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ABSTRACT
In this paper we present an approach to the scheduling and voltage
scaling of low-power fault-tolerant hard real-time applications
mapped on distributed heterogeneous embedded systems. Processes
and messages are statically scheduled, and we use process re-execu-
tion for recovering from multiple transient faults. Addressing simul-
taneously energy and reliability is especially challenging because
lowering the voltage to reduce the energy consumption has been
shown to increase the transient fault rates. In addition, time-redun-
dancy based fault-tolerance techniques such as re-execution and dy-
namic voltage scaling-based low-power techniques are competing
for the slack in the schedules. Our approach decides the voltage lev-
els and start times of processes and the transmission times of messag-
es, such that the transient faults are tolerated, the timing constraints
of the application are satisfied and the energy is minimized. We
present a constraint logic programming-based approach which is
able to find reliable and schedulable implementations within limited
energy and hardware resources. 

Categories and Subject Descriptors
B.8.2 [Performance and Reliability]: Reliability, Testing, and
Fault-Tolerance; C.3 [Special-Purpose and Application-Based
Systems]: Real-Time and Embedded Systems

General Terms
Algorithms, Design, Performance, Reliability 

Keywords
Embedded systems, Energy minimization, Reliability, Scheduling 

1. INTRODUCTION
Safety-critical applications have to function correctly, meet their tim-
ing constraints and be energy-efficient even in the presence of faults.
Such faults can be permanent (i.e., damaged microcontrollers or
communication links), transient (e.g., caused by electromagnetic in-
terference), or intermittent (appear and disappear repeatedly). The
transient faults are the most common, and their number is increasing
due to the raising level of integration in semiconductors. 

Researchers have proposed several hardware architecture solu-
tions, such as MARS [16], TTA [15] and XBW [6], that rely on hard-
ware replication to tolerate a single permanent fault in any of the
components of a fault-tolerant unit. Such approaches can be used for
tolerating transient faults as well, but they incur very large hardware
cost if the number of transient faults is larger than one. An alternative
to such purely hardware-based solutions are approaches such as re-
execution, replication, checkpointing.

Several researchers have shown how the schedulability of an appli-
cation can be guaranteed at the same time with appropriate levels of
fault-tolerance using pre-emptive online scheduling [2, 3]. Consider-
ing the high degree of predictability of time-triggered systems [15], re-
searchers have also proposed approaches for integrating fault-
tolerance into the framework of static scheduling. A simple heuristic
for combining several static schedules in order to mask fault-patterns
through replication is proposed in [7], without, however, considering
any timing constraints. This approach is used as the basis for cost and
fault-tolerance trade-offs within the Metropolis environment [19]. 

Fohler [9] proposes a method for joint handling of aperiodic and pe-
riodic processes by inserting slack for aperiodic processes in the static
schedule, such that the timing constraints of the periodic processes are
guaranteed. In [10] he equates the aperiodic processes with fault-toler-
ance techniques that have to be invoked on-line in the schedule table
slack to handle faults. Overheads due to several fault-tolerance tech-
niques, including replication, re-execution and recovery blocks, are
evaluated. When re-execution is used in a distributed system, Kan-
dasamy [14] proposes a list-scheduling technique for building a static
schedule that can mask the occurrence of faults, making the re-execu-
tion transparent. Slacks are inserted into the schedule in order to allow
the re-execution of processes in case of faults. The faulty process is re-
executed, and the processor switches to an alternative schedule that de-
lays the processes on the corresponding processor, making use of the
slack introduced. The authors propose an algorithm for reducing the
necessary slack for re-execution. 

Applying such fault-tolerance techniques introduces overheads in
the schedule and thus can lead to unschedulable systems. Very few
researchers [14, 19] consider the optimization of implementations to
reduce the overheads due to fault-tolerance and, even if optimization
is considered, it is very limited and considered in isolation, and thus
is not reflected at all levels of the design process, including mapping,
scheduling and energy minimization [11]. 

Regarding energy minimization, the most common approach that
allows energy/performance trade-offs during run-time of the applica-
tion is dynamic voltage scaling (DVS) [20]. DVS aims to reduce the
dynamic power consumption by scaling down operational frequency
and circuit supply voltage. There has been a considerable amount of
work on dynamic voltage scaling. For a survey of the topic, the reader
is directed to [20].

