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Abstract—With new technologies, temperature has become
an important issue to be considered at system level design. In
this paper, we address the issue of leakage energy optimization
through temperature aware idle time distribution (ITD). We
propose an on-line ITD technique for leakage energy consump-
tion minimization, where both static and dynamic idle time
are considered. Experimental results have demonstrated that an
important amount of leakage energy reduction can be achieved
by applying our ITD techniques.

I. INTRODUCTION

Technology scaling and ever increasing demand for per-
formance have resulted in high power densities in current
circuits, which have also led to increased chip temperature.
At the same time, leakage energy has become the dominant
energy consumption source of circuits [1]. Due to the strong
dependence of leakage current on temperature, temperature
is an important parameter to be considered for system level
power-aware techniques.

Many approaches to thermal aware system-level design
aiming at energy optimization or temperature management
have been proposed, e.g., [2], [3] and [4]. Static approaches
are exclusively based on temperature models used at design
time, e.g., Hotspot [5] which is both an architectural level
and system level temperature simulator. A similar temperature
modeling approach, proposed in the work in [6], speeds up the
thermal analysis through dynamic adaptation of the resolution.
Some fast system level temperature analysis techniques are
proposed, e.g., [7] and [8] which are efficient to be used inside
the temperature aware system level optimization loop. Several
temperature aware system level design approaches, e.g., [9]
and [10], are proposed in which decisions are taken on-line,
based on the actual chip temperature information. For on-
line temperature monitoring, sensors have been used together
with techniques for collecting and analyzing their values with
adequate accuracy, e.g., [11].

At system level, dynamic voltage selection (DVS) is one
of the preferred approaches for reducing the overall energy
consumption [12] and [13]. This technique exploits the avail-
able slack times to achieve energy efficiency by reducing
the supply voltage and frequency such that the execution of
tasks is stretched within their deadline. There are two types
of slacks: (1) static slack, which is due to the fact that,
when executing at the highest (nominal) voltage level, tasks
finish before their deadlines even when executing their worst
numbers of cycles (WNC); (2) dynamic slack, due to the fact
that most of the time tasks execute less cycles than their
WNC. However, very often, not all available slack should
or can be exploited and certain amount of slack may still
exist after DVS due to the existence of critical voltage [14].
To achieve the optimal energy efficiency, DVS would not
execute a task at a voltage lower than the critical one, since,
otherwise, the additional static energy consumed due to the
longer execution time is larger than the energy saving due to
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the lowered voltage. During the available slack interval, the
processor remains idle and can be switched to a low power
state.

Due to the strong inter-dependence between leakage power
and temperature, different distributions of idle time will lead to
different temperature distributions and, consequentially, energy
consumption. In this paper, we address the issue of optimizing
leakage energy consumption through distribution of idle time.
The only work, to our best knowledge, previously addressing
this issue is [15] and [16]. However, the proposed ITD
approaches only consider applications consisting of one single
task executing at a constant given supply voltage. Thus, their
ITD approach cannot optimize the distribution of idle time
among multiple tasks which also execute at different voltages.
In [8], we have proposed an ITD technique which eliminates
the above limitations. However, only static slack is considered
in the presentted ITD technique. In this paper, we present an
on-line ITD technique for leakage energy optimization which
considers both static and dynamic slack. This approach is look
up table (LUT) based and is composed of: an off-line and
an on-line phase: (i) The off-line phase prepares a LUT for
each task. (ii) At runtime, when a task is finished, the idle
time length following the finishing of this task is decided by
checking the task’s LUT.

II. PRELIMINARIES

A. Power Model

For dynamic power we use the following equation [17]: Pd =
Ceff ·f ·V

2, where Ceff , V , and f denote the effective switched
capacitance, supply voltage, and frequency, respectively.

The leakage power is expressed as follows [18]: Pleak =

Isr ·T
2
·e

β·V +γ
T ·V , where Isr is the reference leakage current

at reference temperature, T is the current temperature, and β
and γ are technology dependent coefficients.

