
“lic˙thesis” — 2010/11/16 — 11:04 — page i — #1

Linköping Studies in Science and Technology

Thesis No. 1459

System-Level Techniques for

Temperature-Aware Energy Optimization

by

Min Bao

Submitted to Linköping Institute of Technology at Linköping University in partial

fulfilment of the requirements for the degree of Licentiate of Engineering

Department of Computer and Information Science

Linköpings universitet

SE-581 83 Linköping, Sweden

Linköping 2010

“lic˙thesis” — 2010/11/16 — 11:04 — page ii — #2

“lic˙thesis” — 2010/11/16 — 11:04 — page iii — #3

Department of Computer and Information Science

Linköpings universitet

SE-581 83 Linköping, Sweden

System-Level Techniques for

Temperature-Aware Energy Optimization

by

Min Bao

December 2010

ISBN 978-91-7393-264-6

Linköping Studies in Science and Technology

Thesis No. 1459

ISSN 0280-7971

LiU-Tek-Lic-2010:30

ABSTRACT

Energy consumption has become one of the main design constraints in today’s integrated

circuits. Techniques for energy optimization, from circuit-level up to system-level, have

been intensively researched.

The advent of large-scale integration with deep sub-micron technologies has led to both

high power densities and high chip working temperatures. At the same time, leakage

power is becoming the dominant power consumption source of circuits, due to

continuously lowered threshold voltages, as technology scales. In this context,

temperature is an important parameter. One aspect, of particular interest for this thesis, is

the strong inter-dependency between leakage and temperature. Apart from leakage power,

temperature also has an important impact on circuit delay and, implicitly, on the

frequency, mainly through its influence on carrier mobility and threshold voltage. For

power-aware design techniques, temperature has become a major factor to be considered.

In this thesis, we address the issue of system-level energy optimization for real-time

embedded systems taking temperature aspects into consideration.

We have investigated two problems in this thesis: (1) Energy optimization via

temperature-aware dynamic voltage/frequency scaling (DVFS). (2) Energy optimization

through temperature-aware idle time (or slack) distribution (ITD). For the above two

problems, we have proposed off-line techniques where only static slack is considered. To

further improve energy efficiency, we have also proposed on-line techniques, which make

use of both static and dynamic slack. Experimental results have demonstrated that

considerable improvement of the energy efficiency can be achieved by applying our

temperature-aware optimization techniques. Another contribution of this thesis is an

analytical temperature analysis approach which is both accurate and sufficiently fast to be

used inside an energy optimization loop.

This work has been supported by the Swedish Foundation for Strategic Research (SSF)

under the Electronic Systems and Photonics Programme.

“lic˙thesis” — 2010/11/16 — 11:04 — page iv — #4

“lic˙thesis” — 2010/11/16 — 11:04 — page v — #5

System-Level Techniques for

Temperature-Aware Energy Optimization

Min Bao

Department of Computer and Information Science

Linköpings Universitet

SE-581 83 Linköping, Sweden

Linköping 2010

“lic˙thesis” — 2010/11/16 — 11:04 — page vi — #6

ISBN 978-91-7393-264-6, ISSN 0280-7971

Printed by LiU-Tryck, 2010

Copyright © Min Bao 2010

Electronic version available at:

http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-60855

“lic˙thesis” — 2010/11/16 — 11:04 — page vii — #7

Acknowledgements

During the time that I am working on this thesis, I have learned a lot about how to

do and how to present research. There are many people who have, along the way,

contributed to my progress. I would like to express my gratitude to them all.

First of all, I would like to thank my supervisor, Prof. Zebo Peng, for offering me

the opportunity to pursue my postgraduate study here. He is extremely supportive

and has given me countless valuable advice and help since the first day I came here.

Secondly, I would like to thank my second supervisor Prof. Petru Eles. Discuss-

ing my research with him is very enjoyable, and I can always get insightful and

inspiring feedbacks. I deeply appreciate his patience and dedication in teaching and

improving my technical writing and presentation skills.

Special thanks go to Dr. Alexandru Andrei, my previous colleague of Embedded

Systems Laboratory. He was my mentor the first year I came here and has given me

many valuable guidance both in research and life.

I would like to extend my thanks to all former and present members of Embedded

Systems Laboratory. Because of them, the working atmosphere is so friendly and

fun that I enjoy studying here every day.

Big thanks go to Eva Pelayo Danils, Inger Emanuelsson, Anne Moe, and Gunilla

Mellheden who have been invaluable in their efforts to simplify all the administrative

details.

I would like to thank all my friends who have made my life here interesting and

memorable.

I am deeply grateful to my mother who always has faith in me. I could not finish

this thesis without tremendous encouragement and unconditional support from her.

This thesis is dedicated to her.

Min Bao

Linköping, Dec. 2010

“lic˙thesis” — 2010/11/16 — 11:04 — page viii — #8

viii

“lic˙thesis” — 2010/11/16 — 11:04 — page ix — #9

Abstract

Energy consumption has become one of the main design constraints in today’s

integrated circuits. Techniques for energy optimization, from circuit-level up to

system-level, have been intensively researched.

The advent of large-scale integration with deep sub-micron technologies has led

to both high power densities and high chip working temperatures. At the same time,

leakage power is becoming the dominant power consumption source of circuits, due

to continuously lowered threshold voltages, as technology scales. In this context,

temperature is an important parameter. One aspect, of particular interest for this

thesis, is the strong inter-dependency between leakage and temperature. Apart

from leakage power, temperature also has an important impact on circuit delay and,

implicitly, on the frequency, mainly through its influence on carrier mobility and

threshold voltage. For power-aware design techniques, temperature has become a

major factor to be considered. In this thesis, we address the issue of system-level

energy optimization for real-time embedded systems taking temperature aspects

into consideration.

We have investigated two problems in this thesis: (1) Energy optimization

via temperature-aware dynamic voltage/frequency scaling (DVFS). (2) Energy

optimization through temperature-aware idle time (or slack) distribution (ITD).

For the above two problems, we have proposed off-line techniques where only

static slack is considered. To further improve energy efficiency, we have also

proposed on-line techniques, which make use of both static and dynamic slack.

Experimental results have demonstrated that considerable improvement of the

energy efficiency can be achieved by applying our temperature-aware optimization

techniques. Another contribution of this thesis is an analytical temperature analysis

approach which is both accurate and sufficiently fast to be used inside an energy

optimization loop.

“lic˙thesis” — 2010/11/16 — 11:04 — page x — #10

x

“lic˙thesis” — 2010/11/16 — 11:04 — page xi — #11

Contents

1 Introduction 1

1.1 Embedded Systems . 1

1.2 Energy Issues . 1

1.3 Dynamic Voltage/Frequency Scaling (DVFS) 2

1.4 Temperature Issues . 2

1.5 Temperature Considerations in DVFS 3

1.5.1 Leakage/Temperature Dependency 3

1.5.2 Frequency/Temperature Dependency 3

1.6 Idle Time Distribution (ITD) . 4

1.7 Related Work . 4

1.7.1 Temperature Dependent Leakage Analysis 4

1.7.2 Architecture-Level Thermal Modeling 5

1.7.3 Thermal Sensing and Tracking 6

1.7.4 Temperature-Aware System-Level Design 6

1.8 Contributions . 8

1.9 Thesis Organization . 9

2 Preliminaries 11

2.1 Power and Delay Models . 11

2.2 Application Model . 12

2.3 Architecture Model . 12

2.4 Dynamic Voltage/Frequency Scaling 13

3 Temperature-Aware Dynamic Voltage/Frequency Scaling 15

3.1 Motivational Example . 15

3.1.1 Leakage/Temperature Dependency 15

3.1.2 Frequency/Temperature Dependency 16

3.1.3 On-line DVFS vs. Off-line DVFS 17

“lic˙thesis” — 2010/11/16 — 11:04 — page xii — #12

xii CONTENTS

3.2 Temperature Analysis . 18

3.2.1 Static Temperature Analysis 18

3.2.2 Dynamic Temperature Analysis 19

3.3 Static Temperature-Aware DVFS (SDVFS) 21

3.3.1 SDVFS with Leakage/Temperature Dependency (T-SDVFS) 21

3.3.2 SDVFS with Both Leakage/Temperature and Frequency/Temp-

erature Dependencies (SDVFS-LF) 22

3.4 Dynamic Temperature-Aware DVFS (DDVFS) 23

3.4.1 Off-line and On-line Phases 23

3.4.2 LUT Generation . 24

3.4.3 Temperature Bounds and Granularity 26

3.4.4 LUT Granularity Along the Time Dimension 27

3.4.5 Accounting for Analysis Accuracy and Ambient Temperature 28

3.5 Experimental Results . 29

3.5.1 Static DVFS Approach 29

3.5.2 Dynamic DVFS Approach 32

4 Temperature-Aware Idle Time Distribution 37

4.1 Motivational Example . 37

4.1.1 Static Idle Time Distribution 37

4.1.2 Dynamic Idle Time Distribution 39

4.2 Problem Formulation . 41

4.2.1 ITD with Only Static Slack: SITD 42

4.2.2 ITD with Both Static and Dynamic Slack: DITD 44

4.3 Temperature Analysis . 45

4.3.1 Temperature Model . 45

4.3.2 SSDTC Estimation . 47

4.3.3 TTC Estimation . 48

4.4 ITD with Only Static Slack (SITD) 49

4.4.1 SITD without Overhead (SITDNOH) 49

4.4.2 SITD with Overhead (SITDOH) 52

4.5 ITD with Dynamic and Static Slack (DITD) 54

4.5.1 On-line Phase . 55

4.5.2 Off-line Phase . 56

4.5.3 DITDOH Algorithm . 58

4.5.4 Time Bounds and Granularity 60

4.5.5 Temperature Bounds and Granularity 61

4.6 Experimental Results . 63

4.6.1 Evaluation of The Thermal Model 63

4.6.2 Evaluation of ITD Heuristics 64

“lic˙thesis” — 2010/11/16 — 11:04 — page xiii — #13

CONTENTS xiii

5 Conclusions 71

References 73

“lic˙thesis” — 2010/11/16 — 11:04 — page xiv — #14

xiv CONTENTS

“lic˙thesis” — 2010/11/16 — 11:04 — page xv — #15

List of Figures

3.1 Leakage/Temperature Dependency Influence in DVFS 16

3.2 Motivational Example . 17

3.3 Static Thermal Analysis Considering Leakage/Temperature Depend-

ency . 19

3.4 Dynamic Thermal Analysis Considering Leakage/Temperature De-

pendency . 20

3.5 SDVFS with Leakage/Temperature Dependency 21

3.6 Typical Temperature Convergence Curve 22

3.7 On-Line Phase . 24

3.8 LUT Generation . 25

3.9 Energy Improvement with T-SDVFS Approach 30

3.10 Energy Improvement for The MPEG2 Decoder 31

3.11 Dynamic vs. Static Approach . 33

3.12 Computation Time: Off-line Phase 34

3.13 Impact of Temperature Line Number 35

3.14 Impact of The Ambient Temperature 36

4.1 Motivational Example: Static Idle Time Distribution 38

4.2 Motivational Example: Idle Time Distribution 40

4.3 Thermal Circuit . 46

4.4 Temperature Analysis . 47

4.5 SITDNOH Heuristic . 52

4.6 SITDOH Heuristic . 54

4.7 DITD On-line Phase . 55

4.8 DITD Off-line Phase . 57

4.9 SSDTC Estimation with Our Approach vs. Hotspot 64

4.10 Leakage Energy Reduction with Low Switching Overheads 66

4.11 Leakage Energy Reduction with High Switching Overheads . . . 67

“lic˙thesis” — 2010/11/16 — 11:04 — page xvi — #16

xvi LIST OF FIGURES

4.12 Leakage Energy Reduction with No Switching Overheads 68

4.13 Leakage Energy Reduction with Different Standard Deviations . . 68

4.14 Computation Time . 69

“lic˙thesis” — 2010/11/16 — 11:04 — page xvii — #17

List of Tables

3.1 DVFS without Frequency/Temperature Dependency 17

3.2 DVFS with Frequency/Temperature Dependency 17

3.3 Dynamic DVFS . 18

3.4 Energy Reduction from Using SDVFS-LF Comparing with T-SDVFS

. 32

3.5 Energy Improvement by DDVFS with Frequency/Temperature De-

pendency . 32

3.6 Energy Improvement Degradation by Simulation Accuracy 36

4.1 Motivational Example: Application Parameters 37

4.2 Static ITD: Leakage Energy Comparison 38

4.3 Motivational Example: An Activation Scenario 39

4.4 Dynamic ITD: Leakage Energy Comparison 40

“lic˙thesis” — 2010/11/16 — 11:04 — page xviii — #18

xviii LIST OF TABLES

“lic˙thesis” — 2010/11/16 — 11:04 — page xix — #19

List of Abbreviations

BNC Best Number of Cycles

DDVFS Dynamic Voltage/Frequency Scaling with Both Dynamic

and Static Slack

DITD Idle Time Distribution with Both Dynamic and Static

Slack

DITDOH DITD with Overheads Consideration

DVFS Dynamic Voltage/Frequency Scaling

EFT Earliest Finishing Time

ENC Expected Number of Cycles

EST Earliest Starting Time

ITD Idle Time Distribution

ITDNOH Idle Time Distribution with No Overheads Consideration

ITDOH Idle Time Distribution with Overheads Consideration

LFT Latest Finishing Time

LST Latest Starting Time

LUT Look-up Table

NT-DVFS None Temperature-Aware Dynamic Voltage/Frequency

Scaling

OS Operating Systems

“lic˙thesis” — 2010/11/16 — 11:04 — page xx — #20

xx LIST OF TABLES

SDVFS Dynamic Voltage/Frequency Scaling with Static Slack

SDVFS-LF SDVFS with Both Leakage/Temperature and

Frequency/Temperature Dependencies Consideration

SFA Straightforward Approach

SITD Idle Time Distribution with Static Slack

SITDNOH SITD with No Overheads Consideration

SITDOH SITD with Overheads Consideration

SSDTC Steady State Dynamic Temperature Curve

T-DVFS Temperature-Aware Dynamic Voltage/Frequency Scaling

TTC Transient Temperature Curve

WNC Worst Number of Cycles

“lic˙thesis” — 2010/11/16 — 11:04 — page 1 — #21

Chapter 1

Introduction

1.1 Embedded Systems

Embedded systems are information processing systems that are embedded into a

larger product and usually are not visible to users [1]. Embedded systems have a

wide range of application areas and are one of the most rapidly growing segments

of the computer industry [2]. New products appear with an explosive speed and,

nowadays, embedded systems are used everywhere, e.g. in automotive systems,

medical equipments, consumer electronics and tele-communication devices.

Unlike general purpose computer systems, such as personal computers (PC),

embedded systems are designed for dedicated functionalities. A common character-

istic of embedded systems is that real-time response is usually required. This means

that delivering results within certain time constraints is important for a correct

functionality of the system.

The design of embedded systems is challenging since the implementation has not

only to produce correct functionalities but also to meet diverse competing constraints,

e.g. physical size, cost, performance, reliability, flexibility, and testability [3]. The

constraints can be addressed in different levels of abstraction: from circuits level up

to system level. In this thesis, we focus on several aspects related to the system-level

design of embedded systems [4].

1.2 Energy Issues

Energy consumption is one of the main design constraints in today’s integrated cir-

cuits. For battery-operated devices, e.g. mobile consumer electronics, the available

“lic˙thesis” — 2010/11/16 — 11:04 — page 2 — #22

2 Introduction

energy is of a fixed amount; the rate of power consumption determines the lifetime

of the battery or the time between two recharges of the battery. The ever increasing

computation complexity, which doubles every two years [5], results in elevated

power and energy consumptions. However, the battery technology only improves

around 3–7% per year [5], lagging far behind the increase of the required energy

consumption.

Energy optimization techniques, from circuit level up to system level, are needed

in order to close the gap between energy consumption and battery capacity. Extens-

ive research has been performed on energy optimization for embedded systems. In

this thesis, we focus on the system-level energy optimization techniques.

1.3 Dynamic Voltage/Frequency Scaling (DVFS)

At system level, dynamic voltage/frequency scaling (DVFS) is one of the preferred

approaches for reducing the overall energy consumption [6], [7]. This technique

exploits the available slack time in real-time applications to achieve energy efficiency

by reducing the supply voltage and frequency such that the execution of tasks is

stretched within their deadline.

There are two types of slacks.

• Static slack, which is due to the fact that, when executing at the highest (nom-

inal) voltage level, tasks finish before their deadlines even when executing

their worst case number of cycles (WNC).

• Dynamic slack, due to the fact that most of the time tasks execute less than

their WNC.

Off-line DVFS techniques, such as those in [8] and [9], can only exploit static slack,

while on-line approaches, e.g. [10], [11], [12] and [13] are able to further reduce

energy consumption by exploiting the dynamic slack due to the variation of the

workload generated by the tasks.

1.4 Temperature Issues

Junction temperature is one of the most important CMOS parameters [14]. Tempera-

ture has a strong impact on system reliability. Excessive high working temperature

can lead to permanent faults due to electro-migration and other process failure,

while frequent temperature variations can result in transient faults, e.g. transient

voltage fluctuations [15].

“lic˙thesis” — 2010/11/16 — 11:04 — page 3 — #23

1.5 Temperature Considerations in DVFS 3

Of most interest, in this thesis, is the strong influence of temperature on leakage

current and circuit delay. The impact of temperature on circuit delay and, implicitly,

on frequency, is mainly through its influence on carrier mobility and threshold

voltage [16]. With high working temperature the carrier mobility decreases, which

degrades the circuits’ performance. Leakage current, which consists of various

components among which the sub-threshold leakage current dominates, is strongly

dependent on temperature due to the temperature’s strong impact on sub-threshold

leakage. Sub-threshold leakage is caused by the weak inversion conduction of

transistors [17] and increases rapidly with temperature.

Technology scaling leads to high power densities in current circuits, which have

resulted in a high working temperature. On the other hand, technology scaling

continuously lowers threshold voltages in order to maintain the improvement of

performance, leading to an exponential increase in sub-threshold current [17]. As

a result, leakage energy is becoming the dominant energy consumption source of

circuits [18]. Due to the strong inter-dependency between leakage current and

temperature [19], growing temperature can lead to an increase in leakage current

and, consequently, energy, which, again, produces higher temperatures. For power-

aware techniques, temperature has therefore become an important parameter to be

taken into consideration.

1.5 Temperature Considerations in DVFS

1.5.1 Leakage/Temperature Dependency

Traditionally, the dependency of leakage on temperature is ignored in DVFS, due

to the fact that leakage energy used to represent only a small percentage of the

total energy consumption. To perform voltage selection for energy optimization,

at design time an empirical assumed working temperature of the chip is used for

leakage energy estimation. For example, the actual working temperature of the chip

is assumed to be 70◦C. However, as pointed out in the previous section that leakage

is becoming the dominant power consumption as technology scales, ignoring the

leakage/temperature dependency in DVFS can lead to very inaccurate leakage

energy estimation and, hence, sub-optimal energy consumption.

1.5.2 Frequency/Temperature Dependency

As mentioned in Section 1.4 that temperature has also an important impact on the fre-

quency of circuits. At the same time, frequency also depends on the supply voltage.

In order to provide performance, the frequency is usually set to the maximum value

allowed by the current supply voltage. However, traditionally, when calculating this

“lic˙thesis” — 2010/11/16 — 11:04 — page 4 — #24

4 Introduction

maximum allowed frequency for a given supply voltage V , it is implicitly assumed

that this is the frequency f corresponding to the maximum temperature Tmax at

which the chip is allowed to run. While this is a safe assumption, it is far from

efficient. If we are aware that the chip is running at a temperature T < Tmax, the

frequency could be fixed at f ′ > f and, thus, performance is increased for the same

energy consumption. Or, maybe more important, the same frequency f could be

achieved with a supply voltage V ′ < V and, thus, further energy is saved.

With the strong impact of temperature on both leakage and frequency, tempera-

ture is an important aspect to be considered for DVFS. In this thesis we investigate

the issue of DVFS techniques taking the temperature aspect into consideration.

1.6 Idle Time Distribution (ITD)

As mentioned in Section 1.3, DVFS reduces energy consumption by exploiting

slack. However, very often, not all available slack should or can be exploited and

certain amount of slack may still exist after DVFS. An obvious situation is when

the lowest supply voltage is such that, even if selected, a certain slack interval

is left. Another reason is the existence of a critical voltage [20]. To achieve the

optimal energy efficiency, DVFS would not execute a task at a voltage lower than

the critical one, since, otherwise, the additional static energy consumed due to the

longer execution time is larger than the energy saving due to the lowered voltage.

During the available slack interval, the processor remains idle and can be switched

to a low power state. Due to the strong inter-dependence between leakage power and

temperature, different distributions of idle time will lead to different temperature

distributions and, consequentially, energy consumption. In this thesis, we take the

temperature aspect into consideration and address the issue of optimizing energy

consumption through efficient distribution of both static and dynamic slack.

1.7 Related Work

1.7.1 Temperature Dependent Leakage Analysis

As leakage current is strongly dependent on temperature [19], temperature-aware

leakage models are needed to correctly estimate leakage power consumption. Liao

et al. [19] proposed a temperature-aware leakage model which describes the expo-

nential dependency of leakage current on temperature. In [21], the authors proposed

to piece-wise linear approximating of the exponential leakage model with less than

1% error. A leakage model which describes leakage current as a quadratic function

of temperature was proposed in [22]. Huang et al. [23] performed a comprehensive

“lic˙thesis” — 2010/11/16 — 11:04 — page 5 — #25

1.7 Related Work 5

study of different temperature-aware leakage models, where exponential, quadratic,

piece-wise linear, and linear leakage models were compared, and the trade-off

between the complexity and the accuracy of the models was discussed.

1.7.2 Architecture-Level Thermal Modeling

Temperature-aware system-level design methods rely on the availability of temp-

erature modeling and analysis approaches. Most temperature modeling tools are

based on the duality between heat transfer and electrical phenomena [24]. There

are two types of thermal analysis: (1) static temperature analysis and (2) dynamic

temperature analysis. With static temperature analysis a temperature value, at which

the circuit is supposed to function in steady state, is computed. With dynamic

temperature analysis a temperature profile, which describes the temperature beha-

viour of the circuit as a function of time, is calculated. There has been research on

architecture-level thermal analysis, e.g., Hotspot [25] and ISAC [26]. The basic idea

of Hotspot is to build an equivalent circuit of thermal resistances and capacitances

capturing both the architecture blocks and the elements of the thermal package.

HotSpot can be used both for static analysis and dynamic analysis. ISAC, proposed

in [26], is similar to Hotspot, and it speeds up the thermal analysis through dynamic

adaptation of the resolution.

The thermal analysis used in Chapter 3 is based on Hotspot. For our purposes,

the architecture is modeled at core level. Thus, from the architecture point of view,

the actual blocks whose temperature is analyzed are the processors on which the

tasks are executed. When provided with the physical/thermal parameters (size and

placement of blocks, thermal capacitances and resistances, parameters of packaging

elements) and the power profile capturing the power dissipation of the core, HotSpot

produces the steady state temperature or the temperature profile of the processor.

However, the temperature analysis does not support the case in which power dis-

sipation is dependent on the temperature, which, obviously, is the situation with

leakage. In Chapter 3, we propose modifications of Hotspot to overcome the above

problem for static and dynamic temperature analysis, respectively.

The computation complexity of the architecture-level temperature analysis

approaches like the two mentioned above is large. There has been research on

establishing fast system-level temperature analysis techniques which are sufficiently

efficient to be used inside an optimization loop of temperature-aware system-level

design techniques, e.g. [27], [28], [29], and [30]. They also build on the duality

between heat transfer and electrical phenomena and are based on very restrictive

assumptions in order to simplify the model. In [27] the authors assumed that (1) no

cooling layer is present, (2) there is no interdependency between leakage current

and temperature, and (3) the whole application executes at a constant voltage. The

“lic˙thesis” — 2010/11/16 — 11:04 — page 6 — #26

6 Introduction

models in [28] and [29] consider variable voltage levels but maintain the first two

limitations above. The most general analytical model is proposed in [30] which

considers cooling layers as well as the dependency between leakage and temperature.

However, this approach is limited to the case of a unique voltage level throughout

the application. In Chapter 4 we will introduce a fast and accurate temperature

analysis technique which eliminates all three limitations mentioned above and can

be efficiently used inside the optimization loop of temperature-aware system-level

design techniques.

1.7.3 Thermal Sensing and Tracking

Many temperature-aware system-level design approaches are proposed in which

decisions are taken on-line, based on the actual chip temperature information. In

such cases, thermal sensors [31] are used together with techniques for collecting

and analyzing their values with adequate accuracy. For example, the techniques for

dynamic OS-level workload scheduling aiming at avoiding thermal hot spots and

large temperature variations [32] are based on run time temperature sensor readings.

In Chapter 3 and Chapter 4, in addition to off-line approaches, we also propose

on-line DVFS and ITD approaches which rely on temperature sensing and tracking

techniques.

Several approaches have been proposed in literature to improve the accuracy of

temperature measurement and estimation. For example, in [33] and [34], the authors

proposed techniques to determine the optimal locations and allocations of thermal

sensors with the goal of accurate hot spot detection as well as full chip thermal

characterization. In [35], [36], and [37], the authors addressed the issue of how

to process/analyze readings from sparse and noisy thermal sensors to accurately

estimate temperatures where various estimation schemes such as spectral methods

and Kalman filters are utilized.

