
Quasi-Static Scheduling for Multiprocessor
Real-Time Systems with Hard and Soft Tasks

Luis Alejandro Cortés, Petru Eles, and Zebo Peng
Embedded Systems Laboratory

Department of Computer and Information Science

Linköping University, S-581 83 Linköping, Sweden

{luico,petel,zebpe}@ida.liu.se

Technical Report
December 2003

Abstract

We address in this report the problem of scheduling for multipro-
cessor real-time systems comprised of hard and soft tasks. We use
utility functions associated to soft tasks that capture their relative
importance and how the quality of results is influenced when a soft
deadline is missed. The problem is thus finding a task execution order
that maximizes the total utility and guarantees meeting the hard dead-
lines. We consider time intervals rather than fixed execution times for
tasks. On the one hand, a single static schedule computed off-line is
too pessimistic. On the other hand, a purely on-line approach, which
computes a new schedule every time a task completes considering the
actual conditions, incurs an overhead that is unacceptable due to the
high complexity of the problem. We propose a quasi-static solution
where a number of schedules are computed at design-time, letting only
for run-time the selection of a particular schedule based on the actual
execution times. We propose an exact algorithm as well as heuris-
tics that tackle the time and memory complexity of the problem. We
evaluate our approach through synthetic examples and a realistic ap-
plication.

1

1 Introduction

Many real-time systems are composed of tasks which are characterized by
distinct types of timing constraints. Hard tasks have critical deadlines that
must be met in every possible scenario. Soft tasks have looser timing con-
straints and soft deadline misses can be tolerated at the expense of the quality
of results.

As compared to pure hard real-time techniques, scheduling for hard/soft
systems permits dealing with a broader range of applications. Scheduling for
hard/soft systems has been addressed, for example, in the context of inte-
grating multimedia and hard real-time tasks [12], [1]. Most of the previous
work on scheduling for hard/soft real-time systems considers that hard tasks
are periodic whereas soft tasks are aperiodic. The problem is thus finding
a schedule such that all hard periodic tasks meet their deadlines and the
response time of soft aperiodic tasks is minimized. The problem has been
considered under both dynamic [3], [17], [11] and fixed priority assignments
[8], [13], [21]. It is usually assumed that the sooner a soft task is served the
better but no distinction is made among soft tasks. However, by differentiat-
ing among soft tasks, processing resources can be allocated more efficiently.
This is the case, for instance, in videoconference applications where audio
streams are deemed more important than the video ones. We make use of
utility functions in order to capture the relative importance of soft tasks
and how the quality of results is influenced upon missing a soft deadline.
Value or utility functions were first suggested by Locke [14] for representing
significance and criticality of tasks.

In this report we consider multiprocessor systems where both hard and
soft tasks are periodic and there might exist data dependencies among tasks.
We aim to find an execution sequence (actually a set of execution sequences
as explained later) such that the sum of individual utilities by soft tasks is
maximal and, at the same time, satisfaction of all hard deadlines is guaran-
teed. An important contribution of our approach is that we consider intervals
rather than fixed execution times for tasks. Since the actual execution times
usually do not coincide with parameters like expected durations or worst case
execution times (WCET), it is possible to exploit such information in order
to obtain schedules that yield higher utilities, that is, improve the quality of
results.

Utility-based scheduling [2], [15] has been addressed before, for instance,
in the frame of imprecise computation techniques [20], [9]. These assume
tasks as composed of a mandatory and an optional part: the mandatory part
must be completed by its deadline and the optional one can be left incomplete
at the expense of the quality of results. The problem to be solved is thus

2

finding a schedule that maximizes the total execution time of the optional
subtasks. There are many systems, however, where it is not possible to iden-
tify the mandatory and optional parts of tasks. We consider in our approach
that tasks have no optional part and tasks run until completion, once they
have started executing. Our utility functions for soft tasks are expressed
as function of the task completion time (and not its execution time as in
the case of imprecise computation). Other utility-based approaches include
best-effort techniques [14], the QoS-based resource allocation model [16], and
Time-Value-Function scheduling [4]. The latter also uses the completion time
as argument of the utility function, though it considers independent tasks
running on a single processor and assumes fixed execution times. It proposes
an O(n3) on-line heuristic whose overhead might still be too large for realistic
systems.

Earlier work generally uses only the WCET for scheduling which leads to
an excessive degree of pessimism (Abeni and Buttazzo [1] do use mean values
for serving soft tasks and WCET for guaranteeing hard deadlines though).
We take into consideration the fact that the actual execution time of a task
is rarely its WCET. We use instead the expected or mean duration of tasks
when evaluating the utility functions associated to soft tasks. Nevertheless,
we do consider the maximum duration of tasks for ensuring that all hard
time constraints are always met.

In the frame of the problem we discuss in this report, off-line scheduling
refers to obtaining at design-time one task execution order that makes the to-
tal utility maximal and guarantees the hard constraints. On-line scheduling
refers to finding at run-time, every time a task completes, a new task exe-
cution order such that the total utility is maximized, yet guaranteeing that
hard deadlines are met, but considering the actual execution times of tasks
already completed. On the one hand, off-line scheduling causes no overhead
at run-time but having one static schedule can be too pessimistic since the
actual execution times might be far off from the time values used to compute
the schedule. On the other hand, on-line scheduling exploits the information
about actual execution times and computes at run-time new schedules that
improve the quality of results but, due to the high complexity of the problem,
the time and energy overhead is totally unacceptable. In order to exploit the
benefits of off-line and on-line scheduling, at the same time overcome their
drawbacks, we combine them in a solution where we compute a number of
schedules at design-time and leave only at run-time the decision of which of
them is to be followed. Thus the problem we address in this report is that
of quasi-static scheduling for multiprocessor hard/soft real-time systems.

Quasi-static scheduling has been studied previously, but mostly in the
context of formal synthesis and without considering an explicit notion of

3

time, only the partial order of events [18], [22], [5]. Recently, in the context
of real-time systems, Shih et al. have proposed a template-based approach
that combines off-line and on-line scheduling for phase array radar systems
[19], where templates for schedules are computed off-line considering perfor-
mance constraints, and tasks are scheduled on-line such that they fit in the
templates. The on-line overhead, though, can be significant when the system
workload is high. In a previous work we have discussed quasi-static schedul-
ing for hard/soft systems in the particular case of monoprocessor systems
[7], a problem whose analysis complexity is significantly lower than when
considering multiple processors.

The rest of this report is structured as follows. Section 2 introduces
definitions and notations used along the report. We present an example in
Section 3 motivating the problem addressed in this report. In Section 4
we give a precise formulation of the problem we are solving. An overview
of different solutions for solving the off-line problem is given in Section 5.
We present an exact method (Section 6) as well as a number of heuristics
(Section 7) for solving the problem of quasi-static scheduling. A system
corresponding to a real-life application is studied in Section 8. Finally, some
conclusions are drawn in Section 9.

2 Preliminaries

We consider that the functionality of the system is represented by a directed
acyclic graph G = (T,E) where nodes correspond to tasks and data depen-
dencies are captured by the graph edges.

The mapping of tasks is defined by a function M : T → P where P is
the set of processing elements. Thus M(t) denotes the processing element on
which task t executes. Inter-processor communication is captured by consid-
ering the buses as processing elements and the communication activities as
tasks. If t ∈ C then M(t) ∈ B, where C ⊂ T is the set of communication
tasks and B ⊂ P is the set of buses.