B. Application and System Model

The application is captured as a task graph G(Π,Γ). A node
τi ∈ Π represents a computational task τi, while an edge
e ∈ Γ indicates the data dependency between two tasks.
Each task τi is characterized by the following six-tuple:
τi =< WNCi, BNCi, ENCi, dli, Ceffi, Vi > where WNCi,
BNCi and ENCi are task τi’s worse case, best case and
expected number of clock cycles to be executed. The expected
number of clock cycles ENCi is the arithmetic mean value of
the probability density function of the actual executed cycles
ANCi, i.e., ENCi =

PWNCi
j=BNCi

(j · pi(j)), where pi(j) is
the probability that a number j of clock cycles are executed
by task τi. We assume that the probability density functions
of the execution cycles of different tasks are independent.
Vi represents the supply voltage at which the task τi is
executed. Further, dli and Ceffi represent the deadline and
the effectively charged capacitance.

The application is mapped and scheduled on a processor
which has two power states: active and idle. In the active state
the processor can operate at several discrete supply voltage
levels. When the processor does not execute any task, it can



be put to the idle state, consuming a very small amount of
leakage power. We assume this leakage power Pidle to be
constant due to its small amount. Switching the processor
between the idle and active state as well as between different
voltage levels incurs time and energy overheads (denoted as
to and Eo respectively).

C. Thermal Analysis

Given is a periodic application made up of a set of tasks
(τ1, τ2, . . . , τn) as described in Section II-B. The task set
is mapped and scheduled to be executed on a processor.
Each task is executed at given voltage levels. Given initial
temperatures and workload of each task (teA

i is given), the
thermal model presented in [8] computes the corresponding
transient temperature curve (TTC) of the processor during one
execution iteration of the application.
Thermal Circuit. Our TTC estimation is based on an equiv-
alent RC thermal circuit built with physical parameters of the
die and the package of a given platform [19]. Due to the
fact that the application period tp can safely be considered
significantly smaller than the RC time of the heat sink [20],
the heat sink temperature stays constant during one iteration
of the application. Hence, for TTC estimation, the thermal
capacitance of the heat sink is ignored when we build the
thermal circuit.
TTC Estimation. As illustrated in Fig. 1a, one input to TTC
estimation is a voltage pattern which is determined by: 1) the
given voltage levels at which tasks are executed, and 2) a given
idle time distribution. The input voltage pattern is divided into
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Fig. 1. Temperature Analysis

a number of m sub-intervals as shown in Fig. 1a. Each sub-
interval is short enough such that the temperature variation
is small and the leakage power can be treated as constant
inside the sub-interval. The corresponding TTC is constructed
by calculating the temperature values T0 to Tm (Fig. 1b).
Temperature points T0 to Tm are obtained by solving a linear
system established as follows:

1) The initial temperatures T0 are given as input.
2) As leakage power stays constant inside one sub-interval,

each temperature point Ti can be related to its prior
point Ti−1 via a linear equation whose coefficients are
determined based on the inputs of the voltage pattern
and our equivalent thermal circuit.

Solving the linear system, we get the values for T0 to Tm and,
hence, obtain the corresponding TTC.

D. Static Temperature Aware ITD (SITD)

In [8], we presented a static ITD technique (SITD). Given is
a set of periodic tasks (τ1, τ2, . . . , τn) executed in the order,τ1,

τ2, . . . , τn, on a processor. Each task is characterized by a
four-tuple: τi =< WNCi, dli, Ceffi, Vi >. Our SITD approach
optimize energy consumption by allocating idle slots between
the execution of two neighbouring tasks. The optimization
variables to be decided are ti (1 ≤ i ≤ n), which represents
the length of the idle time slot allocated after the finishing
of task τi. The objective function to be optimized is the total

energy sum: Edyn
tot + Eleak

tot + Eo
tot, where Edyn

tot and Eleak
tot are

the total dynamic energy and leakage energy consumption of
the task set, respectively. Eo

tot is the total energy overhead
due to switching between power states. As the voltage level
Vi at which each task are executed are fixed, the total dynamic

energy consumption, E
dyn
tot , is fixed. Thus, the actual objective

function to be optimized is: Eleak
tot + Eo

tot.
Our SITD approach has been presented in [8]. The limi-

tation of this SITD is that it assumes that tasks are always
executed with their worst number of clock cycles and, thus,
only static slack can be distributed for leakage optimization.
However, in reality, most of the time, there are huge variations
in the number of cycles executed by a task, from one activation
to the other, which leads to a large amount of dynamic
slack. As we will demonstrate in the following sections, it
is very important to consider dynamic slack in ITD for energy
efficiency.