1.7.4 Temperature-Aware System-Level Design

Several approaches to system-level temperature-aware design have been discussed

in literature.

Temperature management is utilized to control the temperature behavior of

processors for improving system reliability [15]. In [38], the authors proposed a

technique for temperature management by scaling the processor speed and, in [39],

the authors addressed the issue of scheduling and mapping of a set of tasks with real-

time constraints on multi-processors for peak temperature minimization. Techniques

for task sequencing combined with DVFS to reduce the peak working temperature

of the processor were proposed in [28]. Several approaches aiming at reducing

“lic˙thesis” — 2010/11/16 — 11:04 — page 7 — #27

1.7 Related Work 7

temperature variations or temperature gradients across the chip, e.g. in [40], were

proposed.

A considerable amount of work has been published on performance optimization

under thermal and real-time constraints. For example, Zhang et al. [41] proposed

voltage assignment techniques to optimize the performance of a set of periodic

tasks working on a DVFS enabled processor under thermal constraints. In [42],

the authors proposed approaches to optimize throughput by task sequencing under

thermal constraints. An on-line speed adaptation technique for homogeneous multi-

processors with the target of maximizing the total throughput was proposed by Rao

et al. in [43].

As discussed in Section 1.4, temperature is an important issue to be considered

for power-aware system-level design. Since DVFS techniques are supposed to

reduce energy consumption by adapting voltage levels, leakage/temperature and

frequency/temperature dependencies are important aspects to be taken into consid-

eration at voltage selection. However, very few of the proposed DVFS techniques

have considered the leakage/temperature and frequency/temperature dependencies.

The DVFS approach proposed by Liu in [21] is a static DVFS scheme aiming

at reducing peak temperature. An on-line DVFS approach with consideration of

both leakage/temperature and frequency/temperature dependencies was proposed

in [44] where the throughput is maximized within the constraint of a peak working

temperature. The authors in [45] proposed an on-line DVFS approach which is

based on a design time optimization procedure performed considering various start

time temperatures and workloads. At run-time, frequency settings are based on

actual temperatures received from sensors. The approach, however, ignores the

leakage/temperature dependency and assumes (as in off-line DVFS techniques) that

the number of cycles executed by a given task is fixed and known at design time.

In Chapter 3, we propose off-line and on-line DVFS techniques which take both

leakage/temperature and frequency/temperature dependencies into considerations.

As mentioned in Section 1.6, in this thesis,we address, the issue of optimizing

leakage energy consumption through distribution of idle time. The only work, to our

knowledge, previously addressing this issue is [46] and [22]. In [46], the authors

proposed an approach to distribute idle time for applications consisting of one single

task executing at a constant given supply voltage. Thus, their approach cannot

optimize the distribution of idle time among multiple tasks which also execute at

different voltages. The same limitation also holds for [22], where a pattern based

ITD for leakage energy optimization considering one single task was proposed.

The pattern based approach generates uniform idle time distribution over the whole

application and, thus, is not appropriate for ITD among multi-task applications

where tasks have different amounts of energy consumption and execute at different

voltage levels.

“lic˙thesis” — 2010/11/16 — 11:04 — page 8 — #28

8 Introduction

1.8 Contributions

In this thesis, we make the following main contributions:

1. We propose a temperature simulation method, based on Hotspot, which

considers the leakage/temperature dependency.

2. We propose an off-line temperature-aware DVFS approach for energy op-

timization, which takes both leakage/temperature and frequency/temperature

dependencies into consideration.

3. We propose, based on our off-line temperature-aware DVFS approach, an

on-line temperature-aware DVFS technique which can exploit both static

and dynamic slack. This approach is look up table (LUT) based and is

composed of two phases: (1) During the off-line phase, look up tables (LUT)

are generated for each task. (2) At runtime, voltage/frequency settings are

decided by checking the corresponding task’s LUT according to temperature

sensor readings.

4. We propose a fast and accurate analytical temperature model which elim-

inates all the three limitations mentioned in Section 1.7.2, by considering

the following aspects: a) the interdependence between leakage power con-

sumption and temperature; b) multiple thermal cooling layers of the chip; c)

non-smooth power consumption generated due to multiple discrete supply

voltage levels of the processor. Our model can be efficiently used for both

static and dynamic temperature analysis.

5. We propose an off-line ITD approach to optimize leakage energy consumption

for a set of periodic tasks. It distributes static slack globally among tasks

which are executed at different discrete voltage levels. This off-line ITD

is based on an iterative heuristic using a convex optimization which can be

solved in polynomial time.

6. We propose, based on the off-line ITD approach, an on-line ITD technique

where both static and dynamic slack are distributed. This approach is look

up table (LUT) based and is composed of two phases: (1) the off-line phase

prepares a LUT for each task; (2) at runtime, when a task is finished, the idle

time length following the finished task is decided by checking the task’s LUT.

7. For systems with DVFS features, the proposed ITD approaches can be com-

bined with DVFS techniques, in which case additional energy reduction can

be achieved.

“lic˙thesis” — 2010/11/16 — 11:04 — page 9 — #29

1.9 Thesis Organization 9

Part of the content of this thesis has been presented in the following papers:

• M. Bao, A. Andrei, P. Eles, and Z. Peng, ”On-Line Temperature-Aware Idle

Time Distribution for Leakage Energy Optimization”, the 6th International

Symposium on Electronic Design, Test and Applications (DELTA11), Jan.15–

17, 2011 [47].

• M. Bao, A. Andrei, P. Eles, and Z. Peng, ”Temperature-Aware Idle Time

Distribution for Energy Optimization with Dynamic Voltage Scaling”, the

10th Swedish System-on-Chip Conference (SSOCC10), May 3–4, 2010 [48].

• M. Bao, A. Andrei, P. Eles, and Z. Peng, ”Temperature-Aware Idle Time

Distribution for Energy Optimization with Dynamic Voltage Scaling”, Design

Automation and Test in Europe (DATE 2010), Mar. 8–12, 2010 [49].

• M. Bao, A. Andrei, P. Eles, and Z. Peng, ”On-line Thermal Aware Dynamic

Voltage Scaling for Energy Optimization with Frequency/Temperature De-

pendency Consideration”, Design Automation Conference (DAC 2009), Jul.

26–31, 2009 [50].

• M. Bao, A. Andrei, P. Eles, and Z. Peng, ”Temperature-Aware Voltage Selec-

tion for Energy Optimization”, The 9th Swedish System-on-Chip Conference

(SSOCC09), May 4–5, 2009 [51].

• M. Bao, A. Andrei, P. Eles, and Z. Peng, ”An Energy Efficient Technique

for Temperature-Aware Voltage Selection”, Technical Reports in Computer

and Information Science, ISSN 1654-7233; Linköping University Electronic

Press, 2009 [52].

• M. Bao, A. Andrei, P. Eles, and Z. Peng, ”Temperature-Aware Task Mapping

for Energy Optimization with Dynamic Voltage Scaling”, IEEE Workshop

on Design and Diagnostics of Electronic Circuits and Systems (DDECS’08),

Apr. 16–18, 2008 [53].

• M. Bao, A. Andrei, P. Eles, and Z. Peng, ”Temperature-Aware Voltage Se-

lection for Energy Optimization”, Design Automation and Test in Europe

(DATE 2008), Mar. 10–14, 2008 [54].

1.9 Thesis Organization

The rest of this thesis is organized as follows. Preliminaries are presented in

Chapter 2. In Chapter 3 we present the temperature-aware DVFS approaches. We

“lic˙thesis” — 2010/11/16 — 11:04 — page 10 — #30

10 Introduction

first present the modified thermal model used in our DVFS techniques. Then we

describe the off-line and on-line DVFS approach. In Chapter 4 we present the

temperature-aware ITD methods. We start with introducing our analytical system-

level thermal model. Based on the proposed thermal model, we then discuss our

off-line and on-line ITD approaches. Finally, conclusions are discussed in Chapter 5.

“lic˙thesis” — 2010/11/16 — 11:04 — page 11 — #31

Chapter 2

Preliminaries

2.1 Power and Delay Models

Digital CMOS circuits have two major sources of power dissipation: (1) dynamic

power P dyn, which is dissipated whenever computations are carried out (switching

of logic gates) and (2) leakage power P leak, which is consumed whenever the

circuit is powered, even if no computation is performed. For dynamic power we use

the following equation [55]:

P dyn = Ceff · f · V 2 (2.1)

where Ceff , V , and f denote the effective charged capacitance, supply voltage,

and frequency, respectively.

The leakage power is expressed as follows [19]:

P leak = Isr · T
2 · e

β·V +γ
T · V (2.2)

where Isr is the leakage current at a reference temperature, T is the current tempera-

ture, and β and γ are technology dependent coefficients. In Chapter 4, we will use a

piece-wise linear approximation of this model, as proposed, for example, in [21].

According to it, the working temperature range [Ta, Tmax], where Ta and Tmax

are the ambient and the maximal working temperature of the chip, is divided into

several sub-ranges. The leakage power inside each sub-range [Ti, Ti+1] is modeled

by a linear function:

Pi = Mi · T +Bi (2.3)

where Mi and Bi are constants characteristic to each interval.

“lic˙thesis” — 2010/11/16 — 11:04 — page 12 — #32

12 Preliminaries

The maximum frequency of the processor at a given reference temperature Tref

is calculated as follows [55]:

f =
1

d
=

((1 +K1) · V − vth1)
α

K6 · Ld · V
(2.4)

where Ld is the logic depth. K1, K6, and vth1 are technology dependent coefficients.

α reflects the velocity saturation imposed by the used technology (commonly, 1.4

< α < 2). The scaling of frequency with temperature is given by Eq. (2.5) [19]:

f ∝
(V − (vth1 + k · (T − Tref)))

ξ

V · Tµ
(2.5)

Tref and T are the reference temperature and current temperature, while k, ξ, and

µ are empirical technology dependent constants.

2.2 Application Model

The application is captured as a task graph G(Π,Γ). A node τi ∈ Π represents a

computational task τi, while an edge e ∈ Γ indicates the data dependency between

two tasks. Each task τi is characterized by the following six-tuple:

< WNCi, BNCi, ENCi, dli, Ceffi >

where WNCi, BNCi, and ENCi are task τi’s worse case, best case, and expected

number of clock cycles to be executed. The expected number of clock cycles

ENCi is the arithmetic mean value of the probability density function of the actual

executed cycles ANCi, i.e. ENCi =
∑WNCi

j=BNCi
(j · pi(j)), where pi(j) is the

probability that a number j of clock cycles are executed by task τi. We assume

that the probability density functions of the execution cycles of different tasks

are independent. Further, dli and Ceffi represent the deadline and the effective

switched capacitance.

2.3 Architecture Model

The application is mapped and scheduled on a processor which has two power states:

active and idle. In the active state the processor can operate at several discrete supply

voltage levels. When the processor does not execute any task, it can be put to the idle

state, consuming a very small amount of leakage power. We assume this leakage

power Pidle to be constant due to its small amount. Switching the processor between

“lic˙thesis” — 2010/11/16 — 11:04 — page 13 — #33

2.4 Dynamic Voltage/Frequency Scaling 13

the idle and active state as well as between different voltage levels incurs both time

and energy overheads. The processor has internal temperature sensors that can be

accessed during execution.

2.4 Dynamic Voltage/Frequency Scaling

Our temperature-aware DVFS approach proposed in this thesis is based on the

DVFS approach presented in [7]. Given an architecture and a mapped and scheduled

application as described above, the DVFS algorithm in [7] calculates the appropriate

supply voltages for each task, such that the total energy consumption is minimized.

Another input to the algorithm is the dynamic power profile of the application, which

is captured by the average switched capacitance of each task. This information will

be used for calculating the dynamic energy consumed by the task at a certain supply

voltage level, according to Eq. (2.1). Leakage energy, during the optimization

process, is calculated based on Eq. (2.2). However, the dependence of leakage on

temperature has been ignored in this voltage scaling algorithm [7]. To perform

voltage selection, designers need to introduce an assumed temperature which is used

at energy optimization. This, as discussed in Chapter 1.5.1, leads to suboptimal

results.

Another limitation of this DVFS approach is, as mentioned at Chapter 1.5.2,

that the dependency of the frequency on temperature is ignored. Thus, the produced

solutions are excessively conservative. Finally, this DVFS approach is a static

technique, assuming that tasks always execute their WNC and, thus, cannot exploit

the dynamic slack.

In Chapter 3, we will take both leakage/temperature and frequency/temperature

dependencies into consideration, and develop DVFS techniques considering both

static and dynamic slack.

“lic˙thesis” — 2010/11/16 — 11:04 — page 14 — #34

14 Preliminaries

“lic˙thesis” — 2010/11/16 — 11:04 — page 15 — #35

Chapter 3

Temperature-Aware Dynamic

Voltage/Frequency Scaling

3.1 Motivational Example

3.1.1 Leakage/Temperature Dependency

Let us consider the following example. A periodic application which contains only

one task τ is to be executed on a DVFS-enabled processor. The number of clock

cycles to be executed in the worst case (WNC) is 2.3×106, and the average switched

capacitance (in F) is 5×10−9. The deadline of task τ is equal to its period, which is

0.035s. The processor has 8 discrete voltage levels from 0.5V to 1.2V, with a step

of 0.1V.

For the above example, we need to assign a voltage level to execute task τ such

that the total energy consumed is minimized. The execution time of task τ at each

supply voltage level is shown by the curve marked with triangles in Fig. 3.1. The

horizontal dashed line indicates the deadline. As can be seen from Fig. 3.1, in

order for the deadline to be satisfied, we can choose voltage levels in the interval

0.6V–1.2V. The total energy consumption of task τ working at each voltage level is

dependent on the temperature, as leakage is strongly dependent on temperature. We

have computed the total energy consumption of task τ working at each voltage level

considering two different working temperature values of the task τ . As shown in

Fig. 3.1, the line marked with squares shows the total energy consumption of task τ
executed at the temperature of 45◦C for each supply voltage level, while the line

“lic˙thesis” — 2010/11/16 — 11:04 — page 16 — #36

16 Temperature-Aware Dynamic Voltage/Frequency Scaling

marked with dots shows the total energy consumption when task τ is executed at

the temperature of 90◦C.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

Supply Voltage (v)

T
o
ta

l
E
n
e
rg

y
(J

)

0

0.03

0.06

0.09

E
xe

cu
ti
o
n
 T

im
e
 (

s)T=45
T=90
Execution Time

deadline
oC

oC

Figure 3.1: Leakage/Temperature Dependency Influence in DVFS

We can observe that the optimal supply voltage levels (marked with dashed-

line circles) are different for the two working temperatures. If we blindly assume

the task to be working at 45◦C while in reality it is working at 90◦C, we would

choose to execute the task at 0.6V with an energy consumption of 0.034J. This will

lead to an energy loss of 13% compared to the real optimal energy consumption

(0.029J) achieved at 0.8V, at a working temperature of 90◦C. Thus, to minimize

the energy consumption with DVFS, temperature consideration and, implicitly, the

consideration of the leakage/temperature dependency is of huge importance.

3.1.2 Frequency/Temperature Dependency

In this section, we will use an example to describe the importance of considering

the frequency/temperature dependency for DVFS. Let us consider an application

consisting of three tasks as shown in Fig.3.2. The number of clock cycles to be

executed in the worst case (WNC) for τ1, τ2, and τ3 is 2.85×106, 1.0×106, and

4.30×106, respectively, and their average switched capacitance (in F) is 1.0×10−9,

0.9×10−10, and 1.5×10−8, respectively. The application has a global deadline of

0.0128s. We assume that the three tasks are executed on a processor which has

9 discrete voltage levels from 1.0V to 1.8V with a step of 0.1V. The chip size is

7×7mm2 with a maximum allowable working temperature of Tmax = 125◦C.

For the above example, we perform energy minimization using a temperature-

aware DVFS method which ignores the frequency/temperature dependency. When

“lic˙thesis” — 2010/11/16 — 11:04 — page 17 — #37

3.1 Motivational Example 17

τ1 τ2 τ3

Figure 3.2: Motivational Example

calculating the maximum allowed frequency for a certain supply voltage, the max-

imum allowed working temperature for the chip, Tmax= 125◦C, is considered. In

Table 3.1 we show the actual voltages and frequencies for each task, as calculated by

the DVFS algorithm and the consumed energy. We also show the peak temperature

for each task when executed with the calculated voltage and frequency, obtained

with dynamic thermal analysis. As can be observed, this peak temperature is far

below the Tmax of the chip.

Table 3.1: DVFS without Frequency/Temperature Dependency

Task Peak Temp(◦C) Voltage(V) Freq(MHz) Energy(J) Total(J)

τ1 79.9 1.7 638 0.059

τ2 78.1 1.7 638 0.020

τ3 81.2 1.7 638 0.264 0.343

From Eq. (2.4) and Eq. (2.5), it is obvious that, by taking into consideration the

actual temperature at frequency calculation, there is a large margin for reducing the

supply voltage without compromising on performance. We have performed a DVFS

based energy optimization, similar to the one above, but with the difference that

frequencies corresponding to the different voltage settings are calculated by taking

into consideration the peak temperature at which the task actually runs. Table 3.2

shows the results. We can see that an energy reduction of 25% has been obtained.

Table 3.2: DVFS with Frequency/Temperature Dependency

Task Peak Temp(◦C) Voltage(V) Freq(MHz) Energy(J) Total(J)

τ1 69.9 1.7 726 0.049

τ2 69.0 1.6 661 0.015

τ3 70.1 1.5 593 0.194 0.258

3.1.3 On-line DVFS vs. Off-line DVFS

The DVFS approach used in Section 3.1.2 is an off-line, static one which assumes

that tasks always execute their WNC and, thus, can only exploit the static slack.

“lic˙thesis” — 2010/11/16 — 11:04 — page 18 — #38

18 Temperature-Aware Dynamic Voltage/Frequency Scaling

In reality, however, there are huge variations in the number of cycles executed by

a task, from one activation to the other, which leads to a considerable amount of

dynamic slack. Imagine an activation scenario for which each of the three tasks in

Fig. 3.2 executes a number of cycles equal to 60% of their WNC. If we use the

above off-line DVFS approach and run at the voltages and frequencies calculated as

in Table 3.2, the total energy consumption would be 0.149J. However, much more

can be done by also exploiting the dynamic slack. This implies that, at run-time,

whenever a task terminates, the voltage level and the frequency for the next task

are calculated by taking into consideration the current time and the current chip

temperature. Table 3.3 shows the voltage and frequency levels determined in this

way as well as the corresponding energy consumption. The total energy consumed

is 0.133J, which means a reduction of 10% compared to the off-line DVFS approach.

Table 3.3: Dynamic DVFS

Task Peak Temp(◦C) Voltage(V) Freq(MHz) Energy(J) Total(J)

τ1 52.5 1.5 620 0.018

τ2 50.4 1.2 417 0.004

τ3 51.4 1.5 582 0.111 0.133

The examples presented in this section demonstrate that (1) considering fre-

quency/temperature as well as leakage/temperature dependency at DVFS can lead to

substantial energy savings and (2) an on-line temperature-aware approach is needed

in order to make use of the dynamic slack created due to variable number of clock

cycles executed at different activations.

3.2 Temperature Analysis

Temperature analysis in our proposed DVFS technique is based on HotSpot [25].

As mentioned in Chapter 1.7.2, the temperature analysis by Hotpsot does not

consider the dependency of leakage on temperature. In the following two sections,

we describe our solutions to overcome the above problem for static and dynamic

temperature analysis respectively.

3.2.1 Static Temperature Analysis

In the case of static temperature analysis, some solutions have been proposed

in [56], [57] and [58]. A similar solution is used by us and is outlined in Fig. 3.3.

As mentioned in Chapter 1.7.2, corresponding to an input power profile of the

“lic˙thesis” — 2010/11/16 — 11:04 — page 19 — #39

3.2 Temperature Analysis 19

 T Tassumed

Thermal Model

(HotSpot)

Tnew

|T -Tnew|< İ

Y

T Tnew

N

Leakage power(T) Dyn_power_profile

Figure 3.3: Static Thermal Analysis Considering Leakage/Temperature Dependency

processor, HotSpot will produce a steady state temperature at which the core is

supposed to work. However, to input the leakage component of the power profile,

the working temperature in steady state has to be known. In order to overcome this

cyclic dependency, the process is started with an ”assumed” temperature and then

continued iteratively until the produced temperature converges. At the obtained

steady state temperature, the dissipated heat is in balance with the heat removal

capacity of the package. However, it can happen that such a balance is not achieved,

due to insufficient heat removal, and the temperature is increasing, potentially, to

infinite. In such a case, the iterations in Fig. 3.3 will not converge. This phenomenon,

called thermal runaway, is detected and indicates that the design is incorrect from

the thermal point of view. Detecting thermal runaway is an important part of a

thermal-aware design process.

3.2.2 Dynamic Temperature Analysis

Static analysis assumes that, eventually, the chip will function at one constant

temperature. This, however, is usually not necessarily the case in reality. In the

context of a variable power profile, the chip will not reach a constant steady state

temperature but a steady state in which temperature is varying according to a

certain pattern. In order to obtain the steady state temperature profile, we need

“lic˙thesis” — 2010/11/16 — 11:04 — page 20 — #40

20 Temperature-Aware Dynamic Voltage/Frequency Scaling

to use dynamic thermal analysis. For dynamic analysis, HotSpot is calculating

temperatures at successive time steps [25]. At each step a new temperature is

calculated for each block by solving the equations describing the thermal model,

based on a fourth-order Runge-Kutta method. The power consumption during the

time interval between two steps is extracted from the power profile for the respective

block. However, leakage power is a function of the temperature and, thus, cannot

be delivered as an input to the analysis.

T
e

m
p

e
ra

tu
re

Tambient Tt1

Tt2
Tt3

Tt6

Tt5

Tt4
Tt7

Tt8
Dyn Power+

Leak(Tambient)

Dyn Power+

Leak(Tt1)

Dyn Power+

Leak(Tt2)

Period1 Period2

Dyn Power+

Leak(Tt4)

t1 t2 t3 t5 t6 t7 t8

Tt11

Tt10

Tt12

Tt9

time

t4

Period3

t9 t10 t11 t12

Dyn Power+

Leak(Tt3)

Figure 3.4: Dynamic Thermal Analysis Considering Leakage/Temperature Dependency

In order to solve the above problem we have extended the thermal analysis

such that the power consumption during a time step is calculated as the sum of two

components: (1) the dynamic power extracted from the input power profile and

(2) the leakage power calculated at the temperature level of the previous step. The

process is illustrated in Fig. 3.4. Temperature analysis is repeated for successive

periods of the application. In order to detect convergence, temperature values at

corresponding time steps of these successive periods are compared.

For both static and dynamic analysis, convergence is reached efficiently unless

thermal runaway occurs. Since dynamic thermal analysis itself is much more time

consuming than static analysis, obtaining a steady state temperature profile is much

slower than calculating a constant steady state temperature.

“lic˙thesis” — 2010/11/16 — 11:04 — page 21 — #41

3.3 Static Temperature-Aware DVFS (SDVFS) 21

3.3 Static Temperature-Aware DVFS (SDVFS)

3.3.1 SDVFS with Leakage/Temperature Dependency

(T-SDVFS)

In Fig. 3.5 we show the overall flow of our static temperature-aware DVFS approach

taking leakage/temperature dependency into consideration. Given is a scheduled and

mapped task graph, and the average switched capacitance for each task. A so called

Scheduled and mapped

task graph; average switched

capacitance for each task

 T new Tassumed

|Tnew - Tnew’|<İ Y

Tnew T ’new

N

Thermal analysisUpdate power profile

Tnew ’ and Enew

Voltage/frequency Selection [7]

Voltage Levels

End

Figure 3.5: SDVFS with Leakage/Temperature Dependency

”assumed” temperature, at which each task is supposed to run, is also fixed as input.

The voltage selection algorithm (outlined in Chapter 2.4 and [7]) will determine, for

each task τi, the voltage level Vi such that energy consumption is minimized. Based

on the determined voltage Vi (and the switched capacitances known for each task)

the dynamic power profiles are calculated and the thermal analysis is performed as

discussed in Section 3.2. Depending on what the designer selects, a unique temp-

erature (produced by static temperature analysis, see Section 3.2.1) or a dynamic

temperature profile (produced by dynamic temperature analysis, see Section 3.2.2)

is determined for each task in the steady state, and the corresponding actual energy

consumption Enew is computed. The new temperature/temperature-profile obtained

from simulation in the current iteration is, then, used again for voltage selection

in the next iteration and the process is repeated until the temperature/temperature-

profile converges. Convergence means that the actual temperature values used at

voltage selection correspond to the temperature at which the chip will function

when running with the calculated voltages. It is also important to notice that during

thermal analysis, potential thermal runaway is detected.

“lic˙thesis” — 2010/11/16 — 11:04 — page 22 — #42

22 Temperature-Aware Dynamic Voltage/Frequency Scaling

Fig. 3.6 shows a typical temperature convergence curve for the process. The

squares marked with circles indicate the temperature produced after each iteration.

As a basic technique, this new temperature (in the case of dynamic analysis, this new

temperature profile) is used as input to the voltage selection in the next iteration. The

squares represent successive temperatures in the inner iteration loop for temperature

analysis (Fig. 3.3). As convergence criterion, a maximal temperature difference

of 0.2◦ has been used. Based on our experiments (Section 3.5), up to 90% of the

cases reach convergence after less than five iterations (both for static and dynamic

temperature analysis).