The actual execution time of a task t at a certain activation of the system,
denoted |t|, lies in the interval bounded by the minimum duration l(t) and
the maximum duration m(t) of the task, that is l(t) ≤ |t| ≤ m(t). The
expected duration e(t) of a task t is the mean value of the possible execution
times of the task. In the simple case that the execution time is uniformly
distributed over the interval [l(t),m(t)], we have e(t) = (l(t) +m(t))/2. For
an arbitrary continuous execution time probability distribution f(τ), the

expected duration is given by e(t) =
∫ m(t)

l(t)
τf(τ)dτ .

We use ◦t to denote set of direct predecessors of task t, that is, ◦t = {t′ ∈

4

T | 〈t′, t〉 ∈ E}. Similarly, t◦ = {t′ ∈ T | 〈t, t′〉 ∈ E} denotes the set of direct
successors of task t.

We assume that tasks are non-preemptable. We define a schedule as
the execution order for the tasks in the system. We assume a single-rate
semantics, that is, each task is executed exactly once for every activation
of the system. Thus a schedule Ω in a system with |P | processing el-
ements is a set of |P | bijections {σ(1) : T (1) → {1, 2, . . . , |T (1)|}, σ(2) :
T (2) → {1, 2, . . . , |T (2)|}, . . . , σ(|P |) : T (|P |) → {1, 2, . . . , |T (|P |)|}} where
T (i) = {t ∈ T | M(t) = pi} is the set of tasks mapped onto the pro-
cessing element pi. We use the notation σ(i) = t1t2 . . . tn as shorthand for
σ(i)(t1) = 1, σ(i)(t2) = 2, . . . , σ(i)(tn) = |T (i)|. We assume that the system is
activated periodically and that there exists an implicit hard deadline equal
to the period. This is easily modeled by adding a hard task, that is successor
of all other tasks, which consumes no time and no resources. Handling tasks
with different periods is possible by generating several instances of the tasks
and building a graph that corresponds to a set of tasks as they occur within
a time period that is equal the least common multiple of the periods of the
involved tasks.

A schedule does not provide the starting time for tasks, only their ex-
ecution sequence. For a given schedule, the starting and completion times
of a task ti are denoted %i and τi respectively, with τi = %i + |ti|. Thus,
for σ(k) = t1t2 . . . tn, task t1 will start executing at %1 = max tj∈◦t1{τj} and
task ti, 1 < i ≤ n, will start executing at %i = max(max tj∈◦ti{τj}, τi−1).
In the sequel, the starting and completion times that we use are relative to
the system activation instant. Thus a task t with no predecessor such that
σ(k)(t) = 1 has starting time % = 0. For example, in a monoprocessor system,
according to the schedule Ω = {σ(1) = t1t2 . . . tn}, t1 starts executing at time
%1 = 0 and completes at τ1 = |t1|, the completion time of t2 is τ2 = τ1 + |t2|,
and so forth.

The tasks that make up a system can be classified as non-real-time, hard,
or soft. H and S denote, respectively, the subsets of hard and soft tasks.
Non-real-time tasks are neither hard nor soft, and have no timing constraints,
though they may influence other hard or soft tasks through precedence con-
straints as defined by the task graph G = (T,E). Both hard and soft tasks
have deadlines. A hard deadline d(t) is the time by which a hard task t ∈ H
must be completed, otherwise the integrity of the system is jeopardized. A
soft deadline d(t) is the time by which a soft task t ∈ S should be com-
pleted. Lateness of soft tasks is acceptable though it decreases the quality
of results. In order to capture the relative importance among soft tasks
and how the quality of results is affected when missing a soft deadline, we
use a non-increasing utility function ui(τi) for each soft task ti ∈ S, where

5

τi is the completion time of ti. Typical utility functions are depicted in
Figure 1. We consider that the delivered value or utility by a soft task de-
creases after its deadline (for example, in an engine controller, lateness of
the task that computes the best fuel injection rate, and accordingly adjusts
the throttle, implies a reduced fuel consumption efficiency), hence the use
of non-increasing functions. The total utility, denoted U , is given by the
expression U =

∑
ti∈S ui(τi).

u

τd(t)

M

u

τd(t)

M

u

τd(t)

M

Figure 1: Typical utility functions for soft tasks

We aim to find off-line a set of schedules and the relation among them,
that is, the conditions under which the scheduler decides on-line to switch
from one schedule to another. A switching point defines when to switch from
one to another schedule. A switching point is characterized by a task and a
time interval, as well as the involved schedules. For example, the switching

point Ω
ti;(a,b]−−−→ Ω′ indicates that, while Ω is the current schedule, when the

task ti finishes and its completion time is a < τi ≤ b, another schedule Ω′

must be followed as execution order for the remaining tasks.
We assume that the system has a dedicated shared memory for storing

the set of schedules, which all processing elements can access. There is an
exclusion mechanism that grants access to one processing element at a time.
The worst case blocking time on this memory is considered in our analysis by
increasing correspondingly the maximum duration of tasks. Upon finishing a
task running on a certain processor, a new schedule can be selected (according
to the set of schedules and switching points prepared off-line) which will then
be followed by the tasks on all processing elements. Our analysis takes care
that the execution sequence of tasks already executed or still under execution
is consistent with the new schedule.

3 Motivational Example

Let us consider the system shown in Figure 2. Tasks t1, t3, t5 are mapped on
processor p1 and tasks t2, t4, t6, t7 are mapped on p2. For the sake of sim-
plicity, we have ignored inter-processor communication. The minimum and

6

maximum duration of every task are given in Figure 2 in the form [l(t),m(t)].
In this example we assume that the execution time of every task t is uni-
formly distributed over its interval [l(t),m(t)]. Tasks t3 and t6 are hard and
their deadlines are d(t3) = 16 and d(t6) = 22 respectively. Tasks t5 and t7
are soft and their utility functions are given, respectively, by:

u5(τ5) =

2 if τ5 ≤ 5,

3−
τ5

5
if 5 ≤ τ5 ≤ 15,

0 if τ5 ≥ 15.

u7(τ7) =

3 if τ7 ≤ 3,

18

5
−
τ7

5
if 3 ≤ τ7 ≤ 18,

0 if τ7 ≥ 18.

16 t4 t5t3

t6 t7

[2,10]t1 t2

[2,6]

[1,7]

[1,5] [2,4]

[1,4]

22

[2,4]

Figure 2: Motivational example

The static schedule corresponds to the task execution order that, among
all the schedules that satisfy the hard constraints in the worst case, maximizes
the sum of individual contributions by soft tasks when each utility function is
evaluated at the task’s expected completion time (completion time consider-
ing that each task in the system lasts its expected duration). For the system
of Figure 2 such a schedule is Ω = {σ(1) = t1t3t5, σ

(2) = t2t4t6t7} (in the rest
of this section we will use the simplified notation Ω = {t1t3t5, t2t4t6t7}). The
problem of computing one such optimal schedule has been proved NP-hard
even in the monoprocessor case [6].

Although Ω = {t1t3t5, t2t4t6t7} is optimal in the sense discussed above,
it is too pessimistic, as illustrated by the following situation. The system
starts execution according to Ω, that is t1 and t2 start at %1 = %2 = 0.
Assume that t2 completes at τ2 = 4 and then t1 completes at τ1 = 6. At
this point, taking advantage of the fact that we know the completion times
τ1 and τ2, we can compute the schedule that maximizes the total utility
(considering the actual execution times of t1 and t2—already executed—and
expected duration for t3, t4, t5, t6, t7—remaining tasks) and also guarantees
all hard deadlines. Such a schedule is Ω′ = {t1t5t3, t2t4t6t7}. In the situation
|t1| = 6, |t2| = 4, and |ti| = e(ti) for 3 ≤ i ≤ 7, Ω′ yields a total utility

7

U ′ = u5(9) + u7(20) = 1.2 which is higher than the one given by the static
schedule Ω (U = u5(12) + u7(17) = 0.8). Since the decision to follow Ω′ is
taken after t1 completes and knowing its completion time, meeting the hard
deadlines is also guaranteed.

