancy system cannot perform any re-execution.

For generating random static schedules we used uniform
distributions for worst-case execution times WTi, as we wanted all
schedules to be equally probable to be considered. However, for a
specific schedule, the actual execution times of the tasks ATi may
have different probability distributions based on the system
application [13]. In the context of real-time systems, some
research works have considered the uniform, normal, or
exponential distributions for the actual execution times of the
tasks [13][14]. Similarly, in our experiments, we considered these
three distributions for the actual execution times ATi. It should be
noted that in the experiments the same static schedules were used
for all the three distributions. Indeed at first we randomly
generated 99 static schedules and then we used these static
schedules with various distributions for the actual execution times
ATi. In all the experiments, the tasks in the synthetic schedules
were selected from the MiBench benchmarks; however as we
wanted to evaluate the impact of ATi distribution, each task Ti was

executed only for a duration of ATi (ATi /ρi when voltage scaling
is used (Section 2)) which was generated randomly by one of the
three distributions. Table 2 shows the energy consumption of the
synthetic schedules when executed on the proposed standby-
sparing and time-redundancy systems.

The following three interesting observations can be made from
Table 2:

• The results show that for tight deadlines, the proposed
standby-sparing system consumes in average 32% more
energy than the time-redundancy system. However, in this
case, the time-redundancy system has not enough time for
fault tolerance (re-execution) and hence can tolerate no faults,
while the proposed standby-sparing system is still fault
tolerant (Section 2).

• For relaxed time constraints, the proposed system provides up
to 24% energy saving as compared to the time-redundancy
system. This is because, in this case, the time-redundancy
system does not exploit its static slack for energy saving and
reserves the static slack for fault tolerance (re-execution).
However, in the proposed standby-sparing system, fault
tolerance is decoupled from the slack time (Section 2), hence
the static slack is exploited to reduce the energy consumption.
It should also be noted that, for relaxed time constraints, the
spare can be usually kept idle; hence the spare consumes very
little energy.

• Although for all the three distributions we used exactly the
same static schedules, both the standby-sparing and time-
redundancy systems consume less energy for the exponential
distribution as compared to the other two distributions. This is
because our study shows that for the exponential distribution
the average amount of dynamic slack was about 570ms, while
for the normal and uniform distributions the average amount
of dynamic slack was about 400ms. Therefore, as both the
standby-sparing and time-redundancy systems exploit
dynamic slacks to save energy, the exponential distribution
results in less energy consumption.

• It can be seen from Table 2 that as the number of tasks in a
schedule increases, the energy saving which is achieved by
the proposed standby sparing system increases. This is
because our study shows that as the number of tasks in a
schedule increases the average amount of dynamic slack
increases. On the other hand, the proposed standby-sparing

system benefits from this increase in slack more than the time-
redundancy system, because when enough slack exists, the
proposed standby-sparing system is able to keep the spare idle
almost all the time which results in considerable energy
saving. The reason why an increase in the number of tasks
results in an increase in the average amount of dynamic slack
is that for the first few tasks of all schedules, the amount of
available dynamic slack is small. In fact, for the first task of a
schedule, no dynamic slack is available. The second task can
only use the dynamic slack that is leftover from the first task.
The third task can only use the dynamic slack which is
leftover from the first and second tasks, and so forth.
Therefore, the first few tasks of a schedule have lower chance
to obtain dynamic slack time as compared to the tasks that
come later in the schedule. However, as the number of tasks
in a schedule increase, this slack shortage that only exists for
the first few tasks becomes proportionately negligible. For
example, in the experiments, we observed that when the
distribution of actual execution times is uniform, the average
available dynamic slack for each task is as follows:

