

Process-Variation Aware
Multi-Temperature Test Scheduling

Nima Aghaee, Zebo Peng, and Petru Eles
Embedded Systems Laboratory (ESLAB), Linkoping University, Sweden

{nima.aghaee, zebo.peng, petru.eles}@liu.se

Abstract—Chips manufactured with deep submicron technologies
are prone to large process variation and temperature-dependent
defects. In order to provide high test efficiency, the tests for
temperature-dependent defects should be applied at appropriate
temperature ranges. Existing static scheduling techniques achieve
these specified temperatures by scheduling the tests, specially
developed heating sequences, and cooling intervals together.
Because of the temperature uncertainty induced by process
variation, a static test schedule is not capable of applying the tests
at intended temperatures in an efficient manner. As a result the test
cost will be very high. In this paper, an adaptive test scheduling
method is introduced that utilizes on-chip temperature sensors in
order to adapt the test schedule to the actual temperatures. The
proposed method generates a low cost schedule tree based on the
variation statistics and thermal simulations in the design phase.
During the test, a chip selects an appropriate schedule dynamically
based on temperature sensor readings. A ��% decrease in the
likelihood that tests are not applied at the intended temperatures is
observed in the experimental studies in addition to ��% reduction
in test application time.

I. INTRODUCTION
Temperature-dependent defects are a challenge for achieving

high test quality for chips manufactured with modern
technologies [1]. This entails the need to apply tests within
specified temperature ranges and also the necessity of having a
variety of tests applied at different temperatures in order to
achieve high defect coverage. Therefore, it is important to
develop efficient methods to apply tests at the specified
temperatures with a minimal cost [2].

Tests could be performed at specified temperatures using a
temperature-aware schedule that adjusts the temperature by
introducing cooling and heating intervals [2, 3]. A heating
interval is a period when the chip under test is consuming large
amount of power that is achieved by test controls. A cooling
interval, on the other hand, corresponds to a period with very
small power consumption. Heating could be achieved by
applying a section of the normally generated test pattern that has
the maximal power or a sequence of patterns that is especially
generated to heat up the chip rapidly; while cooling can be simply
done by not applying any patterns. This way, multi-temperature
tests are performed without costly extra test equipment (such as
external heating mechanisms). The challenge is that the test
application time (which is already long) could become
excessively long, resulting in an extremely high cost of test.
Therefore, it is necessary to find a test schedule with a short test
application time.

The existing multi-temperature test scheduling methods (for
instance [2] and [3]) optimize the test schedule for the shortest
test application time while making sure that the tests are applied
in the specified temperature ranges. These methods neglect the
temperature deviations that are mainly caused by process
variation. Therefore, a large process variation implies a
decreased number of chips that are tested within the specified
temperature ranges, which will reduce the effectiveness of the
tests and, in the worst case, may lead to damage of the chips due
to overheating.

In order to maximize the chances that the tests are applied
within the intended temperature ranges, static schedules should

be designed pessimistically. In this case, a large process variation
implies a very long test application time due to the intensive use
of the heating and cooling intervals. This means that the chips
under test are heating up/cooling down more than actually
needed in order to make sure that it is warm/cold enough for the
majority of the chips (this situation is detailed in section III).

In this paper, an adaptive method that utilizes on-chip
temperature sensors in order to adapt the test schedule to the
thermal situation of individual chips is proposed. In the design
phase, based on the cores’ temperature deviation statistics, a
schedule tree is generated. The schedule tree is designed to offer
a short expected test application time and a large likelihood that
the tests are applied at the correct temperatures. During the test,
based on the actual temperatures of its cores, the schedule that is
best suited for the particular chip under test is used.

The rest of the paper is organized as follows. Section II
discusses the necessity of multi-temperature testing and then
provides an overview of the thermal issues concerning SoC test
scheduling as well as related work. Section III gives a
motivational example focusing on thermal consequences of
process variation and exemplifying the proposed approach.
Section IV explains the proposed method. Section V presents the
experimental results and section VI concludes the paper.

II. BACKGROUND AND RELATED WORK
A. Temperature-dependent Defects

Temperature-dependent defects are a subclass of well-studied
environment-sensitive defects. Environment-sensitive defects
are an important contributor to parametric failures, especially for
deep submicron technologies. Temperature is an important
environmental parameter along with some other parameters like
supply voltage and frequency [1–3].

An example for such an environment-sensitive defect is a
resistive open which is a major cause of test escapes [1]. It occurs
when a connection between two circuit nodes has a conductance
high enough to be considered as connected at normal
temperatures. But at high temperatures the conductance
decreases so much that the connection is considered as
disconnected. This may occur since usually most of interconnects
on the chip are made from metals and usually the conductance of
those metals has negative temperature coefficient. Therefore, it
is expected that a large number of such defects appear at high
temperatures. On the other hand, we have other defects that
manifest themselves differently with respect to temperature. For
example, in [1] a defect (“Dark Via”) is reported that “had
previously passed all production tests, but then failed a monitor
test at cold temperature”. Several other defects are also identified
in [1] that similarly appear only at low temperatures.