352.5

354

355.5

357

0 5 10 15 20 25 30

Figure 3.6: Typical Temperature Convergence Curve

Since the voltage levels available for selection are discrete and limited, our itera-

tion approach is not guaranteed to reach a convergence. There are situations in which

the temperature oscillates and the temperature updating technique described above

leads to an infinite loop. This has happened for around 2.5% of our experiments.

To overcome this problem, oscillations are detected and are solved by changing the

temperature update rule: instead of using the just produced temperature for the next

iteration, a middle value between the new temperature and the one produced in the

previous iteration is used (in the case of dynamic temperature analysis, the points

on the temperature profile are recalculated accordingly). By using this technique,

all infinite loops occurring in our experiments have been solved.

3.3.2 SDVFS with Both Leakage/Temperature and

Frequency/Temperature Dependencies (SDVFS-LF)

Our static DVFS approach which also considers the frequency/temperature depend-

ency is based on the above iterative technique. The successive iterations lead, after

convergence, to a temperature profile which corresponds to the one at which the

chip will work. For each task τi the above voltage/frequency selection algorithm

calculates a certain supply voltage Vi such that energy consumption is minimized

“lic˙thesis” — 2010/11/16 — 11:04 — page 23 — #43

3.4 Dynamic Temperature-Aware DVFS (DDVFS) 23

and deadlines are satisfied. To take frequency/temperature dependency into consid-

eration, when calculating the frequency setting for τi, we now consider the thermal

profile of the task and determine the maximum temperature at which that task runs.

At voltage/frequency selection, the frequency is calculated based on Eq. (2.4) and

Eq. (2.5) (instead of being fixed, in a conservative way, considering the worst case

temperature Tmax for which the chip is designed).

3.4 Dynamic Temperature-Aware DVFS (DDVFS)

The above static approach determines start times for tasks and their voltage/fre-

quency levels assuming that they execute their WNC. By this, only static slack is

considered for energy minimization 1. In order to exploit the dynamic slack, at the

termination of each task and before starting the next one, voltage and frequency

settings have to be determined based on the values of the current time and tempera-

ture. In principle, calculating the appropriate voltage/frequency settings implies the

execution of the temperature-aware DVFS algorithm from Section 3.3. Running

this algorithm on-line, after each task execution, implies a huge time and energy

overhead which can be even higher than the execution time and energy consumption

of the actual application.

3.4.1 Off-line and On-line Phases

To overcome the above problem, we have divided our dynamic DVFS approach

into two phases. In the first phase, performed off-line, voltage/frequency settings

for all tasks are pre-computed, based on possible start times of the tasks and the

possible temperatures at that start time. The resulting voltage/frequency settings are

stored in look-up tables (LUTs), one for each task. In Fig. 3.7 we show two such

tables. They contain voltage and frequency settings for combinations of possible

start time ts and start temperature Ts of a task. For example, the line in LUT2

with start time 1.3ms and start temperature 55◦C stores the voltage and frequency

setting for the situation when τ2 starts in the time interval (1.2ms, 1.3ms] and the

start temperature is in the interval (45◦C, 55◦C]. In Section 3.4.2 we will present

the generation procedure of the LUTs.

The second phase is performed on-line and is illustrated in Fig. 3.7. Each time

a task terminates and a new voltage/frequency level has to be fixed for the next

task, the on-line scheme looks up the appropriate setting from the LUT, depending

on the actual time and temperature reading. If there is no exact entry in the LUT

1It should be mentioned that, as opposed to the dynamic one, the static approach can be used even in

the case that no temperature sensors are available on the chip.

“lic˙thesis” — 2010/11/16 — 11:04 — page 24 — #44

24 Temperature-Aware Dynamic Voltage/Frequency Scaling

Ĳ1 Ĳ2 Ĳ3VS1 VS2

ts f VTs

1 2 3 4 5

ts f V

2.5

170 1.2

230 1.3

Ts

400 1.5

1.56

550 1.7

55

100

65

75

3.60

470 1.5

530 1.6

600 1.7

650 1.8

55

100

65

75

. . . .

. . . .

..

time

1.2

200 1.2

270 1.3

330 1.4

350 1.5

45

85

55

65

1.30

300 1.3

360 1.4

430 1.5

470 1.6

45

85

55

65

. . . .

. . . .

. . . .

Figure 3.7: On-Line Phase

corresponding to the actual time/temperature, the entry corresponding to the imme-

diately higher time/temperature is selected. For example, in Fig. 3.7, τ1 finishes at

time 1.25ms with a temperature 49◦C. To determine the appropriate voltage and

frequency for τ2, LUT2 is accessed based on these time and temperature values.

There is no exact entry for 1.25ms and 49◦C, so the entry corresponding to start

time 1.3ms and start temperature 55◦C is chosen. This on-line phase indicated with

VS in Fig. 3.7 is of very low time complexity O(1) and, thus, very efficient.

3.4.2 LUT Generation

Given a set of tasks (τ1, τ2, . . . , τn) (as described in Chapter 2.2 and Chapter 2.3)

which are executed sequentially in the order, τ1, τ2,. . . , τn, on a DVFS enabled

processor, our goal is to generate a LUT for each task τi, such that the energy

consumption during execution is minimized. It is important to notice that the

voltage levels and frequencies are calculated such that the energy consumption is

optimal when the tasks execute their expected number of cycles ENC (which, in

reality, happens with a much higher probability than e.g. the WNC). Nevertheless,

voltages and frequencies are fixed such that, even in the worst case (tasks execute

their WNC), deadlines are satisfied.

“lic˙thesis” — 2010/11/16 — 11:04 — page 25 — #45

3.4 Dynamic Temperature-Aware DVFS (DDVFS) 25

For all task Ĳi , i = {1...n},

calculate LSTi and ESTi

Consider task Ĳi
Determine ǻti and ǻTi

ts i ESTi

Perform SDVFS (Chapter 3.3)

ts i ts i + ǻti ts i ≤ LSTi

Ts i Ts i + ǻTi

i 1

 Ts i Tambient

Ts i ≤ Ts
m

i

Last task

i = n?
N

Y

N

Y

i i+1N

Y

Figure 3.8: LUT Generation

The LUT generation algorithm is presented in Fig. 3.8. The outermost loop

iterates over the set of tasks and successively constructs the table LUTi for each task

τi. The next loop generates the entries of LUTi corresponding to the various start

temperatures Tsi of τi. Finally, the innermost loop iterates, for each possible start

temperature, over all considered start times of task τi, tsi. The algorithm starts by

computing the earliest and latest possible start times for each task. The earliest start

time of task τi, ESTi, is calculated based on the situation that all tasks execute with

their best case number of cycles, BNC, at the highest voltage setting and lowest

temperature (the ambient temperature). The latest start time LSTi is calculated as

the latest start time of τi that still allows to satisfy the deadlines for future tasks in

the current iteration, τj , j ≥ i, when executed with the worst case number of cycles,

WNC, at the highest voltage and the maximum temperature Tmax allowed for the

chip.

Considering the intended granularity of the LUT, the time and temperature

quanta △ti and △Ti are determined. Thus, for task τi, the number of time entries

(the number of different start times considered) will be ⌈(LSTi − ESTi)/△ ti⌉,

while, for each possible start time, the number of temperature entries is ⌈(Tsmi −

“lic˙thesis” — 2010/11/16 — 11:04 — page 26 — #46

26 Temperature-Aware Dynamic Voltage/Frequency Scaling

Ta)/△ Ti⌉, where Tsmi is the maximum possible temperature at the start time of

τi. In Sections 3.4.3 and 3.4.4 we will further elaborate on the granularity and size

of the LUTs.

When calculating the actual LUT entries for a task τi, the calculation of the

voltage and frequency setting is performed by running the SDVFS algorithm outlined

in Section 3.3, for all tasks τj , j ≥ i, considering tsi and Tsi as start time and

starting temperature, respectively, for τi.

3.4.3 Temperature Bounds and Granularity

As discussed before, the number of entries generated in LUTi along the temperature

dimension is ⌈(Tsmi − Ta)/ △ Ti⌉. The basic idea is that the lowest possible

temperature is the temperature of the ambient, while Tsmi is the highest possible

temperature, in the worst case, at the start time of task τi. But what is the value

of Tsmi ? One solution is to consider for Tsmi the maximum temperature Tmax

at which the chip is allowed to work. While this assumption is safe, it leads to

unnecessarily large tables since, during the execution of most of the tasks, the chip

will never reach temperatures close to Tmax. In order to avoid unnecessarily large

tables, we need a safe but tighter upper bound on the temperature Tsmi . In order

to achieve this goal, our LUT generation algorithm in Fig. 3.8 is executed several

times in successive iterations before the final LUT tables are obtained.

We start by considering that for the first task the maximal starting temperature is

the ambient temperature (Tsm1 = Ta). The two inner loops in Fig. 3.8 will generate

LUT1. As part of the SDVFS procedure executed during generation of LUT1 (see

Section 3.3 and Fig. 3.5), we obtain the possible temperature profiles of τ1 and, thus,

also the peak temperature T peak
1 reached during execution of this task. The worst

case starting temperature of task τ2 is Tsm2 = T peak
1 . Considering this value for

Tsm2 , table LUT2 is generated and the procedure is continued for all tasks τi. After

the algorithm in Fig. 3.8 has been executed once, we have all LUT tables, based

on the assumption that the maximal possible temperature at the start of τ1 is equal

to Ta. This, however, is not the case, since the application is executed periodically

and τ1 is started again after the last task τn. Thus, in fact, the maximal starting

temperature of τ1 is, in the worst case, equal to the worst case peak temperature

of τn. Therefore, we repeat the LUT generation algorithm, this time considering

that Tsm1 = T peak
n . This will lead to a higher T peak

1 than in the previous iteration

and, thus, a new larger Tsm2 = T peak
1 . Thus, new lines will be generated in the

LUTs. The procedure is continued iteratively, until, for a certain task, the peak

temperature over two successive iterations does not change, which means that no

new entries into the LUT tables will be generated. Our experiments have shown

that convergence is reached after no more than 5 iterations. This procedure also

“lic˙thesis” — 2010/11/16 — 11:04 — page 27 — #47

3.4 Dynamic Temperature-Aware DVFS (DDVFS) 27

allows to detect if there exists a possibility for the design to reach, in the worst case,

a thermal runaway situation (in which case the iterations do not converge) or if the

maximum allowed temperature can be violated (the process convergence but there

are peak temperatures which are beyond Tmax).

The above technique leads to a tightening of the range of temperatures in

the LUT. There are two more questions to be answered regarding the number

of temperature entries: (1) What should be the granularity of the temperature

investigation and (2) how to reduce the number of entries if only a limited amount

of memory is available at run-time?

It is obvious that a finer granularity and larger number of entries will, poten-

tially, produce better energy savings at the cost, however, of increased memory

consumption. With regard to the granularity △Ti, our experiments have shown

that values around 15◦C are appropriate, in the sense that finer granularities will

only marginally improve energy efficiency. If, due to memory limitations, we only

can afford a certain number NTi of temperature entries to be stored for a task τi,
we have to decide which lines of LUTi to preserve and which to eliminate. One

straightforward approach would be to maintain an even distribution of the selected

NTi lines over the range [Ta, T s
m
i]. However, start temperatures of tasks, during

execution, do not spread evenly over this range. Thus, it is more efficient to have the

NTi lines more dense around the temperature values that are more likely to happen,

and sparse towards the extremes. This means that less pessimistic voltage/frequency

settings will be used for the most likely cases, while cases that are much less likely

to happen are handled in a more pessimistic way. Thus, after the LUT tables have

been generated, in order to select the appropriate NTi lines along the temperature

dimension for each task τi, we run a temperature analysis session in which all tasks

are executed for their expected number of cycles ENC. From this analysis, we can

observe which is the most likely starting temperature for each task and we select

the NTi lines among those close to this most likely temperature.

3.4.4 LUT Granularity Along the Time Dimension

A straightforward approach would be to allocate the same number of entries, along

the time dimension, to each task (Nti is the same for all tasks τi, i = 1..N).

However, the start time interval sizes LSTi − ESTi can differ very much between

tasks, which should be taken into consideration when deciding on the number of

time entries. Therefore, given a total number of entries along the time dimension

NLt, we determine the number of time entries in each LUTi, as shown in Eq. (3.1)2:

2Let us mention that, while the start time intervals’ sizes, LSTi − ESTi, are very different from

task to task, this is much less the case with the size of the temperature interval, Ts
m

i
− Ta. Therefore,

“lic˙thesis” — 2010/11/16 — 11:04 — page 28 — #48

28 Temperature-Aware Dynamic Voltage/Frequency Scaling

Nti =

⌈

NLt ·
(LSTi − ESTi)

N
∑

i=1

(LSTi − ESTi)

⌉

(3.1)

3.4.5 Accounting for Analysis Accuracy and Ambient

Temperature

The solutions produced by our techniques presented in section 3.4 are safe. By this

we mean that:

1. It is guaranteed that deadlines are satisfied;

2. If, at run time, a certain frequency setting is selected for a task τi, it is

guaranteed that the temperature during execution of τi will not exceed the

limit allowed for the chip to run at the selected frequency.

There are two aspects which have to be discussed with respect to the second of

the two statements above. First is the issue of ambient temperature. If a task τi
is starting its execution at a certain temperature T , the temperature profile during

task execution depends on the actual ambient temperature. Thus, a safe frequency

selection has to also take into consideration the current ambient temperature. Two

possible solutions can be considered:

1. Generate the voltage/frequency settings considering the highest ambient

temperature under which the system is supposed to function. This is a safe

but pessimistic solution with, potentially, smaller energy savings.

2. Generate alternative voltage/frequency settings for a set of ambient temperat-

ures in the range assumed for the system to function. During run time, using

sensors for the ambient temperature, the system will switch to those tables

corresponding to that ambient temperature that is immediately higher than the

actual measured one. This solution requires additional memory for storing a

larger amount of tables but could lead to better energy efficiency.

The second aspect to be considered is the accuracy of the temperature analysis.

The fact that a certain frequency setting is safe, with regard to the peak temperature

reached during execution of a task, is based on the temperature analysis performed as

part of the DVFS procedure. Thus, the results can be safe only to the extent to which

this analysis provides safe temperatures. Of course, system-level thermal analysis

the number of entries along the temperature dimension (NTi, see section 3.4.3) has been kept identical

for all tasks in our experiments.

“lic˙thesis” — 2010/11/16 — 11:04 — page 29 — #49

3.5 Experimental Results 29

tools are not provably accurate. Nevertheless, relative precisions are reported for

the various analysis tools and we are using this information in order to account

for the inaccuracy of the thermal analysis. More precisely, given a certain relative

precision of the temperature analysis tool that we use, we account for this precision

in a conservative way when determining the peak temperatures used for frequency

calculation.

In section 3.5, we will evaluate the impact of both ambient temperature and

potential analysis inaccuracy on the energy optimization results.

3.5 Experimental Results

In this section, we perform experiments aiming at evaluating our DVFS approaches

presented in Section 3.3 and Section 3.4.

3.5.1 Static DVFS Approach

Leakage/Temperature Dependency.

The first set of experiments is performed to compare the SDVFS approach with the

consideration of leakage/temperature dependency (denoted T-SDVFS) as illustrated

in Fig. 3.5, and a SDVFS approach that ignores the dependency (denoted as NT-

SDVFS). NT-SDVFS is realized by running one single iteration of the process in

Fig. 3.5. The assumed temperature is used for voltage selection which produces the

voltage levels; temperature analysis gives the real temperature at which the chip

will run using the obtained voltages, based on which the final energy consumption

is computed.

We have generated 150 test applications which are running at temperatures

in the range 40◦C to 125◦C. The number of tasks in each application is in the

range [5, 100]. The WNC of the tasks is in the range [106, 107] cycles. 9 voltage

levels in the interval [0.6V, 1.4V] were considered for dynamic supply voltage

selection. The temperature model related coefficients are the same as in [19]. The

chip working temperature is in the range [Ta, Tmax] where Ta and Tmax are the

ambient temperature and maximal allowable chip working temperature respectively.

It is assumed that Tmax = 125◦C and Ta = 40◦C. Leakage power is computed by

Eq. (2.2) with parameters from [59]. The amount of leakage power (calculated at

70◦C) is, on average, 40-60% of the total power. The frequency corresponding to a

supply voltage is computed by Eq. (2.4) using parameters from [55].

For each generated test application we perform the following steps:

1. Apply our T-SDVFS algorithm illustrated in Fig. 3.5 and obtain the optimized,

temperature-aware, energy consumption Eta.

“lic˙thesis” — 2010/11/16 — 11:04 — page 30 — #50

30 Temperature-Aware Dynamic Voltage/Frequency Scaling

2. For the same application and setting, we run the NT-SDVFS approach result-

ing in energy consumption Enta.

3. The energy reduction by using our T-SDVFS approach is computed as follows.

G =
(Enta − Eta)

Enta

× 100%

It is expected that the energy Eta produced by the temperature-aware approach is

smaller than Enta. Obviously, Enta depends on the assumed temperature provided

by the designer. If the designer’s guess is correct (equal to the temperature at which

the chip functions with the selected voltages), a situation which is very unlikely, then

Enta = Eta. As further away the designer’s guess is, as larger Enta is compared to

Eta. Fig. 3.9 shows the average energy reduction G as a function of how far the

temperature guess is from the actual temperature at which the application runs. As

0.0%

5.0%

10.0%

15.0%

20.0%

-60 -40 -20 0 20 40 60

Temperature Difference

E
n
e
rg
y
Im
p
ro
ve
m
e
n
t
G
%

Figure 3.9: Energy Improvement with T-SDVFS Approach

can be seen, considerable amount of energy savings are achieved by our thermal-

aware SDVFS approach. In the context in which it is practically impossible to

predict at which temperature the circuit will function, since the actual voltages are

not known before voltage selection, a thermal-aware approach is a safe solution if

energy losses are to be avoided.

It is interesting to observe that, when temperatures are underestimated, the

energy losses are slightly smaller. The explanation is the following: when temper-

atures are overestimated, the temperature-unaware approach assumes that leakage

currents are very high (due to the high assumed temperature). Thus, the voltage

selection algorithm will tend to select high supply voltages so that tasks are termin-

ated early and slack time is used to put the circuit into low leakage modes. Since,

in reality, the circuit will work at lower temperature and leakage currents will be

“lic˙thesis” — 2010/11/16 — 11:04 — page 31 — #51

3.5 Experimental Results 31

considerably smaller (due to the exponential dependency of leakage on temperature,

which at high temperature values leads to larger errors than at low temperatures), the

temperature-aware approach will produce smaller supply voltages, which explains

the energy differences at overestimated temperature. In the case of temperature

underestimations, the temperature-unaware DVFS approach will produce lower

voltages (which extend the execution time in the limits of available slack) and,

by this, find solutions that are close to those produced by the temperature-aware

approach.

We have also applied our temperature-aware voltage selection T-SDVFS on a

real-life examples: an MPEG2 decoder which consists of 34 tasks and is described

in more detail in [60]. Fig. 3.10 shows the energy reduction G as a function of

how far the temperature guess is from the actual temperature at which the MPEG2

decoder runs. As can be observed, the trend is similar to the one produced for the

generated applications.

0%

5%

10%

15%

-60 -40 -20 0 20 40 60

Temperature Difference

E
n
e

rg
y
 I

m
p

ro
v
m

e
n
t

G
%

Figure 3.10: Energy Improvement for The MPEG2 Decoder

Frequency/Temperature Dependency.

A second set of experiments is performed to evaluate our temperature-aware DVFS

approach SDVFS-LF, which takes both leakage/temperature and frequency/temper-

ature dependency into consideration as described in Section 3.3.2.

150 test applications were generated and 9 discrete voltage levels in the range

[1.0V, 1.8V] were used for dynamic voltage and frequency selection. The frequency

for the SDVFS-LF approach is determined by Eq. (2.4) and Eq. (2.5). For Eq. (2.5),

we use the coefficients µ = 1.19, ξ = 1.2, and k = −1.0V/◦C according to [19]

and [61]. For each application, we perform both T-SDVFS and SDVFS-LF, and the

corresponding energy consumptions are denoted by E1ta and E2ta respectively.

We compute the energy reduction obtained from using SDVFS-LF compared to T-

“lic˙thesis” — 2010/11/16 — 11:04 — page 32 — #52

32 Temperature-Aware Dynamic Voltage/Frequency Scaling

SDVFS as follows:
E1ta − E2ta

E1ta
× 100%

As shown in Table 3.4, the energy consumption can be reduced by 22% on

average over all test applications. For our real-life example: the MPEG2 decoder,

the corresponding energy reduction is 21%.

Table 3.4: Energy Reduction from Using SDVFS-LF Comparing with T-SDVFS

Energy Reduction

Generated Applications 22%

MPEG2 Decoder 21%

3.5.2 Dynamic DVFS Approach

In this section, we evaluate our on-line temperature-aware dynamic DVFS (DDVFS)

approach described in Section 3.4. 150 applications were generated and each

generated application consists of 2 to 50 tasks. The WNC of the tasks is in the

range [106, 107] cycles. The test applications are executed on a processor which

can run at 9 different supply voltage levels in the range [1.0V, 1.8V]. It is important

to mention that in all our experiments, we have accounted for the time and energy

overhead produced by the on-line component of our dynamic approach. Similarly,

we have also taken into consideration the energy overhead due to the memory

accesses. This overhead has been calculated based on the energy values given

in [62] and [63].

Frequency/Temperature Dependency.

We have first performed experiments to explore the benefits of considering the fre-

quency/temperature dependency with dynamic DVFS. Table 3.5 shows the energy

reduction obtained by taking the frequency/temperature dependency into considera-

tion with DDVFS compared to the similar approach but ignoring the dependency.

The energy consumption is reduced by 17% on average, for our generated ap-

plications. In the case of our real life example, the MPEG2 decoder, the energy

consumption reduction is 18.6%.

Table 3.5: Energy Improvement by DDVFS with Frequency/Temperature Dependency

Energy Reduction

Generated Applications 17.3%

MPEG2 Decoder 18.6%

“lic˙thesis” — 2010/11/16 — 11:04 — page 33 — #53

3.5 Experimental Results 33

DDVFS vs. SDVFS.

This set of experiments is aimed at comparing the energy consumption between the

static DVFS approach, presented in Section 3.3, and the dynamic one, presented in

Section 3.4 (both considering the two pairs of dependencies: leakage/temperature

and frequency/temperature). As the ratio BNC/WNC has a strong influence on the

potential efficiency of a dynamic approach, we run the experiments considering three

different ratios: 20%, 50%, and 70%. We also assume that the workload distribution

of each task conforms to a normal distribution N(ENC, σ2), where ENC is the

mean value, and σ is the standard deviation. For our energy evaluations we have

generated actual numbers of executed clock cycles for each task considering standard

deviations of (WNC−BNC)/3, (WNC−BNC)/5, (WNC−BNC)/10, and

(WNC −BNC)/100.

Fig.3.11 shows the energy savings with the dynamic approach DDVFS relative

to the static one SDVFS. As can be observed, the efficiency of the dynamic approach,

compared to the static one, increases as the ratio between BNC and WNC becomes

smaller. The energy savings are also larger, compared to the static approach, when

the standard deviation σ is smaller (more of the actual executed number of clock

cycles are clustering around the ENC). Remember that our DDVFS algorithm is

targeted towards optimizing the energy consumption for the case when tasks execute

the expected number of cycles ENC.

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

(WNC-BNC)/3 (WNC-BNC)/5 (WNC-BNC)/10 (WNC-BNC)/100

Standard Deviation

E
n
e
rg

y
 I

m
p
ro

v
m

e
n
t

BNC / WNC=0.7 BNC / WNC=0.5 BNC / WNC=0.2

Figure 3.11: Dynamic vs. Static Approach

“lic˙thesis” — 2010/11/16 — 11:04 — page 34 — #54

34 Temperature-Aware Dynamic Voltage/Frequency Scaling

We also apply our dynamic approach to the MPEG2 decoder mentioned in

Section 3.5.1. The energy consumption with the dynamic approach is 39% smaller

than the one using the static DVFS approach.

Computation Time of the Off-line Phase of DDVFS.

For the above test applications, the computation time needed for LUT generation in

the off-line phase is shown in Fig. 3.12. The computation time is illustrated as a

function of the number of tasks in the application. For large size application, e.g. an

application containing 50 tasks, the needed time for generating all the LUT tables

off-line is around 400 minutes.

0

100

200

300

400

500

0 10 20 30 40 50 60

Number of Tasks

C
o
m

p
u
ta

ti
o
n
 T

im
e

(M
in

u
te

s)

Figure 3.12: Computation Time: Off-line Phase

LUT Sizes.

The next set of experiments are aimed at exploring the impact of the LUT sizes

on the efficiency of the DDVFS approach. In particular, we are interested in the

impact of the number of entries along the temperature dimension. The number

of entries along the time dimension has been kept constant for these experiments

and is distributed according to the discussion in section 3.4.4. First we run, for all

applications, our dynamic DVFS approach considering a granularity △T = 10◦.

We evaluate the average energy reduction with the obtained LUTs, compared to the

static approach. Then we impose a certain limitation on the number of entries along

the temperature dimension and we construct the corresponding LUTs as discussed

in Section 3.4.3. We again evaluate the energy consumption considering these

reduced LUTs.

The diagram in Fig. 3.13 shows the average results for different number of entries

under two different standard deviations of the actual number of clock cycles executed

by tasks. Having one single temperature entry will produce energy reductions

compared to the static case which are 37% smaller (for σ = (WNC −BMC)/3)

than with an unreduced LUT. However, with 2 entries, the results are already very

“lic˙thesis” — 2010/11/16 — 11:04 — page 35 — #55

3.5 Experimental Results 35

close to those obtained with an unreduced LUT and with 3 entries they are, in

practice, identical. This is good news, since it shows that significant energy savings

can be obtained with relatively small memory overhead. It should be mentioned that

all other experiments presented in this section have been performed with 2 entries

along the temperature dimension.