Incipient research has analyzed the interplay of energy/perfor-
mance trade-offs and fault-tolerance techniques [4, 8, 18, 22]. Time-
redundancy based fault-tolerance techniques (such as re-execution
and checkpointing) and dynamic voltage scaling-based low-power
techniques are competing for the slack, i.e., the time when the pro-
cessor is idle. The interplay of power management and fault recovery
has been addressed in [18], where checkpointing policies are evalu-
ated with respect to energy. In [8] time redundancy is used in con-
junction with information redundancy, which does not compete for
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slack with DVS, to tolerate transient faults. In [22] fault tolerance and
dynamic power management is studied, and rollback recovery with
checkpointing is used in order to tolerate multiple transient faults in
the context of distributed systems. 

Addressing simultaneously energy and reliability is especially
challenging because lowering the voltage to reduce energy consump-
tion has been shown to exponentially increase the number of tran-
sient faults [23]. The main reason for such an increase is that, for
lower voltages, even very low energy particles are likely to create a
critical charge that leads to a transient fault. However, this aspect has
received very limited attention. Zhu [24] has proposed a reliability-
aware DVS greedy heuristic for single processors, while in [23] a sin-
gle-task chechpointing scheme is evaluated.

In [11] we have shown how re-execution and active replication can
be combined in an optimized implementation that leads to a schedula-
ble fault-tolerant application without increasing the amount of em-
ployed resources. In [12] we have addressed transparency/performance
trade-offs during the synthesis of fault-tolerant schedules. In this paper,
we consider a very different trade-off, namely, energy versus reliability.
To the best of our knowledge, we are the first to address such a trade-
off in the context of multiprocessor embedded systems.

We consider heterogeneous distributed time-triggered systems,
where both processes and messages are statically scheduled. The the
transient faults are tolerated through process re-execution by switch-
ing to pre-determined contingency schedules. In this context, we pro-
pose an approach to the scheduling and voltage scaling that decides
the voltage levels and start times of processes and the transmission
times of messages, such that the transient faults are tolerated, the tim-
ing constraints of the application are satisfied and the energy con-
sumption in the no-fault scenario is minimized. We propose a novel
constraint logic programming-based algorithm for the synthesis of
fault tolerant schedules that takes into account the influence of volt-
age scaling on reliability. 

The next two sections present the system architecture and the appli-
cation model, respectively. The energy and reliability models are pre-
sented in Section 4. Section 5 presents our problem formulation, the
scheduling strategies considered, and a motivational example. Section 6
outlines the proposed scheduling and voltage scaling approach. The
evaluation of the proposed strategies is presented in Section 7. 

2. SYSTEM MODEL
We consider architectures composed of a set N of DVS-capable
nodes which share a broadcast communication channel. The commu-
nication channel is statically scheduled such that one node at a time
has access to the bus, according to the schedule determined off-line.

We have designed a software architecture which runs on the CPU
in each node, and which has a real-time kernel as its main compo-
nent. The processes activation and message transmission is done
based on the local schedule tables. 

In this paper we are interested in fault-tolerance techniques for tol-
erating transient faults, which are the most common faults in today’s
embedded systems. We have generalized the fault-model from [14]
that assumes that one single transient fault may occur on any of the
nodes in the system during the application execution. In our model, we
consider that at most k transient faults may occur anywhere in the sys-
tem during one operation cycle of the application. Thus, not only sev-
eral transient faults may occur simultaneously on several processors,
but also several faults may occur on the same processor. The number
of k transient faults correspond to a reliability goal Rg. We consider that
if the system reliability RS drops below the required reliability Rg, then
the assumption of only k transient faults occurring is no longer valid,
i.e., k’ > k faults are likely to occur instead.

The error detection and fault-tolerance mechanisms are part of the
software architecture. We assume a combination of hardware-based
(e.g., watchdogs, signature checking) and software-based error detec-
tion methods, systematically applicable without any knowledge of the
application (i.e., no reasonableness and range checks) [13]. The soft-
ware architecture, including the real-time kernel, error detection and
fault-tolerance mechanisms are themselves fault-tolerant. In addition,
we assume that message fault-tolerance is achieved at the communi-
cation level, for example through hardware replication of the bus.