Beside the temperature coefficient for conductivity of the
material, thermal expansion may also contribute to temperature-
dependent defects [1, 2]. The “Dark Via” defect, which appears
at low temperature, could be seen as voids between interconnect
and via [1]. This observation could be explained with thermal
expansion in metals (it fills up the voids and increases the
conductivity) [2, 4]. This effect is illustrated in Fig. 1, where
large voids at low temperature shrink at high temperature
because of thermal expansion. Therefore, the conductance of the
via may increase albeit the reduced conductivity of the via's

2014 27th International Conference on VLSI Design and 2014 13th International Conference on Embedded Systems

1063-9667/14 $31.00 © 2014 IEEE

DOI 10.1109/VLSID.2014.13

32

2014 27th International Conference on VLSI Design and 2014 13th International Conference on Embedded Systems

1063-9667/14 $31.00 © 2014 IEEE

DOI 10.1109/VLSID.2014.13

32

constructing material. Similar defects also exist for other
technologies and materials. For example, some defects for a
different technology are studied in [5] and “interface voids” are
mentioned along with “sidewall voids” and “bulk voids” (shown
also in Fig. 1) as temperature-dependent defects. Moreover,
similar to possible temperature-dependent mechanisms for open
defects, one may think of temperature dependent mechanisms for
short or bridging defects.

Another type of temperature-dependent defect that is hard-to-
diagnose is silicide open [6]. Silicide is used to make local
interconnects. In its perfect condition, such a local interconnect
has a positive temperature coefficient for resistance, but a
defective one will have it as negative [6]. Detecting such defects
at normal temperature is difficult since their difference is not
recognizable. In order to provide good defect coverage, a simple
diagnosis solution is necessary. Performing the test at low
temperatures is suggested in [6] as a good solution since there
will be a recognizable difference between the perfect and the
defective chips at low temperature.

Resistive-open and stuck-open defects are experimentally
studied in [7]. The resistive-opens occur more frequently (39
samples) compared to stuck-open defects (11 samples) [7]. The
effects of the environmental parameters are studied and some
diagnosis schemes are proposed in [7]. It is concluded that by
knowing the location of the defects and the materials involved in
those defects, the proper test temperatures can be found and the
appropriate test patterns can be generated [7]. Such test
temperatures and test patterns are the inputs to the adaptive test
scheduling method proposed in this paper.

The behavior of temperature-sensitive defects is also analyzed
experimentally in [8]. Some effective screening methods are
proposed in [8] based on the comparison of test responses at
multiple temperatures and low cost screening alternatives are
proposed. Temperature-sensitive defects are expected to become
more frequent in future technologies and therefore it is important
to develop effective test methodologies for them [8]. The
adaptive test scheduling approach that is presented in this paper
will facilitate mass application of tests that are designed for
temperature-sensitive defects.

The detection approaches for resistive bridging (short) defects
are studied in [9, 10]. It is suggested in [9] that low-temperature
and low-voltage tests improve the test quality. It is suggested that
there exist appropriate combinations of these tests that provide
satisfactory test coverage for different types of defects.

The effect of test temperature on the quality of the tests is
studied in [11]. A low cost test methodology which utilizes low-
voltage and low-temperature testing is also proposed in [11].
Moreover, the method proposed in [11] determines the
appropriate test conditions for the best test quality and lowest
cost.

Interconnect malfunctions (e.g., opens and shorts) are not the
only sources of temperature-dependent defects; transistor
malfunctions are also a source of concern. This issue is studied
in [12] and the impact of temperature is demonstrated. The
thermal behavior of a transistor depends on its quiescent point
and therefore higher or lower temperatures, per se, do not imply
better or worst results. Usually, in order to minimize the effect of
the temperature, transistors are biased at the Zero-Temperature-
Coefficient (ZTC) point. ZTC is a point such that the temperature
will not affect the transistors. The problem is that there will be
variations in the actual quiescent points of the manufactured
transistors and therefore temperature will affect them. It is
concluded in [12] that multi-temperature test will provide a
significant improvement in test resolution.

There is yet another important aspect of temperature-
dependent defects, namely the reliability issue. Some
imperfections in the chip (e.g., some resistive opens or shorts)

will not hinder the normal operation of the chip just after the
fabrication, at the time that the manufacturing test is performed.
But these imperfections are reliability threats because they are
weak points in the circuit that wear out quickly and will lead to
failures during the expected lifetime of the chip [1, 12]. These
imperfections can be identified by multi-temperature testing.