III. MOTIVATIONAL EXAMPLE

Let us consider an application consisting of 7 tasks which
share a global deadline of 96.85ms. The worst case workload
WNC (in clock cycles) and Ceff are given in Table I. The
tasks are executed on a processor with a fixed supply voltage
and frequency level of 0.6V and 132MHZ respectively. The
corresponding worst case execution times teW of the 7 tasks
are given in Table I. Given the performance of this processor,
there exists 6ms static slack, ts, in each execution iteration of
this application.

TABLE I
MOTIVATIONAL EXAMPLE: APPLICATION PARAMETERS

Ceff (f) WNC teW (ms) ANC teA(ms) tdi(ms)
τ1 5.0e-10 8.26e+6 6.22 5.95e+5 0.45 5.77

τ2 5.0e-10 1.20e+7 9.07 5.20e+5 0.40 8.67

τ3 9.0e-8 2.32e+7 18.76 2.49e+7 18.76 0.0

τ4 1.7e-7 2.25e+7 17.46 2.32e+7 17.46 0.0

τ5 1.8e-7 1.46e+7 16.94 2.25e+7 16.94 0.0

τ6 1.9e-7 2.15e+7 16.18 2.15e+7 16.18 0.0

τ7 5.0e-10 8.26e+6 6.22 2.60.e+6 1.96 4.26

For the above example, we perform leakage energy min-
imization using the static temperature aware ITD method
outlined in Section II-D. Fig. 2 gives the result, where ts is
divided into 3 segments of idle slots and the 3 idle slots are
placed after execution of task τ3, τ4 and τ5, respectively. For
simplicity, in this example, we ignore both energy and time
overhead due to switching between active and idle mode.

Ĳ1 Ĳ2 Ĳ3 Ĳ4 Ĳ5 Ĳ6 Ĳ7

Deadline

Time(ms)

Idle for 2.54msIdle for 2.26msIdle for 1.16ms

15.3 34.0 52.7 71.9 90.66.2 96.80.0 35.2 54.9 74.4

Fig. 2. Motivational Example: Static Idle Time Distribution

For this task set, let us imagine the activation scenario given
in Table I where the columns ANC and teA contains the ac-
tual executed workload (in clock cycles) and the corresponding
actual execution time of each task, respectively. tdi represents
the dynamic slack generated due to the actual number of cycles
executed by task τi (it is the difference between teW and teA

of the task).
For this activation scenario, tasks τ3, τ4, τ5 and τ6 execute

their worst case workload, while τ1, τ2 and τ7 execute less
than their worst case workload and thus generate dynamic

slack. The total amount of dynamic slack is td =
∑7

i=1 tdi =
18.7ms. Fig. 3a illustrates the distribution of idle time slots
during the on-line activation scenario if we use the off-line
ITD approach which distributes static slack as illustrated
in Fig. 2. In this case, the dynamic slack tdi is placed where
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(a) 1st ITD: Online Execution with Only Static ITD

(b) 2st ITD: Online Execution with Both Static and Dynamic ITD
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Fig. 3. Motivational Example: Idle Time Distribution

it is generated (tdi is placed after τi terminates). Table II
(column SITD) shows the corresponding working temperature
and leakage energy consumption of each task as well as the
total leakage energy consumption which is 7.97J. However,
leakage energy can be reduced by distributing the dynamic
slack more wisely. For example, at run-time, whenever a task
terminates, the idle time slot length following this task is
calculated by taking into consideration the current time and the
current chip temperature. Fig. 3b shows the ITD determined in
this way. The corresponding total leakage energy consumed,
as given in Table II (column DITD), is 7.32J which means a
leakage energy reduction of 9%.

TABLE II
LEAKAGE ENERGY COMPARISON

SITD DITD

τ1

τ2

τ3

τ4

τ5

τ6

τ7

Eleak
tot (J)

Tw(◦C) Eleak(J)
89 0.05

78 0.03

79 1.67

91 1.92

97 2.04

99 2.02

102 0.25

7.97

Tw(◦C) Eleak(J)
83 0.04

83 0.04

84 1.80

87 1.78

90 1.80

91 1.73

84 0.13

7.32

The example presented in this section demonstrates the
importance of considering dynamic slack at ITD for energy
efficiency. Hence, an on-line ITD approach is needed in order
to make use of the dynamic slack created due to the execution
time variation of tasks at runtime.