0.00%

10.00%

20.00%

30.00%

40.00%

1 2 3 4 5 6

Entry Number

P
e

n
a

lty
 o

n
 E

n
e

rg
y
 E

ff
ic

ie
n

c
y
 %

(WNC-BNC)/3

(WNC-BNC)/10

Figure 3.13: Impact of Temperature Line Number

Accounting for Ambient Temperature and Thermal Analysis Accuracy.

We have also performed experiments to explore the impact of ambient temperature

and temperature analysis accuracy. For all experiments above, we have assumed

that Ta is 40◦C and is known at design time. In order to evaluate the impact of the

ambient temperature, we considered all the generated applications and constructed

LUTs for values of Ta in the range [-10◦C, 40◦C]. For each (application, LUTs)

pair corresponding to a certain Ta we have evaluated the energy consumption

considering that the Ta is identical with the one assumed at LUT generation. Then

we run the simulations for the same (application, LUTs) pair, but considering that

Ta deviates with 10◦, 20◦, . . . , 50◦ from the value assumed at design time. The

results are shown in Fig.3.14. We can see that if Ta is different by, for example, 20◦

from the one assumed at design time, the energy consumption increases by only 7%

on average. This shows that, if the predicted range of ambient temperature is, for

example, 40◦, generating two sets of LUTs (granularity of 20◦) will lead to energy

losses, on average, less than 7%.

All the above experiments have been performed considering that the temperature

modeling and analysis is accurate. We have repeated the experiments considering

a relative accuracy of 85%. When calculating frequency settings we accounted,

in a conservative way, for this degree of accuracy. In Table 3.6 we compare the

energy efficiency achieved with simulation accuracy 85% and the one with 100%

“lic˙thesis” — 2010/11/16 — 11:04 — page 36 — #56

36 Temperature-Aware Dynamic Voltage/Frequency Scaling

0.00%

5.00%

10.00%

15.00%

20.00%

0 10 20 30 40 50

Ambient Difference

E
n

e
rg

y
 P

e
n

a
lt
y
 %

Figure 3.14: Impact of The Ambient Temperature

Table 3.6: Energy Improvement Degradation by Simulation Accuracy

100% 85% Degradation

Generated Applications 17.3% 16.7% 3.5%

MPEG2 Decoder 18.6% 18.1% 2.8%

simulation accuracy for both our generated examples and the MPEG2 decoder. As

shown in Table 3.6, the degradation due to considering for the 15% inaccuracy is

less than 3.5%.

“lic˙thesis” — 2010/11/16 — 11:04 — page 37 — #57

Chapter 4

Temperature-Aware Idle Time

Distribution

4.1 Motivational Example

4.1.1 Static Idle Time Distribution

Let us consider a periodic application consisting of 7 tasks which share a global

deadline of 96.85ms. The worst case workload, WNC (in clock cycles), and

average switched capacitance, Ceff , for each task are shown in Table 4.1. The

tasks run on a processor with a fixed supply voltage and frequency level of 0.6V

and 132MHZ respectively. The corresponding execution times teW are also shown

in Table 4.1.

Table 4.1: Motivational Example: Application Parameters

WNC Ceff (f) teW (ms)

τ1 8.26e+06 5.0e-10 6.22

τ2 1.20e+07 5.0e-10 9.07

τ3 2.32e+07 9.0e-8 18.76

τ4 2.25e+07 1.7e-7 17.46

τ5 1.46e+07 1.8e-7 16.94

τ6 2.15e+07 1.9e-7 16.18

τ7 8.26e+06 5.0e-10 6.22

Based on the performance of this processor, there exists 6ms static slack, ts,

in each execution period of this application. Fig. 4.1 shows two different ways of

“lic˙thesis” — 2010/11/16 — 11:04 — page 38 — #58

38 Temperature-Aware Idle Time Distribution

distributing ts. The first distribution (1st ITD), as shown in Fig. 4.1a, places the

Ĳ1 Ĳ2 Ĳ3 Ĳ4 Ĳ5 Ĳ6 Ĳ7

Ĳ1 Ĳ2 Ĳ3 Ĳ4 Ĳ5 Ĳ6 Ĳ7

(a) 1
st

 ITD

(b) 2
nd

 ITD

Deadline

(Period)

Time(ms)

Time(ms)

6.2

Static Slack: 6ms

96.8

Idle for:

2.58ms
Idle for:

2.26ms

Idle for:

1.16ms

15.3 34.0 51.5 68.4 84.6 90.80.0

15.3 34.0 52.7 71.9 90.66.2 96.80.0 35.2 54.9 74.4

Figure 4.1: Motivational Example: Static Idle Time Distribution

whole ts after the last task, while the second distribution (2nd ITD), in Fig. 4.1b,

divides the static slack ts into 3 segments of idle slots and places the 3 idle slots

after execution of task τ3, τ4 and τ5, respectively.

For simplicity, in this example, we ignore both energy and time overhead due to

switching between the active and idle mode. The two different ITDs will lead to

different temperature and leakage power profiles. The average working temperature

Tw of each task, as well as the leakage energy consumption, are shown in Table

4.2, where Eleak is the leakage consumption of each task. Eleak
tot is the total leakage

energy consumption of the whole application. Comparing Eleak
tot for the 1st and 2nd

ITD, we can observe that around 10% reduction of leakage energy consumption can

be achieved.

Table 4.2: Static ITD: Leakage Energy Comparison

1st ITD 2nd ITD

Tw(◦C) Eleak(J) Tw(◦C) Eleak(J)

τ1 101 0.81 110 0.96

τ2 102 1.20 107 1.30

τ3 108 2.73 108 2.73

τ4 119 3.08 113 2.78

τ5 125 3.32 115 2.79

τ6 129 3.39 117 2.68

τ7 122 1.24 117 1.05

Eleak
tot 15.77 14.29

“lic˙thesis” — 2010/11/16 — 11:04 — page 39 — #59

4.1 Motivational Example 39

The leakage energy reduction is due to the modified working temperature of

the chip which has a strong impact on the leakage power. It is also important to

mention that the table reflects the steady state (not the start-up mode), for which

energy minimization is targeted. This means that the starting temperature for τ1 is

identical to the temperature at the end of the previous period.

4.1.2 Dynamic Idle Time Distribution

The ITD approach outlined in the previous section is an off-line static one which

assumes that tasks execute their WNC and, thus, it only distributes the static slack.

However, in reality, most of the time, there are huge variations in the number of

cycles executed by a task, from one activation to the other, which leads to a large

amount of dynamic slack.

For the task set introduced in the previous section, let us imagine the activation

scenario shown in Table 4.3, where the columns ANC and teA contain the actual

executed workload (in clock cycles) and the corresponding actual execution time

of each task, respectively. tdi represents the dynamic slack generated due to the

actual number of cycles executed by task τi (it is the difference between the teW

and teA of the task). For this activation scenario, tasks τ3, τ4, τ5 and τ6 execute

Table 4.3: Motivational Example: An Activation Scenario

ANC teW (ms) teA(ms) tdi(ms)

τ1 5.95e+05 6.22 0.45 5.77

τ2 5.20e+05 9.07 0.40 8.67

τ3 2.49e+07 18.76 18.76 0.0

τ4 2.32e+07 17.46 17.46 0.0

τ5 2.25e+07 16.94 16.94 0.0

τ6 2.15e+07 16.18 16.18 0.0

τ7 2.60e+06 6.22 1.96 4.26

their worst case workload, while τ1, τ2 and τ7 execute less than their worst case

workload and, thus, generate dynamic slack. The total amount of dynamic slack is

td =
∑7

i=1 td
i = 18.7ms.

Fig. 4.2a illustrates the distribution of idle time slots during the above on-line

activation scenario if we use the off-line ITD approach which distributes static slack

as illustrated in Fig. 4.1b. In this case, the dynamic slack tdi is placed where it is

generated (tdi is placed after τi terminates). Table 4.4 shows the corresponding

working temperature and leakage energy consumption of each task as well as

the total leakage energy consumption, which is 7.98J. However, leakage energy

can be reduced by distributing the dynamic slack more wisely. For example, at

“lic˙thesis” — 2010/11/16 — 11:04 — page 40 — #60

40 Temperature-Aware Idle Time Distribution

Ĳ1 Ĳ2 Ĳ3 Ĳ4 Ĳ5 Ĳ6 Ĳ7

Ĳ1 Ĳ2 Ĳ3 Ĳ4 Ĳ5 Ĳ6

(a) 1
st

 ITD: Execution Scenario with Only Static ITD

(b) 2
st

ITD: Execution Scenario with Both Static and Dynamic ITD

Deadline

(Period)

Time(ms)

Time(ms)

Idle for:

5.77ms

Idle for:

8.67ms

Idle for:

4.26ms
Idle for:

2.58ms
Idle for:

2.26ms

Idle for:

1.16ms

Idle for:

3.87ms

Idle for:

4.74ms

Idle for:

5.85ms
Idle for:

5.99ms

Idle for:

4.27ms

0.4 15.3 34.0 52.7 71.9 90.66.2 6.6 96.80.0 35.2 54.9 74.4 92.6

0.4 23.5 28.2 51.5 68.4 90.60.8 4.70.0 45.7 74.4 94.9 96.8

Ĳ7

Figure 4.2: Motivational Example: Idle Time Distribution

run-time, whenever a task terminates, the idle time slot length following this task

is calculated by taking into consideration the current time and the current chip

temperature. Fig. 4.2b shows the ITD determined in this way. The corresponding

total leakage energy consumed, as shown in Table 4.4, is 7.32J which means a

leakage energy reduction of 8%. This leakage reduction is due to the further

lowered working temperature of the energy hungry tasks τ4, τ5 and τ6, which is

achieved by ITD considering both static and dynamic slack.

Table 4.4: Dynamic ITD: Leakage Energy Comparison

1st ITD 2nd ITD

Tw(◦C) Eleak(J) Tw(◦C) Eleak(J)

τ1 89 0.05 83 0.04

τ2 78 0.03 83 0.04

τ3 79 1.67 84 1.80

τ4 91 1.92 87 1.78

τ5 97 2.04 90 1.80

τ6 99 2.02 91 1.73

τ7 102 0.25 84 0.13

Eleak
tot 7.98 7.32

The above examples have demonstrated that leakage energy can be reduced

through both static and dynamic idle time distribution.

“lic˙thesis” — 2010/11/16 — 11:04 — page 41 — #61

4.2 Problem Formulation 41

4.2 Problem Formulation

We consider a set of periodic tasks (τ1, τ2, . . . , τn) executed in the order τ1, τ2, . . . ,

τn. For each task τi, as described in Chapter 2.2, the five-tuple:

< WNCi, BNC,ENC, dli, Ceffi >

is given. The supply voltage Vi at which the task τi is executed is fixed, e.g. by our

DVFS technique proposed in Chapter 3. Corresponding to the supply voltage Vi

that task τi is executed at, the worst case execution time teWi , best case execution

time teBi , and expected execution time teEi can be directly calculated 1.

For each iteration of the application, the total static slack ts is constant and

computed by Eq. (4.1):

ts = dln −
n
∑

i=1

teWi (4.1)

where dln represents the deadline of the last task τn in the execution order, and
∑n

i=1 te
W
i is the sum of the worst case execution time of all tasks. The total

dynamic slack for each execution iteration is varying due to execution time variation

of tasks. For one iteration, td is calculated as follows:

td =

n
∑

i=1

teWi −

n
∑

i=1

teAi

where teAi represents the actual execution time of task τi in this iteration. teAi
conforms to a distribution with expected execution time teEi as the arithmetic mean

value of the probability density function Pb(teAi) as follows:

teEi =

∫ teWi

teBi

Pb(teAi) · te
A
i d(teAi)

The total available slack ttot for one iteration is equal to the sum of the static

slack ts and dynamic slack td as shown in Eq. (4.2).

ttot = ts+ td (4.2)

During ttot the processor can be switched to idle mode consuming the power Pidle.

The time and energy overhead for switching the processor to and from the idle state

1The frequency level corresponding to the supply voltage Vi is computed at the highest allowable

working temperature of the processor Tmax.

“lic˙thesis” — 2010/11/16 — 11:04 — page 42 — #62

42 Temperature-Aware Idle Time Distribution

are to and Eo respectively. Idle slots can be placed after the execution of any task.

The length of an idle slot i after task τi is denoted as ti, and the sum of all idle

slots
∑n

j=1 ti should be equal to the total available idle time ttot. Note that the time

overhead to is included in the slot length ti.
We will, formulate the following two ITD problems.

• ITD with only static slack: static idle time distribution (SITD)

• ITD with both static and dynamic slack: static and dynamic idle time distri-

bution (DITD)

4.2.1 ITD with Only Static Slack: SITD

Let us consider the scenario in which each task τi is always executed with the worst

case workload: teAi = teWi . In this scenario, for each iteration, the available slack

is constant and known: ttot = ts where ts is computed by Eq. (4.1).

For one iteration, the total energy consumption of the task set can be expressed

as follows:

Etot =
n
∑

i=1

Edyn
i +

n
∑

i=1

Eleak
i +

n
∑

i=1

(Eo · xi) + EI

where
∑n

i=1 E
dyn
i and

∑n
i=1 E

leak
i are the total dynamic and leakage energy con-

sumption of all tasks.
∑n

i=1(Eo ·xi) is the total energy overhead when the processor

is switched to/from idle state, where xi is a binary variable indicating whether task

τi is followed (xi = 1) or not (xi = 0) by an idle slot. EI is the total energy

consumption during the idle time ttot.
The dynamic energy consumption of each task Edyn

i , is further computed as:

Edyn
i = P dyn

i (Vi) · te
W
i

where Vi is the supply voltage the task τi is executed at, and P dyn
i (Vi) computes

the dynamic power according to Eq. (2.1). teWi represents the worst case execution

time of task τi. As the supply voltage Vi and teWi are constants, the total dynamic

energy
∑n

i=1 E
dyn
i is hence constant and independent from the distribution of idle

time.

The total energy consumption during idle time EI is computed as:

EI = Pidle · ttot.

“lic˙thesis” — 2010/11/16 — 11:04 — page 43 — #63

4.2 Problem Formulation 43

where Pidle is the power consumption of the processor in the low power mode and

ttot = ts. Similar to Edyn
i , EI is also fixed and independent from ITD, as ts is

constant with given supply voltages.

The leakage energy consumption of each task Eleak
i is a function of both

temperature and supply voltage as expressed in Eq. (4.3):

Eleak
i =

∫ teWi

0

P leak
i (Vi, Ti(t)) dt (4.3)

where Ti(t) describes the temperature of the processor during execution of task

τi. P
leak
i (Vi, Ti(t)) calculates leakage power according to Eq. (2.2). With given

supply voltages Vi, Ti(t) is influenced by the distribution of idle time slots, so the

leakage energy consumption Eleak
i is determined by the distribution of idle time

slots.

We need to distribute the static slack ts to minimize the total leakage energy

consumption of the application and the energy overheads due to switching as

follows.

E =
n
∑

i=1

Eleak
i +

n
∑

i=1

(Eo · xi)

With given supply voltages Vi, and a fixed distribution of idle time slots, the

same power pattern is periodically executed on the processor. As the task set

is executed for a large number of iterations, the processor temperature is, thus,

able to converge to a steady state dynamic temperature curve (SSDTC). Once the

processor has reached the steady state, the SSDTC will repeat periodically. Our

Problem Formulation 1 Static Idle Time Distribution

E =
n
∑

i=1

Esleaki +
n
∑

i=1

(Eo · xi) (4.4)

subject to :

ts =
n
∑

i=1

ti (4.5)

dli ≥
i−1
∑

j=1

ti +
i

∑

j=1

teWj (∀i, 1 ≤ i ≤ n) (4.6)

SITD problem can be formulated by Eq. (4.4)–Eq. (4.6). Given is a set of periodic

“lic˙thesis” — 2010/11/16 — 11:04 — page 44 — #64

44 Temperature-Aware Idle Time Distribution

tasks (τ1, τ2, . . . , τn) as defined earlier in this section. The tasks are mapped and

scheduled on the platform as described in Chapter 2.3. The idle time slot length

ti following each task τi and, implicitly, xi (the binary variable which represents

whether task τi is followed by an idle time slot or not) are to be determined such

that the objective function Eq. (4.4) is minimized with the two constraints Eq. (4.5)

and Eq. (4.6) to be satisfied. Esleaki in Eq. (4.4) represents the steady state leakage

energy consumption. The constraint in Eq. (4.5) requires that the sum of all idle

slots lengths should be equal with the total available static slack ts where ts is

calculated by Eq. (4.1). The constraint in Eq. (4.6) guarantees that the deadline of

each task is satisfied.

4.2.2 ITD with Both Static and Dynamic Slack: DITD

The above problem formulation ignores the execution time variations of tasks at

run-time and, implicitly, ignores the dynamic slack. To deal with execution time

variation and perform dynamic slack distribution, the idle slot length ti following

the termination of a task τi should be determined, at run-time, based on the actual

time and processor temperature.

Our problem formulation for DITD is shown by Eq. (4.7)–Eq. (4.9). Given is

Problem Formulation 2 Dynamic Idle Time Distribution

Minimize :

E =
n
∑

j=i+1

Eleak
j +

n
∑

j=i

(Eo · xj) (4.7)

subject to :
n
∑

j=i

tj = dln − tfi −
n
∑

j=i+1

teEj (4.8)

dlj ≥ tfi +

j−1
∑

k=i

tk +

j
∑

k=i+1

teWk (4.9)

(∀j, i+ 1 ≤ j ≤ n)

a set of periodic tasks (τ1, τ2, . . . , τn) as defined earlier in this section. The tasks

are mapped and scheduled on the platform as described in Chapter 2.3. When task

τi terminates at time tfi , the idle time slot ti following task τi’s termination is de-

termined such that Eq. (4.7) is minimized, where
∑n

j=i+1 E
leak
j is the total leakage

“lic˙thesis” — 2010/11/16 — 11:04 — page 45 — #65

4.3 Temperature Analysis 45

energy consumption of the remaining tasks τj , (i < j ≤ n), to be executed within

the current iteration. The leakage energy consumption Eleak
j of each remaining task

τj is estimated corresponding to the case when the expected workload is executed.

Eleak
j is calculated according to Eq. (4.3) with the difference that the expected

execution time teEj is used instead of teWj as the upper limit for the integral. The

constraint in Eq. (4.8) requires that the sum of all idle slots lengths should be equal

with the total available slack where tfi is the time the current task τi terminates. The

total available slack is computed with the assumption that all the future tasks τi+1

to τn are executed with their expected workload teEj (∀j, i < j ≤ n). The deadline

of each task is guaranteed by the constraint in Eq. (4.9), where dlj represents the

deadline of task τj . Note that, the worst case execution time teWk is used in Eq. (4.9)

in order to guarantee the deadline of each task in the worst case.

4.3 Temperature Analysis

To solve the problem of ITD, we need to perform dynamic temperature analysis. In

the previous chapter, the thermal analysis are based on Hotspot. However, using

Hotspot for dynamic temperature analysis is not efficient due to its extremely long

execution time. In this section, we propose an analytical thermal analysis approach

which is fast and accurate enough to be used in our ITD optimization loop.

4.3.1 Temperature Model

Thermal Circuit.

In order to analyze the thermal behavior, we build an equivalent RC thermal circuit

based on the physical parameters of the die and the package [24]. Due to the fact

that the application period, tp, can safely be considered significantly smaller than

the RC time of the heat sink, which, usually, is in the order of minutes [64], the

heat sink temperature stays constant after the state corresponding to the SSDTC is

reached. For SSDTC estimation, we, hence, can ignore the thermal capacitance (not

the thermal resistance!) of the heat sink and build the 2-RC thermal circuit shown

in Fig. 4.3a. B1 and B2 represent the temperature node for the die and the heat

spreader respectively. P (t) stands for the processor power consumption as a function

of time. We obtain the values of R1, R2, C1 and C2 from an RC network similar

to the one constructed in Hotspot [25]. R1 is calculated as the sum of the thermal

resistance of the die and the thermal interface material (TIM), and C1 as the sum

of the thermal capacitance of the die and the TIM. R2 is the equivalent thermal

resistance from the heat spreader to the ground through the heat sink, and C2 is the

equivalent thermal capacitance of the heat spreader layer.

“lic˙thesis” — 2010/11/16 — 11:04 — page 46 — #66

46 Temperature-Aware Idle Time Distribution

P(t)
R1

C1 C2

R2

B1 B2

P(t)
R1

C1

R2

B1 B2

(a) 2-RC Thermal Circuit (b) 1-RC Thermal Circuit

Figure 4.3: Thermal Circuit

When the application period tp is significantly smaller than the RC time of

the heat spreader in the 2-RC thermal circuit, the heat spreader temperature stays

constant after SSDTC is reached. In this case, we can simplify the 2-RC to an 1-RC

thermal circuit (Fig. 4.3b).

Temperature Equations.

For the 2-RC thermal circuit in Fig. 4.3a, we can describe the temperatures of B1

and B2 as follows:

C1 ·
dT die

dt
+

T die − T sp

R1
= P (t) (4.10)

C2 ·
dT sp

dt
+

T sp

R2
=

T die − T sp

R1
(4.11)

where T die and T sp represent the temperatures at B1 and B2 respectively. The

power consumption, P (t), is the sum of the dynamic and leakage power, which are

dependent on the supply voltage V and T die.

If, within a time interval, the power consumption P stays constant, the tempera-

ture at the beginning and end of the time interval can be expressed as follows, by

solving Eq. (4.10) and Eq. (4.11):

T die
e = a1 · T

die
b + b1 · T

sp
b + c1 (4.12)

T sp
e = a2 · T

die
b + b2 · T

sp
b + c2 (4.13)

T die
b and T sp

b are the temperatures of B1 and B2 at the beginning of the time interval,

while T die
e and T sp

e are the temperatures at the end of the time interval. a1, a2, b1,

b2, c1 and c2 are constant coefficients determined by R1, R2, C1, C2 and P .

“lic˙thesis” — 2010/11/16 — 11:04 — page 47 — #67

4.3 Temperature Analysis 47

4.3.2 SSDTC Estimation

As an input to the SSDTC calculation we have the voltage levels, calculated by a

DVFS algorithm, and a given idle time distribution, as illustrated in Fig. 4.4a.

t0 t1 t2 t3 tn-1 tn Time
Pidle

t0 t1 t2 t3 tn-1 tnTime

Deadline

Tdie1

Tdie2

Tdie0

Tdie3

Tdie4
Tdie5

Tdie6
Tdie7 Tdiem-3

Tdiem

Tdiem-2

Tdiem-1Tdie8

Vs0 Vs1Vs2Vs3
Vs4Vs5Vs6 Vs8

Vsm-3
Vsm-1Vsm-2

Figure 4.4: Temperature Analysis

When the processor is working in the active state, the leakage power consump-

tion varies with the working temperature of the processor. In Fig. 4.4a, we divide

the execution interval of each active state step into several sub-intervals. The total

number of sub-intervals is denoted as m. Each sub-interval is short enough such that

the temperature variation is small and the leakage power can be treated as constant

inside the sub-interval.

Pi is the power consumption for each sub-interval i (1 ≤ i ≤ m). When

the processor is in the active state during the ith sub-interval, Pi is computed by

Eq. (4.14), where V si−1 and T die
i−1 are the supply voltage and processor temperature

at the start of the ith sub-interval. P dyn(V si−1) represents the dynamic power

consumption while P leak(T die
i−1, V si−1) represents the leakage power consumption

based on the piece-wise linear leakage model discussed in Section 2.1.

Pi = P dyn
i (V si−1) + P leak

i (T die
i−1, V si−1) (4.14)

When the processor is in idle state during the ith sub-interval, the power consump-

tion Pi = Pidle.

As shown in Fig. 4.4b, we construct the SSDTC by calculating the temperature

values T die
0 to T die

m . The relationship between the start and end temperature of

“lic˙thesis” — 2010/11/16 — 11:04 — page 48 — #68

48 Temperature-Aware Idle Time Distribution

each sub-interval can be described by applying Eq. (4.12) and Eq. (4.13) to all

sub-intervals. Thus, we can establish a linear system with 2m equations as shown

in Eq. (4.15)–Eq. (4.18), where T die
i and T sp

i are the temperature of the processor

and heat spreader at the beginning of the i+ 1th sub-interval. Due to periodicity,

when dynamic steady state is reached, the processor and heat spreader temperature

at the beginning of the period should be equal to the temperature values at the end

of the previous period (Eq. (4.19)). Solving the linear system Eq. (4.15)–Eq. (4.19),

we get the values for T die
0 to T die

m and, hence, obtain the corresponding SSDTC. As

this system is a tridiagonal linear system, it can be solved efficiently, e.g. through

LU decomposition with only O(m) operations [65]. It should be mentioned that, in

fact, two SSDTCs can be obtained, one reflecting the temperature of the chip, and

the other based on that of the heat spreader.

T die
1 = a11 · T

die
0 + b11 · T

sp
0 + c11 (4.15)

T sp
1 = a12 · T

die
0 + b12 · T

sp
0 + c12 (4.16)

.........