We have discussed temperature-dependent defects and the
necessity of multi-temperature testing. The test application time
for multi-temperature testing is much longer than the normal
testing and therefore the test cost is higher. This becomes a
serious cost issue, in particular in situations that the normal test
application time is already very long, as it is for Systems-on-Chip
(SoC).
B. Thermal Issues Concerning SoC Test Scheduling

SoCs are made of a number of cores integrated on a single
chip. The number of cores is usually large and the mechanism
that provides access to the cores for testing is a limiting factor for
the test parallelism and speed. Apart from the restrictive test
access mechanisms, the high test temperature is usually another
issue which limits the test speed (in order to assure thermal-safe
test). As a result, SoC test takes a very long time and
consequently it is very costly. Therefore, efficient SoC test
schedules should be designed to minimize the test application
time, in particular in the case of multi-temperature test.

A multi-temperature test scheduling for SoCs is introduced in
[2] which assumes that tests should be applied in predefined
temperature ranges. The proposed scheduling approach in [2]
minimizes the test application time and ensures that tests are only
applied within the valid temperature ranges. For this purpose the
temperatures of the cores are simulated. Based on the simulated
temperatures, heating or cooling intervals are introduced into the
schedule [2]. The method proposed in [2] is based on partitioning
and interleaving and therefore when a core is having its cooling
interval, other cores may utilize the test access mechanism’s
capacity that has been just made available.

Another temperature-dependent test scheduling scheme for
SoCs is introduced in [3]. It assumes also that tests should be
applied in different specified temperature ranges. The proposed
scheduling approach in [3] is based on list scheduling and
assumes that tests run always to completion without any
interrupts. The initial list order is determined based on the lowest
valid temperatures for the tests. The list schedule determines the
optimal earliest start times for tests. The test application time is
minimized and it is ensured that tests are applied within correct
temperature ranges [3].

The proposed methods in [2, 3] provide satisfactory results
when the temperature at a certain test cycle could be assumed to
be identical for all chips of the same design. However, chips
manufactured with deep submicron technologies are likely to
have different temperatures at the same test cycle because of
process variation. Process variation includes variations in the
geometry of the chips’ components and variation in the
properties of the chips’ materials. For example, the effective
channel length may vary and result in variation of the threshold
voltage and sub-threshold leakage. These variations will result in
differences in the leakage current which is an important
contributor to the overall chips’ power consumption.
Consequently, the chips will experience power and temperature
variations [13].

Figure 1. Voids in a via create a resistive open. (a) Large voids at low
temperature. (b) At high temperature, materials expand and voids shrink.

Via

Bulk void

Interface void
Sidewall void

Via(a) (b)

Interconnect Interconnect

3333

The negative effect of temperature variations on the thermal
safety of the SoCs during test is addressed by the scheduling
methods proposed in [14–16]. These methods try to limit the
cores’ maximum temperatures so that the test damages caused by
overheating during the test process are minimized. The method
proposed in [14] addresses the temperature variation issue by
assuming that the variation is only observed from chip to chip
(inter-die process variation). Moreover, in [14] it is assumed that
the chips’ temperature differences compared to a reference chip
do not vary with time. This assumption is relaxed in [15, 16]
where the temperature is also considered to be varying from core
to core (intra-die process variation). An overview of test methods
that address the negative consequences of process variation on
the test is given in [17]. However none of these methods
addresses multi-temperature testing.

In this paper, the negative effect of intra-die and time-variant
temperature variations on multi-temperature testing is addressed
with an adaptive test scheduling scheme. In order to acquire the
actual cores’ temperatures recurrently during the test, on-chip
temperature sensors (which are usually present on the chip for its
normal operation) are utilized. Modern chips are usually
equipped with multiple temperature sensors (e.g., IBM’s Power5
processor is reported to have 24 temperature sensors already in
2004 [18]).

On-chip temperature sensors are also used for the thermal-safe
scheduling approach proposed in [19], which reduces the test
application time compared to a static schedule. A heuristic is
suggested to generate the static schedule that the method is based
on. However, the proposed method in [19], during the test,
requires numerous thermal simulations and sensor readouts and
assumes that tests run to completion without interrupts, which is
a very restrictive assumption.

There exist already efficient methods for multi-temperature
SoC test scheduling, for example methods proposed in [2, 3].
Also, there exist methods to cope with the negative effects of
process variation for thermal-safe SoC test scheduling, for
example the approaches proposed in [14–16]. But, to our best
knowledge, there exists no method for multi-temperature SoC
test scheduling that effectively handles the thermal consequences
of process variation. This problem is clarified in the next section
and is the focus of this paper.