A purely on-line scheduler would compute, every time a task completes,
a new execution order for the tasks not yet started such that the utility is
maximized for the new conditions while guaranteeing that hard deadlines are
met. This would give the best results in terms of total utility. However, the
complexity of the problem is so high that the on-line computation of one
such schedule is prohibitively expensive.

We propose to compute at design-time a number of schedules and switch-
ing points, leaving only for run-time the decision of a particular schedule
based on the actual execution times. Thus the on-line overhead is very low
because it is simply comparing the actual completion time of a task with
that of a predefined switching point and selecting accordingly the already
computed execution order for the remaining tasks.

We can define, for instance, a switching point Ω
t1;[2,6]−−−→ Ω′ for the example

given in Figure 2, with Ω = {t1t3t5, t2t4t6t7} and Ω′ = {t1t5t3, t2t4t6t7},
such that the system starts executing according to the schedule Ω; when
t1 completes, if 2 ≤ τ1 ≤ 6 the tasks not yet started execute in the order
given by Ω′, else the execution order continues according to Ω. While the
solution {Ω,Ω′} as explained above guarantees meeting the hard deadlines,
it provides a total utility which is greater than the one by the static schedule
Ω in 43% of the cases at a very low on-line overhead. Also, by profiling the
system (generating a large number of execution times for tasks according to
their probability distributions and, for each particular set of execution times,
computing the total utility) for each of the above two solutions, we find that
the static schedule Ω yields an average total utility 0.89 while the quasi-static
solution {Ω,Ω′} gives an average total utility 1.04.

Another quasi-static solution, similar to the one discussed above, is {Ω,Ω′}
but with Ω

t1;[2,7]−−−→ Ω′ which actually gives better results (it outperforms the
static schedule Ω in 56 % of the cases and yields an average total utility 1.1,
yet guaranteeing no hard deadline miss). Thus the most important question
in the quasi-static approach discussed in this report is how to compute at
design-time the set of schedules and switching points such that they deliver
the highest quality (utility). The rest of the report addresses this question
and different issues that arise when solving the problem.

8

4 Problem Formulation

A system is defined by: a set T of tasks; a directed acyclic graph G = (T,E)
defining precedence constraints for the tasks; a set P of processing elements
and a function M : T → P defining the mapping of tasks; a minimum
duration l(t), an expected duration e(t), and a maximum duration m(t) for
each task t ∈ T (l(t) ≤ e(t) ≤ m(t)); a subset H ⊆ T of hard tasks; a deadline
d(t) for each hard task t ∈ H; a subset S ⊆ T of soft tasks (S ∩ H = ∅);
a non-increasing utility function ui(τi) for each soft task ti ∈ S (τi is the
completion time of ti).

On-Line Scheduler: The following is the problem that the on-line sched-
uler would solve before the activation of the system and every time a task
completes (in the sequel we will refer to this problem as the one-schedule
problem):

Find a multiprocessor schedule Ω (a set of bijections {σ(1) : T (1) →
{1, 2, . . . , |T (1)|}, . . . , σ(|P |) : T (|P |) → {1, 2, . . . , |T (|P |)|}} with T (q) be-
ing the set of tasks mapped on the processing element pq) that maxi-
mizes U =

∑
ti∈S ui(τ

e
i) where τ ei is the expected completion time1 of

task ti, subject to: no deadlock2 is introduced by Ω; τmi ≤ d(ti) for all
ti ∈ H, where τmi is the maximum completion time3 of task ti; each

σ(q) has a prefix σ
(q)
x , being σ

(q)
x the order of the tasks already executed

or under execution on processor pq.

In an ideal case, where the on-line scheduler solves the one-schedule prob-
lem in zero time, for any set of execution times |t1|, |t2|, . . . , |tn| (each known
only when the corresponding task completes), the total utility U{|ti|} yielded
by the on-line scheduler is maximal and therefore denoted Umax

{|ti|}.

Due to the NP-hardness of the one-schedule problem [6], which the on-
line scheduler must solve every time a task completes, such an on-line sched-

1τei is given by

τei =

{
max tj∈◦ti{τej }+ ei if σ(q)(ti) = 1,
max (max tj∈◦ti{τej }, τek) + ei if σ(q)(ti) = σ(q)(tk) + 1.

where: M(ti) = pq; max tj∈◦ti{τej } = 0 if ◦ti = ∅; ei = |ti| if ti has been completed,
ei = m(ti) if ti is executing, else ei = e(ti).

2When considering a task graph with its original edges together with additional edges
defined by the schedule, the resulting task graph must be acyclic.

3τmi is given by

τmi =

{
max tj∈◦ti{τmj }+ mi if σ(q)(ti) = 1,
max (max tj∈◦ti{τmj }, τmk) + mi if σ(q)(ti) = σ(q)(tk) + 1.

where: M(ti) = pq; max tj∈◦ti{τej } = 0 if ◦ti = ∅; mi = |ti| if ti has been completed, else
mi = m(ti).

9

uler causes an unacceptable overhead. We propose instead to prepare at
design-time schedules and switching points aiming to match the utility deliv-
ered by an ideal on-line scheduler, where the selection of the actual schedule
is done at run-time by the so-called quasi-static scheduler at a low cost. The
problem we concentrate on in the rest of this paper is formulated as follows:

Multiple-Schedules Problem: Find a set of multiprocessor schedules
and switching points such that, for any set of execution times |t1|, |t2|, . . . , |tn|,
the total utility U{|ti|} yielded by the quasi-static scheduler is equal to Umax

{|ti|},
yet guaranteeing the hard deadlines.

5 The One-Schedule Problem

The one-schedule problem refers to finding one schedule that maximizes the
total utility for one particular set of execution times. Such a problem is NP-
hard even in the case of a single processor [6]. The algorithm that solves
exactly this problem is shown in Figure 3. A valid solution is found if the
system is schedulable in first place.

Algorithm OptimalSchedule(Ωx, {|t1|, |t2|, . . . , |tn|})
input: A schedule prefix Ωx and a set of execution times |t1|, |t2|, . . . , |tn|
output: The optimal schedule Ω
begin

Ω := ε
U := −∞
A := {t ∈ T | t is in Ωx}
for i← 1, 2, . . . , |T \A|! do

if Ωi is valid and guarantees hard deadlines then
Ui =

∑
tj∈S uj(τ

e
j)

if Ui > U then
Ω := Ωi

U := Ui
end if

end if
end for

end

Figure 3: Algorithm OptimalSchedule

We propose a couple of heuristics for solving the one-schedule problem.
They progressively construct the schedule Ω by concatenating tasks to the
strings σ(k), where σ(k) is the order of tasks mapped on processing element pk.

10

In the sequel, when we say concatenate t to Ω it will really mean concatenate t
to σ(k), considering that M(t) = pk. The algorithms make use of a list Ready
of available tasks (after the tasks in the schedule prefix Ωx have finished) at
every step. The difference among the heuristics presented in this section lies
in how the next task, among those in Ready, is selected to be concatenated
to one of the σ(k). The generic heuristic is presented in Figure 4.