Average dynamic slack for T1=0 ms

Average dynamic slack for T2=364 ms

Average dynamic slack for T3=388 ms

Average dynamic slack for T4=396 ms

Average dynamic slack for the subsequent tasks ≈ 400 ms

6. SUMMARY AND CONCLUSION
The use of hardware-redundancy techniques for real-time systems
is necessary when high reliability is the primary concern.
However, hardware-redundancy techniques can excessively
increase the energy consumption. In this paper, we propose a
hardware-redundancy technique with low energy-overhead which
uses standby-sparing to achieve fault tolerance for hard real-time
systems. In the proposed standby-sparing system, DVS is used to
reduce the energy consumption of the primary unit and DPM is
used to reduce the energy consumption of the spare. Indeed, DVS
is not used for the spare unit to avoid degrading the reliability of
the spare. Through an analytical approach, we have developed an
online energy management method for the proposed standby-
sparing system which exploits dynamic slacks to reduce the
energy consumption. The experimental results show that the
energy and execution time overhead of the proposed online
energy management method when applied to MiBench
benchmarks (Auto./Industrial set) is always less than 0.15%,
which is quite negligible. The results also show that for relaxed
time constraints, the proposed system consumes about 24% less
energy than the time-redundancy system. For tight deadlines when
the time-redundancy system can tolerate no faults, the proposed
system is still fault tolerant but consumes about 32% more energy
than the time-redundancy system.

APPENDIX A

In this appendix, we prove the following theorems about the
proposed standby-sparing system:

Theorem 1: For each task Ti, the minimum possible value of the

normalized supply voltage ρi is WTi/(di+WTi).

Proof: Since we have considered a hard real-time system, for each

task Ti, the normalized supply voltage ρi should be determined so
that the deadline is guaranteed to be met. The time at which the
task Ti starts running is STi (given by Eq. 2) and in the worst case

the execution of this task takes time WTi/ρi. Therefore, in the

worst case, when the task Ti finishes at the time STi+WTi/ρi, the
time which is left before the deadline is:

i

i

ii

WT
STdeadlineRMT

ρ
−−= (30)

To guarantee that the deadline will not be missed, this time should
be enough to execute all the remaining tasks (Ti+1 through Tn) at
the maximum voltage VMAX. Hence:

∑∑

∑

∑

+=

−

=

+=

+=

−−≤

⇒−−≤

⇒≤

n

ij

j

i

j j

j

i

i

i

i

i

n

ij

j

i

n

ij

j

WT
AT

deadline
WT

WT
STdeadlineWT

RMTWT

1

1

1

1

1

ρρ

ρ

 (31)

Using Eq. 4, Inequality 31 can be rewritten as:

ii

i

i WTd
WT

+≤
ρ

 (32)

However, this inequality can be rearranged to:

ii

i

i
WTd

WT

+
≥ρ (33)

and the theorem is proved. g

Theorem 2: For each task Ti, the delay di is not less than

(ATi/ρi)-ATi.

Proof: It can be simply shown that:

ii

i

ii

i

ii
ATd

AT

WTd

WT
ATWT

+
≥

+
⇒≥ (34)

Based on Inequalities 33 and 34, we have:

ii

i

i
ATd

AT

+
≥ρ (35)

This inequality can be rearranged to:

i

i

i

i AT
AT

d −≥
ρ

 (36)

and the theorem is proved. g

Theorem 3: The optimum value of ρi which minimizes the energy
NE(Ti) (given by Eq. 26) cannot be calculated at the start of the
task Ti.

Proof: Let
iρ̂ be the optimum value of ρi which minimizes the

energy NE(Ti). Using calculus, we can conclude from Eq. 26 that
the optimum value

iρ̂ is:













≤

<≤
+

=

i

i

i

i

ii

i

i

i

i

d

AT

d

AT

WTd

WT

d

AT

33

3

2/12/1

2/1

ρ̂
 (37)

It can be seen from Eq. 37 that the optimum value iρ̂ depends on

the actual execution times ATi, however the actual execution time
is random and not known at the start of the task Ti. Hence, it is

impossible to calculate the optimum value
iρ̂ at the start of the

task Ti. g

7. REFERENCES
 [1] V. Izosimov, P. Pop, P. Eles, and Z. Peng, "Scheduling of

Fault-Tolerant Embedded Systems with Soft and Hard
Timing Constraints", in Proc. Design, Automation and

Test in Europe (DATE '08), pp. 915-920, March 2008.

[2] R. Melhem, D. Mosse, and E. Elnozahy, "The interplay of
power management and fault recovery in real-time
systems," IEEE Trans. Computers, vol. 53, no. 2, pp. 217-
231, 2004.

[3] Y. Zhang and K. Chakrabarty, "Dynamic adaptation for
fault tolerance and power management in embedded real-
time systems," ACM Tran. Embedded Computing Systems,
vol. 3, no. 2, pp. 336-360, 2004.