T die
m = am1 · T

die
m−1 + bm1 · T

sp
m−1 + cm1 (4.17)

T sp
m = am2 · T

die
m−1 + bm2 · T

sp
m−1 + cm2 (4.18)

T die
0 = T die

m ; T sp
0 = T sp

m (4.19)

4.3.3 Transient Temperature Curve (TTC) Estimation

The temperature (SSDTC) calculated in the previous section corresponds to the

dynamic steady state reached after a sufficient number of iterations have been

executed. The same technique can be used to calculate any transient temperature

curve (TTC), corresponding to an arbitrary time interval, as long as the length of the

time interval is significantly smaller than the RC time of the heat sink (which is in

the order of minutes). Under this assumption, as discussed earlier in this section, the

thermal model in Fig. 4.3 can be used. The only difference relative to the SSDTC

calculation is that Eq. (4.19) is no longer valid:

T die
0 6= T die

m ; T sp
0 6= T sp

m

To estimate the transient temperature curve (TTC), the temperature of T die
0 and T sp

0

are given as input. The temperature values: T die
1 ,T die

2 , . . . , T die
m and T sp

1 , T sp
2 , . . . ,

T sp
m are calculated by solving equations Eq. (4.15)–Eq. (4.18).

“lic˙thesis” — 2010/11/16 — 11:04 — page 49 — #69

4.4 ITD with Only Static Slack (SITD) 49

4.4 ITD with Only Static Slack (SITD)

In this section, we discuss our solutions to the SITD problem, as formulated in

Section 4.2.1, which only considers static slack. We first introduce our approach

ignoring the overheads Eo and to in Section 4.4.1. This approach will, then, be used

in Section 4.4.2 where a general SITD technique with overheads consideration is

presented.

4.4.1 SITD without Overhead (SITDNOH)

Since, in this section, we ignore the overheads (Eo = to = 0), it results from

Eq. (4.4) that the cost to be minimized is
∑n

i=1 Esleaki , which is the total leakage

energy consumed during task execution.

Assuming that the execution interval of task τi is divided into qi − 1 sub-

intervals, the leakage energy consumption of τi is the sum of the leakage energy of

all sub-intervals:

Esleaki =

qi−1
∑

j=1

(P leak
ij (Vij ,

T die
ij + T die

i(j+1)

2
) · tsubij) (4.20)

where T die
ij , T die

i(j+1) and tsubij represent the processor SSDTC temperatures at the

beginning and end of the jth sub-interval and the length of this sub-interval, respect-

ively. The model in Eq. (2.2) is used to compute the leakage power, P leak
ij , in each

sub-interval.

Let us first assume that the chip (as well as the heat spreader) temperature at the

termination of each task is known and is independent of the starting temperature

of the task. Under this assumption, we can formulate our SITDNOH problem as

shown in Eq. (4.21)–Eq. (4.33), where the objective function to be minimized is the

total leakage energy for all tasks
∑n

i=1 Esleaki . The optimization variables to be

calculated are the idle slot lengths ti, (∀i, 1 ≤ i ≤ n). Eq. (4.23) requires the sum

of all idle slots lengths to be equal to the total available idle time: dln −
∑n

i=1 te
W
i .

Eq. (4.24) guarantees that the deadline of each task is satisfied. The processor

and heat spreader temperatures at the end of task τi, T
die
iqi

and T sp
iqi

, are considered

known and assigned by Eq. (4.25) and Eq. (4.26), respectively, where Tgdiei and

Tgspi are given constants. T die
ij and T die

i(j+1) are the processor temperature at the

beginning and end of jth sub-interval in the execution of task τi, and are given by

Eq. (4.27) similar to Eq. (4.15) and Eq. (4.17) in Section 4.3.2. Eq. (4.28) describes

the same relationship for the heat spreader temperature. T die
(i+1)1 and T sp

(i+1)1 are the

processor and heat spreader temperatures at the start of task τi+1, and are dependent

“lic˙thesis” — 2010/11/16 — 11:04 — page 50 — #70

50 Temperature-Aware Idle Time Distribution

Formulation 1 SITD with No Overheads Consideration

Minimize:
n
∑

i=1

Esleaki =
n
∑

i=1

(

qi−1
∑

j=1

(tsubij · P leak
ij (Vij ,

T die
ij + T die

i(j+1)

2
))) (4.21)

Subject to:

ti ≥ 0 (1 ≤ i ≤ n) (4.22)
n
∑

i=1

ti = dln −
n
∑

i=1

teWi (4.23)

dli ≥
i−1
∑

j=1

tj +
i

∑

j=1

teWj (1 ≤ i ≤ n) (4.24)

T die
iqi

= Tgdiei (1 ≤ i ≤ n) (4.25)

T sp
iqi

= Tgspi (1 ≤ i ≤ n) (4.26)

T die
i(j+1) = a1ij · T

die
ij + b1ij · T

sp
ij + c1ij (4.27)

T sp

i(j+1) = a2ij · T
die
ij + b2ij · T

sp
ij + c2ij (4.28)

(1 ≤ i ≤ n; 1 ≤ j ≤ qi − 2)

T die
(i+1)1 ≥ TIs+ (T die

iqi
− TIs) · e

(
−ti

Rg·C1
)
(1 ≤ i ≤ n− 1) (4.29)

T sp

(i+1)1 = T sp
iqi

(1 ≤ i ≤ n− 1) (4.30)

T die
11 ≥ TIs+ (T die

nqn
− TIs) · e

(−tn
Rg·C1

)
(4.31)

T sp
11 = T sp

nqn
(4.32)

TIs = Pidle ·Rg (4.33)

“lic˙thesis” — 2010/11/16 — 11:04 — page 51 — #71

4.4 ITD with Only Static Slack (SITD) 51

on the finishing temperature of the previous task τi and the idle slot ti placed after

τi. If we assume that idle slots ti are significantly shorter than the RC time of the

heat spreader, then we can describe the processor temperature behavior during the

idle slot i by Eq. (4.29) and Eq. (4.31), based on the 1-RC thermal circuit described

in Section 4.3.1. TIs is the steady state temperature that the processor would

reach if Pidle would be consumed for a sufficiently long time and is calculated

according to Eq. (4.33). Rg is the sum of the two thermal resistances R1 and R2

in Fig. 4.3b. Under the same assumption as above, the heat spreader temperature

stays constant during the idle slot as shown in Eq. (4.30) and Eq. (4.32)2. Eq. (4.29)

and Eq. (4.30) calculate the processor and heat spreader temperature at the end

of the idle slot following task τi and, implicitly, the starting temperature of τi+1.

Eq. (4.31) and Eq. (4.32) compute the temperature at the start of task τ1, taking

into consideration that this task starts after the idle period following task τn (the

task set is executed periodically). The presented formulation is a convex non-linear

problem, and can be solved efficiently in polynomial time [66].

SITDNOH Approach.

The above formulation is based on the particular assumption that the temperature at

the end of a task τi is known and fixed. However, in reality, this is not the case, and

the temperature T die
iqi

and T sp
iqi

(Eq. (4.25) and Eq. (4.26)) at the termination of a task

depend on the starting temperature of the task and, implicitly, on the distribution of

the idle time. This makes the above formulation become a non-convex programming

problem which is very time consuming to solve. In order to solve the problem

efficiently we have developed an iterative heuristic outlined in Fig. 4.5.

The heuristic starts with an arbitrary initial ITD, for example, that the entire

idle time ttot is placed after the last task τn. Assuming this ITD and the given

voltage levels, steady state dynamic temperature analysis is performed, as described

in Section 4.3.2. Given the obtained SSDTC, the total leakage energy consumption
∑n

i=1 E
leak
i corresponding to the assumed ITD is calculated. From the SSDTC

we can also extract the final temperature T die
iqi

and T sp
iqi

for each task τi. Assuming

this T die
iqi

and T sp
iqi

as the final temperature in Eq. (4.25) and Eq. (4.26), we can

calculate the idle time ti using the convex optimization formulated from Eq. (4.21)

to Eq. (4.33).

From the new ITD resulted after the optimization, we calculate a new SSDTC

which provides new temperatures T die
iqi

and T sp
iqi

at the end of each task τi. The new

total leakage energy consumption
∑n

i=1 E
leak
i , corresponding to the updated ITD,

is also calculated. The process is continued assuming the new end temperatures in

Eq. (4.25) and Eq. (4.26) and the convex optimization produces a new ITD.

2Idle periods are supposed to be short. If, exceptionally, they are not significantly shorter than the

heat spreader RC time, we use the 2-RC circuit to model the temperature during the idle period in

Eq. (4.29) and Eq. (4.32). This will not affect the convexity of the formulation.

“lic˙thesis” — 2010/11/16 — 11:04 — page 52 — #72

52 Temperature-Aware Idle Time Distribution

Static Slack Only Idle Time Distribution
(Convex Optimization Eq.(21)-Eq.(33))

Tdieiqi Converges?

Reduced Energy ?

Update Tdieiqi and Tspiqi
Eq. (25) and Eq. (26)

N

Y Y

Tasks with their assigned
voltage V; total idle time ttot

Initial idle time distribution

Final Idle Time
Distribution

N
SSDTC Analysis (Section V)

& Energy Calculation

SSDTC Analysis (Section V)
& Energy Calculation

N

Figure 4.5: SITDNOH Heuristic

The iterations outlined above stop when the temperature T die
iqi

converges (i.e.

|T dienew

iqi
− T dieold

iqi
| < ε, 1 ≤ i ≤ n). However, it can happen that, after a certain

point, additional iterations do not significantly improve the ITD. Therefore, even if

convergence has not yet been reached, the optimization is stopped if no significant

energy reduction has been achieved: (Eold
tot − Enew

tot)/Eold
tot < ε′. Our experiments

have shown that maximum 5 iterations are needed with ε = 0.5◦ and ε′ = 0.001.

4.4.2 SITD with Overhead (SITDOH)

The approach presented in Section 4.4.1 is based on the assumption that time and

energy overheads for switching the processor to and from the idle state, to and

Eo, are zero, which is not the case in reality. If we consider the hypothetical case

that the end temperature of each task is known, the problem can be formulated

similar to Eq. (4.21)–Eq. (4.33), with the main difference that the total energy to

be minimized is given in Eq. (4.4). Based on this formulation, we could solve the

SITDOH problem for the real case, when the end temperatures are not supposed

to be known, similarly with the approach described in Fig. 4.5. However, the

formulation with the objective function Eq. (4.4), due to the binary variable xi,

is a mixed integer convex programing problem which is very time consuming to

solve. We, hence, propose an SITDOH heuristic based on the SITDNOH approach

presented in Section 4.4.1.

“lic˙thesis” — 2010/11/16 — 11:04 — page 53 — #73

4.4 ITD with Only Static Slack (SITD) 53

Our SITDOH heuristic comprises two steps. In the first step an optimization of

the idle time distribution is performed by eliminating idle intervals whose lengths

are smaller than a certain threshold limit. In the second step, the ITD is further

refined in order to improve energy efficiency.

A lower bound tmin on the length ti of an idle slot can be determined by

considering the following two bounds:

• No idle slot is allowed to be shorter than to, the total time needed to switch

to/from the idle state.

• The energy overhead due to switching should be compensated by the gain

due to putting the processor into the idle state. The energy gain for an idle

interval ti is computed as:

Eg =

∫ ti

0

P leak
i (Vi, Ti(t)) dt− Pidle · ti (4.34)

where Ti(t) is the processor temperature as a function of time during the idle

time interval [0, ti]. Vi is the supply voltage for task τi. P leak
i (Vi, Ti(t))

is the leakage power consumption in the active state during the idle time

interval of [0, ti]. Thus, in order for the overhead to be compensated, we need

Eo < Eg. As P leak
i depends on the temperature, the threshold length of an

idle slot is not a given constant. Nevertheless, this length will be always larger

than Eo/(P
leak
maxi

− Pidle), where P leak
maxi

= P leak
i (Vi, Tmax) is the leakage

power at the maximum temperature Tmax at which the processor is allowed

to run.

In conclusion, for the first step of the SITDOH heuristic, illustrated in Fig. 4.6a, we

consider: tmin = max(to, Eo/(P
leak
maxi

− Pidle)).
The basic idea of the first step is that no idle slot is allowed to be shorter than

tmin. Thus, after running SITDNOH, the obtained ITD is checked slot by slot. If

a slot length ti is smaller than tmin, this slot will be removed. In order to achieve

this, the particular constraint in Eq. (4.22), corresponding to slot i, is changed from

ti ≥ 0 to ti = 0. After all slots have been visited and Eq. (4.22) updated, SITDNOH

is performed again. The obtained ITD is such that all slots which in the previous

iteration have been found shorter than tmin have disappeared and the corresponding

idle time has been redistributed among other tasks. The process is repeated until no

slot shorter than tmin has been identified.

After step1, we still can be left with slots that are too short to be energy efficient.

There are two reasons for this:

“lic˙thesis” — 2010/11/16 — 11:04 — page 54 — #74

54 Temperature-Aware Idle Time Distribution

SITDNOH (Fig. 5)

i := 1

ti>t
min

N

N

Y

Y

Step 2

Set ti =0 in Eq.(22)

Find the shortest idle slot i

N

Step 1

Reduced Energy?

Y

set ti = 0 in Eq.(22)

SITDNOH (Fig. 5)

End

(a) Step1 (b) Step2

Y

N

Accept

 new

ITD

i≤n

i ++

All ti > t
min

SSDTC Analysis (Section V)

& Energy Calculation

Figure 4.6: SITDOH Heuristic

1. Due to the fact that the processor is running at a temperature lower than the

maximum allowed Tmax, it can happen that the real tmin is smaller than the

one considered in step1.

2. Even if Eo < Eg, which means that an energy reduction due to the idle slot

is obtained, energy efficiency can, possibly, be improved by eliminating the

slot and distributing the corresponding idle time among other slots.

In the second step (Fig. 4.6b), we start from the shortest idle slot and consider

to eliminate it (by setting the corresponding constraint ti = 0 in Eq. (4.22)). If the

ITD obtained after applying SITDNOH is more energy efficient, the new ITD is

accepted. The process is continued as long as, by eliminating a slot, the total energy

consumption is reduced.

4.5 ITD with Dynamic and Static Slack (DITD)

The above SITD approach determines idle time settings assuming that tasks always

execute their WNC. However, due to execution time variations, large amounts of

dynamic slack are created at run-time. In order to exploit the dynamic slack, the slot

“lic˙thesis” — 2010/11/16 — 11:04 — page 55 — #75

4.5 ITD with Dynamic and Static Slack (DITD) 55

length ti has to be determined at run-time based on the values of the current time

and temperature after termination of task τi. In principle, calculating the appropriate

ti implies the execution of a temperature-aware ITD algorithm similar to the one

described in Section 4.4.2 (with the optimization objective function and constraints

shown by Eq. (4.7) to Eq. (4.9)). Running this algorithm on-line, after execution of

each task, implies a time and energy overhead which is not acceptable.

To overcome the above problem, we have divided our DITD approach into an

off-line and an on-line phase. In the off-line phase, idle time settings for all tasks are

pre-computed, based on possible finishing times and finishing temperatures of the

task. The results are stored in look-up tables (LUTs), one for each task. In Fig. 4.7,

we show two such tables. They contain idle time settings for combinations of

possible termination times tfi and finishing temperatures Tfdie
i of a task τi.

Tf
die

1

LUT1 LUT2

t1 (ms)

65 0.5

80 0.7

90 0.9

65 0.4

75 0.5

85 0.6

Tf
die

2 t2 (ms)

... ...

60 0.8

80 1.2

55 0.4

70 0.6

90 0.8

Ĳ1
1 2 3 4 5

Time

Ĳ2

Deadline

0

Active Mode: Task Execution

Low Power Mode

Ĳ3

Access LUT

… …

t
f

1(ms)

1.0

1.5

t
f
2 (ms)

...

2.5

95 0.01.8 95 0.02.9

2.0

Figure 4.7: DITD On-line Phase

4.5.1 On-line Phase

The on-line phase is illustrated in Fig. 4.7. Each time a task τi terminates, the length

of the idle time slot ti following the termination of τi has to be fixed; the on-line

scheme chooses the appropriate setting from the lookup table LUTi, depending

on the actual time and temperature sensor reading. If there is no exact entry in

“lic˙thesis” — 2010/11/16 — 11:04 — page 56 — #76

56 Temperature-Aware Idle Time Distribution

LUTi, corresponding to the actual time/temperature, the entry corresponding to the

immediately higher time and closest temperature value is selected. For example,

in Fig. 4.7, τ1 finishes at time 1.35ms with a temperature 78◦C. To determine the

appropriate idle time slot length t1, LUT1 is accessed. As there is no exact entry

with tf1 = 1.35ms and Tfdie
1 = 78◦C, the entry corresponding to termination time

1.5ms (1.5ms is immediately higher than 1.35ms) and temperature 70◦C (as it is the

closest one to Tfdie = 78◦C) is chosen. Hence, the processor will be switched to

the idle state for 0.5ms before the next task, τ2, starts. This on-line phase is of very

low, constant time complexity O(1) and, thus, very efficient.

We should notice that, according to our temperature model presented in Sec-

tion 4.3, the state of the system is defined by both the die and the heat spreader

temperatures. In our LUTs, however, we only consider the die temperature for

taking the decision on the idle slack. This is due to the following reasons:

1. It is both impractical and potentially expensive to obtain, at run-time, temp-

erature readings from the heat spreader.

2. The variations of the heat spreader temperature are small compared to those of

the chip. This is due to the fact that the heat capacitance of the heat spreader

is much larger than that of the chip.

3. Considering also the heat spreader temperature as an additional dimension in

the LUTs would dramatically increase the size of the tables without significant

contribution to energy efficiency.

Thus, when generating the LUTs, we will consider that, at the termination of a task

τi, the heat spreader has a certain expected temperature Tfsp
i . In Section 4.5.5 we

will show how Tfsp
i is calculated.

4.5.2 Off-line Phase

In the off-line phase, one LUT table is generated for each task. The LUT table

generation algorithm is illustrated in Fig. 4.8. The outermost loop iterates over

the set of tasks and successively constructs the table LUTi for each task τi. The

next loop generates LUTi entries corresponding to the various possible finishing

temperatures Tfdie
i of τi. Finally, the innermost loop iterates, for each possible

finishing temperature, over all considered termination times tfi of task τi.
The algorithm starts by computing the earliest EFTi and latest possible finishing

times LFTi, as well as the lowest Tf l
i and highest possible finishing temperature

Tfh
i for each task τi. With a given finishing time tfi and finishing temperature

Tfdie
i of task τi, the innermost loop performs the slack distribution step DITDOH,

“lic˙thesis” — 2010/11/16 — 11:04 — page 57 — #77

4.5 ITD with Dynamic and Static Slack (DITD) 57

For all task Ĳi , i = {1...n},

calculate [EFTi , LFTi] and interval [Tf
l
i, Tf

h
i]

Consider task Ĳi

Determine ǻti and ǻTi

t
f
i EFTi

Perform DITDOH

t
f
i t

f
i + ǻti t

f
i ≤ LFTi

Tf
die

i Tf
die

i + ǻTi

i 1

 Tf
die

i Tf
l
i

Tf
die

i ≤ Tf
h
i

Last task

i = n? N

Y

N

Y

i i+1N

Y

Figure 4.8: DITD Off-line Phase

“lic˙thesis” — 2010/11/16 — 11:04 — page 58 — #78

58 Temperature-Aware Idle Time Distribution

iteratively. We describe the DITDOH algorithm in detail in Section 4.5.3. For

successive iterations, the finishing temperature Tfdie
i and time tfi will be increased

with the time and temperature quanta △ti and △Ti, respectively. The calculation

of the parameters EFTi, LFTi, Tf
l
i and Tfh

i as well as the determination of the

granularities and number of entries along the time and temperature dimensions are

presented in Section 4.5.4 and Section 4.5.5, respectively.

4.5.3 DITDOH Algorithm

When calculating the actual LUT entries for a task τi, the ITD algorithm DITDOH

is performed to determine the idle slot length ti following the termination of τi,
with the given termination time and temperature, based on the problem formulation

described in Section 4.2.2. DITDOH is similar to SITDOH outlined in Section 4.4.2.

However, unlike the formulation used in SITDOH (Eq. (4.21)–Eq. (4.33)) which

is based on SSDTC estimation, the formulation used for DITDOH is based on the

estimation of a transient temperature curve (TTC) described in Section 4.3.3. Since

we do not rely on the fact that successive iterations of the application are identical

and that tasks execute always with their worst case number of cycles, we do not

calculate an SSDTC corresponding to the dynamic steady state. But, instead, we

estimate a TTC.

The formulation used for DITDOH is shown in Eq. 4.35–Eq. (4.49). As men-

tioned in Section 4.2.2, the energy is optimized for the case that the future tasks τi+1

to τn execute their expected time teE which, in reality, happens with a much higher

probability than, e.g., the teW (nevertheless, idle time slots are distributed such that,

even in the worst case, deadlines are satisfied). The objective function, Eq. (4.35),

to be minimized is the total leakage energy of further tasks to be executed in the

current iteration: τk, (∀k, i < k ≤ n). Eq. (4.35) is similar to Eq. 4.21 with two

differences:

1. It refers only to the remaining tasks τi+1, . . . , τn.

2. The execution interval of a task τk, which is divided into qk − 1 subintervals,

is not corresponding to the worst case teWk , but to the expected case teEk .

The optimization variables to be calculated are the idle slot lengths tk, (∀k, i ≤
k ≤ n). Eq. (4.37) requires that the sum of all idle slot lengths should be equal to

the total available idle time, where tfi is the current task’s finishing time. The total

available idle time is calculated based on the assumption that all future tasks are

executed with their expected workload.

Eq. (4.38) guarantees the deadline of task τi+1—the next task to be executed

after the termination of the current task τi in the worst case (task τi+1 executed

“lic˙thesis” — 2010/11/16 — 11:04 — page 59 — #79

4.5 ITD with Dynamic and Static Slack (DITD) 59

Formulation 2 DITD with No Overheads Consideration

Minimize:
n
∑

k=i+1

Eleak
k =

n
∑

k=i+1

(

qk−1
∑

j=1

(tsubkj · P leak
kj (Vkj ,

T die
kj + T die

k(j+1)

2
))) (4.35)

Subject to:

tj ≥ 0 (i ≤ j ≤ n) (4.36)
n
∑

k=i

tk = dln − tfi −
n
∑

k=i+1

teEj (4.37)

dli+1 ≥ tfi + ti + teWi+1 (4.38)

LFTi+1 ≥ tfi + ti + teWi+1 (4.39)

dlj ≥ tfi +

j−1
∑

k=i

tk + teWi+1 +

j
∑

k=i+2

teEk (4.40)

(i+ 2 ≤ j ≤ n)

T die
kqk

= Tgdiek (i+ 1 ≤ k ≤ n) (4.41)

T sp
kqk

= Tgspk (i+ 1 ≤ k ≤ n) (4.42)

T die
(i+1)1 ≥ TIs+ (Tfdie

i − TIs) · e
(

−ti
Rg·C1

)
(4.43)

T sp

(i+1)1 = Tfsp
i (4.44)

T die
k(j+1) = a1kj · T

die
kj + b1kj · T

sp
kj + c1kj (4.45)

T sp

k(j+1) = a2kj · T
die
kj + b2kj · T

sp
kj + c2kj (4.46)

(i+ 1 ≤ k ≤ n; 1 ≤ j ≤ qk − 2)

T die
(k+1)1 ≥ TIs+ (T die

kqk
− TIs) · e

(
−tk

Rg·C1
)

(4.47)

(i+ 1 ≤ k ≤ n− 1)

T sp

(k+1)1 = T sp
kqi

(i ≤ k ≤ n− 1) (4.48)

TIs = Pidle ·Rg (4.49)

“lic˙thesis” — 2010/11/16 — 11:04 — page 60 — #80

60 Temperature-Aware Idle Time Distribution

with teWi+1). In order to guarantee that all future tasks meet their deadlines in the

worst case, Eq. (4.39) requires that τi+1 finishes before LFTi+1, in the worst case.

The latest finishing time LFTi+1 (see Section 4.5.4) is the latest termination time

of task τi+1 that still allows future tasks, following τi+1, to satisfy their deadline

even if their worst case workloads are executed. Thus Eq. (4.38) and Eq. (4.39)

guarantee not only that the deadline of τi+1 is satisfied in the worst case but also

that τi+1 finishes in time for all the remaining tasks to be able to meet their deadline

in the worst case. Eq. (4.40) enforces the deadline of the remaining tasks τj ,

(∀j, i+ 2 ≤ j ≤ n), considering that they execute their expected workload. This

means that the idle time ti following task τi is determined such that it guarantees

deadlines to be satisfied in the worst case but is optimized for the situation that tasks

execute their expected workloads.

Similar to Eq. (4.25) and Eq. (4.26), Eq. (4.41) and Eq. (4.42) specify the

processor and heat spreader temperatures at the finishing of task τk: T die
kqk

and

T sp
kqk

. Eq. (4.43) computes the processor temperature at the beginning of task τi+1

similar to Eq. (4.31), where Tfdie
i is the chip temperature at the termination of

the current task τi. Similarly, Eq. (4.44) computes the heat spreader temperature

at the beginning of task τi+1, where Tfsp
i is, as described in Section 4.5.1, the

expected heat spreader temperature at the termination of task τi. Tfsp
i is pre-

calculated as will be explained in Section 4.5.5. Eq. (4.45)–Eq. (4.48) compute the

TTC of processor/heat spreader based on our TTC estimation method described

in Section 4.3.3, where T die
kj and T die

k(j+1) are the processor temperature at the

beginning and end of the jth sub-interval during the execution of task τk. The

above formulation is a convex non-linear problem and can be solved efficiently in

polynomial time [66].