IV. ITD WITH BOTH

DYNAMIC AND STATIC SLACK (DITD)

In order to exploit the dynamic slack in ITD, the slot length ti
(following the termination of task τi) has to be determined at
the run-time based on the values of the current time and tem-
perature at the termination of task τi. In principle, calculating
the appropriate ti implies the execution of a temperature aware
ITD algorithm similar with the one outlined in Section II-D
However, running this algorithm on-line, after execution of
each task, implies a time and energy overhead which is not
acceptable.
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Fig. 4. DITD On-line Step

To overcome the above problem, we have divided our
dynamic ITD (DITD) approach into two phases: an off-line
phase and an on-line phase. In the off-line phase, idle time
settings for all tasks are pre-computed, based on possible
finishing times and finishing temperatures of the task. The
resulting idle time settings are stored in look-up tables (LUTs),
one for each task. In Fig. 4, we show two such tables.
They contain idle time settings for combinations of possible
termination time tf and finishing temperature Tf of a task τi.
For example, in LUT1, the line with finishing time 1.5 and
temperature 70 stores the idle time slot length following the
termination of task τ1 in the situation when τ1 finishes in the
time interval (1.0ms, 1.5ms] and the die temperature is in the
interval (60◦C, 80◦C]1. In section IV-B we will present the
generation procedure of the LUTs.

A. On-line Phase

The on-line phase is illustrated in Fig. 4. Each time a task
τi terminates, the length of the idle time slot ti following
termination of τi has to be fixed; the on-line scheme chooses
the appropriate setting from the lookup table LUTi, depending
on the actual time and temperature sensor reading. If there
is no exact entry in the LUTi corresponding to the actual
time/temperature, the entry corresponding to the immediately
higher time and closest temperature value is selected. For ex-
ample, in Fig. 4, τ1 finishes at time 1.35ms with a temperature
78◦C. To determine the appropriate idle time slot length t1,
LUT1 is accessed based on the time and temperature values.

As there is no exact entry with t
f
1 = 1.35ms and Tf1 = 78◦C,

the entry corresponding to termination time 1.5ms (1.5ms is
immediately higher than 1.35ms) and temperature 70◦C (as
it is the closest one to Tf = 78◦C) is chosen. The idle time
following the termination of task τ1 is determined to be 0.5ms.
Hence, the processor will be switched to the idle state for
0.5ms before the next task, τ2, starts. This on-line phase is of
very low time complexity, thus, very efficient.

B. Off-line Phase

In the off-line phase one LUT table is generated for each task
such that the leakage energy consumption during execution
is minimized. It is important to notice that the idle time is
distributed so that leakage energy is minimized in case that
tasks execute their expected number of cycles ENC which,
in reality, happens with a much higher probability than e.g.,
WNC. Nevertheless, the idle time slot lengths are fixed such
that, even in the worst case (tasks execute WNC), deadlines
are satisfied.

The LUT table generation algorithm is illustrated in Fig. 5.
The outermost loop iterates over the set of tasks and succes-
sively constructs the table LUTi for each task τi. The next loop
generates LUTi corresponding to the various possible finishing
temperatures Tfi of τi. Finally, the innermost loop iterates,
for each possible finishing temperature, over all considered

termination times t
f
i of task τi.

The algorithm starts by computing the earliest (EFT) and
latest possible finishing times (LFT), as well as the lowest
Tf l

i and highest possible finishing temperature Tfh
i for each

task. With a given finishing time t
f
i and finishing temperature

Tfi of task τi, in the innermost loop, the actual LUT entry
for a task τi is calculated using the SITD algorithm together
with the TTC estimation (outlined in Section II-D [8] and
Section II-C, respectively).

1Unlike the time entry, the temperature entry is chosen based on the
principle that the entry with temperature value nearest to the sensor reading
T se is chosen. If T se is in the interval (60◦C, 80◦C], than the temperature
entry with value 70 is the nearest one to T se among all temperature entries.
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Fig. 5. DITD Off-line Step

For successive iterations, the finishing temperature and time
will be increased with the time and temperature quanta △ti
and △Ti. The calculation of the parameters EFTi, LFTi, Tf l

i

and Tfh
i as well as the determination of the granularities and

number of entries along the time and temperature dimensions
are presented in Section IV-C and Section IV-D, respectively.