III. MOTIVATIONAL EXAMPLE
Let us consider a test that should be performed in a

temperature range specified by an Upper limit and a Lower limit,
as shown in Fig. 2. Assume that during the application of this
test, no heating interval is required, and therefore, as is shown in
Fig. 2, only testing and cooling intervals are sufficient to keep the
temperature within the specified range. Assume that two chips,
�� and ��, of a given design are subject to this test.

When the process variation is negligible, there is no noticeable
temperature difference between �� and �� as shown in Fig. 2a.
Therefore, a single schedule will work fine for both of them. The
schedule that is generated based on thermal simulations predicts
when the proper time to apply the test is and when it is necessary
to introduce a cooling interval. Scheduling methods for this
situation (when the process variation is negligible) are proposed
in [2].

The effect of process variation on the chips’ temperatures
could be seen as temperature deviations. For example, as shown
in Fig. 2b, the two chips initially have identical temperatures, but
after time �	, while �� continues to work as normal, �� becomes
warmer than normal. Consequently, the test for �� is applied out
of the valid temperature range. In order to prevent such violation,
a straightforward solution is to use a more conservative schedule
which assumes a smaller upper limit and a larger lower limit (i.e.,
a narrower temperature range compared to the specified range).

This solution does not require a new scheduling algorithm; the
existing algorithms can be supplied with the modified upper and
lower limits. The schedules generated this way are called static
in this paper.

For example, assume that the original valid range is from 70℃
to 100℃. In order to make sure that even the deviated chips will
be tested within the specified temperature range, the static
scheduler assumes a valid range from 80℃ to 90℃. Now, as an
example, even a chip that is deviated by −10℃ from what it
should be, is tested actually between 70℃ to 80℃ , which is
within the original specified ranges. The problem with static
schedules is that they require too many longer heating and
cooling intervals and consequently their test application times
will be very long. For example, a longer heating interval will be
needed to heat the chips up to 80℃ instead of 70℃ before
starting the actual test.

The balance between the test application time and the thermal
range violations is more delicate for multi-temperature testing
(this paper) compared to thermal-safe testing (e.g., [15]). In the
case of thermal-safe test, there exists only an Upper limit.
Therefore, it is possible to have a conservative schedule similar
to �� (Fig. 2g) that provides a safe test for a large number of chips
(�� and all other chips with lower temperatures, including ��).
This safety comes with a longer test application time. For
example, there are two longer cooling intervals after time �
 in
Fig. 2c compared to a single shorter cooling interval in Fig. 2a.
Therefore, the test application time for Fig. 2c (�
) is longer than
Fig. 2a (��).

However, unlike the thermal-safe testing, in the case of multi-
temperature testing, �� will not provide an in-range test for a
large number of chips. For example, the temperature of �� will
fall below the Lower limit if tested with �� (e.g., around ��
and �). Therefore, a test schedule that works for a large number

Figure 2. Test temperatures and schedules (plots are only illustrative). (a)
There is no temperature variation. (b) There is time-variant temperature
variation and �� is not completely tested within the specified range. (c)
Initially, test is performed using the schedule table �� (d), then after �
 by
referring to the branching table ��(e), test of �� continues with the schedule
table �� (f); but unlike (a,b), test of �� continues with the dedicated schedule
table �� (g), which is longer but assures that tests are applied within the valid
temperature range.

Temperature

Time
i0 i1 i2 i3 i4 i5 i6 i7

Threshold

i0 i1 i2 i3 i4 j0 j1 j2 j3 j4

Upper limit

Lower limit
(a)

(b)

(c)

Schedule table S0
Time

State

Branching table ID

i0 i1 i2 i3 i4

B0

Schedule table S1
Time

State

Branching table ID

i5 i6 i7

-

Branching table B0

Condition

Schedule
table ID

Temperature
≤ Threshold

S1 S2

Temperature
> Threshold

Schedule table S2
Time

State

Branching table ID

j0 j1 j2 j3 j4

-

Testing
Cooling

Temperature of Cw
Temperature of Cn

(d)

(e)

(f)

(g)

3434

of chips, similar to the thermal-safe case, should be also
conservative with respect to the low temperatures. This means
that the test application time will be longer than �
 in order to
support a similar amount of chips tested within the valid thermal
range.

The solution proposed in this paper is to test �� and �� up to
time �
 using a single schedule table �� (Fig. 2d). Just before ��
exceeds the Upper limit, temperature of the chip under test is
acquired through a temperature sensor. Then, by referring to the
branching table �� (Fig. 2e) and the comparison performed with
a Threshold temperature, it will be known which chip (�� or ��)
is actually under the test. The test for �� continues as normal with
schedule �� while �� continues the test with a longer schedule,
�� . This way, the test is performed within the specified
temperature range for all chips and the overall test application
time is kept as short as possible.