[4] F. Liberato, R. Melhem, and D. Mosse, "Tolerance to
multiple transient faults for aperiodic tasks in hard real-
time systems," IEEE Trans. Computers, vol. 49, no. 9, pp.
906-914, 2000.

[5] P. Eles, V. Izosimov, P. Pop, and Z. Peng, "Synthesis of
Fault-Tolerant Embedded Systems", in Proc. Design,

Automation and Test in Europe (DATE '08), pp. 1117-
1122, March 2008.

[6] A. Ejlali, B.M. Al-Hashimi, M.T. Schmitz, P. Rosinger,
and S.G. Miremadi, "Combined Time and Information
Redundancy for SEU-Tolerance in Energy-Efficient Real-
Time Systems", IEEE Trans. VLSI Sys., vol. 14, no. 4, pp.
323-335, April 2006.

[7] I. Koren, and C. M. Krishna, Fault-Tolerant Systems,
Morgan Kaufmann, Elsevier, 2007.

[8] Y. Zhang and K. Chakrabarty, "A Unified Approach for
Fault Tolerance and Dynamic Power Management in

Fixed-Priority Real-Time Embedded Systems", IEEE

Trans. CAD, vol. 25, no. 1, pp. 111-125 JAN. 2006.

[9] A. M. K. Cheng, Real-Time Systems, Scheduling, Analysis,

and Verification, John Wiley & Sons, 2002.

[10] M. T. Schmitz, B. M. Al-Hashimi, and P. Eles, System-

Level Design Techniques for Energy-Efficient Embedded

Systems, Norwell, MA: Kluwer, 2004.

[11] T. D. Burd, T. A. Pering, A. J. Stratakos, and R. W.
Brodersen, “A dynamic voltage scaled microprocessor
system,” IEEE J. Solid-State Circuits, vol. 35, no. 11, pp.
1571–1580, Nov. 2000.

[12] K. Marti, Stochastic Optimization Methods, Second
Edition, Springer, 2008.

[13] P. Li, and B. Ravindran, "Fast, Best-Effort Real-Time
Scheduling Algorithm", IEEE Trans. Copuuters, vol. 53,
no. 9, Sept. 2004.

[14] H. Aydin, R. Melhem, D. Mosse, and P. Mejia-Alvarez,
"Power-Aware Scheduling for Periodic Real-Time Tasks",
IEEE Trans. Computers, vol. 53, no. 5, May 2004.

[15] D. Zhu, R. Melhem, D. Mosse, and E. Elnozahy, "Analysis
of an energy efficient optimistic TMR scheme", in Proc.

10th Int'l Conf. Parallel and Distributed Systems
(ICPADS 2004), pp. 559-568, July 2004.

[16] S. Poledna, Fault-tolerant real-time systems: The problem

of replica determinism, Kluwer Academic Publishers,
1996.

[17] H. Kopetz, Real-time systems: Design principles for

distributed embedded applications, Kluwer Academic

Publishers, 2002.

[18] D.K. Pradhan, Fault-tolerant computer system design,
Prentice-Hall, 1996.

[19] R. Jejurikar, and R. Gupta, "Dynamic slack reclamation
with procrastination scheduling in real time embedded
systems", in Proc. 42nd Design Automation Conference
(DAC 2005), pp. 111-116, June 2005.

[20] “TM5400/TM5600 Data Book”, Transmeta Corp., Santa
Clara, CA, 2000.

[21] http://www-micrel.deis.unibo.it/sitonew/research/

mparm.html

[22] M. R. Guthaus, J. S. Ringenberg, D. Ernst,T. M. Austin, T.
Mudge, and R. B. Brown, “MiBench: A free, commercially
representative embedded benchmark suite”, in Proc. IEEE

4th annual Workshop on Workload Characterization, pp.
83-94, 2001.

[23] L. Benini, D. Bertozzi, A. Bogoliolo, F. Menichelli, and
M. Olivieri., “MPARM: Exploring the Multi-Processor
SoC Design Space with SystemC”, The Journal of VLSI

Signal Processing, vol. 41, no. 2, pp. 169-182, 2005.

[24] http://www.rtems.com