C. Time Bounds and Granularity

In the first step of the algorithm in Fig. 5, the EFTi and LFTi

for each task are calculated. The earliest finishing time EFTi

is calculated based on the situation that all tasks execute their
best case execution time teB

i . The latest finishing time LFTi

is calculated as the latest termination time of τi that still allows
all tasks τj (j > i) to satisfy their deadlines when they execute
their worst case execution time teW

i .
With the time interval [EFTi, LFTi] for task τi, a straight-

forward approach to determine the number of entries along
the time dimension would be to allocate the same number
of entries for each task. However, the time interval sizes
LFTi−EFTi can differ very much among tasks, which should
be taken into consideration when deciding on the number of
time entries Nti. Therefore, given a total number of entries
along the time dimension NLt, we determine the number of
time entries in each LUTi by: Nti = NLt ·

(LFTi−EFTi)
n
P

i=1

(LFTi−EFTi)

The corresponding granularity along the time dimension △ti
for task τi is the same for all tasks and is obtained as:

△ti =

n
P

i=1

(LFTi−EFTi)

NLt
.

D. Temperature Bounds and Granularity

The granularity along the temperature dimension △Ti is the
same for all task τi and has been determined experimentally.
Our experiments have shown that values around 15◦ are opti-
mal, in the sense that finer granularities will only marginally
improve energy efficiency.

To determine the number of entries along the temperature
dimension, we still need to determine the temperature interval
[Tf l

i , T fh
i ] at the termination of each task. Intuitively, the

temperature variation is strongly dependent on the tasks’
execution time variation. Theoretically, with a given thermal
circuit, the temperature interval can be obtained knowing
the tasks’ execution time variation. Unfortunately, performing
precise analysis of temperature variation for each task is not

feasible in practice due to the analysis complexity. On the
other hand, it would be too pessimistic to simply assume that
all tasks have finishing temperature interval: [Ta, Tmax], where
Ta is the ambient temperature, and Tmax is the maximum
temperature at which the chip is allowed to work. As this can
lead to huge amounts of wasted memory space (for storing
LUT tables) as well as computation time in the off-line phase.

To balance the computation complexity and accuracy of
the temperature interval analysis, we propose the following
approach for estimating the temperature interval [Tf l

i , T fh
i ]

for each task τi. We should note that it is not important to
determine the bounds of the temperature interval exactly. A
good estimation, such that, at run-time, temperature readings
outside the determined interval will happen rarely is sufficient.
If the temperature readings exceeds the upper/lower bound
of the interval, the idle time setting corresponding to the
highest/lowest temperature value available in the LUT will
be used.
Temperature Bounds Analysis for A Simple Example. Let
us first look at the following simplified example. As shown

P
R

C
P time

deadline

teB

te
W

(a) An Example (b) An 1-RC Thermal Circuit 
tp

Fig. 6. An 1-RC Thermal Circuit

in Fig. 6a, a periodic application (period is tp) containing a
single task τ1 is executing on a processor. The actual execution
time of τ1 is teA, which is in the interval [teB , teW ], where
teB and teW are the best and worst case execution time of
τ1, respectively. During the execution of τ1, the processor
has a constant power consumption, P . For simplicity, we
use a simple 1-RC thermal circuit, as shown in Fig. 6b, to
model the processor’s temperature behaviour, where R and
C represent the thermal resistance and capacitance of the
processor respectively.

The temperature at the termination of the task τ1 is ex-
pressed as follows:

T f = P · R − (P · R − T st) · e
(−teA

τrc
)

(1)

where T st is the initial temperature, τrc is the RC time
constant of the processor: τrc = R · C, and P · R is the
steady steady temperature the processor would reach if task τ1
is execute for sufficiently long time. After the termination of
τ1 and before τ1 starts for the next iteration, the processor is
switched to idle state2 during the idle slot with length tp−teA.
The temperature at the end of the idle slot is expressed as
follows.

T I = Ta + (T f
− Ta) · e

(
−tp+teA

τrc
)

(2)

From Eq. (1) and Eq. (2), we can see that, with given
initial temperature T st, both T f and T I are monotonically
increasing as teA increases. If the application is executed
for number of N iterations, then, the starting and finishing
temperature of the task τ1 for each iteration jth (denoted as

T st
j and T

f
j respectively) can be expressed by Eq. (3) and

Eq. (4), where teA
j represents the actual execution time of

τi in jth iteration. It is important to notice from Eq. (3)

2For simplicity, we assume no energy and time overheads is incurred when
power state is changed , and the processor power consumption in idle state
is zero.



and Eq. (4) that, for each iteration, temperature values T
f
j

and T st
j+1 are both monotonically increasing as teA

j increases.
Therefore, the highest possible finishing temperature of the

task after number of N iterations, T
f
N , is achieved when the

task is always executed with its worst case execution time:
teA

j = teW (∀j 1 ≤ j ≤ N ). Similarly, the lowest finishing
temperature is reached when the task is always executed with
its best case execution time: teA

j = teB (∀j 1 ≤ j ≤ N ).