Coming back to the DITD off-line phase in Fig. 4.8, the DITDOH algorithm

is invoked for each line in the LUTi corresponding to a task τi. This invocation

will result in the calculation of the slack length ti corresponding to the current

value of termination time tfi and temperature Tfdie
i . DITDOH performs exactly

like SITDOH (Fig. 4.6), with the exception that for solving SITDNOH (Fig. 4.5),

instead of Eq. (4.21)–Eq. (4.33), the formulation in Eq. (4.35)–Eq. (4.49) is used.

4.5.4 Time Bounds and Granularity

In the first step of the algorithm in Fig. 4.8, the EFTi and LFTi for each task are

calculated. The earliest finishing time EFTi is calculated based on the situation that

all tasks execute their best case execution time teBi . The latest finishing time LFTi

is calculated as the latest termination time of τi that still allows all tasks τj , j > i to

satisfy their deadlines when they execute their worst case execution time teWi . With

the time interval [EFTi, LFTi] for task τi, a straightforward approach to determine

“lic˙thesis” — 2010/11/16 — 11:04 — page 61 — #81

4.5 ITD with Dynamic and Static Slack (DITD) 61

the number of entries along the time dimension would be to allocate the same

number of entries for each task. However, the time interval sizes LFTi − EFTi

can differ very much among tasks, which should be taken into consideration when

deciding on the number of time entries Nti. Therefore, given a total number of

entries along the time dimension NLt, we determine the number of time entries in

each LUTi, as follows:

Nti =

⌈

NLt ·
(LFTi − EFTi)
n
∑

i=1

(LFTi − EFTi)

⌉

4.5.5 Temperature Bounds and Granularity

The granularity △Ti along the temperature dimension is the same for all task τi
and has been determined experimentally. Our experiments have shown that values

around 15◦ are appropriate, in the sense that finer granularities will only marginally

improve energy efficiency.

To determine the number of entries along the temperature dimension, we need

to calculate the temperature interval [Tf l
i , T f

h
i] at the termination of each task.

In fact, it is not needed to determine the bounds of the temperature interval ex-

actly3. A good estimation, such that, at run-time, temperature readings outside the

determined interval will happen rarely, is sufficient. If the temperature readings

exceed the upper/lower bound of the interval, the idle time setting corresponding

to the highest/lowest temperature value available in the LUT will be used. One

alternative would be to simply assume that all tasks have a finishing temperature

interval [Ta, Tmax], where Ta is the ambient temperature and Tmax is the maximum

temperature at which the chip is allowed to work. This would lead to huge amounts

of wasted memory space (for storing LUT tables) as well as wasted computation

time in the off-line phase. We have developed an estimation technique for the temp-

erature interval [Tf l
i , T f

h
i], which balances computation complexity and accuracy

of the results.

In order to estimate the temperature bounds Tf l
i and Tfh

i , we define two run-

time scenarios:

• Worst case execution scenario: in which the actual execution time of each

task τi is always equal to its worst case execution time: teAi = teWi .

3This is different from the situation in Chapter 3 (Section 3.4.3). The LUTs generated there have to

guarantee that frequencies are assigned in a safe way.

“lic˙thesis” — 2010/11/16 — 11:04 — page 62 — #82

62 Temperature-Aware Idle Time Distribution

• Best case execution scenario: in which the actual execution time of each task

τi is always equal to its best case execution time: teAi = teBi .

In both scenarios, the processor will execute the corresponding periodic power

pattern repeatedly and the processor temperature will eventually reach the corres-

ponding steady state dynamic temperature curve (denoted as SSDTCw for the

worst case scenario and SSDTCb for the best case scenario, respectively). From

the corresponding SSDTC, we can obtain, for each task τi, its finishing tempera-

ture. We use the finishing temperature of task τi corresponding to the worst case

execution scenario, Tfw
i , as the upper bound of the finishing temperature of task

τi: Tf
h
i = Tfw

i ; the finishing temperature of task τi corresponding to the best case

execution scenario, Tf b
i , will be used as the lower bound: Tf l

i = Tf b
i .

In order to obtain the SSDTCw we first perform the SITDOH heuristic (Fig. 4.6).

Then, the temperature analysis (Section 4.3) produces the temperature curve for

the worst case scenario with the corresponding idle time distribution generated by

SITDOH. The SSDTCb curve is obtained in a similar way, by replacing teWi with

teBi in the constraint in Eq. (4.23).

With the upper and lower bounds Tf l
i and Tfh

i obtained for each task, the

number of the entries along the temperature dimension, for task τi, is:

NTi =

⌈

Tfh
i − Tf l

i

△Ti

⌉

where △Ti is the granularity along the temperature dimension. The considered

temperature values in LUTi are then determined as follows:

Tfdie
i = ki · △Ti + Tf l

i

where the integer ki is in the interval: 0 ≤ ki ≤ NTi.

As mentioned in Section 4.5.1, when generating the LUTs, we consider that, at

the termination of a task τi, the heat spreader has a certain expected temperature

Tfsp
i . In order to obtain these temperatures, we perform the same procedure as

outlined above but, in this case, considering the expected execution time of each task:

teAi = TeEi . We obtain the temperature curve SSDTCexp
sp corresponding to the

heat spreader (see Section 4.3.2), from which we extract the expected temperature

of the heat spreader, Tfsp
i , at the termination of each task τi.

“lic˙thesis” — 2010/11/16 — 11:04 — page 63 — #83

4.6 Experimental Results 63

4.6 Experimental Results

4.6.1 Evaluation of The Thermal Model

Experimental Setup.

We have evaluated our thermal model considering platforms with parameter settings

based on values from [67], [68] and [69]. We consider die areas of 6×6, 8×8 and

10×10mm2. The heat spreader area is five times the die area, and the heat sink area

is between 1.3 and 1.4 times the area of the heat spreader. The thickness of the die

and heat spreader are 0.5mm and 2mm respectively. The thickness of the heat sink

is between 10mm and 20mm. The coefficients corresponding to the power model

(see Chapter 2) are based on [55] and [59]. For the temperature calculation we have

considered a piecewise linear leakage model with 3 segments (see Chapter 2), as

recommended in [21].

Accuracy.

We first performed a set of experiments to evaluate the accuracy of our temperature

analysis approach proposed in Section 4.3. We randomly generated 500 periodic

voltage patterns corresponding to applications with periods in the range between

5ms and 100ms. For each application, considering the coefficients and platform

parameters outlined above, we have computed the SSDTC using the approach pro-

posed in Section 4.3.2 and by using Hotspot simulation. For each pair of temperature

curves obtained, we calculated the maximum deviation as the largest temperature

difference between any corresponding pairs of points (in absolute value), as well as

the average deviation. Fig. 4.9 illustrates the results for different application periods.

For applications with a period of 50ms, for example, there is no single case with a

maximum deviation larger than 2.1◦C, and the average deviation is 0.8◦C. Over all

500 applications, the average and maximum deviation are 0.8◦C and 3.8◦C respect-

ively. We can observe that the deviation increases with the increasing period of the

application. This is due to the fact that, with larger periods, accuracy can be slightly

affected by neglecting the thermal capacitance of the heat sink (see Section 4.3).

Computation Time.

We have compared the corresponding computation time of our SSDTC generation

approach with the time needed by Hotspot. Fig. 4.9 illustrates the average speedup

as the ratio of the two execution times. The speedup is between 3000 for periods of

5ms and 20 for 100ms periods. An increasing period leads to a larger linear system

that has to be solved for SSDTC estimation (Section 4.3.2), which explains the

shape of the speedup curve in Fig. 4.9.

The accuracy and speedup of our approach are also dependent on the length of

the sub-interval considered for the temperature analysis (Section 4.3.2 and Fig. 4.4).

For the experiments throughout Section 4.6, the length of the sub-interval is 2ms.

“lic˙thesis” — 2010/11/16 — 11:04 — page 64 — #84

64 Temperature-Aware Idle Time Distribution

1

10

100

1000

10000

0 0.02 0.04 0.06 0.08 0.1
Period (s)

S
p

e
e

d
 U

p
 F

a
c
to

r

(L
o

g
a

ri
th

m
ic

)

0

1

2

3

4

 D
e

v
ia

ti
o

n
 (

C

)

Speed Up

Max Erorr

Average Error

Figure 4.9: SSDTC Estimation with Our Approach vs. Hotspot

This is based on the observation that reducing the length beyond this limit does not

improve the accuracy significantly.

4.6.2 Evaluation of ITD Heuristics

We have used both generated test applications as well as a real life example in

our experiments to evaluate our DITD approach presented in Section 4.5. This,

implicitly, also evaluates the SITD approach (Section 4.4) since:

• For small dynamic slack ratio, the dynamic approach converges towards the

static one.

• The DITD approach is based on the SITD for calculation of each entry in the

LUTs.

Experimental Setup.

We have randomly generated 100 test applications consisting of 30 to 100 tasks. The

workload in the worst case (WNC) for each task is generated randomly in the range

[106, 5.0×106] clock cycles, while the workload in the best case is generated in the

range [105, 5.0×105] clock cycles. To generate the expected workload ENCi of

each task, the following steps are performed:

1. The value of the expected total dynamic idle time, tEd , is given as an input:

tEd is the total dynamic slack when all tasks execute their workload in the

expected case: tEd =
∑n

i=1(te
W
i − teEi).

2. tEd is divided into a number nsub of sub-intervals with equal length (tsub).

“lic˙thesis” — 2010/11/16 — 11:04 — page 65 — #85

4.6 Experimental Results 65

3. The nsub sub-intervals are allocated among all tasks based on a uniform

distribution; as result, each task is allocated a number p of sub-intervals.

4. The expected workload ENCi of task τi is, thus, determined as: ENCi =
WNCi − p · tsub · fi, where fi is the processor frequency when task τi is

executed.

In order to evaluate our DITD technique, we have considered a straightforward

approach (SFA) for comparison. This SFA scenario corresponds to the natural

execution procedure for the case when no idle time distribution is performed.

Following this approach, tasks are executed according to a static schedule generated

based on the worst case execution time. According to this schedule, the static slack

is placed at the end of the application, after the last task. At run-time, when the

tasks execute less than their WNC and the generated dynamic slack is large enough,

the processor is put in idle mode. More exactly, the SFA works as follows:

1. The start time of each task tsti is determined off-line by: tsti = teWi−1 + tsti−1.

2. At runtime, whenever a task τi terminates, we compute the gap tg = tsti+1−tfi ,

where tfi is the termination time of the current task.

3. If tg = 0, the next task τi+1 starts immediately after the termination of task τi.
When tg > 0, if the following two conditions are both satisfied, the processor

will be switched to idle state during tg (otherwise the processor will stay in

the same active state with the voltage level at which task τi is executed): (a)

tg > to, where to is the time overhead due to power state switching; (b) the

energy gain Eg is positive: Eg = Ea− (Pidle · tg+Eo) > 0, where Ea is the

leakage energy consumption of the processor during tg if the processor stays

in the active state. Ea is estimated as P leak · tg, where P leak is the leakage

power consumption calculated at the temperature when task τi terminates.

Pidle · tg + Eo is the energy consumption if the processor is switched to idle

state during tg , where Eo is the energy overhead due to switching, and Pidle

is the processor power consumption in idle state.

We have applied both the DITD and SFA approaches on the same test applica-

tions. We assume, for each task τi, that the actual number of executed workload

at run-time conforms to the beta distribution [65]. When we simulate the execu-

tion of the test applications, the actual number of executed clock cycles of a task

is generated using a random number generator according to the beta distribution

Beta(α1i, α2i). The parameters α1i and α2i are determined based on (1) the expec-

ted workload ENCi and (2) a given standard deviation σi of the executed clock

cycles of task τi. The Hotspot system [25] is used to simulate the sensor readings

“lic˙thesis” — 2010/11/16 — 11:04 — page 66 — #86

66 Temperature-Aware Idle Time Distribution

which track the temperature behaviour of the platform during the execution of a test

application.

In our experiments, the granularity along the time and temperature dimensions

for the LUT tables is set to 1.5–2.0ms and 15◦–20◦, respectively. It is important

to mention that in all our experiments we have accounted for the time and energy

overhead imposed by the on-line phase of our DITD. Similarly, we have also taken

into consideration the energy overhead due to the memory access. This overhead has

been calculated based on the energy values given in [62] and [63]. The energy and

time overheads due to power state switching are set to Eo = 0.5mJ and to = 0.4ms,

respectively, according to [20].

After applying both the DITD and SFA approaches on a test application, we

compute the corresponding leakage energy reduction due to our DITD approach

compared to the SFA: I = (ESFA − EDITD)/ESFA × 100%, where ESFA and

EDITD are the consumed leakage energy corresponding to the SFA and DITD

approach, respectively.

Leakage Energy Reduction vs. Slack Time Ratios.

We first performed experiments considering different combinations of static (rs)

and dynamic idle time ratio (rd). The static idle time ratio is computed as: rs =
(dln −

∑n
i=1 te

W
i)/dln, where dln is the deadline of the last task in execution

order. The dynamic idle time ratio is calculated as: rd = tEd /dl, where tEd is the

total dynamic slack when all tasks execute their workload in the expected case,

as described earlier in this section. Fig. 4.10 shows the averaged leakage energy

reduction I over all test applications. The energy reduction achieved by DITD

grows with the available amount of static and dynamic slack. With rs = 0.2 and

rd = 0.2, for example, leakage energy can be reduced with 20% by applying our

DITD approach.

Dynamic Slack Ratio (rd)

L
e
a
k
a
g
e
 R

e
d
u
c
ti
o
n
 I
%

0

5

10

15

20

0
0.

05 0.
1

0.
15 0.

2

rs= 0

0
0.

05 0.
1

0.
15 0.

2

rs= 0.05

0
0.

05 0.
1

0.
15 0.

2

rs= 0.1

0
0.

05 0.
1

0.
15 0.

2

rs= 0.15

0
0.

05 0.
1

0.
15 0.

2

rs= 0.2

Figure 4.10: Leakage Energy Reduction with Low Switching Overheads

“lic˙thesis” — 2010/11/16 — 11:04 — page 67 — #87

4.6 Experimental Results 67

In order to explore the influence of the energy and time overheads on the

potential leakage reduction, we have repeated the previous experiments in a context

where energy and time overheads are set to higher values: Eo = 1.0mJ and

to = 0.8ms. Fig. 4.11 shows the corresponding averaged leakage energy reduction

I . The results show a similar trend as in Fig. 4.10. Comparing the results in Fig. 4.10

and Fig. 4.11, we can observe that the leakage reduction achieved with the higher

overhead settings is larger. The leakage reduction approaches 40% with rs = 0.2
and rd = 0.2. The reason is the following: with large switching overhead, it is

Dynamic Slack Ratio (rd)

L
e
a
k
a
g
e
 R

e
d
u
c
ti
o
n
 I
%

0

10

20

30

0
0.

05 0.
1

0.
15 0.

2

rs= 0

0
0.

05 0.
1

0.
15 0.

2

rs= 0.05

0
0.

05 0.
1

0.
15 0.

2

rs= 0.1

0
0.

05 0.
1

0.
15 0.

2

rs= 0.15

0
0.

05 0.
1

0.
15 0.

2

rs= 0.2

Figure 4.11: Leakage Energy Reduction with High Switching Overheads

more likely that the generated slots are too small for switching power state to be

energy efficient. Thus, using the SFA approach, the processor will keep in the active

power state. With the DITD approach, however, the slack time will be redistributed

such that large slack slots are generated and, even with large overhead, power state

switches can be performed.

The DITD approach proposed in Section 4.5 achieves leakage energy reduction

due to two main features: (1) it is temperature aware, which means that idle time

is distributed such that the temperature is controlled in order to minimize leakage;

(2) it redistributes slack such that the number of idle slots which are too short to

switch power state, is minimized. A comparison between Fig. 4.10 and Fig. 4.11

illustrates the second feature of our ITD technique. However, the following question

still remains open: How much does the temperature awareness of our approach

contribute to the energy reduction? In order to answer this question we have repeated

the above experiments considering a hypothetical scenario with zero switching

overhead: Eo = 0mJ and to = 0ms. The results are shown in Fig. 4.12. Under such

a scenario, the processor can be switched to the low power state for the duration

of the total idle time (regardless the length of the individual idle slots). Thus, the

“lic˙thesis” — 2010/11/16 — 11:04 — page 68 — #88

68 Temperature-Aware Idle Time Distribution

Dynamic Slack Ratio (rd)

L
e
a
k
a
g
e
 R

e
d
u
c
ti
o
n
 I
%

0

5

10

15

0
0.

05 0.
1

0.
15 0.

2

rs= 0

0
0.

05 0.
1

0.
15 0.

2

rs= 0.05

0
0.

05 0.
1

0.
15 0.

2

rs= 0.1

0
0.

05 0.
1

0.
15 0.

2

rs= 0.15

0
0.

05 0.
1

0.
15 0.

2

rs= 0.2

Figure 4.12: Leakage Energy Reduction with No Switching Overheads

energy gains obtained with DITD compared to SFA, as illustrated in Fig. 4.12, are

exclusively due to the temperature awareness of the DITD approach.

From Fig. 4.10, Fig. 4.11, and Fig. 4.12 one can also observe the efficiency

of the ITD approach with only static slack (SITD, Section 4.4). The cases where

rd = 0 (no dynamic slack) are, in fact, corresponding to those situations when only

static slack is distributed. Obviously, in the cases that both rs = 0 and rd = 0,

there is no slack to distribute and, thus, the energy reduction is zero.

Leakage Energy Reduction vs. Standard Deviation.

As mentioned that, for our experiments we have generated workloads for each

task τi according to a beta distribution Beta(α1i, α2i), where α1i and α2i are

determined based on the expected workload ENCi and standard deviation σi

of the executed workload. For the above experiments, the standard deviation

0

10

20

30

40

0.2(WNC-BNC᧥ 0.15(WNC-BNC) 0.1(WNC-BNC) 0.05(WNC-BNC)

Standard Deviation

Le
ak

ag
e

R
ed

uc
tio

n
I%

Figure 4.13: Leakage Energy Reduction with Different Standard Deviations

σi for each task is considered to be: σi = 0.1 × (WNCi − BNCi). As the

standard deviation has an influence on the potential leakage reduction, we have

“lic˙thesis” — 2010/11/16 — 11:04 — page 69 — #89

4.6 Experimental Results 69

repeated the above experiments, considering three different settings of σi, namely,

0.2×(WNCi−BNCi), 0.15×(WNCi−BNCi), and 0.05×(WNCi−BNCi).
Fig. 4.13 shows the leakage reduction I% by applying our DITD approach relative

to the SFA, with different standard deviation settings. We have considered test

applications having static and dynamic ratios of: rs = 0.2 and rd = 0.2. As can be

observed, the efficiency of the DITD approach increases as the standard deviation

decreases. This is due to the fact that our DITD algorithm is targeted towards

optimizing the energy consumption for the case that tasks execute the expected

number of cycles ENC. When the standard deviation is smaller, more of the actual

executed number of clock cycles are clustering around the ENC, and, therefore, our

DITD approach can achieve better leakage reduction.

0

25

50

75

100

125

0 20 40 60 80 100
Number of Tasks

C
om

pu
ta

tio
n

Ti
m

e
(M

in
.)

Figure 4.14: Computation Time

Computation Time.

We have also evaluated the computation time for the off-line phase of our DITD

approach. The results are shown in Fig. 4.14.

MPEG2 Decoder.

We have applied our DITD approach to a real-life application, namely an MPEG2

decoder, which consists of 34 tasks. Details regarding the application are described

in [60]. We have considered a platform with the size of the chip, heat spreader, and

heat sink of 8×8mm2, 18×18mm2, and 22×22mm2, respectively. The thickness of

the chip, heat spreader, and the heat sink is 0.5mm, 2mm, and 15mm, respectively.

The execution time distribution of the tasks has been obtained from simulations on

the MPARM platform [70]. We considered the following two overheads settings:

(1) Eo = 0.5mJ, to = 0.4ms, (2) and Eo = 1.0mJ, to = 0.8ms. The leakage energy

reduction by applying our DITD approach relative to the SFA approach is 32.5%

and 40.8%, respectively.

“lic˙thesis” — 2010/11/16 — 11:04 — page 70 — #90

70 Temperature-Aware Idle Time Distribution

“lic˙thesis” — 2010/11/16 — 11:04 — page 71 — #91

Chapter 5

Conclusions

In this thesis, we have addressed the two following problems: (1) Energy optimiza-

tion via temperature-aware dynamic voltage/frequency scaling (DVFS), (2) Energy

optimization through temperature-aware idle time distribution (ITD).

In Chapter 3 we have proposed temperature-aware DVFS techniques where

both leakage/temperature and frequency/temperature dependencies are taken into

consideration. We first proposed an off-line temperature-aware DVFS approach

which only considers static slack. Based on this off-line DVFS approach, we

proposed an on-line temperature-aware DVFS technique which is able to exploit

both static and dynamic slack. The on-line DVFS approach consists of two parts:

an off-line temperature-aware optimization step and an on-line voltage/frequency

setting based on temperature sensor readings. Experiments have demonstrated that

significant energy improvements can be achieved using the proposed temperature-

aware DVFS techniques.

In Chapter 4, we have addressed the problem of temperature-aware ITD. We

started with proposing a static temperature-aware ITD approach for leakage energy

optimization where only static slack is considered. We then proposed a dynamic

approach considering both static and dynamic idle time, which consists of an off-

line and an on-line step. The experiments have demonstrated that considerable

energy reduction can be achieved by our temperature-aware ITD approaches. In

order to efficiently perform temperature analysis inside our optimization loop, we

have also proposed a fast and accurate system-level temperature analysis approach.

Experiments show that our temperature analysis method achieves good accuracy

with fast speed.

“lic˙thesis” — 2010/11/16 — 11:04 — page 72 — #92

72 Conclusions

“lic˙thesis” — 2010/11/16 — 11:04 — page 73 — #93

References

[1] P. Marwedel. Embedded System Design. Springer-Verlag New York, Inc.,

Secaucus, NJ, USA, 2006.

[2] J. Catsoulis. Designing Embedded Hardware, 2nd Edition. O’Reilly Media,

May. 2005.

[3] W. Wolf and J. Staunstrup. Hardware/Software CO-Design: Principles and

Practice. Kluwer Academic Publishers, Norwell, MA, USA, 1997.

[4] M. T. Schmitz, Bashir M. Al-Hashimi, and P. Eles. System-Level Design Tech-

niques for Energy-Efficient Embedded Systems. Kluwer Academic Publishers,

Norwell, MA, USA, 2004.

[5] J. Rabaey. Low Power Design Essentials. Springer Publishing Company,

Incorporated, 2009.

[6] J. J. Chen and C. F. Kuo. Energy-efficient scheduling for real-time systems on

dynamic voltage scaling (dvs) platforms. In Proc. 13th IEEE International

Conference on Embedded and Real-Time Computing Systems and Applications,

pages 28 –38, Aug. 2007.

[7] A. Andrei, P. Eles, and Z. Peng. Energy optimization of multiprocessor

systems on chip by voltage selection. IEEE Transactions on Very Large Scale

Integration Systems, 15:262–275, Mar. 2007.

[8] T. Ishihara and H. Yasuura. Voltage scheduling problem for dynamically

variable voltage processors. In Proc. International Symposium on Low Power

Electronics and Design, pages 197–202, Aug. 1998.

[9] W. C. Kwon and T. Kim. Optimal voltage allocation techniques for dynamic-

ally variable voltage processors. ACM Transactions on Embedded Computing

Systems, 4(1):211–230, 2005.

“lic˙thesis” — 2010/11/16 — 11:04 — page 74 — #94

74 REFERENCES

[10] H. Aydi, P. Mejı́a-Alvarez, D. Mossé, and R. Melhem. Dynamic and aggressive

scheduling techniques for power-aware real-time systems. In Proc. the 22nd

IEEE Real-Time Systems Symposium, pages 95–105, Washington, DC, USA,

Dec. 2001. IEEE Computer Society.

[11] A. Andrei, P. Eles, Z. Peng, M. Schmitz, and B. M. Al-Hashimi. Quasi-static

voltage scaling for energy minimization with time constraints. In Proc. Design

Automation and Test in Europe, pages 514–519, Mar. 2005.

[12] C. Xian, Y. H. Lu, and Z.Y. Li. Dynamic voltage scaling for multitasking real-

time systems with uncertain execution time. IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, 27(8):1467–1478, Aug.

2008.

[13] J. J. Chen, C. Y. Yang, and T. W. Kuo. Slack reclamation for real-time task

scheduling over dynamic voltage scaling multiprocessors. In Proc. IEEE

International Conference on Sensor Networks, Ubiquitous, and Trustworthy

Computing, volume 1, pages 1–8, Jun. 2006.

[14] A. Vassighi and M. Sachdev. Thermal and Power Management of Integrated

Circuits (Series on Integrated Circuits and Systems). Springer-Verlag New

York, Inc., Secaucus, NJ, USA, 2006.

[15] D. Brooks, R. P. Dick, R. Joseph, and L. Shang. Power, thermal, and reliability

modeling in nanometer-scale microprocessors. IEEE Micro, 27:49–62, 2007.

[16] R. Cobbold. Temperature effects on mos transistors. Electronic Letters,

2:190–191, 1966.

[17] J. C. Ku and Y. Ismail. On the scaling of temperature-dependent effects. IEEE

Transactions on Computer-Aided Design of Intergrated Circuits and Systems,

26(10):1882–1888, Oct. 2007.

