
Efficient Embedding of Deterministic Test Data
Mudassar Majeed1, Daniel Ahlström1, Urban Ingelsson1, Gunnar Carlsson2 and Erik Larsson1

1Department of Computer and Information Science, 2Ericsson AB BU Networks SE-164 80
Linköping University, Sweden Stockholm, Sweden

1Email: {mudma,x09danah,urbin,erila}@ida.liu.se 2Email: gunnar.carlsson@ericsson.com

Abstract—Systems with many integrated circuits (ICs), often
of the same type, are increasingly common to meet the constant
performance demand. However, systems in recent semiconductor
technologies require not only manufacturing test, but also in-field
test. Preferably, the same test set is utilized both at manufacturing
test and in-field test. While deterministic test patterns provide
high fault coverage, storing complete test vectors leads to huge
memory requirements and inflexibility in applying tests. In an
IEEE 1149.1 (Boundary scan) environment, this paper presents
an approach to efficiently embed deterministic test patterns in
the system by taking structural information of the system into
account. Instead of storing complete test vectors, the approach
stores only commands and component-specific test sets per each
unique component. Given a command, test vectors are created
by a test controller during test application. The approach is
validated on hardware and experiments on ITC’02 benchmarks
and industrial circuits show that the memory requirement for
storing the test data for a system is highly related to the number
of unique components.

Keywords-In-field test, Embedded boundary scan test, System
test, Multiple identical cores, Test controller.

I. INTRODUCTION

Electronic systems, printed circuit boards (PCBs), with an
increasing number of integrated circuits (ICs) are increasingly
common [1]. PCBs include an increasing number of integrated
circuits where a high number of ICs are of the same type. For
example, Ericsson have telecommunication systems with 36
ICs on each PCB. Many of the 36 ICs are identical. The ICs
are distributed as follows: 4 ICs of type A, 8 ICs of type
B, 8 ICs of type C and 16 ICs of type D. Manufacturing of
ICs and PCBs is unfortunately far from perfect and all IC
as well as the complete PCBs must be tested carefully. Until
recently, manufacturing test only was sufficient to ensure fault-
free electronic systems. ICs are tested using automatic test
equipments and IEEE 1149.1 (Boundary scan) was developed
to enable testing of PCBs.

However, the supply voltage and the transistor size have
been scaled down in recent designs to achieve higher perfor-
mance and low power dissipation. This has led to a higher
number of electronic systems failing in the field. Therefore
the maintenance cost has increased in terms of monitoring,
diagnosing and repairing systems. To reduce the cost, there
is a trend towards automated in-field testing. An obstacle is
the high test data volumes needed to efficiently test electronic
systems.

Test data compression has been proposed to reduce the ATE
memory requirements at IC test [2] [3] [4]. A disadvantage

of test data compression for in-field test is the need of an
ATE and the low diagnostic capability. To make in-field testing
possible, Built-in Self Test (BiST) solutions [5] including use
of JTAG are used where either pseudo-random test patterns
are generated within the system or pre-generated deterministic
test patterns (with high fault coverage) are stored in system
memory. In terms of test execution time and fault coverage,
deterministic test patterns tend to be more effective than
pseudo-random test patterns, as it was noted in [6] that
the fault coverage that is achieved with pseudo-random test
patterns on large industrial designs can be as low as 65%.
Further, pseudo-random patterns have the disadvantage of low
diagnostic resolution.

In the context of testing ICs with multiple modules (blocks
of logic), relevant previous studies were conducted in [7] and
[8]. In [7], test vectors are broadcasted to multiple cores of the
same type and the test responses are compared with each other
that makes it unable to test a single component. Furthermore,
test data is stored in the ATE memory and the approach in
[7] is meant for manufacturing testing. In [8], one of multiple
identical processor cores is selected for test and test vectors are
applied and evaluated while the other cores are in operation
mode. The test vectors for considered type of the processor
cores are stored once on a hard drive. The approach is not
applicable to systems with JTAG.