Algorithm HeurSchedule(Ωx, {|t1|, |t2|, . . . , |tn|})
input: A schedule prefix Ωx and a set of execution times |t1|, |t2|, . . . , |tn|
output: A near-optimal schedule Ω
begin

Ω := Ωx

A := {t ∈ T | t is in Ωx}
Ready := {t ∈ T | t is ready after finishing all tx ∈ Ωx}
while Ready 6= ∅ do
B := {t ∈ Ready | by concatenating t to Ω, hard deadlines are still guaranteed}
if S \A = ∅ then

select t̄ ∈ B
else

SP := Priority(Ω)
select tj ∈ S \A such that SP[j] ≥ SP[i] for all ti ∈ S \A
C := {t ∈ B | (t, tj) ∈ P}
if C 6= ∅ then

select t̄ ∈ C
else

select t̄ ∈ B
end if

end if
concatenate t to Ω
A := A ∪ {t̄}
Ready := Ready \ {t̄} ∪ {t ∈ t̄◦ | all q ∈ ◦t are in Ω}

end while
end

Figure 4: Algorithm HeurSchedule

Priority(Ω) is a method for computing priorities for soft tasks that
guide the construction of Ω when using the list-scheduling-based algorithm
of Figure 4. The first of the proposed heuristics makes use of the generic
algorithm of Figure 4 together with the algorithm of Figure 5.

A second algorithm for computing priorities for soft tasks is shown in
Figure 6. It defines our second heuristic within the frame of the algorithm
of Figure 4.

11

Algorithm PriorityC(Ω)
input: A schedule prefix Ω
output: A vector SP containing the priority for soft tasks
begin
A := {t ∈ T | t is in Ω}
for i← 1, 2, . . . , |S| do

if ti ∈ A then
SP[i] := −∞

else
construct Ωi that has Ω as prefix and such that ti is set the earliest
compute τ ei according to Ωi

SP[i] := ui(τ ei)
end if

end for
end

Figure 5: Algorithm PriorityC

6 Computing the Optimal Set of Schedules

and Switching Points

We present in this section a systematic procedure for computing the optimal
set of schedules and switching points as formulated by the multiple-schedules
problem.

The key idea is to express the total utility, for every feasible task execution
order, as a function of the completion time τ of a particular task t. Since
different schedules yield different utilities, the objective of the analysis is to
pick out the schedule that gives the highest utility and also guarantees no
hard deadline miss, depending on the completion time τ .

We may thus determine (off-line) what is the schedule that must be fol-
lowed after completing t at a particular τ . For each schedule Ωi that satisfies
the precedence constraints and is consistent with the tasks so far executed,
we express the total utility Ui(τ) as a function of the completion time τ ,
considering the expected duration for every task not yet started. Then, for
every Ωi, we analyze the schedulability of the system, that is, which values
of τ imply potential hard deadline misses when Ωi is followed. We introduce
the auxiliary function Ûi such that Ûi(τ) = −∞ if following Ωi, after t has
completed at τ , does not guarantee the hard deadlines, else Ûi(τ) = Ui(τ).
Based on the functions Ûi(τ) we obtain the schedules that deliver the highest
utility yet guaranteeing the hard deadlines at different completion times. The
interval of possible completion times gets thus partitioned into subintervals

12

Algorithm PriorityB(Ω)
input: A schedule prefix Ω
output: A vector SP containing the priority for soft tasks
begin
A := {t ∈ T | t is in Ω}
for i← 1, 2, . . . , |S| do

if ti ∈ A then
SP[i] := −∞

else
construct Ωi that has Ω as prefix and such that ti is set the earliest
compute τ ej for all tj ∈ S according to Ωi

SP[i] :=
∑

tj∈S uj(τ
e
j)

end if
end for

end

Figure 6: Algorithm PriorityB

and, for each of these, the corresponding execution order to follow after t.
We refer to this as the interval-partitioning step. Note that such subintervals
define the switching points we want to compute.

For each of the obtained schedules, the process is repeated for a task t′

that completes after t, this time computing Ûi(τ
′) as a function of τ ′ for

the interval of possible completion times of t′. Then the process is similarly
repeated for the new schedules and so forth. In this way we obtain the
optimal tree of schedules and switching points.

An important aspect to bear in mind while constructing the optimal tree
of schedules is that tasks mapped on different processors may be running in
parallel at a certain moment. Therefore the “next task to complete” may not
necessarily be unique. For example, if tasks t1, t2, t3 execute concurrently
and their completion time intervals overlap, either of them can complete
first. In our analysis we consider separately each of these situations. For each
situation the interval of possible completion times can easily be computed and
then it can be partitioned (getting the schedule(s) to follow after completing
the task in that particular interval) as explained above. In other words, the
tree includes the interleaving of possible finishing orders for concurrent tasks.

In order to illustrate this procedure, we make use of the example shown
in Figure 2. In this case the initial schedule is Ω = {t1t3t5, t2t4t6t7}, that
is, t1 and t2 start executing at time zero and their completion time intervals
are [2, 10] and [1, 4] respectively. We initially consider two situations: t1
completes before t2 (2 ≤ τ1 ≤ 4); t2 completes before t1 (1 ≤ τ2 ≤ 4). For

13

the first one, we compute Ûi(τ1), 2 ≤ τ1 ≤ 4, for each one of the Ωi that
satisfy the precedence constraints, and we find that Ω′′ = {t1t5t3, t2t4t7t6}
is the schedule to follow after t1 completes before t2 at τ1 ∈ [2, 4]. For the
second situation, in a similar manner, we find that when t2 completes before
t1 in the interval [1, 4], Ω = {t1t3t5, t2t4t6t7} is the schedule to follow. Details
of the interval-partitioning step are illustrated next.

Let us continue with the branch after t2 completes in [1, 4]. Under this
conditions t1 is the only running task and its interval of possible completion
times is [2, 10]. Due to the data dependencies, there are four feasible sched-
ules Ωa = {t1t3t5, t2t4t6t7}, Ωb = {t1t3t5, t2t4t7t6}, Ωc = {t1t5t3, t2t4t6t7}, and
Ωd = {t1t5t3, t2t4t7t6}, and for each of these we compute the correspond-
ing functions Ua(τ1), Ub(τ1), Uc(τ1), and Ud(τ1), 2 ≤ τ1 ≤ 10, considering
expected duration for t3, t4, t5, t6, t7. For example, Ud(τ1) = u5(τ1 + e(t5)) +
u7(τ1+max(e(t4), e(t5))+e(t7)) = u5(τ1+3)+u7(τ1+7). We get the functions
shown in Figure 7(a) and given by:

Ua(τ1) =

16

5
−

2τ1

5
if 2 ≤ τ1 ≤ 7,

9

5
−
τ1

5
if 7 ≤ τ1 ≤ 9,

0 if 9 ≤ τ1 ≤ 10.

Ub(τ1) =

17

5
−

2τ1

5
if 2 ≤ τ1 ≤ 8,

9

5
−
τ1

5
if 8 ≤ τ1 ≤ 9,

0 if 9 ≤ τ1 ≤ 10.

Uc(τ1) =

16

5
−

2τ1

5
if 2 ≤ τ1 ≤ 4,

12

5
−
τ1

5
if 4 ≤ τ1 ≤ 10.

Ud(τ1) =
23

5
−

2τ1

5
if 2 ≤ τ1 ≤ 10.