[18] International technology roadmap for semiconductors. http://public.

itrs.net.

[19] W. P. Liao, L. He, and K. M. Lepak. Temperature and supply voltage aware per-

formance and power modeling at micro-architecture level. IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems, 24(No.7):1042–

1053, Jul. 2005.

[20] R. Jejurikar, C. Pereira, and R. Gupta. Leakage aware dynamic voltage scaling

for realtime embedded systems. In Proc. Design automation Conference,

pages 275–280, Jun. 2004.

“lic˙thesis” — 2010/11/16 — 11:04 — page 75 — #95

REFERENCES 75

[21] Y. P. Liu, R. P. Dick, L. Shang, and H. Z. Yang. Accurate temperature-

dependent integrated circuit leakage power estimation is easy. In Proc. Design

Automation Test in Europe Conference, pages 1–6, apr. 2007.

[22] C. Y. Yang, J. J. Chen, L. Thiele, and T. W. Kuo. Energy-efficient real-time task

scheduling with temperature-dependent leakage. In Proc. Design Automation

and Test in Europe, pages 9–14, Mar. 2010.

[23] H. Huang, G. Quan, and J. Fan. Leakage temperature dependency modeling

in system level analysis. In Proc. 11th International Symposium on Quality

Electronic Design, pages 447–452, Mar. 2010.

[24] F. Kreith. The CRC Handbook of Thermal Engineering. CRC Press, Boca

Raton, 2000.

[25] W. Huang, S. Ghosh, S. Velusamy, K. Sankaranarayanan, K. Skadron, and

M. Stan. Hotspot: A compact thermal modeling methodology for early-stage

vlsi design. IEEE Transactions on VLSI Systems, 14(5):501–513, May 2006.

[26] Y. Yang, Z. P. Gu, R. P. Dick, and L. Shang. Isac: Integrated space and time

adaptive chip-package thermal analysis. IEEE Transactions Computer-Aided

Design of Integrated Circuits and Systems, 26(1):86–99, Jan. 2007.

[27] S. Wang and R. Bettatin. Delay analysis in temperature-constrained hard

real-time systems with general task arrivals. In Proc. Real-Time Systems

Symposium, pages 323–334, 2006.

[28] R. Jayaseelan and T. Mitra. Temperature aware task sequencing and voltage

scaling. In Proc. International Conference on Computer Aided Design, pages

618–623, 2008.

[29] S. Zhang and K. S. Chatha. System-level thermal aware design of applications

with uncertain execution time. In Proc. International Conference on Computer-

Aided Design, pages 242–249, Nov. 2008.

[30] R. Rao and S. Vrudhula. Fast and accurate prediction of the steady-state

throughput of multicore processors under thermal constraints. IEEE Trans-

actions on Computer-Aided Design of Intergrated Circuits and Systems,

28(10):1559–1572, Oct. 2009.

[31] M. Sasaki, M. Ikeda, and K. Asada. -1/+0.8◦c error, accurate temperature

sensor using 90nm 1v cmos for on-line thermal monitoring of vlsi circuits.

IEEE Transactions on Semiconductor Manufacturing, 21:201–208, 2008.

“lic˙thesis” — 2010/11/16 — 11:04 — page 76 — #96

76 REFERENCES

[32] A. K. Coskun, T. S. Rosing, and K. Whisnant. Temperature aware task

scheduling in mpsocs. In Proc. Design Automation Test in Europe, pages 1–6,

apr. 2007.

[33] M. Rajarshi and M. S. Ogrenci. Systematic temperature sensor allocation

and placement for microprocessors. In Proc. Design Automation Conference,

pages 542–547, Jul. 2006.

[34] A. N. Nowroz, R.Cochran, and S. Reda. Thermal monitoring of real processors:

Techniques for sensor allocation and full characterization. In Proc. Design

Automation Conference, pages 56–61, Jun. 2010.

[35] R. Cochran and S. Reda. Spectral techniques for high-resolution thermal char-

acterization with limited sensor data. In Proc. Design Automation Conference,

pages 478–483, Jul. 2009.

[36] S. Sharifi, C. C. Liu, and T. S. Rosing. Accurate temperature estimation for

efficient thermal management. In Proc. International Symposium on Quality

Electronic Design, pages 137–142, Mar. 2008.

[37] Y. F. Zhang and A. Srivastava. Adaptive and autonomous thermal tracking for

high performance computing systems. In Proc. Design Automation Conference,

pages 68–73, Jun. 2010.

[38] B. Nikhil, K. Tracy, and P. Kirk. Speed scaling to manage energy and temp-

erature. Journal of the ACM, 54(1):1–39, 2007.

[39] T. Chantem, R. P. Dick, and X. S. Hu. Temperature-aware scheduling and

assignment for hard real-time applications on mpsocs. In Proc. Design Auto-

mation and Test in Europe, pages 288–293, Mar. 2008.

[40] Y. Ge, P. Malani, and Q. Qiu. Distributed task migration for thermal manage-

ment in many-core systems. In Proc. Design Automation Conference, pages

579–584, Jun. 2010.

[41] S. Zhang and K. S. Chatha. Approximation algorithm for the temperature-

aware scheduling problem. In Proc. International Conference on Computer

Aided Design, pages 281–288, Nov. 2007.

[42] S. Zhang and K. S. Chatha. Thermal aware task sequencing on embedded

processors. In Proc. Design Automation Conference, pages 585–590, Jun.

2010.

“lic˙thesis” — 2010/11/16 — 11:04 — page 77 — #97

REFERENCES 77

[43] R. Rao and S. Vrudhula. Efficient online computation of core speeds to

maximize the throughput of thermally constrained multi-core processors. In

Proc. International Conference on Computer-Aided Design, pages 537–542,

Nov. 2008.

[44] Lin Yuan and Gang Qu. Alt-dvs: Dynamic voltage scaling with awareness

of leakage and temperature for real-time systems. In Proc. Conference on

Adaptive Hardware and Systems, NASA/ESA, pages 660–670, 2007.

[45] S. Murali, A. Mutapcic, D. Atienza, R. Gupta, S. Boyd, L. Benini, and G. De

Micheli. Temperature control of high-performance multi-core platforms using

convex optimization. In Proc. Design automation and test in Europe, pages

110–115, New York, NY, USA, 2008. ACM.

[46] L. Yuan, S. Leventhal, and G. Qu. Temperature-aware leakage minimiza-

tion technique for real-time systems. In Proc. International Conference on

Computer Aided Design, pages 761–764, 2006.

[47] M. Bao, A. Andrei, P. Eles, and Z. Peng. On-line temperature-aware idle time

distribution for leakage energy optimization. In Proc. The 6th International

Symposium on Electronic Design, Test and Applications, Jan 2011.

[48] M. Bao, A. Andrei, P. Eles, and Z. Peng. Temperature-aware idle time

distribution for energy optimization with dynamic voltage scaling. In Proc.

The 10th Swedish System-on-Chip Conference, Mar 2010.

[49] M. Bao, A. Andrei, P. Eles, and Z. Peng. Temperature-aware idle time

distribution for energy optimization with dynamic voltage scaling. In Proc.

Design Automation and Test in Europe, pages 21–26, Mar. 2010.

[50] M. Bao, A. Andrei, P. Eles, and Z. Peng. On-line thermal aware dynamic

voltage scaling for energy optimization with frequency/temperature depend-

ency consideration. In Proc. Design Automation Conference, pages 490–495,

Jul. 2009.

[51] M. Bao, A. Andrei, P. Eles, and Z. Peng. Temperature-aware voltage selection

for energy optimization. In Proc. The 9th Swedish System-on-Chip Conference,

May 2009.

[52] M. Bao, A. Andrei, P. Eles, and Z. Peng. An energy efficient technique

for temperature-aware voltage selection. Technical Report 4, Linkping Uni-

versityLinkping University, ESLAB - Embedded Systems Laboratory, The

Institute of Technology, 2009.

“lic˙thesis” — 2010/11/16 — 11:04 — page 78 — #98

78 REFERENCES

[53] M. Bao, A. Andrei, P. Eles, and Z. Peng. Temperature-aware task mapping

for energy optimization with dynamic voltage scaling. In Proc. the 11th IEEE

Workshop on Design and Diagnostics of Electronic Circuits and Systems,

pages 1–6, Apr. 2008.

[54] M. Bao, A. Andrei, P. Eles, and Z. Peng. Temperature-aware voltage selection

for energy optimization. In Proc. Design Automation Test in Europe, pages

1083–1086, Apr. 2008.

[55] S. Martin, K. Flautner, T. Mudge, and D. Blaauw. Combined dynamic voltage

scaling and adaptive body biasing for lower power microprocessors under

dynamic workloads. In Proc. International Conference on Computer Aided

Design, pages 721–725, Nov. 2002.

[56] J. Choi, A. Bansal, M. Meterelliyoz, J. Murthy, and K. Roy. Leakage power

dependent temperature estimation to predict thermal runaway in finfet circuits.

In Proc. International Conference on Computer-Aided Design, pages 583–586,

2006.

[57] H. Su, F. Liu, A. Acar, and S. Nassif. Full chip leakage estimation considering

power supply and temperature variations. In Proc. International Symposium

on Low Power Electronics and Design, 2003.

[58] Y. Tsai, A. Ankadi, and N. Vijaykrishnan. Chippower: An architecture-level

leakage simulator. In Proc. International SOC Conference, 2004.

[59] Y. Liu, H. Yang, R. P. Dick, H. Wang, and L. Shang. Thermal vs energy

optimization for dvfs-enabled processors in embedded systems. In Proc.

International Symposium on Quality Electronic Design, pages 204–209, Mar.

2007.

[60] http://ffmpeg.mplayerhq.hu/.

[61] B. Razavi. Design of Analog CMOS Integrated Circuits. McGraw-Hill Science

Engineering, Erewhon, NC, Aug. 2000.

[62] S. Hsu, A. Alvandpour, S. Mathew, S. L. Lu, R. K. Krishnamurthy, and

S. Borkar. A 4.5-ghz 130-nm 32-kb l0 cache with a leakage-tolerant self

reverse-bias bitline scheme. IEEE Journal of Solid-State Circuits, 38:755–761,

May 2003.

[63] A. Macii, E. Macii, and M. Poncino. Improving the efficiency of memory

partitioning by address clustering. In Proc. of the Design Automation and Test

in Europe, pages 18–23, 2003.

“lic˙thesis” — 2010/11/16 — 11:04 — page 79 — #99

REFERENCES 79

[64] R. Rao and S. Vrudhula. Performance optimal processor throttling under

thermal constraints. In Proc. International Conference on Compilers, Archi-

tecture, and Synthesis for Embedded Systems, pages 257–266, Nov. 2007.

[65] W. H. Pressa, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical

Recipes 3rd Edition: The Art of Scientific Computing. Cambridge University

Press, The Edinburgh Building, Cambridge, UK, 2007.

[66] Y. Nesterov and A. Nemirovskii. Interior-point polynomial algorithms in

convex programming. Society for Industrial Mathematics, 1987.

[67] Application note: Powerpc 970mp thermal considerations, Jul. 2006.

[68] Intel core 2 duo mobile processors on 65-nm process for embedded applica-

tions: Thermal design guide, Aug. 2007.

[69] Intel core 2 duo mobile processors on 45-nm process for embedded applica-

tions: Thermal design guide, Jun. 2008.

[70] Luca Benini, Davide Bertozzi, Davide Bruni, Nicola Drago, Franco Fummi,

and Massimo Poncino. Systemc cosimulation and emulation of multiprocessor

soc designs. Computer, 36:53–59, 2003.

“lic˙thesis” — 2010/11/16 — 11:04 — page 80 — #100

“lic˙thesis” — 2010/11/16 — 11:04 — page 81 — #101

Datum
Date

Rapporttyp
Report category

Licentiatavhandling

Examensarbete

C-uppsats

D-uppsats

Övrig rapport

Språk
Language

 Svenska/Swedish

 Engelska/English

Titel
Title

Författare
Author

Sammanfattning
Abstract

ISBN

ISRN

Serietitel och serienummer ISSN
Title of series, numbering

Linköping Studies in Science and Technology

Thesis No. 1459

Nyckelord
Keywords

URL för elektronisk version

X

X

2010-12-16

Avdelning, institution
Division, department

Institutionen för datavetenskap

Department of Computer
and Information Science

978-91-7393-264-6

http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-
60855

System-Level Techniques for Temperature-Aware Energy Optimization

Min Bao

Energy consumption has become one of the main design constraints in today’s integrated circuits.
Techniques for energy optimization, from circuit-level up to system-level, have been intensively
researched.

The advent of large-scale integration with deep sub-micron technologies has led to both high power
densities and high chip working temperatures. At the same time, leakage power is becoming the dominant
power consumption source of circuits, due to continuously lowered threshold voltages, as technology
scales. In this context, temperature is an important parameter. One aspect, of particular interest for this
thesis, is the strong inter-dependency between leakage and temperature. Apart from leakage power,
temperature also has an important impact on circuit delay and, implicitly, on the frequency, mainly
through its influence on carrier mobility and threshold voltage. For power-aware design techniques,
temperature has become a major factor to be considered. In this thesis, we address the issue of system-
level energy optimization for real-time embedded systems taking temperature aspects into consideration.

We have investigated two problems in this thesis: (1) Energy optimization via temperature-aware
dynamic voltage/frequency scaling (DVFS). (2) Energy optimization through temperature-aware idle time
(or slack) distribution (ITD). For the above two problems, we have proposed off-line techniques where
only static slack is considered. To further improve energy efficiency, we have also proposed on-line
techniques, which make use of both static and dynamic slack. Experimental results have demonstrated
that consider-able improvement of the energy efficiency can be achieved by applying our temperature-
aware optimization techniques. Another contribution of this thesis is an analytical temperature analysis
approach which is both accurate and sufficiently fast to be used inside an energy optimization loop.

Temperature-Aware Design, Energy Optimization, System-Level Design, Embedded Systems

LiU-Tek-Lic-2010:30

0280-7971

“lic˙thesis” — 2010/11/16 — 11:04 — page 82 — #102

“lic˙thesis” — 2010/11/16 — 11:04 — page 83 — #103

Department of Computer and Information Science

Linköpings universitet

Linköpings Studies in Science and Technology
Faculty of Arts and Sciences – Licentiate Theses

No 17 Vojin Plavsic: Interleaved Processing of Non-Numerical Data Stored on a Cyclic Memory. (Available at: FOA,

Box 1165, S-581 11 Linköping, Sweden. FOA Report B30062E)

No 28 Arne Jönsson, Mikael Patel: An Interactive Flowcharting Technique for Communicating and Realizing Al-

gorithms, 1984.

No 29 Johnny Eckerland: Retargeting of an Incremental Code Generator, 1984.

No 48 Henrik Nordin: On the Use of Typical Cases for Knowledge-Based Consultation and Teaching, 1985.

No 52 Zebo Peng: Steps Towards the Formalization of Designing VLSI Systems, 1985.

No 60 Johan Fagerström: Simulation and Evaluation of Architecture based on Asynchronous Processes, 1985.

No 71 Jalal Maleki: ICONStraint, A Dependency Directed Constraint Maintenance System, 1987.

No 72 Tony Larsson: On the Specification and Verification of VLSI Systems, 1986.

No 73 Ola Strömfors: A Structure Editor for Documents and Programs, 1986.

No 74 Christos Levcopoulos: New Results about the Approximation Behavior of the Greedy Triangulation, 1986.

No 104 Shamsul I. Chowdhury: Statistical Expert Systems - a Special Application Area for Knowledge-Based Computer

Methodology, 1987.

No 108 Rober Bilos: Incremental Scanning and Token-Based Editing, 1987.

No 111 Hans Block: SPORT-SORT Sorting Algorithms and Sport Tournaments, 1987.

No 113 Ralph Rönnquist: Network and Lattice Based Approaches to the Representation of Knowledge, 1987.

No 118 Mariam Kamkar, Nahid Shahmehri: Affect-Chaining in Program Flow Analysis Applied to Queries of Pro-

grams, 1987.

No 126 Dan Strömberg: Transfer and Distribution of Application Programs, 1987.

No 127 Kristian Sandahl: Case Studies in Knowledge Acquisition, Migration and User Acceptance of Expert Systems,

1987.

No 139 Christer Bäckström: Reasoning about Interdependent Actions, 1988.

No 140 Mats Wirén: On Control Strategies and Incrementality in Unification-Based Chart Parsing, 1988.

No 146 Johan Hultman: A Software System for Defining and Controlling Actions in a Mechanical System, 1988.

No 150 Tim Hansen: Diagnosing Faults using Knowledge about Malfunctioning Behavior, 1988.

No 165 Jonas Löwgren: Supporting Design and Management of Expert System User Interfaces, 1989.

No 166 Ola Petersson: On Adaptive Sorting in Sequential and Parallel Models, 1989.

No 174 Yngve Larsson: Dynamic Configuration in a Distributed Environment, 1989.

No 177 Peter Åberg: Design of a Multiple View Presentation and Interaction Manager, 1989.

No 181 Henrik Eriksson: A Study in Domain-Oriented Tool Support for Knowledge Acquisition, 1989.

No 184 Ivan Rankin: The Deep Generation of Text in Expert Critiquing Systems, 1989.

No 187 Simin Nadjm-Tehrani: Contributions to the Declarative Approach to Debugging Prolog Programs, 1989.

No 189 Magnus Merkel: Temporal Information in Natural Language, 1989.

No 196 Ulf Nilsson: A Systematic Approach to Abstract Interpretation of Logic Programs, 1989.

No 197 Staffan Bonnier: Horn Clause Logic with External Procedures: Towards a Theoretical Framework, 1989.

No 203 Christer Hansson: A Prototype System for Logical Reasoning about Time and Action, 1990.

No 212 Björn Fjellborg: An Approach to Extraction of Pipeline Structures for VLSI High-Level Synthesis, 1990.

No 230 Patrick Doherty: A Three-Valued Approach to Non-Monotonic Reasoning, 1990.

No 237 Tomas Sokolnicki: Coaching Partial Plans: An Approach to Knowledge-Based Tutoring, 1990.

No 250 Lars Strömberg: Postmortem Debugging of Distributed Systems, 1990.

No 253 Torbjörn Näslund: SLDFA-Resolution - Computing Answers for Negative Queries, 1990.

No 260 Peter D. Holmes: Using Connectivity Graphs to Support Map-Related Reasoning, 1991.

No 283 Olof Johansson: Improving Implementation of Graphical User Interfaces for Object-Oriented Knowledge- Bases,

1991.

No 298 Rolf G Larsson: Aktivitetsbaserad kalkylering i ett nytt ekonomisystem, 1991.

No 318 Lena Srömbäck: Studies in Extended Unification-Based Formalism for Linguistic Description: An Algorithm for

Feature Structures with Disjunction and a Proposal for Flexible Systems, 1992.

No 319 Mikael Pettersson: DML-A Language and System for the Generation of Efficient Compilers from Denotational

Specification, 1992.

No 326 Andreas Kågedal: Logic Programming with External Procedures: an Implementation, 1992.

No 328 Patrick Lambrix: Aspects of Version Management of Composite Objects, 1992.

No 333 Xinli Gu: Testability Analysis and Improvement in High-Level Synthesis Systems, 1992.

No 335 Torbjörn Näslund: On the Role of Evaluations in Iterative Development of Managerial Support Systems, 1992.

No 348 Ulf Cederling: Industrial Software Development - a Case Study, 1992.

No 352 Magnus Morin: Predictable Cyclic Computations in Autonomous Systems: A Computational Model and Im-

plementation, 1992.

No 371 Mehran Noghabai: Evaluation of Strategic Investments in Information Technology, 1993.

No 378 Mats Larsson: A Transformational Approach to Formal Digital System Design, 1993.

No 380 Johan Ringström: Compiler Generation for Parallel Languages from Denotational Specifications, 1993.

“lic˙thesis” — 2010/11/16 — 11:04 — page 84 — #104

No 381 Michael Jansson: Propagation of Change in an Intelligent Information System, 1993.

No 383 Jonni Harrius: An Architecture and a Knowledge Representation Model for Expert Critiquing Systems, 1993.

No 386 Per Österling: Symbolic Modelling of the Dynamic Environments of Autonomous Agents, 1993.

No 398 Johan Boye: Dependency-based Groudness Analysis of Functional Logic Programs, 1993.

No 402 Lars Degerstedt: Tabulated Resolution for Well Founded Semantics, 1993.

No 406 Anna Moberg: Satellitkontor - en studie av kommunikationsmönster vid arbete på distans, 1993.

No 414 Peter Carlsson: Separation av företagsledning och finansiering - fallstudier av företagsledarutköp ur ett agent-

teoretiskt perspektiv, 1994.

No 417 Camilla Sjöström: Revision och lagreglering - ett historiskt perspektiv, 1994.

No 436 Cecilia Sjöberg: Voices in Design: Argumentation in Participatory Development, 1994.

No 437 Lars Viklund: Contributions to a High-level Programming Environment for a Scientific Computing, 1994.

No 440 Peter Loborg: Error Recovery Support in Manufacturing Control Systems, 1994.

FHS 3/94 Owen Eriksson: Informationssystem med verksamhetskvalitet - utvärdering baserat på ett verksamhetsinriktat och

samskapande perspektiv, 1994.

FHS 4/94 Karin Pettersson: Informationssystemstrukturering, ansvarsfördelning och användarinflytande - En komparativ

studie med utgångspunkt i två informationssystemstrategier, 1994.

No 441 Lars Poignant: Informationsteknologi och företagsetablering - Effekter på produktivitet och region, 1994.

No 446 Gustav Fahl: Object Views of Relational Data in Multidatabase Systems, 1994.

No 450 Henrik Nilsson: A Declarative Approach to Debugging for Lazy Functional Languages, 1994.

No 451 Jonas Lind: Creditor - Firm Relations: an Interdisciplinary Analysis, 1994.

No 452 Martin Sköld: Active Rules based on Object Relational Queries - Efficient Change Monitoring Techniques, 1994.

No 455 Pär Carlshamre: A Collaborative Approach to Usability Engineering: Technical Communicators and System

Developers in Usability-Oriented Systems Development, 1994.

FHS 5/94 Stefan Cronholm: Varför CASE-verktyg i systemutveckling? - En motiv- och konsekvensstudie avseende

arbetssätt och arbetsformer, 1994.

No 462 Mikael Lindvall: A Study of Traceability in Object-Oriented Systems Development, 1994.

No 463 Fredrik Nilsson: Strategi och ekonomisk styrning - En studie av Sandviks förvärv av Bahco Verktyg, 1994.

No 464 Hans Olsén: Collage Induction: Proving Properties of Logic Programs by Program Synthesis, 1994.

No 469 Lars Karlsson: Specification and Synthesis of Plans Using the Features and Fluents Framework, 1995.

No 473 Ulf Söderman: On Conceptual Modelling of Mode Switching Systems, 1995.

No 475 Choong-ho Yi: Reasoning about Concurrent Actions in the Trajectory Semantics, 1995.

No 476 Bo Lagerström: Successiv resultatavräkning av pågående arbeten. - Fallstudier i tre byggföretag, 1995.

No 478 Peter Jonsson: Complexity of State-Variable Planning under Structural Restrictions, 1995.

FHS 7/95 Anders Avdic: Arbetsintegrerad systemutveckling med kalkylprogram, 1995.

No 482 Eva L Ragnemalm: Towards Student Modelling through Collaborative Dialogue with a Learning Companion,

1995.

No 488 Eva Toller: Contributions to Parallel Multiparadigm Languages: Combining Object-Oriented and Rule-Based

Programming, 1995.

No 489 Erik Stoy: A Petri Net Based Unified Representation for Hardware/Software Co-Design, 1995.

No 497 Johan Herber: Environment Support for Building Structured Mathematical Models, 1995.

No 498 Stefan Svenberg: Structure-Driven Derivation of Inter-Lingual Functor-Argument Trees for Multi-Lingual

Generation, 1995.

No 503 Hee-Cheol Kim: Prediction and Postdiction under Uncertainty, 1995.

FHS 8/95 Dan Fristedt: Metoder i användning - mot förbättring av systemutveckling genom situationell metodkunskap och

metodanalys, 1995.

FHS 9/95 Malin Bergvall: Systemförvaltning i praktiken - en kvalitativ studie avseende centrala begrepp, aktiviteter och

ansvarsroller, 1995.

No 513 Joachim Karlsson: Towards a Strategy for Software Requirements Selection, 1995.

No 517 Jakob Axelsson: Schedulability-Driven Partitioning of Heterogeneous Real-Time Systems, 1995.

No 518 Göran Forslund: Toward Cooperative Advice-Giving Systems: The Expert Systems Experience, 1995.

No 522 Jörgen Andersson: Bilder av småföretagares ekonomistyrning, 1995.

No 538 Staffan Flodin: Efficient Management of Object-Oriented Queries with Late Binding, 1996.

No 545 Vadim Engelson: An Approach to Automatic Construction of Graphical User Interfaces for Applications in

Scientific Computing, 1996.

No 546 Magnus Werner : Multidatabase Integration using Polymorphic Queries and Views, 1996.

FiF-a 1/96 Mikael Lind: Affärsprocessinriktad förändringsanalys - utveckling och tillämpning av synsätt och metod, 1996.

No 549 Jonas Hallberg: High-Level Synthesis under Local Timing Constraints, 1996.

No 550 Kristina Larsen: Förutsättningar och begränsningar för arbete på distans - erfarenheter från fyra svenska företag.

1996.

No 557 Mikael Johansson: Quality Functions for Requirements Engineering Methods, 1996.