This paper considers a system consisting of ICs that are
mounted on a PCB and connected with a JTAG IEEE 1149.1
(Boundary scan) interface for manufacturing test and in-field
test. However, the test data volume (the amount of bits that
require system memory for storage) can be significant, in the
range of Gigabytes [6] (not compressed). Thus, for systems
where storing deterministic test patterns is required for in-
field test, the test data volume requires costly memory and
the research presented in this paper aims to reduce this cost.
The novelty of the approach presented in this paper is that it
does not assume all the components (ICs) of the same type and
investigates how the idea of reducing memory requirements by
utilizing structural information can be applied in the context of
an embedded test controller including on-the-fly manipulation
of test data for the system in field. The key contribution of
this work is an embedded test controller called Concatenator
that can accept the external commands from a test manager
to automate the test application and test evaluation process.
The Concatenator incorporates the structural information of
the system and provides the flexibility to test any combination



CPU Memory

Test Controller PCB/SOC

Test Manager
Commands

IC1 Type A IC2 Type B IC3 Type B

Fig. 1. An embedded system with a test controller

Type A Type B Type B

FDS-Vectors

1

2

3

4

5

6

.

n

(a) Test all components

Type A
Bypass

Type B

FDS-Vectors

Type B
Bypass

(b) Test IC2

Fig. 2. FDS-vectors stored in memory

of components within a system (PCB) and reduces the memory
requirements to store the test data volume. We have used the
existing on board infrastructure (JTAG) to transport the test
data to the components.

II. BASIC IDEA OF CONCATENATION

This paper considers PCBs that may contain several
mounted ICs. An example of such a system is shown in
Figure 1. It contains three components named IC1, IC2 and
IC3. Here, IC1 is of type A. IC2 and IC3 are both of type
B. A serial interface following the IEEE 1149.1 Standard is
employed to transport test data to and from the components,
as is indicated by the black arrows in Figure 1. The IEEE
1149.1 Standard defines several instructions e.g., INTEST (to
test the IC) and BYPASS (to bypass the IC).

Testing the system in Figure 1 is done by performing
four steps. 1) Scan in a 35 bits fully-defined scan-chain test
vector (FDS-vector hereinafter) of stimulus 2) Test stimuli
application. 3) Scan out test response (i.e. an FDS-vector of 35
bits). 4) Compare test responses to expected responses. Several
iterations of this procedure are required to adequately test the
components.

The FDS-vector can be very long, tens of thousands of
bits, when testing a system with several large components.
Furthermore, it can happen that tens of thousands of FDS-
vectors are required. To test all the components in the system,
the set of stimuli FDS-vectors that is stored in memory is
shown in Figure 2(a). Each box shows a test stimulus for the
component of the type shown at the top of the column of that
box (Figure 2(a)). Each row shows a complete FDS-vector for
the components in the system (Figure 1) that are selected for
the test. To test another combination of the components in the
system (for example testing only IC2 of type B) another set of
FDS-vectors is required to be stored in the memory as shown
in Figure 2(b).

As seen from Figure 2(a) and Figure 2(b), to achieve
the flexibility to test any combination of components in the

Type A Type B Type A Type B Type B

FDS-VectorsComponent type specific
test stimuli

Concatenator
Program

Structural Information

Command:

INTEST IC1, INTEST IC2, INTEST IC3

Fig. 3. Test data concatenation for testing all the components.

Concatenator
Program

Structural Information

Command:

INTEST IC2

Type A Type B

Component type specific
test stimuli

Type A
Bypass

Type B

FDS-Vectors

Type B
Bypass

Fig. 4. Test data concatenation for testing IC2 only.

system, it is required to store different tests. Notice that the test
stimuli for the component of type B are stored twice in each
FDS-vector (shown in Figure 2(a)). Furthermore, the same test
data for type B component is stored in another test as shown
in Figure 2(b). Hence the flexibility in applying the tests is
achieved at the cost of memory.