Now, for Ωa, Ωb, Ωc, and Ωd, we compute the latest completion time
τ1 that guarantees satisfaction of the hard deadlines when that particu-
lar schedule is followed. For example, when the execution order is Ωc =
{t1t5t3, t2t4t6t7}, in the worst case τ3 = τ1 + m(t5) + m(t3) = τ1 + 8 and
τ6 = max(τ3, τ1 +m(t4)) +m(t6) = max(τ1 + 8, τ1 + 5) + 7 = τ1 + 15. Since
the hard deadlines for this system are d(t3) = 16 and d(t6) = 22, when Ωc

is followed, τ3 ≤ 16 and τ6 ≤ 22 iff τ1 ≤ 7. A similar analysis shows: Ωa

guarantees the hard deadlines for any completion time τ1 ∈ [2, 10]; Ωb implies
potential hard deadline misses for any τ1 ∈ [2, 10]; Ωd guarantees the hard
deadlines iff τ1 ≤ 4. Thus we get auxiliary functions as shown in Figure 7(b)
and given below:

Ûa(τ1) =

16

5
−

2τ1

5
if 2 ≤ τ1 ≤ 7,

9

5
−
τ1

5
if 7 ≤ τ1 ≤ 9,

0 if 9 ≤ τ1 ≤ 10.

Ûb(τ1) = −∞ if 2 ≤ τ1 ≤ 10.

14

Ûc(τ1) =

16

5
−

2τ1

5
if 2 ≤ τ1 ≤ 4,

12

5
−
τ1

5
if 4 ≤ τ1 ≤ 7,

−∞ if 7 < τ1 ≤ 10.

Ûd(τ1) =

23

5
−

2τ1

5
if 2 ≤ τ1 ≤ 4,

−∞ if 4 < τ1 ≤ 10.

1 8

3

4

2

2

1

3 4 5 6 7

U

a

U
U

b

109 τ1

U
Uc

d

11

(a) Ui(τ1)

1 8

3

4

2

2

1

3 4 5 6 7

U

a

U
U

b

109 τ1

U
Uc

d

11

^

^

^

^

^

(b) Ûi(τ1)

Figure 7: Ui(τ1) and Ûi(τ1), 2 ≤ τ1 ≤ 10, for the example of Figure 2

From the graph in Figure 7(b) we conclude that upon completing t1,
in order to get the highest total utility while guaranteeing hard deadlines,
the tasks not started must execute according to: Ωd = {t1t5t3, t2t4t7t6} if
2 ≤ τ1 ≤ 4; Ωc = {t1t5t3, t2t4t6t7} if 4 < τ1 ≤ 7; Ωa = {t1t3t5, t2t4t6t7} if
7 < τ1 ≤ 10.

The process is then repeated in a similar manner for the newly com-
puted schedules and the possible completion times as defined by the switch-
ing points, and so forth until the full tree is constructed. The optimal tree of
schedules for the system of Figure 2 is presented in Figure 8. When all the
descendant schedules of a node (schedule) in the tree are equal to that node,
there is no need to store those descendants because the execution order will
not change. This is the case of the schedule {t1t5t3, t2t4t7t6} followed after
completing t1 in [2, 4]. Also, note that for certain nodes of the tree, there is
no need to store the full schedule in the memory of the target system. For
example, the execution order of tasks already completed (which has been
taken into account during the preparation of the set of schedules) is clearly
unnecessary for the remaining tasks during run-time.

15

t3

t4 4;(8,9] t ;(9,12]

t4 t t67
t3

t
t

t 6
1

4
t4;(6,9] t4;(9,12]t3;(8,12]

t5
t4;(5,11]

t5;(6,9] t5;(9,11]

t5;(6,11]
t4
t5

t1;(4,7]

t t67
t3t

t4
5

t1
t t67
t3t

t4
5

t2
t1;(7,10]t1;[2,4]

t1;[2,4]

t1
t2

t2;[1,4]

t

t
t

3

2
5

t7

t2 tt
tt

t4 6 7
53

t
ttt

t
764

53

t1

t
t
2
1

t
t
t 76
3

t
t
2
1

t t76
t5t

t4
3

t
t
2
1

tt
t

42
1

t t
t
6 7
3

ttt 51
2 t t6 7 tt

tt
2 4

51
t t76
t3

tt
tt

2 4
51

t t76tt
tt

2 4
51

t t67
t3

tt
tt

2 4
51

t t76
t3

tt
tt

2 4
51

3t
t t67tt

tt
2 4

51 3t

Figure 8: Optimal tree of schedules and switching points

It is not difficult to show that the method we have described finds an op-
timal tree of schedules, that is, a set of schedules and switching points that
deliver the same total utility, for any set of of execution times, as the ideal
on-line scheduler described in Section 4. By analyzing the feasible sched-
ules after completing a task in a particular time interval, and having the
same considerations about the duration of tasks not yet executed as the on-
line scheduler does, our procedure solves symbolically the same optimization
problem for a set of completion times, one of which corresponds to the partic-
ular instance solved by the on-line scheduler. Thus the quasi-static scheduler
selects one of the precomputed schedules of the optimal tree, which yields a
total utility that is equal to that of the ideal on-line scheduler, for any set of
execution times.

The pseudocode of the algorithm for finding the optimal set of schedules
and switching points is presented in Figures 9 and 10. First of all, if there
is no basis schedule that guarantees satisfaction of all hard deadlines, the
system is not schedulable and therefore the multiple-schedules problem has
no solution.

When finding the best schedule (the one that yields the highest utility
and guarantees no hard deadline miss) to follow after completing a task
t in an interval of possible completion times τ , it is necessary to analyze
all schedules that respect the data dependencies and are consistent with
the tasks already executed. This means that the interval-partitioning step
requires O(|T |!) time in the worst case and therefore the multiple-schedules
problem is intractable. Moreover, the inherent nature of the problem (finding

16

Algorithm OptimalTree()
output: The optimal tree Ψ of schedules and switching points
begin

Ω := basis schedule
Ψ := OptimalTree(Ω, ∅,−,−)

end

Figure 9: Algorithm OptimalTree()

a tree of schedules) makes it so that it requires exponential time and memory,
even when using a polynomial-time heuristic in the interval-partitioning step.
Additionally, even if we can afford to compute the optimal tree of schedules
(as this is done off-line), the size of the tree might still be too large to fit in
the available memory resources of the target system. Therefore a suboptimal
set of schedules and switching points must be chosen such that the memory
constraints imposed by the target system are satisfied. Solutions aiming to
tackle different complexity issues are addressed in Section 7.

The optimal set of schedules is stored in the dedicated shared memory of
the system as an ordered tree. Upon completing a task, the cost of selecting at
run-time, by the quasi-static scheduler, the execution order for the remaining
tasks is O(logN) where N is the maximum number of children that a node has
in the tree of schedules. Such cost can be included in our analysis procedure
by augmenting accordingly the maximum duration of tasks.

7 Heuristics and Experimental Evaluation

This section presents several heuristic methods that tackle different com-
plexity dimensions of the multiple-schedules problem, namely the interval-
partitioning step and the exponential growth of the tree size.

7.1 Interval Partitioning

In the interval-partitioning step, when finding which schedules deliver the
highest utility after completing a task ti in an interval I i of possible comple-
tion times, the optimal algorithm explores all the permutations of tasks not
yet started that define feasible schedules Ωj and accordingly computes Ûj(τi).