No 558 Patrik Nordling: The Simulation of Rolling Bearing Dynamics on Parallel Computers, 1996.

No 561 Anders Ekman: Exploration of Polygonal Environments, 1996.

No 563 Niclas Andersson: Compilation of Mathematical Models to Parallel Code, 1996.

No 567 Johan Jenvald: Simulation and Data Collection in Battle Training, 1996.

“lic˙thesis” — 2010/11/16 — 11:04 — page 85 — #105

No 575 Niclas Ohlsson: Software Quality Engineering by Early Identification of Fault-Prone Modules, 1996.

No 576 Mikael Ericsson: Commenting Systems as Design Support—A Wizard-of-Oz Study, 1996.

No 587 Jörgen Lindström: Chefers användning av kommunikationsteknik, 1996.

No 589 Esa Falkenroth: Data Management in Control Applications - A Proposal Based on Active Database Systems,

1996.

No 591 Niclas Wahllöf: A Default Extension to Description Logics and its Applications, 1996.

No 595 Annika Larsson: Ekonomisk Styrning och Organisatorisk Passion - ett interaktivt perspektiv, 1997.

No 597 Ling Lin: A Value-based Indexing Technique for Time Sequences, 1997.

No 598 Rego Granlund: C3
Fire - A Microworld Supporting Emergency Management Training, 1997.

No 599 Peter Ingels: A Robust Text Processing Technique Applied to Lexical Error Recovery, 1997.

No 607 Per-Arne Persson: Toward a Grounded Theory for Support of Command and Control in Military Coalitions, 1997.

No 609 Jonas S Karlsson: A Scalable Data Structure for a Parallel Data Server, 1997.

FiF-a 4 Carita Åbom: Videomötesteknik i olika affärssituationer - möjligheter och hinder, 1997.

FiF-a 6 Tommy Wedlund: Att skapa en företagsanpassad systemutvecklingsmodell - genom rekonstruktion, värdering och

vidareutveckling i T50-bolag inom ABB, 1997.

No 615 Silvia Coradeschi: A Decision-Mechanism for Reactive and Coordinated Agents, 1997.

No 623 Jan Ollinen: Det flexibla kontorets utveckling på Digital - Ett stöd för multiflex? 1997.

No 626 David Byers: Towards Estimating Software Testability Using Static Analysis, 1997.

No 627 Fredrik Eklund: Declarative Error Diagnosis of GAPLog Programs, 1997.

No 629 Gunilla Ivefors: Krigsspel och Informationsteknik inför en oförutsägbar framtid, 1997.
No 631 Jens-Olof Lindh: Analysing Traffic Safety from a Case-Based Reasoning Perspective, 1997

No 639 Jukka Mäki-Turja:. Smalltalk - a suitable Real-Time Language, 1997.

No 640 Juha Takkinen: CAFE: Towards a Conceptual Model for Information Management in Electronic Mail, 1997.

No 643 Man Lin: Formal Analysis of Reactive Rule-based Programs, 1997.

No 653 Mats Gustafsson: Bringing Role-Based Access Control to Distributed Systems, 1997.

FiF-a 13 Boris Karlsson: Metodanalys för förståelse och utveckling av systemutvecklingsverksamhet. Analys och värdering

av systemutvecklingsmodeller och dess användning, 1997.

No 674 Marcus Bjäreland: Two Aspects of Automating Logics of Action and Change - Regression and Tractability,

1998.

No 676 Jan Håkegård: Hierarchical Test Architecture and Board-Level Test Controller Synthesis, 1998.

No 668 Per-Ove Zetterlund: Normering av svensk redovisning - En studie av tillkomsten av Redovisningsrådets re-

kommendation om koncernredovisning (RR01:91), 1998.

No 675 Jimmy Tjäder: Projektledaren & planen - en studie av projektledning i tre installations- och systemutveck-

lingsprojekt, 1998.

FiF-a 14 Ulf Melin: Informationssystem vid ökad affärs- och processorientering - egenskaper, strategier och utveckling,

1998.

No 695 Tim Heyer: COMPASS: Introduction of Formal Methods in Code Development and Inspection, 1998.

No 700 Patrik Hägglund: Programming Languages for Computer Algebra, 1998.

FiF-a 16 Marie-Therese Christiansson: Inter-organisatorisk verksamhetsutveckling - metoder som stöd vid utveckling av

partnerskap och informationssystem, 1998.

No 712 Christina Wennestam: Information om immateriella resurser. Investeringar i forskning och utveckling samt i

personal inom skogsindustrin, 1998.

No 719 Joakim Gustafsson: Extending Temporal Action Logic for Ramification and Concurrency, 1998.

No 723 Henrik André-Jönsson: Indexing time-series data using text indexing methods, 1999.

No 725 Erik Larsson: High-Level Testability Analysis and Enhancement Techniques, 1998.

No 730 Carl-Johan Westin: Informationsförsörjning: en fråga om ansvar - aktiviteter och uppdrag i fem stora svenska

organisationers operativa informationsförsörjning, 1998.

No 731 Åse Jansson: Miljöhänsyn - en del i företags styrning, 1998.

No 733 Thomas Padron-McCarthy: Performance-Polymorphic Declarative Queries, 1998.

No 734 Anders Bäckström: Värdeskapande kreditgivning - Kreditriskhantering ur ett agentteoretiskt perspektiv, 1998.

FiF-a 21 Ulf Seigerroth: Integration av förändringsmetoder - en modell för välgrundad metodintegration, 1999.

FiF-a 22 Fredrik Öberg: Object-Oriented Frameworks - A New Strategy for Case Tool Development, 1998.

No 737 Jonas Mellin: Predictable Event Monitoring, 1998.

No 738 Joakim Eriksson: Specifying and Managing Rules in an Active Real-Time Database System, 1998.

FiF-a 25 Bengt E W Andersson: Samverkande informationssystem mellan aktörer i offentliga åtaganden - En teori om

aktörsarenor i samverkan om utbyte av information, 1998.

No 742 Pawel Pietrzak: Static Incorrectness Diagnosis of CLP (FD), 1999.

No 748 Tobias Ritzau: Real-Time Reference Counting in RT-Java, 1999.

No 751 Anders Ferntoft: Elektronisk affärskommunikation - kontaktkostnader och kontaktprocesser mellan kunder och

leverantörer på producentmarknader, 1999.

No 752 Jo Skåmedal: Arbete på distans och arbetsformens påverkan på resor och resmönster, 1999.

No 753 Johan Alvehus: Mötets metaforer. En studie av berättelser om möten, 1999.

No 754 Magnus Lindahl: Bankens villkor i låneavtal vid kreditgivning till högt belånade företagsförvärv: En studie ur ett

agentteoretiskt perspektiv, 2000.

“lic˙thesis” — 2010/11/16 — 11:04 — page 86 — #106

No 766 Martin V. Howard: Designing dynamic visualizations of temporal data, 1999.

No 769 Jesper Andersson: Towards Reactive Software Architectures, 1999.

No 775 Anders Henriksson: Unique kernel diagnosis, 1999.

FiF-a 30 Pär J. Ågerfalk: Pragmatization of Information Systems - A Theoretical and Methodological Outline, 1999.

No 787 Charlotte Björkegren: Learning for the next project - Bearers and barriers in knowledge transfer within an

organisation, 1999.

No 788 Håkan Nilsson: Informationsteknik som drivkraft i granskningsprocessen - En studie av fyra revisionsbyråer,

2000.

No 790 Erik Berglund: Use-Oriented Documentation in Software Development, 1999.

No 791 Klas Gäre: Verksamhetsförändringar i samband med IS-införande, 1999.

No 800 Anders Subotic: Software Quality Inspection, 1999.

No 807 Svein Bergum: Managerial communication in telework, 2000.

No 809 Flavius Gruian: Energy-Aware Design of Digital Systems, 2000.

FiF-a 32 Karin Hedström: Kunskapsanvändning och kunskapsutveckling hos verksamhetskonsulter - Erfarenheter från ett

FOU-samarbete, 2000.

No 808 Linda Askenäs: Affärssystemet - En studie om teknikens aktiva och passiva roll i en organisation, 2000.

No 820 Jean Paul Meynard: Control of industrial robots through high-level task programming, 2000.

No 823 Lars Hult: Publika Gränsytor - ett designexempel, 2000.

No 832 Paul Pop: Scheduling and Communication Synthesis for Distributed Real-Time Systems, 2000.

FiF-a 34 Göran Hultgren: Nätverksinriktad Förändringsanalys - perspektiv och metoder som stöd för förståelse och

utveckling av affärsrelationer och informationssystem, 2000.

No 842 Magnus Kald: The role of management control systems in strategic business units, 2000.

No 844 Mikael Cäker: Vad kostar kunden? Modeller för intern redovisning, 2000.

FiF-a 37 Ewa Braf: Organisationers kunskapsverksamheter - en kritisk studie av ”knowledge management”, 2000.

FiF-a 40 Henrik Lindberg: Webbaserade affärsprocesser - Möjligheter och begränsningar, 2000.

FiF-a 41 Benneth Christiansson: Att komponentbasera informationssystem - Vad säger teori och praktik?, 2000.

No. 854 Ola Pettersson: Deliberation in a Mobile Robot, 2000.

No 863 Dan Lawesson: Towards Behavioral Model Fault Isolation for Object Oriented Control Systems, 2000.

No 881 Johan Moe: Execution Tracing of Large Distributed Systems, 2001.

No 882 Yuxiao Zhao: XML-based Frameworks for Internet Commerce and an Implementation of B2B e-procurement,

2001.

No 890 Annika Flycht-Eriksson: Domain Knowledge Management in Information-providing Dialogue systems, 2001.

FiF-a 47 Per-Arne Segerkvist: Webbaserade imaginära organisationers samverkansformer: Informationssystemarkitektur

och aktörssamverkan som förutsättningar för affärsprocesser, 2001.

No 894 Stefan Svarén: Styrning av investeringar i divisionaliserade företag - Ett koncernperspektiv, 2001.

No 906 Lin Han: Secure and Scalable E-Service Software Delivery, 2001.

No 917 Emma Hansson: Optionsprogram för anställda - en studie av svenska börsföretag, 2001.

No 916 Susanne Odar: IT som stöd för strategiska beslut, en studie av datorimplementerade modeller av verksamhet som

stöd för beslut om anskaffning av JAS 1982, 2002.

FiF-a-49 Stefan Holgersson: IT-system och filtrering av verksamhetskunskap - kvalitetsproblem vid analyser och be-

slutsfattande som bygger på uppgifter hämtade från polisens IT-system, 2001.

FiF-a-51 Per Oscarsson: Informationssäkerhet i verksamheter - begrepp och modeller som stöd för förståelse av infor-

mationssäkerhet och dess hantering, 2001.

No 919 Luis Alejandro Cortes: A Petri Net Based Modeling and Verification Technique for Real-Time Embedded

Systems, 2001.

No 915 Niklas Sandell: Redovisning i skuggan av en bankkris - Värdering av fastigheter. 2001.

No 931 Fredrik Elg: Ett dynamiskt perspektiv på individuella skillnader av heuristisk kompetens, intelligens, mentala

modeller, mål och konfidens i kontroll av mikrovärlden Moro, 2002.

No 933 Peter Aronsson: Automatic Parallelization of Simulation Code from Equation Based Simulation Languages, 2002.

No 938 Bourhane Kadmiry: Fuzzy Control of Unmanned Helicopter, 2002.

No 942 Patrik Haslum: Prediction as a Knowledge Representation Problem: A Case Study in Model Design, 2002.

No 956 Robert Sevenius: On the instruments of governance - A law & economics study of capital instruments in limited

liability companies, 2002.

FiF-a 58 Johan Petersson: Lokala elektroniska marknadsplatser - informationssystem för platsbundna affärer, 2002.

No 964 Peter Bunus: Debugging and Structural Analysis of Declarative Equation-Based Languages, 2002.

No 973 Gert Jervan: High-Level Test Generation and Built-In Self-Test Techniques for Digital Systems, 2002.

No 958 Fredrika Berglund: Management Control and Strategy - a Case Study of Pharmaceutical Drug Development,

2002.

FiF-a 61 Fredrik Karlsson: Meta-Method for Method Configuration - A Rational Unified Process Case, 2002.

No 985 Sorin Manolache: Schedulability Analysis of Real-Time Systems with Stochastic Task Execution Times, 2002.

No 982 Diana Szentiványi: Performance and Availability Trade-offs in Fault-Tolerant Middleware, 2002.

No 989 Iakov Nakhimovski: Modeling and Simulation of Contacting Flexible Bodies in Multibody Systems, 2002.

No 990 Levon Saldamli: PDEModelica - Towards a High-Level Language for Modeling with Partial Differential

Equations, 2002.

No 991 Almut Herzog: Secure Execution Environment for Java Electronic Services, 2002.

No 999 Jon Edvardsson: Contributions to Program- and Specification-based Test Data Generation, 2002.

No 1000 Anders Arpteg: Adaptive Semi-structured Information Extraction, 2002.

“lic˙thesis” — 2010/11/16 — 11:04 — page 87 — #107

No 1001 Andrzej Bednarski: A Dynamic Programming Approach to Optimal Retargetable Code Generation for Irregular

Architectures, 2002.

No 988 Mattias Arvola: Good to use! : Use quality of multi-user applications in the home, 2003.

FiF-a 62 Lennart Ljung: Utveckling av en projektivitetsmodell - om organisationers förmåga att tillämpa

projektarbetsformen, 2003.

No 1003 Pernilla Qvarfordt: User experience of spoken feedback in multimodal interaction, 2003.

No 1005 Alexander Siemers: Visualization of Dynamic Multibody Simulation With Special Reference to Contacts, 2003.

No 1008 Jens Gustavsson: Towards Unanticipated Runtime Software Evolution, 2003.

No 1010 Calin Curescu: Adaptive QoS-aware Resource Allocation for Wireless Networks, 2003.

No 1015 Anna Andersson: Management Information Systems in Process-oriented Healthcare Organisations, 2003.

No 1018 Björn Johansson: Feedforward Control in Dynamic Situations, 2003.

No 1022 Traian Pop: Scheduling and Optimisation of Heterogeneous Time/Event-Triggered Distributed Embedded

Systems, 2003.

FiF-a 65 Britt-Marie Johansson: Kundkommunikation på distans - en studie om kommunikationsmediets betydelse i

affärstransaktioner, 2003.

No 1024 Aleksandra Tešanovic: Towards Aspectual Component-Based Real-Time System Development, 2003.

No 1034 Arja Vainio-Larsson: Designing for Use in a Future Context - Five Case Studies in Retrospect, 2003.

No 1033 Peter Nilsson: Svenska bankers redovisningsval vid reservering för befarade kreditförluster - En studie vid

införandet av nya redovisningsregler, 2003.

FiF-a 69 Fredrik Ericsson: Information Technology for Learning and Acquiring of Work Knowledge, 2003.

No 1049 Marcus Comstedt: Towards Fine-Grained Binary Composition through Link Time Weaving, 2003.

No 1052 Åsa Hedenskog: Increasing the Automation of Radio Network Control, 2003.

No 1054 Claudiu Duma: Security and Efficiency Tradeoffs in Multicast Group Key Management, 2003.

FiF-a 71 Emma Eliason: Effektanalys av IT-systems handlingsutrymme, 2003.

No 1055 Carl Cederberg: Experiments in Indirect Fault Injection with Open Source and Industrial Software, 2003.

No 1058 Daniel Karlsson: Towards Formal Verification in a Component-based Reuse Methodology, 2003.

FiF-a 73 Anders Hjalmarsson: Att etablera och vidmakthålla förbättringsverksamhet - behovet av koordination och

interaktion vid förändring av systemutvecklingsverksamheter, 2004.

No 1079 Pontus Johansson: Design and Development of Recommender Dialogue Systems, 2004.

No 1084 Charlotte Stoltz: Calling for Call Centres - A Study of Call Centre Locations in a Swedish Rural Region, 2004.

FiF-a 74 Björn Johansson: Deciding on Using Application Service Provision in SMEs, 2004.

No 1094 Genevieve Gorrell: Language Modelling and Error Handling in Spoken Dialogue Systems, 2004.

No 1095 Ulf Johansson: Rule Extraction - the Key to Accurate and Comprehensible Data Mining Models, 2004.

No 1099 Sonia Sangari: Computational Models of Some Communicative Head Movements, 2004.

No 1110 Hans Nässla: Intra-Family Information Flow and Prospects for Communication Systems, 2004.

No 1116 Henrik Sällberg: On the value of customer loyalty programs - A study of point programs and switching costs,

2004.

FiF-a 77 Ulf Larsson: Designarbete i dialog - karaktärisering av interaktionen mellan användare och utvecklare i en

systemutvecklingsprocess, 2004.

No 1126 Andreas Borg: Contribution to Management and Validation of Non-Functional Requirements, 2004.

No 1127 Per-Ola Kristensson: Large Vocabulary Shorthand Writing on Stylus Keyboard, 2004.

No 1132 Pär-Anders Albinsson: Interacting with Command and Control Systems: Tools for Operators and Designers,

2004.

No 1130 Ioan Chisalita: Safety-Oriented Communication in Mobile Networks for Vehicles, 2004.

No 1138 Thomas Gustafsson: Maintaining Data Consistency in Embedded Databases for Vehicular Systems, 2004.

No 1149 Vaida Jakoniené: A Study in Integrating Multiple Biological Data Sources, 2005.

No 1156 Abdil Rashid Mohamed: High-Level Techniques for Built-In Self-Test Resources Optimization, 2005.

No 1162 Adrian Pop: Contributions to Meta-Modeling Tools and Methods, 2005.

No 1165 Fidel Vascós Palacios: On the information exchange between physicians and social insurance officers in the sick

leave process: an Activity Theoretical perspective, 2005.

FiF-a 84 Jenny Lagsten: Verksamhetsutvecklande utvärdering i informationssystemprojekt, 2005.

No 1166 Emma Larsdotter Nilsson: Modeling, Simulation, and Visualization of Metabolic Pathways Using Modelica,

2005.

No 1167 Christina Keller: Virtual Learning Environments in higher education. A study of students’ acceptance of edu-

cational technology, 2005.

No 1168 Cécile Åberg: Integration of organizational workflows and the Semantic Web, 2005.

FiF-a 85 Anders Forsman: Standardisering som grund för informationssamverkan och IT-tjänster - En fallstudie baserad på

trafikinformationstjänsten RDS-TMC, 2005.

No 1171 Yu-Hsing Huang: A systemic traffic accident model, 2005.

FiF-a 86 Jan Olausson: Att modellera uppdrag - grunder för förståelse av processinriktade informationssystem i

transaktionsintensiva verksamheter, 2005.

No 1172 Petter Ahlström: Affärsstrategier för seniorbostadsmarknaden, 2005.

No 1183 Mathias Cöster: Beyond IT and Productivity - How Digitization Transformed the Graphic Industry, 2005.

No 1184 Åsa Horzella: Beyond IT and Productivity - Effects of Digitized Information Flows in Grocery Distribution, 2005.

No 1185 Maria Kollberg: Beyond IT and Productivity - Effects of Digitized Information Flows in the Logging Industry,

2005.

No 1190 David Dinka: Role and Identity - Experience of technology in professional settings, 2005.

No 1191 Andreas Hansson: Increasing the Storage Capacity of Recursive Auto-associative Memory by Segmenting Data,

2005.

“lic˙thesis” — 2010/11/16 — 11:04 — page 88 — #108

No 1192 Nicklas Bergfeldt: Towards Detached Communication for Robot Cooperation, 2005.

No 1194 Dennis Maciuszek: Towards Dependable Virtual Companions for Later Life, 2005.

No 1204 Beatrice Alenljung: Decision-making in the Requirements Engineering Process: A Human-centered Approach,

2005.

No 1206 Anders Larsson: System-on-Chip Test Scheduling and Test Infrastructure Design, 2005.

No 1207 John Wilander: Policy and Implementation Assurance for Software Security, 2005.

No 1209 Andreas Käll: Översättningar av en managementmodell - En studie av införandet av Balanced Scorecard i ett

landsting, 2005.

No 1225 He Tan: Aligning and Merging Biomedical Ontologies, 2006.

No 1228 Artur Wilk: Descriptive Types for XML Query Language Xcerpt, 2006.

No 1229 Per Olof Pettersson: Sampling-based Path Planning for an Autonomous Helicopter, 2006.

No 1231 Kalle Burbeck: Adaptive Real-time Anomaly Detection for Safeguarding Critical Networks, 2006.

No 1233 Daniela Mihailescu: Implementation Methodology in Action: A Study of an Enterprise Systems Implementation

Methodology, 2006.

No 1244 Jörgen Skågeby: Public and Non-public gifting on the Internet, 2006.

No 1248 Karolina Eliasson: The Use of Case-Based Reasoning in a Human-Robot Dialog System, 2006.

No 1263 Misook Park-Westman: Managing Competence Development Programs in a Cross-Cultural Organisation - What

are the Barriers and Enablers, 2006.
FiF-a 90 Amra Halilovic: Ett praktikperspektiv på hantering av mjukvarukomponenter, 2006.

No 1272 Raquel Flodström: A Framework for the Strategic Management of Information Technology, 2006.

No 1277 Viacheslav Izosimov: Scheduling and Optimization of Fault-Tolerant Embedded Systems, 2006.

No 1283 Håkan Hasewinkel: A Blueprint for Using Commercial Games off the Shelf in Defence Training, Education and

Research Simulations, 2006.

FiF-a 91 Hanna Broberg: Verksamhetsanpassade IT-stöd - Designteori och metod, 2006.

No 1286 Robert Kaminski: Towards an XML Document Restructuring Framework, 2006.

No 1293 Jiri Trnka: Prerequisites for data sharing in emergency management, 2007.

No 1302 Björn Hägglund: A Framework for Designing Constraint Stores, 2007.

No 1303 Daniel Andreasson: Slack-Time Aware Dynamic Routing Schemes for On-Chip Networks, 2007.

No 1305 Magnus Ingmarsson: Modelling User Tasks and Intentions for Service Discovery in Ubiquitous Computing,

2007.

No 1306 Gustaf Svedjemo: Ontology as Conceptual Schema when Modelling Historical Maps for Database Storage, 2007.

No 1307 Gianpaolo Conte: Navigation Functionalities for an Autonomous UAV Helicopter, 2007.

No 1309 Ola Leifler: User-Centric Critiquing in Command and Control: The DKExpert and ComPlan Approaches, 2007.

No 1312 Henrik Svensson: Embodied simulation as off-line representation, 2007.

No 1313 Zhiyuan He: System-on-Chip Test Scheduling with Defect-Probability and Temperature Considerations, 2007.

No 1317 Jonas Elmqvist: Components, Safety Interfaces and Compositional Analysis, 2007.

No 1320 Håkan Sundblad: Question Classification in Question Answering Systems, 2007.

No 1323 Magnus Lundqvist: Information Demand and Use: Improving Information Flow within Small-scale Business

Contexts, 2007.

No 1329 Martin Magnusson: Deductive Planning and Composite Actions in Temporal Action Logic, 2007.

No 1331 Mikael Asplund: Restoring Consistency after Network Partitions, 2007.

No 1332 Martin Fransson: Towards Individualized Drug Dosage - General Methods and Case Studies, 2007.

No 1333 Karin Camara: A Visual Query Language Served by a Multi-sensor Environment, 2007.

No 1337 David Broman: Safety, Security, and Semantic Aspects of Equation-Based Object-Oriented Languages and

Environments, 2007.

No 1339 Mikhail Chalabine: Invasive Interactive Parallelization, 2007.

No 1351 Susanna Nilsson: A Holistic Approach to Usability Evaluations of Mixed Reality Systems, 2008.

No 1353 Shanai Ardi: A Model and Implementation of a Security Plug-in for the Software Life Cycle, 2008.

No 1356 Erik Kuiper: Mobility and Routing in a Delay-tolerant Network of Unmanned Aerial Vehicles, 2008.

No 1359 Jana Rambusch: Situated Play, 2008.

No 1361 Martin Karresand: Completing the Picture - Fragments and Back Again, 2008.

No 1363 Per Nyblom: Dynamic Abstraction for Interleaved Task Planning and Execution, 2008.

No 1371 Fredrik Lantz:Terrain Object Recognition and Context Fusion for Decision Support, 2008.

No 1373 Martin Östlund: Assistance Plus: 3D-mediated Advice-giving on Pharmaceutical Products, 2008.

No 1381 Håkan Lundvall: Automatic Parallelization using Pipelining for Equation-Based Simulation Languages, 2008.

No 1386 Mirko Thorstensson: Using Observers for Model Based Data Collection in Distributed Tactical Operations, 2008.

No 1387 Bahlol Rahimi: Implementation of Health Information Systems, 2008.

No 1392 Maria Holmqvist: Word Alignment by Re-using Parallel Phrases, 2008.

No 1393 Mattias Eriksson: Integrated Software Pipelining, 2009.

No 1401 Annika Öhgren: Towards an Ontology Development Methodology for Small and Medium-sized Enterprises,

2009.

No 1410 Rickard Holsmark: Deadlock Free Routing in Mesh Networks on Chip with Regions, 2009.

No 1421 Sara Stymne: Compound Processing for Phrase-Based Statistical Machine Translation, 2009.

No 1427 Tommy Ellqvist: Supporting Scientific Collaboration through Workflows and Provenance, 2009.

No 1450 Fabian Segelström: Visualisations in Service Design, 2010.

No 1459 Min Bao: System Level Techniques for Temperature-Aware Energy Optimization, 2010.