We use re-execution for tolerating faults. Let us consider a process
P1 and a fault-scenario consisting of k = 2 transient faults that can
happen during one cycle of operation. The first execution runs at a
voltage level V. In the worst-case fault scenario, the first fault happens
during the process P1’s first execution, and is detected by the error de-
tection mechanism, after a worst-case error detection overhead α1.
Once the error has been detected, the task has to be recovered. After a
worst-case recovery overhead of μ1, P1 will be executed again. Since
we concentrate on minimizing the energy consumption in the no-fault
scenario, we consider that all the re-executions are performed at full
speed, i.e., at the maximum voltage Vmax and frequency fmax. Its sec-
ond execution in the worst-case could also experience a fault. Finally,
the third execution of P1 will take place without fault. Note that the
overheads αi and μi for a process Pi are considered as part of its worst-
case execution time Ci. 

3. APPLICATION MODEL
We model an application A(V, E) as a set of directed, acyclic, polar
graphs Gi(Vi, Ei) ∈ A. Each node Pi ∈ V represents one process. An
edge eij ∈ E from Pi to Pj indicates that the output of Pi is the input
of Pj. A process can be activated after all its inputs have arrived and
it issues its outputs when it terminates. Processes are non-preemptable
and thus cannot be interrupted during their execution. Fig. 1 depicts an
application A consisting of a graph G1 with five processes, P1 to P5. 

The communication time between processes mapped on the same
processor is considered to be part of the process worst-case execution
time and is not modeled explicitly. Communication between process-
es mapped to different processors is performed by message passing
over the bus. Such message passing is modeled as a communication
process inserted on the arc connecting the sender and the receiver
process, and is depicted with black dots in the graph in Fig. 1. 

The mapping of a process in the application is determined by a
function M: V → N, where N is the set of nodes in the architecture. For
a process Pi ∈ V , M(Pi) is the node to which Pi is assigned for execu-
tion. We consider that the mapping is given, and we know the worst-
case execution time of process Pi, when executed on M(Pi). In
Fig. 1, the mapping is given in the table besides the application
graph. We also consider that the size of the messages is given. 

All processes and messages belonging to a process graph Gi have the
same period Ti = TGi 

which is the period of the process graph. If com-
municating processes are of different periods, they are combined into
a merged graph capturing all activations for the hyper-period (LCM of
all periods). A deadline DGi

 ≤ TGi
 is imposed on each process graph Gi. 

4. ENERGY AND RELIABILITY MODELS
We use the power model from [5] which shows that by varying the
circuit supply voltage Vdd, it is possible to trade-off between power
consumption and performance. The reliability  of a process Pi is
defined as the probability of its successful execution, and it is cap-
tured by the exponential failure law [13]:

(1)

where the term λ is the failure rate, which describes the amount of er-
rors that will occur per second. For a system with the ability to handle
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k faults, a process will have to be able to perform k redundant recovery
executions. For such a setup, the reliability is given by the probability
of not all recoveries failing. Formally, this is expressed as [13]: 

(2)

where the last term is the probability of all processes failing in the
same run. For independent faults, the reliability of A is [13]: 

. (3)

4.1 Energy/Reliability Trade-off Model
The equations presented so far do not account for the influence of
voltage on reliability. However, lowering the voltage has been shown
to dramatically lower the reliability [23]. Thus, the failure rate λ of a
system is dependent on the voltage the system is run at. The relation
between the two can be described by the expression proposed in [23]: 

(4)
in which λ0 is the failure rate of the processor when run at maximum
voltage Vmax and frequency fmax, and d is an architecture specific con-
stant. The variable f denotes the scaling factor, capturing both the
voltage and the corresponding change in frequency. Equation 4 con-
siders normalized voltages, i.e., Vmax is assumed to be 1. Thus, for a
scaling factor f, the corresponding supply voltage is Vdd = f × Vmax =
f. Regarding frequency, for a small threshold voltage Vt, the circuit
delay becomes 1 / Vdd = 1 / f. 