This type of schedule that includes branching and schedule
tables is called a schedule tree. The schedule tables could be
considered as the tree’s edges that are connected through nodes
that are the branching tables. During the test, such a schedule tree
is used to guide the test process by indicating the appropriate
times to test, to heat up, and to cool down. The schedule might
be conservative (e.g., �� in Fig. 2g) or fast (e.g., �� in Fig. 2f).
The schedule that is actually used (a path in the tree) is selected
gradually during the test in accordance with the actual thermal
situation of the cores. Therefore, such a scheduling scheme is an
adaptive approach based on the temperature sensor readings
which happen at nodes. The gaps between the sensors readouts
(i.e., edges) are filled using thermal simulations to predict the
temperatures. The efficiency of such an adaptive approach
depends therefore on the quality of the schedule tree. We propose
a technique to generate high-quality schedule trees in the next
section.

IV. ADAPTIVE MULTI-TEMPERATURE TEST SCHEDULING
In order to generate a high-quality schedule tree, a cost

function is required (section IV.A). Then, an approach to
quantify the temperature variation is needed in order to be able
to evaluate its effect on the cost (section IV.B). A heuristic is also
needed to generate the schedule tables (section IV.C). Finally, a
constructive method is used to generate the schedule trees
(section IV.D).

A. Cost Function
The cost function that captures the costs related to (1) test

application time, (2) tests that are not applied within valid
temperature ranges, and (3) overheating, is defined as
�� = � ���

 ��� + ����� × ��� + ����� × ���! (1 − ���)⁄ ��� ����

In the cost function, �"� stands for Test Application Time
and "�� represents Applied Test Size. The first term of the cost
function, �"�/"��, captures the test efficiency which is related
to the test application time divided by the applied test size. It
indicates how much time is needed to apply a unit amount of test
patterns.

There is a valid temperature range for every test and the tests
that are applied outside that range may suffer from substantially
lower effectiveness. This means that defective chips may pass the
test (test escape). The negative impact caused by such undetected
defects is included in the cost function considering the
probabilities of those defects. The 2nd term of the cost function,
����� × ��� , represents this cost based on the Out of Range
Probability (���) that is the probability of tests being applied
outside the specified thermal ranges. ����� is the Balancing
Coefficient that balances the cost of the chips that are tested Out-
Of-Range (their test is applied when their temperature is not
within the specified range) against the rest of the cost
components. Its value is larger for costlier test escapes.

The cost related to overheated chips is captured in the 3rd term
of the cost function based on the Test Overheating Probability
(TOP). ����� is the Balancing Coefficient for OverHeaTing that
is used to balance the costs originated from overheating against
the other costs. Its value will be larger for costlier chips.

All the three terms of the cost function should be computed
with respect to the chips that are not overheated (overheated
chips will be discarded). Therefore, they should be defined per
non-overheated chip and therefore the sum of these terms is
divided by (1 − ���).

A test schedule that is not conservative (e.g., �� in Fig. 2b)
will typically have a smaller �"� and a larger ���. If it happens
that the temperature goes even beyond the thermal-safety limit
(larger than the Upper limit), then the violation is counted as
overheating and it will contribute to a larger ���. It means that
a chip could be overheated or out-of-range but not both (these are
two mutually exclusive events). On the other hand, a more
conservative test schedule (e.g., �� in Fig. 2c) will typically offer
a smaller ��� and ���, but a longer �"�. The overall cost that
is computed by the cost function will determine which situation
is better globally. In practice the coefficients in the cost function
(����� and �����) are obtained based on the knowledge of the
specific chips and the test facility.
B. Temperature Variation Model

The temperature variations are quantified based on the
concept of temperature errors. A temperature error is defined as
the difference between the actual temperature (measured using a
temperature sensor) and the expected temperature. The expected
temperatures are temperatures without any variations or errors
(could be estimated by thermal simulation). The temperature
errors have different causes, including process variation, voltage
variations, ambient temperature fluctuations, and simulator
imprecision. Since either the complete information about these
factors is unavailable or they are random in nature, the
temperature errors can only be modeled stochastically. The
model used in this paper is meant to be general and not exclusive
to certain types of variations. This error model is similar to the
temperature error model used in [16].

The temperature error model estimates the error for each core
at each test cycle (the probabilities of different error values are
provided by a model). For example in Fig 2b, the error for �� at
time �� is larger than its error at time �# and the error for �� is
zero for all times. This information could be put in a stochastic
framework. In this case it could be said that for a population of
chips (�� and ��) the expected error value at time �� is larger
than at time �# and it is zero before �	. An example of a time-
dependent phenomenon supported by this model is the
observation that after sensor readouts, as time goes by, the
information about temperature becomes less precise.