In order to avoid computing Ûj(τi) for all such permutations, we propose a
heuristic that instead considers only two schedules ΩL and ΩU, computes
ÛL(τi) and ÛU(τi), and partitions I i based on these two. These two sched-
ules ΩL and ΩU correspond, respectively, to the solutions to the one-schedule

17

Algorithm OptimalTree(Ω, A, t, I)
input: A schedule Ω, the set A of already completed tasks, the last com-
pleted task t, and the interval I of completion times for t
output: The optimal tree Ψ of schedules to follow after completing t at
τ ∈ I
begin

set Ω as root of Ψ
compute the set C of concurrent tasks
for i← 1, 2, . . . , |C| do

if ti may complete before than the other t ∈ C then
compute the interval Ii when ti may complete first
for j ← 1, 2, . . . , |T \A \ C|! do

if Ωj is valid then
compute Ûj(τi)

end if
end for
partition Ii into subintervals Ii1, I

i
2, . . . , I

i
K s.t. σk makes Ûk(τi)

maximal in Iik
Ai := A ∪ {ti}
for k ← 1, 2, . . . ,K do

Ψk := OptimalTree(Ωk, Ai, ti, I
i
k)

add subtree Ψk s.t. Ω
ti;I

i
k−−→ Ωk

end for
end if

end for
end

Figure 10: Algorithm OptimalTree(Ω, A, t, I)

problem (see Section 4) for the lower and upper limits τL and τU of the inter-
val I i. For the example discussed in Sections 3 and 6, when partitioning the
interval I1 =[2, 10] of possible completion times of t1 (case when t1 completes
after t2), the heuristic, called LimTree, solves the one-schedule problem for
τL = 2 and τU = 10. The respective solutions are ΩL = {t1t5t3, t2t4t7t6} and
ΩU = {t1t3t5, t2t4t6t7}. Then LimTree computes ÛL(τ1) and ÛU(τ1) (which
correspond, respectively, to Ûa(τ1) and Ûd(τ1) in Figure 7(b)) and partitions
I1 using only these two. In this step, the solution given by LimTree is,
after t1: follow ΩL if 2 ≤ τ1 ≤ 4; follow ΩU if 4 < τ1 ≤ 10. The reader can
note that in this case LimTree gives a suboptimal solution (see the optimal
tree in Figure 8). The pseudocode of the heuristic LimTree is presented in
Figure 11.

Along with the proposed heuristic we must solve the one-schedule prob-

18

Algorithm LimTree(Ω, A, t, I)
input: A schedule Ω, the set A of already completed tasks, the last com-
pleted task t, and the interval I of completion times for t
output: The tree Ψ of schedules to follow after completing t at τ ∈ I
begin

set Ω as root of Ψ
compute the set C of concurrent tasks
for i← 1, 2, . . . , |C| do

if ti may complete before than the other t ∈ C then
compute the interval Ii when ti may complete first
τL := lower limit of Ii

ΩL := sol. one-sch. problem for τL

compute ÛL(τi)
τU := upper limit of Ii

ΩU := sol. one-sch. problem for τU

compute ÛU(τi)
partition Ii into subintervals Ii1, I

i
2, . . . , I

i
K s.t. σk makes Ûk(τi)

maximal in Iik
Ai := A ∪ {ti}
for k ← 1, 2, . . . ,K do

Ψk := LimTree(Ωk, Ai, ti, I
i
k)

add subtree Ψk s.t. Ω
ti;I

i
k−−→ Ωk

end for
end if

end for
end

Figure 11: Algorithm LimTree(Ω, A, t, I)

lem, which itself is intractable. We have proposed an exact algorithm and
a number of heuristics for the one-schedule problem in Section 5. For the
experimental evaluation of Lim we have used the exact algorithm and the
two heuristics when solving the one-schedule problem. Hence we have three
heuristics LimA, LimB, and LimC for the multiple-schedules problem. The
first uses the optimal algorithm for the one-schedule problem while the second
and third make use of the two heuristics presented in Section 5.

We have generated a large number of synthetic examples in order to eval-
uate the quality of the heuristics. For the examples used throughout the
experimental evaluation of this subsection, we have considered that, out of
the n tasks of the system, (n−2)/2 are soft and (n−2)/2 are hard. The tasks
are mapped on architectures consisting of between 2 and 4 processors. We
generated 100 synthetic systems for each graph dimension. All the experi-

19

ments presented in this paper were run on a Sun Ultra 10 workstation.
The average size of the tree of schedules, when using the optimal algo-

rithm (Section 6) as well as the above heuristics, is shown by the plot of
Figure 12. Note the exponential growth even in the heuristic cases. This is
inherent to the problem of computing a tree of schedules.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 4 6 8 10 12 14 16 18 20 22

A
ve

ra
ge

 N
um

be
r

of
 T

re
e

N
od

es

Number of Tasks

OPTIMAL
LIMA

LIMB

LIMC

Figure 12: Average size of the tree of schedules

The average execution time for constructing the tree of schedules by the
different algorithms is shown in Figure 13. The rapid growth rate of execution
time for the optimal algorithm makes it feasible to obtain the optimal tree
only in the case of small systems. The long execution times for LimA, only
slightly less than the algorithm Optimal, are due to the fact that, along
the construction of the tree, it solves the one-schedule problem using an
exact algorithm. The other heuristics, LimB and LimC , take significantly
less time because of the use of polynomial-time heuristics in the interval-
partitioning step when solving the one-schedule problem. However, due to
the exponential growth of the tree size (see Figure 12), even LimB and LimC

require exponential time.
We have evaluated the quality of the trees generated by different algo-

rithms with respect to the optimal tree. For each one of the randomly gener-
ated examples, we profiled the system for a large number of cases. For each
case, we obtained the total utility yielded by a given tree of schedules and
normalized it with respect to the one produced by the optimal tree:

‖Ualg‖ = Ualg/Uopt
The average normalized utility, as given by trees computed using different
algorithms, is shown in Figure 14. We have also plotted the case of a static
solution where only one schedule is used regardless of the actual execution
times (SingleSch). This plot shows LimTreeA as the best of the heuristics

20

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 4 6 8 10 12 14 16 18 20 22

A
ve

ra
ge

 E
xe

cu
ti

on
 T

im
e

[s
]

Number of Tasks

OPTIMAL
LIMA

LIMB

LIMC

Figure 13: Average execution time

discussed above, in terms of the total utility yielded by the trees it produces.
LimTreeB produces still good results, not very far from the optimal, at a
significantly lower computational cost. Observe that having one single static
schedule leads to a significant quality loss.

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 4 6 8 10 12 14

A
ve

ra
ge

 T
ot

al
 U

ti
li

ty
 (N

or
m

al
iz

ed
)

Number of Tasks

OPTIMAL
LIMA

LIMB

LIMC

SINGLESCH

Figure 14: Average normalized total utility

7.2 Limiting the Tree Size

Even if we can afford to fully compute the optimal tree of schedules, the
tree might be too large to fit in the available memory of the system under
consideration. Hence we must drop some nodes of the tree at the expense of
the solution quality (recall that we use the total utility as quality criterion).
The heuristics presented in Section 7.1 reduce considerably both the time and

21

memory needed to construct a tree as compared to the optimal algorithm,
but still require exponential memory and time. In this section, on top of the
above heuristics, we propose methods that construct a tree considering its
size limit (imposed by the memory constraints of the target system) in such
a way that we can handle both the time and memory complexity.