Let us now return to the application reliability derived previously.
Thus, the reliability of a single process, scaled with a factor f is: 

(5)

We can now update Equation 2 that captures the reliability of a pro-
cess Pi. Considering that all k recoveries are running at full speed (at
fmax, with a corresponding reliability ), the reliability of Pi is: 

(6)

5. PROBLEM FORMULATION
The problem we are addressing in this paper can be formulated as fol-
lows. Given an application A with a reliability goal Rg corresponding to
k transient faults, mapped on an architecture consisting of a set of hard-
ware nodes N interconnected via a broadcast bus B, we are interested to
determine the schedule tables S such that the application is fault-toler-
ant, schedulable, and the energy of the no-fault execution scenario is
minimized. Note that deciding on the schedule tables S implies deciding
on both the start times and the voltage levels for each process.
5.1 Scheduling Strategies
The scaled execution of processes and the recovery slack needed for
re-executions introduce delays that can violate the timing constraints
of the application. In addition, reducing the voltage to decrease the en-
ergy consumption, has a negative impact on the application reliability.

Let us consider the example in Fig. 1, where we have an application
consisting of five processes, P1 to P5 and two messages, m1 and m2,
mapped on an architecture with two processors, N1 and N2. Processes
P1, P2, P4 and P5 are mapped on N1, and P3 is mapped on N2. Mes-
sage m1 is sent from P1 to processes P3 and m2 from P3 to P4. The
worst-case execution times of each process on its corresponding pro-
cessor are depicted in the table, and the deadline of the application,
depicted with a thick vertical line, is 215 ms. The voltage levels for
each processor and reliability numbers (d and λ0) are also given in the
figure. We consider a reliability goal Rg = 0.999 999 990 and k = 1.

In Fig. 1 we illustrate three scheduling strategies: (a) full transparen-
cy, (b) transparent recovery and (c) no transparency. For each alterna-
tive, on the left side (a1–c1) we show the shortest possible schedule when
no faults occur and no voltage scaling is performed. In case no voltage
scaling is performed, the energy consumption  and reliability  of
application A do not depend the scheduling strategy. We would like to
determine in a2–c2 schedules that minimize the energy consumption,
and meet the deadline, even in the presence of faults. The right side (a3–
c3) depicts the worst-case fault scenario (resulting in the longest sched-
ule) corresponding to the minimal energy schedules in a2–c2.
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Whenever a fault occurs, the faulty process has to be re-executed.
Thus, the scheduler in a processor that experiences a fault has to
switch to another schedule, containing a different start time for that
process. For example, according to the schedule in Fig. 1a1, process-
es are scheduled at the times indicated by the light blue rectangles in
the Gantt chart. Once a fault occurs in P5, the scheduler on node N1
will have to switch to another schedule, illustrated in Fig. 1a3, where
P5 is delayed with C5 to account for the fault.

All the alternative schedules needed to run the application in case
of faults are produced off-line by a scheduling algorithm. The end-to-
end worst-case delay of an application is given by the maximum fin-
ishing time of any schedule, since this is a situation that can happen
in the worst-case scenario. For the application in Fig. 1a1, the largest
delay is produced by the schedule depicted in Fig. 1a3, which has to
be activated when a fault happens in P5.

Depending on how the schedule table is constructed, the re-execu-
tion of a process has a certain impact the execution of other processes.
In Fig. 1a1, we have constructed the schedule such that each execution
of a process Pi is followed by a recovery slack, which is idle time on
the processor, needed to recover (re-execute) the failed process. For ex-
ample, for P3 on node N2, we introduce a recovery slack of k × C3  =
15 ms to make sure we can recover P3 even in the case it experiences
the maximum number of k faults. Thus, a fault occurrence that leads to
the re-execution of any process Pi will only impact Pi, and not the other
processes, since the re-execution time for Pi is already accounted in the
schedule table. We call such an approach fully transparent, because
fault occurrence in a process is transparent to all other processes, on
the same, or on other processors. 

The minimum energy in this case, corresponding to the schedule
in Fig. 1a2 is 92.13% of . Note that this minimum energy sched-
ule has to meet the deadline even in the worst-case fault scenario.
Due to this, we are able to scale only P3, at 66%, without missing the
deadline. For such a limited voltage reduction, the reliability, calcu-
lated according to Equations (3) and (6), meets the reliability goal.
Although transparency has the advantages of fault containment, im-
proved debugability and less memory needed to store the fault-toler-
ant schedules [12], it will, however, introduce large delays that can
violate the timing constraints of the application, and reduce the slack
available for voltage scaling. 