The temperature variation model is provided as an input to the
adaptive scheduling approach. Based on the data from the
temperature variation model, the stochastic values that are used
in the cost function are calculated.
C. Schedule Table Generation

The role of a schedule table is to determine for each core when
to run the test, when to pause and when to apply the heating
sequence. The heuristic that is used to generate the schedule
tables is described briefly in the following. The cores with lower
temperature and longer tests have the priority to start the test
before the others. As many cores as the test access mechanism
allows are tested in parallel. The test of a core stops as soon as its
temperature goes beyond the Upper limit or falls below the
Lower limit. This frees the resources that previously were
occupied by these cores from the test access mechanism. In case
the test access mechanism allows, some other cores that satisfy
the thermal constrains will start/resume their tests. Again, cores

3535

with lower temperatures and longer remaining tests are given
higher priority to start/resume before the others.

If the temperature of a core that is selected to start/resume its
tests is lower than the Lower limit, a heating interval starts. The
heating interval continues until the core’s temperature surpasses
the Lower limit or the Middle temperature, $&, depending on the
average power of the following test cycles. The middle
temperature, $&, is located halfway between the Lower limit and
the Upper limit. If the average power of the following tests is
larger than the THresholD Power, �'*,, the heating continues to
(and stops at) the Lower limit, since the temperature will further
increase when the tests are applied. Otherwise (if the average
power of the following tests is smaller than or equal to �'*,)
heating should be stopped when the temperature reaches $& ,
since the temperature will not significantly increase when the
following tests are applied.

 The threshold power, �'*, , is defined as the power that
results in a steady state temperature equal to the middle
temperature, $&. An iterative method could be used to estimate
the �'*, based on thermal simulations as in [2]. Instead, an
analytical solution which is much faster is used in this paper.
Assume that -'*, is the power vector that should be found and
.& is the middle temperatures vector. The mathematical
representation of the thermal model used in this paper is a system
of ordinary differential equations as shown below.

2 × 3
3�

. + 4 × . = -� ����

The properties of the thermal model (e.g., thermal capacitance
and conductance) are encapsulated into matrices AA and B. The
temperatures are represented by . and the powers by -. Since
variations in the temperatures are negligible for the steady state
solution (5

56. ≅ 0), assuming that -'*, results in .&, equation
2 could be rewritten as

-'*, = 4 × .&��� ����
This way, the threshold powers are computed without time
consuming iterative thermal simulations which are used in [2].

In case the core’s temperature is higher than the Upper limit,
a cooling interval is introduced. The core cannot resume its test
until its temperature sinks below a Special temperature, $;. The
value of $; has a considerable impact on the test application time
and should be selected carefully. In this paper, Particle Swarm
Optimization (PSO) is used to find the proper values for $; for
each test so that the total test application time (taking all cores
into account) is minimized.

The schedule table generation algorithm takes the tests for the
cores, the corresponding thermal limits (e.g., Upper limit and
Lower limit), the threshold powers, -'*, (computed using
equation 3), and the special temperatures, .; (found using PSO),
as inputs. An example for such inputs is given in Fig. 3. This
algorithm generates the schedule tables according to the
principles discussed earlier. A schedule table constitutes an edge
in a schedule tree and therefore the process of schedule tree
generation extensively uses the schedule table generation
algorithm. This will be further explained in the next section.

D. Schedule Tree Generation
A constructive approach is used to generate the schedule trees.

In each step, small partial trees are added to the leaves of the
current incomplete schedule trees (at the very beginning, the

current incomplete tree is just a node). The incomplete trees keep
growing until all of the tests are scheduled.

The small partial trees are dedicatedly designed for the
growing tree’s leaves that they are going to be fused to (i.e.,
position that they take in the final schedule tree). The initial data
that a partial tree inherits from the leaf at fusion point includes
the cores’ temperatures and states (testing, cooling, or heating),
the remaining tests, and the temperature deviation probabilities
at the fusion point. This information enables the partial tree to be
scheduled independently. When a partial tree is being scheduled,
the final cost value for the complete tree could only be estimated
(based on equation 1). For example, the test application time is
only known for the partial tree, since the final schedule tree is not
completed yet.

As mentioned before, the scheduling of the partial trees is
performed at two separate levels, at one level the topologies are
investigated and at the other level the scheduled partial trees are
evaluated. In the beginning, a range of topologies for partial trees
is considered. For every topology, the best scheduled partial tree
is found using Particle Swarm Optimization (PSO). A number of
alternative partial trees are evaluated at every step by PSO based
on a partial cost function.

As mentioned earlier, an edge in a schedule tree is generated
using the schedule table generation algorithm. In order to take the
effect of the temperature variation into account, an exclusive
representative temperature error (could be thought as the
expected error) is used to estimate the core’s current temperature
that is used by adaptive thermal-safe method, similar to [16]. The
representative temperature errors work in the same manner as
safety margins that are introduced in [14] in order to enforce the
temperature limit. Unlike the thermal-safe testing, the multi-
temperature testing should satisfy a Lower limit in addition to the
Upper limit and thus a single representative temperature error is
not sufficient. Therefore, in this paper two representative
temperature errors are used to generate a single schedule table,
one to represent the warmer cores and the other to represent the
colder cores. The warmer representatives help to enforce the
Upper limit and the colder representatives help to enforce the
Lower limit.

