Analysis and Synthesis of Communication-Intensive Heterogeneous Real-Time Systems

Paul Pop

Computer and Information Science Dept. Linköpings universitet

➔ Introduction

- System-level design and modeling
 - Conditional process graph
- The system platform
 - Time-driven vs. event-driven systems
- Communication-intensive heterogeneous real-time systems
 - Time-driven systems
 - Scheduling and bus access optimization
 - Incremental mapping
 - Event-driven systems
 - Schedulability analysis and bus access optimization
 - Incremental mapping
 - Multi-Cluster Systems
 - Schedulability analysis and bus access optimization
 - Frame packing
- Summary of contributions

Embedded Systems

Embedded Systems Characteristics

- Dedicated functionality (not general purpose computers)
 - Embedded into a host system
 - Complex architectures
- Embedded systems design constraints
 - Correct functionality
 - Performance, timing constraints: real-time systems
 - Development cost, unit cost, size, power, flexibility, time-toprototype, time-to-market, maintainability, correctness, safety, etc.
- Difficult to design, analyze and implement
 - System-level design
 - Reuse and flexibility

System-Level Design

In this thesis

- Scheduling
- Bus access optimization
- Mapping

Application Modeling #1

Application Modeling #2

Time Triggered Protocol (TTP)

- Bus access scheme: time-division multiple-access (TDMA)
- Schedule table located in each TTP controller: message descriptor list (MEDL)

Controller Area Network (CAN)

- Priority bus, collision avoidance
- Highest priority message wins the contention
- Priorities encoded in the frame identifier

Distributed Safety-Critical Applications

- Distributed applications
 - On a single cluster
 - On several clusters
 - Motivation
 - Reduce costs: use resources efficiently
 - Requirements: close to sensors/ actuators
- Distributed applications are difficult to...
 - Analyze (e.g., guaranteeing timing constraints)
 - Design (e.g., efficient implementation)

Event-Driven vs. Time-Driven Systems

• **Event-driven** systems

- Activation of processes is done at the occurrence of significant events
- Scheduling event-triggered activities
 - Fixed-priority preemptive scheduling
 - Response time analysis: calculate worst-case response times for each process
 - Schedulability test: response times smaller than the deadlines

Time-driven systems

- Activation of processes is done at predefined points in time
- Scheduling time-triggered activities
 - Static cyclic non-preemptive scheduling
 - Building a schedule table: static cyclic scheduling (e.g., list scheduling)

- Introduction
 - System-level design and modeling
 - Conditional process graph
 - The system platform
 - Time-triggered vs. event-triggered
- Communication-intensive heterogeneous real-time systems
 - ➔ Time-driven systems
 - Scheduling and bus access optimization
 - Incremental mapping
 - Event-driven systems
 - Schedulability analysis and bus access optimization
 - Incremental mapping
 - Multi-Cluster Systems
 - Schedulability analysis and bus access optimization
 - Frame packing
- Summary of contributions

Scheduling and Bus Access Optimization

- Input
 - Safety-critical application: set of conditional process graphs
 - The worst-case execution time of each process
 - The size of each messages
 - The system architecture and mapping are given
- Output
 - Design implementation such that the application is schedulable and execution delay is minimized
 - Local schedule tables for each node
 - The sequence and size of the slots in a TDMA round
 - The MEDL (schedule table for messages) for each TTP controller

Communication infrastructure parameters

Time-driven systems

Scheduling and Optimization Strategy

- List scheduling based algorithm
 - The scheduling algorithm has to take into consideration the TTP
 - Priority function for the list scheduling
- Bus access optimization heuristics
 - Greedy heuristic, two variants
 - Greedy 1 tries all possible slot lengths
 - Greedy 2 uses feedback from the scheduling algorithm
 - Simulated Annealing
 - Produces near-optimal solutions in a very large time
 - Cannot be used inside a design space exploration loop
 - Used as the baseline for comparisons
 - Straightforward solution
 - Finds a schedulable application
 - Does not consider the optimization of the design

Can We Improve the Schedules?

Time-driven systems

"Classic" Mapping and Scheduling Example

Incremental Design Process

- Start from an already existing system with applications
 - In practice, very uncommon to start from scratch

- Implement new functionality on this system (increment)
 - As few as possible modifications of the existing applications, to reduce design and testing time
 - Plan for the next increment: It should be easy to add functionality in the future

Incremental Mapping and Scheduling

Incremental Mapping and Scheduling

- Input
 - A set of existing applications modeled using process graphs
 - A current application to be mapped modeled using process graphs
 - Each process graph in an application has its own period and deadline
 - Each process has a potential set of nodes to be mapped on and a WCET
 - Characteristics of the future applications
 - The system architecture is given
- Output
 - A mapping and scheduling of the current application, such that:
 - Requirement (a)

constraints of the current application are satisfied and minimal modifications are performed to the existing applications

Requirement (b)

new future applications can be mapped on the resulted system

Mapping and Scheduling Example

Mapping and Scheduling Strategies

- Design optimization problem
 - Design criteria reflect the degree to which a design supports an incremental design process
 - Design metrics quantify the degree to which the criteria are met
- Heuristics to improve the design metrics
 - Ad-hoc approach
 - Little support for incremental design
 - Mapping Heuristic
 - Iteratively performs design transformations that improve the design

Can We Support Incremental Design?