We would like a scheduling approach where the delay is reduced,
thus increasing the slack available for voltage scaling. The straight-
forward way to reduce the end-to-end delay is to share the recovery
slacks among several processes. For example, in Fig. 1b1, processes P4
and P5 share the same recovery slack on processor N1. This shared
slack has to be large enough to accommodate the recovery of the larg-
est process (in our case P4) in the case of k faults. This slack can then
handle k faults also in P5, which takes less to execute than P4.

In Fig. 1b we consider an approach called transparent recovery,
where the fault occurring on one processor is masked to the other pro-
cessors in the system, but not, as in the case with full transparency, with-
in a processor. Thus, on a processor Ni where a fault occurs, the
scheduler has to switch to an alternative schedule that delays the de-
scendants of the faulty process running on Ni. However, a fault happen-
ing on another processor, is not visible on Ni, even if the descendants of
the faulty process are mapped on Ni. For example, in Fig. 1b1, where we
assume that no faults occur, in order to isolate node N2 from the occur-
rence of a fault on node N1, message m1 from P1 to P3, cannot be trans-
mitted at the end of P1’s execution. m1 has to arrive at the destination at
a fixed time, regardless of what happens on node N1, i.e., transparently.
Consequently, the message can only be transmitted after a time k × C1,
at the end of the recovery of P1 in the worst-case scenario. However, a
fault in P1 will delay process P2 which is on the same processor. 

This approach will lead to a reduced delay, as depicted in Fig. 1b1.
With this additionally available slack, we are able to perform voltage
scaling on more processes, thus the minimum energy schedule is
49.68% of . However, for such a voltage scaling the reliability is
reduced to 0.999 999 800 < Rg, and the reliability goal is missed.

Another approach, depicted in Fig. 1c, is not to mask fault occur-
rences at all. In this case, even the processes on different processors
will be affected by the fault occurrence on the current processor. For
example, an error in P1 on N1 will have to be communicated to pro-
cessor N2 in order to switch to an alternative schedule that delays the
scheduling of P3 which receives message m1 from P1. This would cre-
ate even more slack, leading to the schedule depicted in Fig. 1c2, that
consumes only 33.96% , which is the largest obtainable energy re-
duction that does not violate the deadline. However, in this case the re-
liability of the system is further reduced to 0.999 999 787 < Rg.

As the previous examples have shown, voltage scaling reduces reli-
ability. The aim of this paper is to propose a schedule synthesis ap-
proach that is able to minimize the energy while at the same meeting
the reliability and timing requirements. We will base our solution on
the transparent recovery approach (Fig. 1b), which has been shown to
quickly produce good quality schedules [11]. Thus, the scheduling al-
gorithm is responsible for deriving offline the root schedules, i.e., the
schedules in the no-fault scenario. The scheduler in each node, starting
from the root schedule, based on the occurrence of faults, is able to de-
rive online, in linear time, the necessary contingency schedule [11].
5.2 Motivational Example
Let us consider the example in Fig. 2 where we have an application
of six processes mapped on an architecture of two nodes. All the rel-
evant information is presented in the figure, similar to the previous
example. Using transparent recovery, the shortest schedule without
voltage scaling, is shown in Fig. 2a. The energy is , and the dead-
line of 260 ms and the reliability goal of 0.999 999 900 are met. 

Optimizing the application for minimum energy consumption,
with the deadline as a hard constraint, results in the schedule shown
in Fig. 2b, where the energy consumed is 67.68% of . Process P1
is running at voltage level of 33% of Vmax, P3, P4 and P6 at 66%,
while P2 and P5 are not scaled. In this case, the reliability is lowered
to 0.999 999 878 which does not meet the reliability goal. 

However, by carefully deciding on which processes are scaled and
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by how much, it is possible to reduce the negative impact on reliabil-
ity without a significant loss of energy savings. Thus, in Fig. 2c, by
choosing not to scale P1, and starting P3 before P5 on N2, we are able
to reach a reliability of 0.999 999 920, which meets the reliability
goal at an only 5.75% reduction in energy savings compared to the
minimum energy schedule in Fig. 2b.