The probability that tests are applied within the specified
temperature ranges is computed using the statistics provided by
the temperature variation model. All the steps in the procedure of
generating the schedule tree are guided by the cost function
(equation 1) and therefore the expected test application time and
the probability of the out-of-range tests are minimized.

V. EXPERIMENTAL RESULTS
The proposed adaptive method is evaluated and is compared

with a modified state-of-the-art static method [2]. The
experiments are performed on ten chips which have five to fifty
cores. Multiple experiments are performed for each chip. The
averages of the results obtained from these experiments are the
basis for comparisons reported in this section. The experiments
are based on models of the SoCs and their tests. The lateral heat
transfer among cores and the temperature-dependent static
powers are taken into account. The switching activities are
generated using Markov chains similar to [19] with random
averages and random lengths. The temperature ranges for tests
are generated randomly. The balancing coefficients for
overheating (�����) and for out-of-range test (�����) are set to
10. This does not mean that the cost of an overheated chip is
equal to the cost of a test escape, since ����� also includes the
probability of the defects.

The percentage changes achieved by the adaptive method
compared to the static method are reported in Table I. In average,
71% reduction in cost is achieved. This cost reduction comes
from the reduced test application time (20% in average)

Figure 3. An example for test thermal specifications. The temperatures are
in Celsius and the powers are in Watt.

1
2
3

Test Core

1
1
2

High limit

9 5
7 5
8 5

Low limit

8 5
6 5
7 5

ΘM

9 0
7 0
8 0

PTHD

6 2 . 1 7
4 2 . 4 8
5 2 . 3 4

Θs

9 0 . 2 5
7 4 . 1 7
8 1 . 8 0

3636

combined with the reduced overheating probability (10%) and
reduced probability of tests being applied out of the specified
temperature range (23%). These improvements are achieved at
the cost of increased ATE memory (78% in average), since the
adaptive schedule trees are larger than the static schedules.
Moreover, the CPU time that is required to generate the adaptive
schedules is larger than the time that is required to generate the
static schedules (21.34 times in average), which are based on a
fast on-the-fly scheduling heuristic.

The adaptive method always offers a lower cost, even if some
of the parameters that contribute to the cost become actually
worse compared to the static schedule. For example, for the
experimental chip with 40 cores (8th row in Table I) the out-of-
range probability has actually increased by 5.2%. Even though
this increase, on its own, increases a particular cost component,
but the reductions achieved by the reduced test application time
(20.5%) and the reduced overheating probability (1.6%) are
dominating and the overall cost decreases by 53.5%. Since the
increases in the CPU times are large, it is necessary to make sure
that the CPU time remains affordable for chips with large number
of cores. Therefore, a fast simulation approach similar to [16] is
used in this paper. The average CPU time is plotted in Fig. 4 for
the experimental chips, which shows that the growth rate is in an
acceptable range.

We have also studied the effectiveness of the proposed
method in reducing the test cost for different process-variation
situations, and the results are illustrated in Fig. 5. The vertical
axis is the test cost (equation 1) for a chip with 15 cores. The
horizontal axis is the variance of the Gaussian distribution that is

assumed to characterize the process variation in this experiment.
For large variations, the static method is incapable of applying
the tests within the specified thermal limits and consequently the
test cost is very large. Our adaptive method offers a substantially
lower cost for all non-zero variations and the saving keeps on
growing for larger variations, which are expected for the future
technologies.

VI. CONCLUSIONS
Temperature-dependent defects and thermal consequences of

process variation are two important challenges for the test of
core-based chips that have to be addressed as the technology
scales down to the deep submicron domain. This paper presents
an adaptive test scheduling approach to deal with these
coinciding issues, simultaneously. The proposed method, based
on thermal simulations in the design phase, generates a number
of efficient test schedules, each corresponding to a different intra-
die time-dependent temperature error situation. These schedules
are put together in a schedule tree and are stored to be used during
the test. During the test, the actual cores’ temperatures are
monitored using on-chip temperature sensors and the chip under
test is tested using the most compatible test schedule (a selected
path from the root to one of the leaves in the schedule tree).

The proposed approach reduces the test costs by decreasing
the average test application time and by increasing the likelihood
that the tests are applied at the correct temperatures. The cost
reduction is demonstrated by experiments on a number of chips
having up to fifty cores. The experiments indicate that the test
application time could be reduced about 20% in average, the
probability of tests being applied out of valid temperature range
could be reduced about 23% in average, and the overheating
probability could be reduced about 10% in average.