Given a memory limit, only a certain number of schedules can be stored,
so that the maximum tree size is M. Thus the question is how to generate
a tree of at most M nodes which still delivers a good quality. We explore
several strategies which fall under the umbrella of a generic framework with
the following characteristics: (a) the algorithm goes on until no more nodes
may be generated, due to the size limit M; (b) the tree is generated in a depth-
first fashion; (c) in order to guarantee that hard deadlines are still satisfied
when constructing a tree, either all children Ωk of a node Ω (schedules Ωk to
be followed after completing a task in Ω) or none are added to the tree. The
pseudocode for the generic algorithm is presented in Figure 15. The schedules
to follow after Ω correspond to those obtained in the interval-partitioning step
as described in Sections 6 and 7.1. The difference among the approaches
discussed in this section lies in the order in which the available memory
budget is assigned to trees derived from the nodes Ωi (Sort(Ω1,Ω2, . . . ,Ωc))
in Figure 15).

Algorithm ConstructTree(Ω,max)
input: A schedule Ω and a positive integer max
output: A tree Ψ limited to max nodes whose root is Ω
begin

set Ω as root of Ψ
m := max− 1
c := number of schedules to follow after Ω
if 1 < c ≤ m then

add Ω1,Ω2, . . . ,Ωc as children of Ω
m := m− c
Sort(Ω1,Ω2, . . . ,Ωc)
for i← 1, 2, . . . , c do

Ψi :=ConstructTree(Ωi,m+ 1)
ni := size of Ψi

m := m− ni + 1
end for

end if
end

Figure 15: Algorithm ConstructTree(Ω,max)

22

Ωd

Ωd

Ωe Ωa

Ωf

Ωa

Ωc

Ωa

Ωb

Ωb

Figure 16: A complete tree of schedules

Initially we have studied two simple heuristics for constructing a tree,
given a maximum size M. The first one, called Diff, gives priority to subtrees
derived from nodes whose schedules differ from their parents. We use a
similarity metric, based on the concept of Hamming distance, in order to
determine how similar two schedules are. If, for instance, while constructing
a tree with a size limit M = 8 for the system whose optimal tree is the one
given in Figure 16, we find out that, after the initial schedule Ωa (the root
of the tree), either Ωb must be followed or Ωa continues as the execution
order for the remaining tasks, depending on the completion time of a certain
task. Therefore we add Ωb and Ωa to the tree. Then, when using Diff,
the size budget is assigned first to the subtrees derived from Ωb and the
process continues until we obtain the tree shown in Figure 17. The second
approach, Eq, gives priority to nodes that are equal or more similar to their
parents. The tree obtained when using Eq and having a size limit M = 8
is shown in Figure 18. Experimental data (see Figure 19) shows that in
average Eq outperforms Diff. The basic idea when using Eq is that, since
no change has yet been operated on the previous schedule, it is likely that
several possible alternatives are potentially detected in the future. Hence
it pays off to explore the possible changes of schedules derived from such
branches. On the contrary, if a different schedule has been detected, it can
be assumed that this one is relatively well adapted to the new situation and
possible future changes are not leading to dramatic improvements.

A third, more elaborate, approach brings into the the picture the proba-
bility that a certain branch of the tree of schedules is selected during run-time.
Knowing the execution time probability distribution of each individual task,
we may determine, for a particular execution order, the probability that a
certain task completes in a given interval, in particular the intervals defined
by the switching points. In this way we can compute the probability for each
branch of the tree and exploit this information when constructing the tree

23

Ωd Ωe Ωa

Ωa

Ωc

Ωa

Ωb

Ωb

Figure 17: Tree constructed using Diff

Ωd

Ωd

Ωe Ωa

Ωf

Ωa

ΩaΩb

Figure 18: Tree constructed using Eq

of schedules. The procedure Prob gives higher precedence to those subtrees
derived from nodes that actually have higher probability of being followed at
run-time.

In order to evaluate the proposed approaches, we have randomly gener-
ated 100 systems with a fix number of tasks and for each one of them we
computed the complete tree of schedules. Then we constructed the trees for
the same systems using the algorithms presented in this section, for different
size limits. For each of the examples we profiled the system for a large num-
ber of execution times, and for each of these we obtained the total utility
yielded by a limited tree and normalized it with respect to the utility given
by the complete tree (non-limited):

‖Ulim‖ = Ulim/Unon−lim
The plot shown in Figure 19 shows that Prob is the algorithm that gives
the best results in average.

We have further investigated the combination of Prob and Eq through
a weighted function that assigns values to the tree nodes. Such values corre-
spond to the priority given to nodes while constructing the tree. Each child
of a certain node in the tree is assigned a value given by wp+ (1−w)s, where
p is the probability of that node (schedule) being selected among its siblings

24

 0.8

 0.85

 0.9

 0.95

 1

 1 200 400 600 800 1000

A
ve

ra
ge

 T
ot

al
 U

ti
li

ty
 (N

or
m

al
iz

ed
)

Max. Tree Size [nodes]

PROB

EQ

DIFF

Figure 19: Evaluation of the construction algorithms

and s is a factor that captures how similar that node and its parent are.
Note that the particular cases w = 0 and w = 1 correspond to Eq and Prob

respectively. The results of the weighted approach for different values of w
are illustrated in Figure 20. It is interesting to note that we can get even
better results than Prob for certain weights, with w = 0.9 being the one
that performs the best.

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 50 100 150 200 250 300 350 400

A
ve

ra
ge

 T
ot

al
 U

ti
li

ty
 (N

or
m

al
iz

ed
)

Max. Tree Size [nodes]

w=0 (EQ)
w=0.5
w=0.7
w=0.9
w=1 (PROB)

Figure 20: Construction algorithms using a weighted approach

8 Cruise Control with Collision Avoidance

Modern vehicles can be equipped with sophisticated electronic aids aiming to
assist the driver, increase efficiency, and enhance on-board comfort. One such
system is the Cruise Control with Collision Avoidance (CCCA) [10] which

25

assists the driver in maintaining the speed and keeping safe distances to other
vehicles. The CCCA allows the driver to set a particular speed. The system
maintains that speed until the driver changes the reference speed, presses
the break pedal, switches the system off, or the vehicle gets too close to
another vehicle or an obstacle. The vehicle may travel faster than the set
speed by overriding the control using the accelerator, but once it is released
the cruise control will stabilize the speed to the set level. When another
vehicle is detected in the same lane in front of the car, the CCCA will adjust
the speed by applying limited braking to maintain a given distance to the
vehicle ahead.

The CCCA is composed of four main subsystems, namely Braking Control
(BC), Engine Control (EC), Collision Avoidance (CA), and Display Control
(DC), each one of them having its own period: TBC = 100 ms, TEC = 250 ms,
TCA = 125 ms, and TDC = 500 ms. We have modeled each subsystem as a
task graph. Each subsystem has one hard deadline that equals its period. We
identified a number of soft tasks in the EC and DC subsystems. The soft tasks
in the engine control part are related to the adjustment of the throttle valve
for improving the fuel consumption efficiency. Thus their utility functions
capture how such efficiency varies as a function of the completion time of the
activities that calculate the best fuel injection rate for the actual conditions
and accordingly control the throttle. For the display control part, the utility
of soft tasks is a measure of the time-accuracy of the displayed data, that is,
how soon the information on the dashboard is updated.

We have considered an architecture with two processors that communi-
cate through a bus, and assumed that the dedicated memory for storing the
schedules has a capacity of 64 kB. We generated several instances of the
task graphs of the four subsystems mentioned above in order to construct
a graph with a period T = 500 ms (least common multiple of the periods
of the involved tasks). The resulting graph, including processing as well as
communication activities, contains 126 tasks, out of which 6 are soft and 12
are hard.