This example shows that reliability has to be considered at the
same time with scheduling and voltage scaling. Our CLP-based
schedule synthesis strategy is able to produce schedules with con-
strained reliability, which yield, as the experiments will show, energy
savings comparable to schedules with unconstrained reliability. 

6. CLP-BASED SYNTHESIS STRATEGY
The problem presented in the previous section is NP-complete
(scheduling in even simpler contexts is NP-complete [21]). In this
section we present a constraint logic programming (CLP) approach
for solving the problem. Thus, a system is described by a set of logic
constraints which define valid conditions for the system variables. A
solution to the modelled problem is an enumeration of all system
variables, such that there are no conflicting constraints. 

The logic constraints used to model our problem fall under the fol-
lowing categories: (i) precedence constraints, (ii) resource constraints,
(iii) timing, (iv) reliability and energy constraints, and (v) constraints
for fault tolerance. Constraints (i)–(iii) have been extensively dis-
cussed in the literature [17]. The reliability and energy constraints
(v) are captured by the equations introduced in the previous sections.
Here we will concentrate on the constraints for fault tolerance. 
6.1 Constraints for Fault Tolerance
When scheduling with fault tolerance using the transparent recovery
technique, the precedence constraints have to take into account the
recovery slack. There are two cases, treated separately.
1. Processes on the same node. Processes executed on the same

processor share recovery slack. This slack is scheduled immediately
after the processes, and thus will not impact the precedence
constraints. Such a situation is depicted in Fig. 1b1, where P1 and P2
are mapped on the same processor, and share recovery slack. Thus,
the constraint for processes on the same processing element is
simply M(Pi) = M(Pj).

2. Processes on different nodes. Things are more complex if the two
processes are mapped on different processors. In such a situation, a
process cannot be started until the recovery of its predecessors on all
other processors is guaranteed. The situation where two processes
on different processors have to communicate, can be split into two
special cases. These are illustrated in Fig. 3a and b, respectively. 
Let us consider the dependency between processes P2 and P3. In

Fig. 3a, P2 is scheduled after P1. The figure shows the critical recov-
ery path. This is the path which determines when data is available to
be transmitted. In this example the longest recovery path is k re-exe-
cutions of P2, and hence P3 can start at time: Start(P3) ≥ Start(P2) +

⎡C2 / f2⎤ + k × C2. In Fig. 3b, P2 is now scheduled after P1 (P1 has a
larger execution time in this example). In this case, the longest recov-
ery path to P3 is k re-executions of P1 plus a single execution of P2.
That is, the availability of data is not only determined by the sending
process, but also the processes scheduled before it. The start time of
P3 is constrained by: Start(P3) ≥ Start(P1) + ⎡C1 / f1⎤ + k × C1 + C2. 

These two schedule examples show that the availability of data
does not only depend on the two processes which communicate, but
also on all the processes with which the sending process shares slack.
To generalize the shown constraints, in a way that can be used in the
CLP model, detailed information of the recovery schedule is needed.
This is achieved by creating a separate schedule for the recovery pro-
cesses. For the examples shown in Fig. 3, the created recovery sched-
ule is depicted in the Gantt chart entitled “re-execution schedule”. 

The recovery schedule is set up in the following way. For each pro-
cess Pi a recovery process Si is inserted into the recovery schedule
with an edge . In the recovery schedule the precedence and re-
source constraints are imposed. The finishing times of the processes
in the recovery schedule are described by: 

(7)

Note that the first part of the expression, up to the “and” operator,
captures the situation depicted in Fig. 3a. The rest relates to Fig. 3b. 

Using the recovery schedule, the general logic constraint for pro-
cesses on different processors can now be written: Start(Pi) ≥ Fin-
ish(Si). With the previous definitions of the recovery schedules and
constraints for processes on the same, and on different processors, a
general constraint for slack sharing can be derived:

(8)

In the last part of the expression it is not stated that M(Pi) ≠ M(Pj), as
this is an implicit consequence of the first part of the clause. 