Are the mapping strategies proposed facilitating the implementation of future applications?

Number of processes in the current application existing applications: 400, future application: 80

- Introduction
 - System-level design and modeling
 - Conditional process graph
 - The system platform
 - Time-triggered vs. event-triggered
- Communication-intensive heterogeneous real-time systems
 - Time-driven systems
 - Scheduling and bus access optimization
 - Incremental mapping
 - ➔ Event-driven systems
 - Schedulability analysis and bus access optimization
 - Incremental mapping
 - Multi-Cluster Systems
 - Schedulability analysis and bus access optimization
 - Frame packing
- Summary of contributions

Scheduling and Bus Access Optimization

- Input
 - Safety-critical application: set of conditional process graphs
 - The worst-case execution time of each process
 - The size of each messages
 - The system architecture and mapping are given

Output

- Worst-case response times (schedulability analysis)
- Design implementation such that the application is schedulable and execution delay is minimized
 - The sequence and size of the slots in a TDMA round
 - The MEDL (schedule table for messages) for each TTP controller

Communication infrastructure parameters

Conditional Process Graph Scheduling

CPG	Worst Case Delays	
	Not considering conditions	Considering conditions
G_1	120	100
G ₂	82	82

Scheduling of Messages using the TTP

- 1. Single message per frame, allocated statically: Static Single Message Allocation
- 2. Several messages per frame, allocated statically: **Static Multiple Message Allocation**
- 3. Several messages per frame, allocated dynamically: **Dynamic Message Allocation**
- 4. Several messages per frame, split into packets, allocated dynamically Dynamic Packets Allocation

Compartison...

Optimizing Bus Access (Static Allocation)

- Introduction
 - System-level design and modeling
 - Conditional process graph
 - The system platform
 - Time-triggered vs. event-triggered
- Communication-intensive heterogeneous real-time systems
 - Time-driven systems
 - Scheduling and bus access optimization
 - Incremental mapping
 - Event-driven systems
 - Schedulability analysis and bus access optimization
 - Incremental mapping
 - ➔ Multi-Cluster Systems
 - Schedulability analysis and bus access optimization
 - Frame packing
- Summary of contributions

Schedulability Analysis and Optimization

- Input
 - An application modeled as a set of process graphs
 - Each process has an worst case execution time, a period, and a deadline
 - Each message has a known size
 - The system architecture and the mapping of the application are given

Output

- Worst case response times and bounds on the buffer sizes
- Design implementation such that the application is schedulable and buffer sizes are minimized
 - Schedule table for TT processes
 - Priorities for ET processes
 - Schedule table for TT messages
 - Priorities for ET messages
 - TT bus configuration (TDMA slot sequence and sizes)

Communication infrastructure parameters System configuration parameters

Multi-Cluster Scheduling

- Scheduling cannot be addressed separately for each type of cluster
- The inter-cluster communication creates a **circular dependency**:

Transformation: S_1 is the first slot, m_1 and m_2 are sent sooner

Transformation: P_2 is the high priority process on N_2

Optimization Strategies

OptimizeSchedule

- Synthesizes the communication and assigns priorities to obtain a schedulable application
- Based on a greedy approach
 - Cost function: degree of schedulability

OptimizeBuffers

- Synthesizes the communication and assigns priorities to reduce the total buffer size
- Based on a hill-climbing heuristic
 - Cost function: total buffer size
- Straightforward solution
 - Finds a schedulable application
 - Does not consider the optimization of the design

Can We Improve Schedulability?

Can We Reduce Buffer Sizes?

- Introduction
 - System-level design and modeling
 - Conditional process graph
 - The system platform
 - Time-triggered vs. event-triggered
- Communication-intensive heterogeneous real-time systems
 - Time-driven systems
 - Scheduling and bus access optimization
 - Incremental mapping
 - Event-driven systems
 - Schedulability analysis and bus access optimization
 - Incremental mapping
 - Multi-Cluster Systems
 - Schedulability analysis and bus access optimization
 - Frame packing

→ Summary of contributions

Thesis Contributions

Time-driven systems

- Static scheduling strategy
- Optimization strategies for the synthesis of the bus access scheme
- Mapping and scheduling within an incremental design process

Event-driven systems

- Schedulability analysis
- Optimization strategies for the synthesis of the bus access scheme
- Mapping and scheduling within an incremental design process

Multi-cluster systems

- Schedulability analysis for multi-cluster systems
- Optimization heuristics for system synthesis: minimal buffer sizes needed to run a schedulable application
- Frame-packing optimization heuristics