The basic idea behind the concatenation approach in this
work is to store only the component-type specific test patterns
in the memory and run a dedicated program (Concatenator
test controller hereinafter) in the on-system CPU that receives
external test command from the test manager. Depending
upon the external test command, the Concatenator reads the
component specific test patterns and manipulates those test
patterns to generate FDS-vectors on-the-fly. By manipulation
of test patterns, we mean that the test stimuli and test response
vectors of the stored component-type specific test patters must
be concatenated into FDS-vectors according to the order of
the components on the scan-path. For this it is required that
structural information about the system is available. The con-
catenation of test stimuli is illustrated in Figure 3 and Figure 4.
To test all the three components, the external command is
INTEST IC1, INTEST IC2, INTEST IC3. Similarly, to test
IC2 alone and bypass the other two components the external
command is INTEST IC2. Test responses are concatenated
in the same way. Notice that the same test data (shown in
Figure 2(a) and Figure 2(b)) can be generated on the fly
by using the component specific test patterns stored in the
memory.

The structural information about the system (system de-
scription) is read by the Concatenator program and is shown in
Figure 5. It provides the order of the components, their types
and some information related to their JTAG circuitry.

The test data for each component that the Concatenator
program reads is structured as in the example of Figure 6.



1 IC1 - IC2 - IC3
2 TypeA = IC1
3 TypeB = IC2 = IC3
4 TypeA DRLENGTH 15
5 TypeA IRLENGTH 10
6 TypeA BYPASS 1111111111
7 TypeA INTEST 0000011111
8 TypeB DRLENGTH 10
9 TypeB IRLENGTH 8
10 TypeB BYPASS 11111111
11 TypeB INTEST 00001111

Fig. 5. System description data

TypeA INTEST1 4
100100100100100 010101011010101
011011011011011 101010100101010
101101110111101 000000011111111
010010001000010 111111100000000
TypeB INTEST1 2
0101010101 0110110110
1010101010 1001001001

Fig. 6. Component-type specific test data

The test data consist of component-type specific test sets
(INTEST1 for type A component and INTEST1 for type B
components), which are named with a component-type, a test
id and the number of test patterns in the test set (Figure 6). In
Figure 6, each test pattern is on a separate line and consists
of a test stimulus and expected response.

The Concatenator test controller is able to manipulate the
test data on-the-fly so that only component-type specific
tests require memory and it is able to accept commands. It
automatically handles the application of tests with different
number of test patterns and reconfigures the JTAG scan-path
accordingly. The following section will describe experiments
to show the capabilities of the Concatenator test controller.

III. EXPERIMENTS AND RESULTS

We have performed experiments to determine the amount
of memory that can be saved using the concatenation ap-
proach presented in the paper. Experiments are performed with
ITC’02 SOC benchmarks [9] and industrial circuits from [10]
respectively. The components of the ITC’02 benchmarks and
the circuits in [10] are treated as ICs and specified in terms
of number of test patterns and scan-chain lengths as shown
in Table I and Table II respectively. The left most column
(refers to both Table I and Table II) shows the name given
to the circuit. In the second column, the scan-chain length
for each circuit is shown and this is followed by a column
showing the number of test patterns for the each circuit. The
test data volume required to test each circuit is shown in the
right most column. The sizes of the circuits in Table II are
within the range of approximately 50K gates to 1.4M gates.
In our experiments with the circuits from [10], we have taken
each circuit (Table II) as a component and compiled system
designs using these components. In each of the system designs,
one of the eight components is multiplied several times as
shown in Table III.