7. EXPERIMENTAL RESULTS
For the evaluation of our techniques we used applications of 10, 15, 20,
25 and 30 processes mapped on architectures consisting of 3 nodes. Ten
examples were randomly generated for each application dimension, thus
a total of 40 applications were used for experimental evaluation. Execu-
tion times were assigned randomly within the 10 to 100 ms. We have ig-
nored communications for the experiments. The failure rate constant has
been set to d = 2 and the initial failure rate α0 = 10–6 faults per second.
Half of the processes in the graphs have been randomly chosen to be
made redundant using re-execution. The remainder of the processes are
considered non-critical, and are not made redundant. We have used the
ECLiPSe CLP system [1], version 5.10_44 on 3.5 GHz AMD 64-bit
computers with two gigabytes of RAM. We have set a progressive time-
out for each run, based on the application size, to 10, 15, 20, 25 and 30
minutes, respectively. The best result determined during each run has
been used in the evaluations.

In the experiments, the fully transparent schedule without voltage
scaling has been used as reference. This is a schedule that a designer
would determine in a straightforward manner, by introducing an
amount of k × Ci recovery slack after each process Pi. Let us call this
approach Straightforward Solution, or SS. The deadline for the
graphs in the experiments has been set to the length of the optimal SS
schedule. The reliability goal has been set to: Rg = 1 – 10(1 – ),
which means that the probability of faults happening may be no more
than ten times greater than in the schedule without voltage scaling.
We have considered two situations, with k = 1 and k = 2.

We were first interested to determine the impact of voltage scaling
on reliability. For this, we have applied our scheduling and voltage
scaling optimization with the objective of minimizing the energy
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consumption, but without imposing any reliability constraints. Let us
denote this approach with Energy Optimization, EO. The results, av-
eraged over the 10 applications for each application size, are present-
ed in Fig. 4 for k = 1 and 2. In the energy plots, Fig. 4a and c, we
present the energy consumption obtained with EO relative to that of
SS as the application size increases. The reliability plots in Fig. 4b
and d present the absolute reliability of the approaches evaluated. As
we can see from the figures, EO is able to obtain close to 40% energy
savings compared to SS. These savings increase as k increases. How-
ever, this is at the expense of a significant reduction in reliability,
which drops rapidly as the application size and k increase. For exam-
ple, for an application of 30 processes and k = 2, the average reliabil-
ity is below 0.87. Therefore, the reliability has to be addressed during
scheduling and voltage scaling.

This was the focus of our second round of experiments. We have per-
formed scheduling and voltage scaling with the goal of minimizing the
energy as in EO, but we have additionally imposed the reliability con-
straint that the resulted system reliability has to be within the reliability
goal Rg (as set by Equation ). We have called this approach Reliable En-
ergy Optimization (REO). As we can see in Fig. 4b and d, the reliability
with REO no longer drops below Rg. Moreover, as Fig. 4a and c show,
the energy savings of REO relative to SS are comparable to those of EO,
which does not care about reliability. This means that our CLP-based
scheduling and voltage scaling approach is able to produce reliable im-
plementations without sacrificing the reduction in energy consumption.

We have also considered an MP3 encoder application [20]. The
deadline for the application is 25 ms. The MP3 is executed on an ar-
chitecture with two processing elements that can be run at three volt-
age levels of 100%, 70% and 50% of Vmax = 3V. For k = 1 and Rg =
0.999 999 999, the unconstrained-reliability schedule determined by
EO consumes 53.2% of . The reliability goal is missed, since the
resulted reliability is 0.999 999 996. However, by using REO we have
made the designed system meet its reliability goal, sacrificing only
9% of the energy savings.

8. CONCLUSIONS
In this paper we have addressed the scheduling and voltage scaling for
fault-tolerant hard real-time applications mapped on distributed embed-
ded systems where processes and messages are statically scheduled. 

We have captured the effect of voltage scaling on system reliability
and we have shown that if the voltage is lowered to reduce energy
consumption, the reliability is significantly reduced. Hence, we have
proposed a CLP-based approach that takes reliability into account
when performing scheduling and voltage scaling.

As the experimental results have shown, our CLP-based strategy is
able to produce energy-efficient implementations which are schedula-
ble and fault tolerant. By carefully deciding on the start times and volt-
ages of processes we have shown that it is possible to eliminate the
negative impact of voltage scaling on reliability without a significant
loss of energy savings.
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Figure 4. Experimental Results
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