T st
j = Ta + (T f

j−1 − Ta) · e
(
−tp+teA

j−1

τrc
)

(3)

T
f
j = P · R − (P · R − T st

j ) · e
(
−teA

j
τrc

)
(4)

Temperature Bounds Estimation. Our method of estimating
temperature bounds [Tfh

i ,Tf l
i ] is based on the observation

from the above example. We first define two on-line execution
scenarios.

• Worst case on-line execution scenario: it is an on-line
execution scenario when the actual execution time of each
task τi is always equal to its worst case execution time:
teA

i = teW
i .

• Best case on-line execution scenario: it is an on-line
execution scenario when the actual execution time of each
task τi is always equal to its worst case execution time:
teA

i = teB
i .

In both scenarios above, the processor will execute the cor-
responding periodic power pattern repeatedly and the proces-
sor temperature will eventually reach to steady state dynamic
temperature curves (denoted as SSDTCw and SSDTCb

respectively), after executing the application for sufficiently
large number of times. From both SSDTCw and SSDTCb,
we can obtain, for each task τi, its finishing temperature. We
use the finishing temperature of task τi corresponding to the
SSDTCw (arrived in the worst case on-line execution sce-
nario), Tfw

i , as the upper bound of the finishing temperature
of task τi: Th

i = Tfw
i ; and the finishing temperature of task

τi corresponding to the SSDTCb (arrived in the best case on-
line execution scenario), Tf b

i , as the lower bound: T l
i = Tf b

i .
We obtain SSDTCw by performing the SITD outlined

in Section II-D. To obtain SSDTCb, we perform the SITD
for the best case on-line execution scenario, with the only
difference that the available idle time is computed with the
consideration that task execution time is always teB

i (instead
of teW

i , as we do in SSDTCw computation).

With obtained upper and lower bounds [Tf l
i , Tfh

i ] for
each task τi, the considered temperature values in LUTi are
determined as follows: Tfdie

i = k ·△Ti + Tf l
i , where △Ti is

the granularity along temperature dimension and the integer k

is in the interval: 0 ≤ k < ⌈
(Tfh

i −Tf l
i )

△Ti
⌉.

V. EXPERIMENTAL RESULTS

We have used both generated test applications as well as a real
life example in our experiments to evaluate our on-line ITD
approach presented in Section IV.

A. Test Applications Generation

We have randomly generated 100 test applications consisting
of 10 to 100 tasks. The workload in the worst case (WNC) for
each task is generated randomly in the range [106, 5.0 e106]
clock cycles, while the workload in the best case is generated
in the range [105, 5.0 e105] clock cycles. To generate the
expected workload of each task ENCi, the following steps
are performed:

1) The value of the expected total dynamic idle time, tEd ,
is given as an input, where tEd is the total dynamic slack
when all tasks execute their workload in the expected
case: tE

d =
Pn

i=1(te
W
i − teE

i ).
2) Divide tEd into a number nsub of multiple sub-intervals

with equal length (tsub).
3) The nsub sub-intervals are allocated among all tasks

within application based on a uniform distribution, as
result, each task is allocated number of p sub-intervals.

4) The expected workload ENCi of task τi is, thus,
determined as: ENCi = WNCi − p · tsub · fi, where fi

is the processor frequency when task τi is executed.

B. Leakage Energy Reduction

To evaluate our DITD approach described in Section IV, we
have compared it with the static ITD approach as outlined in
Section II-D. The SITD approach is applied to each generated
test applications, and the following steps are performed.

1) Firstly, SITD is performed to distribute static slack, as
result, we obtain ti (1 ≤ i ≤ n) which are the idle
slot lengths following the termination of τi−1. The start
time of each task tst

i is, thus, determined off-line by:
tst
i = teW

i−1 + tst
i−1 + ti−1, where teW

i−1 is the worst case
execution time of the previous task τi−1.

2) On-line execution of the application is simulated. When-
ever a task τi terminates, we compute the gap tg:

tg = tst
i+1 − tf

i , where t
f
i is the termination time of the

current task and tst
i+1 is the start time of the next task.