Two simplifications are done for the purpose of the ex-
periments. First simplification is that the Concatenator test

TABLE I
ITC’02 SOC BENCHMARKS WITH TEST DATA VOLUME

Length Number Test Data
of Test of Test Volume

Circuit Patterns (bits) Patterns (KBs)
f2126-1 8875 334 362
f2126-2 5328 422 274
f2126-3 * 502 103 6
f2126-4 * 502 103 6
Total - 962 648
p93791-1 6942 409 347
p93791-2 153 11 0.2
p93791-3 24530 218 653
p93791-4 790 187 18
p93791-5 4562 391 218
p93791-6 * 9669 194 229
p93791-7 * 9669 194 229
p93791-8 6602 216 174
p93791-9 5180 210 133
p93791-10 7598 416 386
p93791-11 7772 234 222
p93791-12 3063 916 343
p93791-13 6684 172 140
Total - 3768 3092
q12710-1 3517 852 365
q12710-2 11971 1314 1920
q12710-3 * 5335 1223 797
q12710-4 * 5335 1223 797
Total - 4612 3879

TABLE II
INDUSTRIAL CIRCUITS WITH TEST DATA VOLUMES

Length of Test Number of Test Data
Circuit Patterns (bits) Test Patterns Volume (MBs)
ckt-1 12256 3768 5.51
ckt-2 22216 2636 6.98
ckt-3 9628 4927 5.65
ckt-4 43414 1528 7.91
ckt-5 26970 4899 15.75
ckt-6 80000 2859 27.27
ckt-7 20000 18027 42.98
ckt-8 110000 18142 237.9

controller (referred as Concatenator program hereafter) is run
on a PC instead of an embedded processor on a PCB. We used
an FPGA as a system under test and connected it with the PC.
This way we have verified that the output (set of FDS-vectors)
produced by the Concatenator test controller can be applied
on a real circuit.

We used Equation 1 to calculate the percentage reduction
in memory requirements for each scenario. In Formula 1,
SizeDF , SizeTDF , SizeODF and SizeProgram denote the
size of description file, test data file, output data file and
the Concatenator program respectively and RMR denotes
reduction in memory requirements.

% RMR = 100 ·
(
1−

SizeDF + SizeTDF + SizeProgram

SizeODF

)
(1)

The experiments conducted for the designs using the com-
ponents from Table II produced the results shown in Table IV.
The columns with the heading Reduction in MR in Table IV
show the percentage reduction in memory requirements (MR)
for the designs. In the column marked D1, ckt-1 is included X



TABLE III
EXAMPLE DESIGNS

Design Circuits used in the Design
D1x2 ckt-1,ckt-1,ckt-2,ckt-3,ckt-4,ckt-5,ckt-6,ckt-7,ckt-8
D2x2 ckt-1,ckt-2,ckt-2,ckt-3,ckt-4,ckt-5,ckt-6,ckt-7,ckt-8
D8x2 ckt-1,ckt-2,ckt-3,ckt-4,ckt-5,ckt-6,ckt-7,ckt-8,ckt-8

TABLE IV
DESIGNS RESULTS

% Reduction in MR
X D1 D2 D3 D4 D5 D6 D7 D8 Avg
1 0 0 0 0 0 0 0 0 0
2 2 2 2 2 4 7 11 41 9
3 3 4 3 4 8 13 20 58 14
4 4 6 5 6 12 19 27 68 18
5 6 7 6 8 15 24 33 74 21
6 7 9 7 10 18 28 38 78 24
7 9 11 9 12 21 32 42 81 27
8 10 12 10 14 24 35 46 83 29

19 22 26 23 29 45 58 69 92 45
20 23 27 24 30 46 60 70 93 46

times (X is shown in the left most column) whereas the other
seven circuits are used only once. Similarly, in the column D2,
ckt-2 is multiplied X times and other circuits are used only
once and so on.

In Table IV, it can be observed that the test data volume
reduction depends on the circuit that is included in multiple
instances and the number of multiplications. The reason why
the reduction in memory requirements depend on the multi-
plied circuit (columns D1 to D8) is that the circuits themselves
have different test data volume (Table II).

The result for D8 in the second row (Table IV) shows that,
if a component (with high test data volume) in a system
is instantiated only two times, the percentage reduction in
memory requirements can be achieved up to 41%. For X =
6, the average percentage reduction in memory requirements
is 24%. Further results show that if the multiplication of cores
within the systems is increased in the future, then the approach
presented in this paper will be even more beneficial in terms
of reduction in memory requirements.