REFERENCES
[1] W. Needham, C. Prunty, and E. H. Yeoh, “High volume microprocessor

test escapes, an analysis of defects our tests are missing,” ITC, 1998.
[2] Z. He, Z. Peng, and P. Eles, “Multi-temperature testing for core-based

system-on-chip,” DATE, 2010.
[3] C. Yao, K. K. Saluja, and P. Ramanathan, “Temperature dependent test

scheduling for multi-core system-on-chip,” ATS, 2011.
[4] J. Segura and C. F. Hawkins, “CMOS electronics: how it works, how it

fails,” Wiley-IEEE Press, 2004, pp. 305.
[5] E. Zschech, E. Langer, H-J. Engelmann, and K. Dittmar, “Physical failure

analysis in semiconductor industry—challenges of the copper interconnect
process,” Materials Science in Semiconductor Processing, 2002, vol. 5, no.
4–5.

[6] C. W. Tseng, E. J. McCluskey, X. Shao, J. Wu, and D. M. Wu, “Cold delay
defect screening,” VTS, 2000.

[7] J. C.-M. Li, C. W. Tseng, and E. J. McCluskey, “Testing for resistive open
and stuck open,” ITC, 2001.

[8] C. Schuermyer, J. Ruffler, R. Daasch, and R. Madge, “Minimum testing
requirements to screen temperature dependent defects,” ITC, 2004.

[9] P. Engelke et al., “On detection of resistive bridging defects by low-
temperature and low-voltage testing,” IEEE Trans. Computer-Aided
Design of Integrated Circuits and Systems, 2008, vol. 27, no. 2.

[10] S. Kundu, P. Engelke, I. Polian, and B. Becker, “On detection of resistive
bridging defects by low-temperature and low-voltage testing,” ATS, 2005.

[11] L. Jagan et al., “Impact of temperature on test quality,” VLSID, 2010.
[12] E. Long, W. R. Daasch, R. Madge, and B. Benware, “Detection of

temperature sensitive defects using ZTC,” VTS, 2004.
[13] J.H. Choi, J. Murthy, and K. Roy, “The effect of process variation on

device temperature in finFET circuits,” ICCAD, 2007.
[14] N. Aghaee, Z. He, Z. Peng, and P. Eles, “Temperature-aware SoC test

scheduling considering inter-chip process variation,” ATS, 2010.
[15] N. Aghaee, Z. Peng, and P. Eles, “Adaptive temperature-aware SoC test

scheduling considering process variation,” DSD, 2011.
[16] N. Aghaee, Z. Peng, and P. Eles, “Process-variation and temperature aware

SoC test scheduling technique,” Journal of Electronic Testing, 2013, vol.
29, no. 4.

[17] E. Yilmaz, S. Ozev, O. Sinanoglu, and P. Maxwell, “Adaptive testing:
conquering process variations,” ETS, 2012.

[18] J.G. Clabes et al., “Design and implementation of the POWER5
microprocessor,” DAC, 2004.

[19] C. Yao, K. K. Saluja, and P. Ramanathan, “Thermal-aware test scheduling
using on-chip temperature sensors,” VLSID, 2011.

TABLE I. PERCENTAGE CHANGES ACHEIVED BY ADAPTIVE METHOD
COMPARED TO A STATIC METHOD

Percentage ChangeChip

5
10
15
20
25
30
35
40
45
50

Number
of Cores

Average

Cost

-84.4
-46.5
-34.2
-67.4
-82.7
-84.6
-89.1
-53.5
-83.2
-89.8
-71.5

Required
ATE

Memory
65.1
54.5

103.8
67.9
79.1
40.2

119.6
57.0
79.4
12.0
77.9

Test
Application

Time
-29.4
-9.8
-7.0
-22.4
-27.3
-23.2
-15.7
-20.5
-19.9
-23.4
-19.9

Overheating
Probability

-84.6
-6.2
-1.1
-8.1
-2.0
-0.4
-0.0
-1.6
-0.1
-0.6

-10.5

Out-of-
Range

Probability
-75.4
-65.9
-43.6
-5.7
2.3

-47.3
1.8
5.2
-0.3
-0.8

-23.0

CPU
Time

3240.0
4913.3
3364.9
2081.3
1078.8
1393.8
848.8

2122.2
1283.7
1010.4
2133.7

Figure 4. CPU (Design) times for the adaptive method.

0

500

1000

1500

2000

0 10 20 30 40 50
Number Of Cores

CP
U

 T
im

e
[s

ec
]

Figure 5. Cost versus variation.

0

1000

2000

3000

4000

5000

6000

7000

0 0.0025 0.005 0.0075 0.01 0.0125

Static

Adaptive

Variance

Co
st

3737