3) If tg = 0, the next task τi+1 starts immediately after the
termination of task τi. For the cases when tg > 0, the
processor will be switched to idle state during tg , if the
following two conditions are both satisfied; otherwise
the processor will stay in the same active state at which
task τi is executed: (a) tg > to, where to is the time
overhead due to power state switching; (b) the energy
gain Eg is positive: Eg = Ea

−(Pidle ·tg +Eo) > 0, where
Ea is the leakage energy consumption of the processor
during tg if the processor stays in the same active state at

which τi is executed. Ea is estimated as P leak ·tg where

P leak is the leakage power consumption calculated at the
temperature when task τi terminates. Pidle ·tg+Eo is the
energy consumption if the processor is switched to idle
state during tg , where Eo is the energy overhead due to
switching and Pidle is the processor power consumption
in idle state.

We have applied both DITD and SITD approaches on the
same test applications simulated for number of N iterations3.
The Hotspot system [5] is used to simulate the sensor readings
which track the temperature behaviour of the platform during
the execution of a test application. In our experiments, the
granularities along time and temperature dimensions for the
LUT table is set to 1.5–2.0ms and 15◦–20◦, respectively. It
is important to mention that in all our experiments, we have
accounted for the time and energy overhead produced by the
on-line phase of our DITD. Similarly, we have also taken
into consideration the energy overhead due to the memory
access. This overhead has been calculated based on the energy
values given in [21] and [22]. The energy and time overheads
due to power state switching is set to Eo = 0.5mJ and
to = 0.4ms, respectively, according to [14]. After performing
both DITD and SITD approaches on a test application and
run it for N iterations, we compute the corresponding leakage
energy reduction by dynamic approach compared to the static

3We execute the test applications for large number of iterations, such that
the time spent in the initial heating up can be ignored



one for each iteration: Ij = (ESITD
j − EDITD

j )/ESITD
j · 100%

where ESITD
j and EDITD

j are leakage energy corresponding

to SITD and DITD approach at jth iteration, respectively. The
averaged leakage energy reduction over N iterations is, then,
calculated: I =

PN

j=1 Ij/N .
We assume, for each task τi, that the actual executed

workload at runtime conforms to the beta distribution
Beta(α1i, α2i), and when we simulate the on-line execution of
test applications, the actual executed clock cycles of each task
is generated using the corresponding beta distributed random
generator. The parameters α1i and α2i are determined by
(1) the expected workload ENCi (which is determined as
described in Section V-A), and (2) a given standard deviation
of the executed clock cycles of task τi, σi. We have considered
four different values of standard deviation σi: 5% · (WNCi −
BNCi), 10%·(WNCi−BNCi), 15%·(WNCi−BNCi), and
20% ·(WNCi−BNCi) in our experiments. As the amount of
available dynamic slack has strong influence on the potential
efficiency of a dynamic ITD approach, we have performed
the experiments considering different dynamic slack ratios,
rd, which is calculated as: rd = tE

d /dl, where tEd is the
expected total dynamic slack as described in Section V-A.
Fig. 7 shows, for each consideration of the standard deivation
setting σi, the averaged leakage energy reduction I relative
to the static one. As can be observed, the efficiency of the
dynamic approach, compared to the static one, increases as
the dynamic slack ratio rd grows. As our DITD approach is
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targeted towards optimizing the energy consumption for the
case that tasks execute their expected number of cycles ENC.
Therefore, energy savings are larger, compared to the static
approach, when the standard deviation is smaller ( more of the
actual executed number of clock cycles are clustering around
the ENC).

We have also evaluated the computation time for the off-
line phase of our DITD approach. The results are given in
Fig. 8. As can be observed from Fig. 8, the computation time
of the off-line phase of our DITD approach is a function of the
application size (characterized by the number of tasks). The
computation time is around 2 hours for very large applications,
e.g., applications containing 100 tasks.
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C. Real Life Example

We have also applied our DITD approach to a real life case,
namely an MPEG2 decoder which consists of 34 tasks and is

described in detail in [23]. The leakage energy reduction ap-
plying our DITD approach relative to the static ITD approach
is 26.2%.

VI. CONCLUSION

We have proposed a dynamic idle time distribution heuristic
for energy minimization. This ITD approach considers both
static and dynamic idle time and consists of an off-line and
an on-line step. Our experiments demonstrate that considerable
energy reduction can be achieved by our on-line idle time
distribution compared to a static approach.
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