Assuming that we need 100 B for storing one schedule, we have an upper
limit of 640 nodes in the tree. We have constructed the tree of schedules using
the approaches discussed in Section 7.2 combined with one of the heuristics
presented in Section 7.1 (LimB).

Due to the size of the system, it is infeasible to fully construct the com-
plete tree of schedules. Therefore, we have instead compared the tree limited
to 640 nodes with the static, off-line solution of a single schedule. The results
are presented in Table 1. We can achieve with our quasi-static approach, in
this case of the CCCA, a gain of around 40% as compared to a single static
schedule. For this example, the weighted approach does not produce further

26

improvements, which is explained by the fact that Eq and Prob give very
similar results.

Average Gain with respect
Total Utility to SingleSch

SingleSch 6.51 —
Diff 7.51 11.42%
Eq 9.54 41.54%

Prob 9.6 42.43%

Table 1: Quality of different approaches for the CCCA

9 Conclusions

We have presented an approach to the problem of scheduling for multipro-
cessor real-time systems with periodic soft and hard tasks. In order to dis-
tinguish among soft tasks, we made use of utility functions, which capture
both the relative importance of soft tasks and how the quality of results is
affected when a soft deadline is missed. The problem we have addressed is
that of finding an execution order such that the total utility is maximal and,
at the same time, satisfaction of hard deadlines is guaranteed.

Since a single static schedule computed off-line is rather pessimistic and a
purely on-line solution entails a high overhead, we have therefore proposed a
quasi-static approach where a number of schedules and switching points are
prepared at design-time, so that at run-time the scheduler only has to select,
depending on the actual execution times, one of the precomputed schedules.

We have proposed a procedure that computes the optimal tree of sched-
ules and switching points, that is, a tree that delivers the same utility as an
ideal on-line scheduler. Several heuristics, that address different complexity
dimensions of the problem, have also been presented. These heuristics al-
low to generate good quality schedule trees for large applications, even in
the context of limited resources. We have used a large number of synthetic
examples and a real-life application in order to demonstrate the efficiency of
our approach.

References

[1] L. Abeni and G. Buttazzo. Integrating Multimedia Applications in Hard
Real-Time Systems. In Proc. Real-Time Systems Symposium, pages 4–
13, 1998.

27

[2] A. Burns, D. Prasad, A. Bondavalli, F. Di Giandomenico, K. Ramam-
ritham, J. A. Stankovic, and L. Strigini. The Meaning and Role of
Value in Scheduling Flexible Real-Time Systems. Journal of Systems
Architecture, 46(4):305–325, Jan. 2000.

[3] G. Buttazzo and F. Sensini. Optimal Deadline Assignment for Schedul-
ing Soft Aperiodic Tasks in Hard Real-Time Environments. IEEE.
Trans. on Computers, 48(10):1035–1052, Oct. 1999.

[4] K. Chen and P. Muhlethaler. A Scheduling Algorithm for Tasks de-
scribed by Time Value Function. Real-Time Systems, 10(3):293–312,
May 1996.

[5] J. Cortadella, A. Kondratyev, L. Lavagno, and Y. Watanabe. Quasi-
Static Scheduling for Concurrent Architectures. In Proc. Intl. Confer-
ence on Application of Concurrency to System Design, pages 29–40,
2003.

[6] L. A. Cortés, P. Eles, and Z. Peng. Static Scheduling of Monoprocessor
Real-Time Systems composed of Hard and Soft Tasks. Technical report,
Embedded Systems Lab, Dept. of Computer and Information Science,
Linköping University, Linköping, Sweden, Apr. 2003. Available from
http://www.ida.liu.se/∼luico.

[7] L. A. Cortés, P. Eles, and Z. Peng. Quasi-Static Scheduling for Real-
Time Systems with Hard and Soft Tasks. In Proc. DATE Conference,
2004. (to be published).

[8] R. I. Davis, K. W. Tindell, and A. Burns. Scheduling Slack Time in
Fixed Priority Pre-emptive Systems. In Proc. Real-Time Systems Sym-
posium, pages 222–231, 1993.

[9] W.-C. Feng. Applications and Extensions of the Imprecise-Computation
Model. PhD thesis, Department of Computer Science, University of
Illinois, Urbana-Champaign, Dec. 1996.

[10] A. R. Girard, J. Borges de Sousa, J. A. Misener, and J. K. Hedrick.
A Control Architecture for Integrated Cooperative Cruise Control with
Collision Warning Systems. In Proc. Conference on Decision and Con-
trol, volume 2, pages 1491–1496, 2001.

[11] N. Homayoun and P. Ramanathan. Dynamic Priority Scheduling of
Periodic and Aperiodic Tasks in Hard Real-Time Systems. Real-Time
Systems, 6(2):207–232, Mar. 1994.

28

[12] H. Kaneko, J. A. Stankovic, S. Sen, and K. Ramamritham. Integrated
Scheduling of Multimedia and Hard Real-Time Tasks. In Proc. Real-
Time Systems Symposium, pages 206–217, 1996.

[13] J. P. Lehoczky and S. Ramos-Thuel. An Optimal Algorithm for Schedul-
ing Soft-Aperiodic Tasks in Fixed-Priority Preemptive Systems. In Proc.
Real-Time Systems Symposium, pages 110–123, 1992.

[14] C. D. Locke. Best-Effort Decision Making for Real-Time Scheduling.
PhD thesis, Department of Computer Science, Carnegie-Mellon Univer-
sity, Pittsburgh, May 1986.

[15] D. Prasad, A. Burns, and M. Atkins. The Valid Use of Utility in Adap-
tive Real-Time Systems. Real-Time Systems, 25(2-3):277–296, Sept.
2003.

[16] R. Rajkumar, C. Lee, J. Lehoczky, and D. Siewiorek. A Resource Allo-
cation Model for QoS Management. In Proc. Real-Time Systems Sym-
posium, pages 298–307, 1997.

[17] I. Ripoll, A. Crespo, and A. Garćıa-Fornes. An Optimal Algorithm
for Scheduling Soft Aperiodic Tasks in Dynamic-Priority Preemptive
Systems. IEEE. Trans. on Software Engineering, 23(6):388–400, Oct.
1997.

[18] M. Sgroi, L. Lavagno, Y. Watanabe, and A. Sangiovanni-Vincentelli.
Synthesis of Embedded Software Using Free-Choice Petri Nets. In Proc.
DAC, pages 805–810, 1999.

[19] C.-S. Shih, S. Gopalakrishnan, P. Ganti, M. Caccamo, and L. Sha.
Template-Based Real-Time Dwell Scheduling with Energy Constraints.
In Proc. Real-Time and Embedded Technology and Applications Sympo-
sium, pages 19–27, 2003.

[20] W.-K. Shih, J. W. S. Liu, and J.-Y. Chung. Fast Algorithms for Schedul-
ing Imprecise Computations. In Proc. Real-Time Systems Symposium,
pages 12–19, 1989.

[21] J. K. Strosnider, J. P. Lehoczky, and L. Sha. The Deferrable Server
Algorithm for Enhanced Aperiodic Responsiveness in Hard Real-Time
Environments. IEEE. Trans. on Computers, 44(1):73–91, Jan. 1995.

[22] F.-S. Su and P.-A. Hsiung. Extended Quasi-Static Scheduling for For-
mal Synthesis and Code Generation of Embedded Software. In Proc.
CODES, pages 211–216, 2002.

29