The results for the ITC’02 benchmarks are shown in
Table V. The first column shows the name of the SOC
designs. The second column shows the memory requirements
for storing FDS-vectors as it would be done without the
proposed concatenation approach. The third column shows the
total memory requirements with the proposed concatenation
approach. The last column shows the percentage reduction in
memory requirements. For SOC p93791 the total test data
volume needed to test were 3092 KBs and there were two
components of the same type, each used 229 KBs. This
lead to a reduction of 7.5%. For SOC q12710 the total test
data volume was 3879 KBs and there were two components
of the same type with 797 KBs of test data volume each.
Total reduction of memory requirements was 26.4%. For SOC
f2126 the total test data volume needed was 648 KBs, two
components of the same type with 6 KBs of test data volume

TABLE V
ITC’02 BENCHMARK RESULTS

MR* using
SOC MR* proposed % Reduction
design (KBs) approach (KBs) in MR*
f2126 648 641 1.0%
p93791 3092 2860 7.5%
q12710 3879 2855 26.4%

* Memory Requirements

each. total reduction of memory requirement 1%.

IV. CONCLUSION

The development in semiconductor technologies enables
manufacturing of systems with multiple identical ICs but
enforces in-field test as manufacturing test only is not suf-
ficient. It is most desirable to make use of the same test
during production test and in-field test; hence, embed the
high-quality deterministic tests. However, as systems are in-
creasingly advanced, higher test data volumes are needed,
leading to larger memory requirements. In this paper, we
propose an embedded test controller that only requires to
store test data for each unique component. The test controller
creates on-the-fly boundary scan (IEEE 1149.1) tests for given
commands. The advantage of the approach is that only one
test per unique component is required. Further, the approach
allows flexibility in defining test commands such that different
combinations of tests can be applied. We have implemented
the test controller and verified it on real hardware and made
experiments on ITC’02 benchmarks and industrial circuits.
The proposed scheme shows significant reduction in memory
requirements.

REFERENCES

[1] I. W. Group, “International Technology Roadmap for Semiconductors
(ITRS),” On the ITRS web site, 2009, http://www.itrs.net/home.html.

[2] A. El-Maleh, E. Khan, and S. A. Zahir., “A Geometric-Primitives-Based
Compression Scheme for Testing Systems-on-a-Chip,” in VTS, Aug.
2001, pp. 54–59.

[3] K. J. Balakrishnan and N. A. Touba, “Matrix-Based Test Vector De-
compression Using an Embedded Processor,” in DFT, Nov. 2002, pp.
159–165.

[4] A. Jas and N. A. Touba, “Using an Embedded Processor for Efficient
Deterministic Testing of Systems-on-a-Chip,” in ITC, Oct. 1999, p. 418.

[5] G. Hetherington, T. Fryars, N. Tamarapalli, M. Kassab, A. Hassan and
J. Rajski, “Logic BIST for large industrial designs: Real issues and case
studies,” in ITC, 1999, pp. 358–367.

[6] D. Das and N. A. Touba, “Reducing Test Data Volume Using Exter-
nal/LBIST Hybrid Test Patterns,” in ITC, Oct. 2000, pp. 115–122.

[7] Y. Wu and P. MacDonald., “Testing ASICs with Multiple Identical
Cores,” TCAD, pp. 327–336, 2003.

[8] Li, Yanjing and Makar, Samy and Mitra, Subhasish, “CASP: concurrent
autonomous chip self-test using stored test patterns,” in DATE, Mar.
2008, pp. 885–890.

[9] E. J. Marinissen, V. Iyengar, K. Chakrabarty, “A Set of Benchmarks fo
Modular Testing of SOCs,” in ITC, Oct. 2002, pp. 519–528.

[10] Z. Wang and K. Chakrabarty., “Test data compression for IP embedded
cores using selective encoding of scan slices,” in ITC, Nov. 2005, pp.
581–590.


